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Abstract 24 

In group living species, individuals may gain the indirect fitness benefits characterising 25 

kin selection when groups contain close relatives. However, tests of kin selection have 26 

primarily focused on cooperatively breeding and eusocial species, whereas its 27 

importance in other forms of group living remains to be fully understood. Lekking is a 28 

form of grouping where males display on small aggregated territories, which females 29 

then visit to mate. As females prefer larger aggregations, territorial males might gain 30 

indirect fitness benefits if their presence increases the fitness of close relatives. Previous 31 

studies have tested specific predictions of kin selection models by using measures such 32 

as group-level relatedness. However, a full understanding of the contribution of kin 33 

selection in the evolution of group living requires estimating individuals’ indirect fitness 34 

benefits across multiple sites and years. Using behavioural and genetic data from the 35 

black grouse (Tetrao tetrix), we show that the indirect fitness benefits of group 36 

membership were limited because newcomers joined leks containing few close relatives 37 

who had limited mating success. Males’ indirect fitness benefits were higher in yearlings 38 

during increasing population density but overall remained small and only marginally 39 

changed the variation in male fitness. Kin selection acting through increasing group size 40 

has a limited influence on male fitness and is therefore unlikely to contribute 41 

substantially to the evolution and maintenance of lekking in this black grouse population. 42 

  43 
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Introduction 44 

Group living is widespread in animals and may take many different forms, with 45 

individuals associating with conspecifics in a range of temporal (short-term to life-long) 46 

and spatial associations (Krause & Ruxton 2002). Irrespective of the degree of spatial 47 

and temporal proximity, group living is often associated with substantial fitness benefits 48 

such as reduced predation risks, enhanced foraging efficiency, alloparental care or 49 

cooperation (Emlen 1995; Krause & Ruxton 2002; Clutton-Brock 2002). But in addition to 50 

these direct fitness benefits, individuals may also gain indirect fitness benefits from living 51 

in groups when closely related individuals live together (Kokko et al. 2001; Clutton-Brock 52 

et al. 2002; Hatchwell 2010) meaning that kin selection might be involved in the 53 

evolution of group living (Hamilton 1964; Griffin & West 2002; Grafen 2006). However, 54 

most studies aiming at determining the role of kin selection in shaping specific 55 

behaviours in species other than eusocial insect have focused on testing predictions of 56 

kin selection models using measures such as group level relatedness (Reeve et al. 57 

1990; McDonald & Potts 1994; Peters et al. 1999) or the modulation of behaviours 58 

according to the relatedness of the interacting individuals (Ligon & Ligon 1978; Emlen & 59 

Wrege 1988; Komdeur 1994; Russell & Hatchwell 2001). Therefore, actual 60 

quantifications of the indirect fitness benefits associated with individuals’ action are still 61 

scarce (e.g. Creel & Waser 1994; Krakauer 2005; Gorrell et al. 2010; Hatchwell et al. 62 

2014), despite them being necessary to compare individual’s direct and indirect fitness 63 

benefits and hence better understand the relative contribution of kin selection to the 64 

evolution of the wide range of forms of group living observed in nature. 65 

Lekking is a taxonomically widespread form of grouping in which males 66 

aggregate on specific locations during the breeding season to acquire and defend a 67 

small territory (Höglund & Alatalo 1995). Females visit the leks for the sole purpose of 68 

mating and male mating success is highly skewed (Bradbury 1981; Kokko et al. 1999). 69 
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Leks have become a model for the benefits of group living driven by sexual selection 70 

(Höglund & Alatalo 1995) and four non-mutually exclusive hypotheses have been 71 

proposed to explain their evolution through increased male direct fitness: (i) increased 72 

likelihood of encountering females by displaying where female density is high (Bradbury 73 

et al. 1986); (ii) increased likelihood of encountering females by displaying close to an 74 

attractive male (Beehler & Foster 1988); (iii) increased mating success through female 75 

preference for large aggregations (Bradbury 1981); (iv) reduced predation risk in larger 76 

aggregations (e.g. Boyko et al. 2005). However, males may also gain indirect fitness 77 

benefits of group membership. This is because female preference for larger 78 

aggregations (Isvaran & Ponkshe 2013) means that males joining a lek with close 79 

relatives may increase the fitness of close relatives (Kokko & Lindström 1996). Since the 80 

vast majority of males have zero mating success (Kokko et al. 1999a; Höglund & 81 

Lundberg 1987; Partecke et al. 2002), our understanding of the evolution and 82 

maintenance of lek-display based upon the extreme male mating skew might be biased 83 

if unsuccessful males gain substantial indirect fitness benefits.  84 

Several studies have attempted to determine whether kin selection contributes to 85 

the evolution of leks by measuring relatedness across lekking males (Supporting Table 86 

S1) with the underlying assumption that males’ indirect fitness benefits are low if the 87 

average relatedness across lekking males is null. However, mean relatedness at the lek-88 

level is a valid proxy of male indirect fitness benefits only in species where individuals 89 

can switch between groups throughout their lives. This is not the case of many lekking 90 

species since the choice of group membership occurs only once as males are faithful to 91 

their group (Kokko & Lindström 1996). Hence the relatedness of males territorial for the 92 

first time (newcomers) to the other group members should be considered to avoid mixing 93 

individuals with fundamentally different motivations and fitness pay-offs. Moreover, the 94 

distribution of relatedness across lekking males is often bimodal with many unrelated 95 
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males and a few closely related individuals (e.g. Shorey et al. 2000). Therefore, although 96 

the mean relatedness across lekking males is not significantly different from zero, 97 

newcomers may gain substantial indirect fitness benefits if they are closely related to the 98 

dominant male(s) of the lek. Furthermore, individuals’ indirect fitness benefits are often 99 

context-dependence (Rodrigues & Gardner 2012) as many ecological and individual 100 

factors shape individuals’ dispersal decision (Emlen 1982; Hatchwell & Komdeur 2000) 101 

and hence the likelihood of encountering close relatives (see e.g. Piertney et al. 2008; 102 

Koenig et al. 2011). Therefore, there might be considerable intra- and interspecific 103 

variation in the mean relatedness across lekking males (Supporting Table S1) which 104 

directly influences the magnitude of kin selection. Finally, lekking is a form of grouping 105 

that is primarily driven by sexual selection (Höglund & Alatalo 1995) and the interaction 106 

of group members may influence their fitness via increased mating success (Kokko & 107 

Linström 1996). Therefore, better understanding the role of kin selection in the evolution 108 

of lekking requires quantifying the relative contribution of individuals’ direct and indirect 109 

fitness benefits to the overall variation in mating success which quantifies the magnitude 110 

of sexual selection. Hence, despite considerable previous efforts, previous studies have 111 

only implied that kin selection on leks might occur (Petrie et al. 1999; Höglund et al. 112 

1999; Shorey et al. 2000) but there is a clear need for studies that quantify the indirect 113 

fitness benefits of male display, identify the factors underpinning the magnitude of 114 

individuals’ indirect fitness benefits, and compare the relative contributions of direct and 115 

indirect components of sexual selection. 116 

We used long-term data collected in a population of black grouse (Tetrao tetrix) 117 

in Central Finland to quantify the indirect fitness benefits of group membership. The 118 

black grouse is a classical lekking species in which male-male competition is direct 119 

(Hämäläinen et al. 2012) and males are faithful to their lek site (Kokko et al. 1999b). 120 

Previous studies have shown that black grouse males maximize their direct fitness 121 
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benefit by choosing a lek site according to their competitive ability (Alatalo et al. 1992), 122 

and gain future direct benefits (Kokko et al. 1999b). However, the role of kin selection in 123 

the formation of leks in this species is unclear because kin structures have not been 124 

consistently found (Höglund et al. 1999; Lebigre et al. 2008). Genetic and detailed 125 

behavioural observations over multiple consecutive years enabled us to identify 126 

newcomers and measure their relatedness to the other lekking males. Here, we first 127 

show how newcomers’ indirect fitness benefits can be quantified as the product of (i) the 128 

relatedness of the newcomers to the other lekking males with (ii) the effect of the 129 

newcomers’ presence on the mating success of the other lekking males (i.e. the 130 

difference between the mating success of the other lekking males measured in the 131 

presence and absence of the focal newcomers). We then test the hypothesis that such 132 

indirect fitness benefits are context-dependent by measuring the effect of population 133 

density, newcomers’ age and lek site on the newcomers’ indirect fitness benefits. Finally, 134 

we quantify the contributions of the direct and indirect mating success to the variance in 135 

newcomers’ mating success to determine the contribution of kin selection acting through 136 

increasing group size to the variance in newcomers’ fitness.  137 

 138 

Materials and Methods  139 

 140 

Study population and field methods  141 

Individual black grouse were captured near Petäjävesi (Central Finland) at five study 142 

sites during 2001-2007 (Kummunsuo, Lehtosuo, Saarisuo, Teerijärvensuo, and 143 

Valkeissuo). Birds were captured using walk-in traps baited with oat seeds. All captured 144 

birds were aged as yearling or older according to plumage characteristics and marked 145 

with an aluminum ring and a unique combination of colour rings. Lek observations were 146 

carried out from hides every morning throughout the mating season (end of April-early 147 
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May). Females mate once with a single male; male mating success was estimated from 148 

observed copulations as the sire of the broods nearly always matched behavioural 149 

observations (Lebigre et al. 2007). Males were defined as territorial when present on 150 

leks for at least 30% of the number of observations of the most attending male (Kervinen 151 

et al. 2012). Newcomers were identified when captured as one year old (yearling) and 152 

subsequently becoming territorial for the first-time on the studied leks. When full-siblings 153 

joined the same leks simultaneously, one male of each pair was retained in the analyses 154 

to avoid pseudoreplication (n = 11).  155 

 156 

Estimating newcomers’ indirect fitness benefits 157 

The relationship (β) between the total number of copulations observed on any given lek 158 

(cz, z denotes each lek site) and lek size (lz) can be used to estimate the total number of 159 

copulations expected to occur on each lek had a newcomer not joined a specific lek (c’z= 160 

cz – β). The mating success of each male on a lek without the newcomer (m’z,j, j denotes 161 

the focal male) can then be calculated as the product of c’z by the contribution of 162 

individual j to cz (i.e. m’z,j = (mz,j / cz) x c’z). The difference between the mating success of 163 

each males’ with and without the newcomer (mz,j - m’z,j) measures the increase in each 164 

male’s mating success due to the presence of the newcomer. The indirect fitness 165 

benefits of a newcomer “i” on lek “z” (wz,i) can therefore be estimated as (Eq. 1):  166 

 167 

where “N” is the size of lek “z”, Rz,ij the relatedness between the newcomer “i” and the 168 

other lekking males “j”, and “mz,j – ((mz,j / cz) x c’z)” is the increase in the other lekking 169 

males’ mating success due to the presence of the newcomer. This method may be 170 

applied in other contexts to estimate indirect fitness benefits when individuals’ fitness 171 
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increases with group size (Krause & Ruxton 2002), and genetic data are available to 172 

measure the relatedness of group members.  173 

Eq. 1 estimates male indirect fitness benefits in terms of mating success as the 174 

increasing group size leads to increasing mating success (Kokko & Lindström 1996). 175 

However, male mating success might only be weakly related to their reproductive 176 

success (i.e. number of offspring produced) if there is a mismatch between observed 177 

mountings and genetic paternity. In black grouse, broods sired by multiple males are 178 

very rare (Lebigre et al. 2007), parentage analyses nearly always matched lek 179 

observations (Lebigre et al. 2007), and the variation in female clutch size is small (Table 180 

2 in Ludwig et al. 2010). Therefore, mating success is a key fitness component in male 181 

black grouse and its variation likely reflects the variation in male reproductive success.  182 

An assumption of Eq. 1 is that the share of the total number of observed 183 

copulations does not change with lek size which contradicts the commonly observed 184 

increase in mating skew with decreasing leks size (Kokko et al. 1999a; Alatalo et al. 185 

1992). Accounting for such effect would require reallocating fractions of some males’ 186 

mating success to others. However, three measures of variation (two measures of 187 

skewness and the variance) were not related to lek size (Supporting Table S2). 188 

Therefore, correcting for such effect is virtually impossible as it would require accounting 189 

for changes in some but not all measures of variation with lek size. Besides, multiple 190 

factors underpin the variation in male mating success in black grouse (see e.g. 191 

Rintamäki et al. 2001; Kervinen et al. 2012) and two of these traits are expected to 192 

change when a focal newcomer is taken out of a group: male territory positions (Hovi et 193 

al. 1994) and male-male interactions (Hämäläinen et al. 2012). Given the complex 194 

nature of the changes in the variation in male mating success with lek size and the lack 195 

of biological background upon which we could define accurately the males gaining or 196 
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losing mating success, we decided not to reallocate mating success among males with 197 

the disappearance of a specific individual.  198 

 199 

Relatedness and kinship estimates 200 

Genomic DNA was extracted from blood samples and all birds were genotyped at 11 201 

highly polymorphic microsatellite loci (Lebigre et al. 2007). The relatedness among 202 

individuals (RQG) was calculated using RELATEDNESS 5.0.8 (Queller & Goodnight 203 

1989) as described in Lebigre et al. (2008). There was no significant difference between 204 

observed and expected RQG values for full-siblings, half-siblings, and unrelated 205 

individuals and parent-offspring relationships were slightly underestimated (Lebigre et al. 206 

2010). In addition to RQG, we also used the kinship coefficient (k) from the reconstruction 207 

of a pedigree (Lebigre et al. 2010). The pedigree was reconstructed by first using 208 

maximum the likelihood parentage assignments implemented in CERVUS 3.0 209 

(Kalinowski et al. 2007). This allowed us to identify parent-offspring (k = 0.5) and some 210 

full- and half-siblings relationships when individuals shared both or one parent (k = 0.5 211 

and 0.25 respectively). Additional close kinships (full- and half-siblings) were then 212 

identified using the group likelihood method implemented in COLONY v2.0 (Wang 2004; 213 

Wang & Santure 2009). These additional kinships were accurate for full-siblings and 214 

unrelated individuals (Type I error: 0.08 and 0.20 respectively; Type II errors: 0.19 and 215 

0.10 respectively; see Lebigre et al. 2010). The error rate was higher for half-siblings 216 

(Type I: 0.12; Type II: 0.55). To limit the risks of wrongly identifying unrelated dyads as 217 

close relatives, the dyads of full- and half-siblings were therefore kept only if RQG > 0.2 218 

(Lebigre et al. 2010).  219 

 220 

Statistical analyses:  221 
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We first used lek observations collected during 2001-2011 to quantify the effect of 222 

increasing lek size on the total number of copulations. The linear mixed effect model to 223 

quantify this effect was implemented in the r-package nlme (Pinheiro et al. 2013) with lek 224 

site identity included as a random variable to account for the non-independence of 225 

multiple observations of the same lek. The effect of year explained very little additional 226 

variation and was therefore excluded of the final model. The variance structure of the 227 

model was modified to account for heteroscedasticity (Pinheiro & Bates 2002).  228 

We tested whether the magnitude of newcomers’ indirect fitness benefits was 229 

context-dependent by quantifying the effect of population density, the age of the 230 

newcomers (yearling or older), and the lek site on newcomers’ indirect fitness benefits. 231 

These variables were chosen because it has been previously shown that population 232 

density influences male lekking behaviour and lek size (Kervinen et al. 2012) and might 233 

underpin changes in local kin structures due to changes in recruitment rate and adult 234 

survival (see e.g. Piertney et al. 2008). Population density was estimated using wildlife 235 

triangles censuses carried out in the previous autumn (Kervinen et al. 2012). During 236 

2001-2007, the population underwent a phase of low density, a rapid increase, and a 237 

peak of high density (Kervinen et al. 2012). Because of unbalanced sampling of 238 

newcomers’ age, three levels of population density were defined (low: 2001-2005; 239 

increasing: 2006; high: 2007). Newcomers’ age was also included as a covariate 240 

because yearlings may be more likely to display with their father and hence may gain 241 

greater indirect fitness benefits than older newcomers. Finally lek site was set as a 242 

covariate in the analyses since some sites have consistently high or low total number of 243 

observed copulations. Full models containing all independent variables and the 244 

interaction between population density and newcomers’ age were subsequently 245 

simplified using a backward stepwise procedure. Model selection was based on changes 246 
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in the models’ sum of squares (ANOVA), and deviance (logistic regression, generalised 247 

linear model) following the removal of a variable.  248 

 ANOVAs were fitted to newcomers’ indirect fitness benefits measured using RQG 249 

and the heteroscedasticity was tested using Fligner’s test. Since, the distribution of 250 

newcomers’ indirect fitness benefits measured using k was right skewed and zero-251 

inflated, this variable was modelled in two steps: (i) a logistic regression with the binary 252 

dependent variable describing whether newcomers’ had zero or non-zero indirect fitness 253 

benefits, and (ii) a generalized linear model with a Gamma error distribution (inverse 254 

link) across males having non-zero indirect fitness benefits. 255 

To quantify the degree to which the indirect fitness benefits associated with male 256 

display influenced the variation in male mating success, we first carried out a variance 257 

decomposition. As mating success has both direct and indirect (i.e. kin selected) 258 

components, and as the variance in any two random X and Y variable can be 259 

decomposed as Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y), then the variance in male 260 

mating success can be decomposed as the sum of the variance in its direct component 261 

and the variance in its indirect component and twice the covariance between these two 262 

components. These variances were standardised by the squared mean in mating 263 

success meaning that these variances were expressed in terms of opportunity for sexual 264 

selection (ISS, Shuster & Wade 2003). All analyses were carried out in R version 2.15.0 265 

(R Core Team 2012). 266 

 267 

Results  268 

 269 

Lek size and the total number of copulations 270 

The total number of copulations observed on leks was strongly positively related to lek 271 

size in black grouse (linear mixed effects model: β = 1.75 ± 0.25 (SE), t-value = 6.95, P 272 
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< 0.001, Fig. 1). Therefore, if a specific newcomer would not have joined a lek, the 273 

expected total number of copulations observed on any given lek would have decreased 274 

on average by 1.75 copulations.  275 

 276 

Kinship and mating success of the newcomers and the other males 277 

The size of the studied leks varied substantially during 2001-2007, ranging from 3 278 

to 37 territorial males (Supporting Table S2). During this period, a total of 104 279 

newcomers were identified (range: 0-11), and all of them were either 1 or 2 years old 280 

(hereafter “yearling” and “older”, nyearling = 61, nolder = 43). Only 16% of the newcomers 281 

displayed with their father and 27% with at least one full-sibling meaning that newcomers 282 

joined leks comprising mainly unrelated males (84% of the RQG newcomers-lekking 283 

males were below 0.2; mean RQG ± SD = 0.009 ± 0.186, N = 1798 pairwise RQG across 284 

104 newcomers, Fig. 2A). The close relatives of the newcomers had moderate mating 285 

success (across the 173 males closely related to at least one newcomer: median mating 286 

success = 1, IQR = 0-2, Proportion of males with zero mating success: 0.63, Fig. 2B). In 287 

particular the mating success of the full- and half-siblings of the newcomers was very 288 

low (full-siblings: median mating success = 0, IQR = 0-2, proportion with zero mating 289 

success = 0.54, n = 37; Half-siblings: median mating success = 1, IQR = 0-2, proportion 290 

with zero mating success = 0.51, n = 135), while the fathers of the newcomers had a 291 

moderate-high mating success (median mating success = 6, IQR = 1-11.5, proportion 292 

with zero mating success = 0.13, n = 15, Fig. 3B). The top males of each lek had low 293 

relatedness to the newcomers (mean RQG ± SD = 0.002 ± 0.204, N = 98; five newcomers 294 

joined a lek with an unringed top males and one newcomer became the top male of a 295 

lek) and only 5 newcomers were sons of the top males of the leks.  296 

 297 
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Indirect fitness benefits: context-dependence and contribution to the variance in male 298 

mating success 299 

When Eq. 1 was parameterized using RQG or k, the indirect fitness benefits of 300 

group membership across newcomers was very low, equivalent to ca. 4% of an own 301 

copulation (Table 1a, Fig. 3A and B). Newcomers’ indirect fitness benefits were 302 

influenced by the interaction between newcomers’ age and population density when 303 

estimated using RQG (Table 2a). This effect was due to the greater indirect fitness 304 

benefits of yearling than two year old newcomers during the increasing phase of the 305 

population density (Supporting Fig. S1). When indirect fitness benefits were estimated 306 

using k, all considered factors (population density, study site, and the interaction 307 

between newcomers’ age and population density) influenced to some extent the 308 

likelihood of gaining or not gaining indirect fitness benefits as; none of them could be 309 

removed without significantly reducing the model fit (Table 2b). Across all newcomers, 310 

mating success was low (Table 1a) with yearling newcomers having a significantly lower 311 

direct mating success than older newcomers (Table 1b and 1c, Wilcoxon rank-test, W = 312 

879.5, P < 0.001, n = 104, Fig. 3C). Nevertheless, newcomers direct fitness benefits 313 

were substantially greater than their indirect fitness benefits which contributed to ca. 1% 314 

of the standardized variance in male direct and indirect mating success (Table 3).  315 

 316 

Discussion 317 

Fully understanding the fitness consequences of group living requires direct measures of 318 

individuals fitness and estimates of the effect of each individual’s action on the fitness of 319 

their close relatives (leading to indirect fitness benefits). In lekking species, newly 320 

established territorial males (newcomers) are usually unsuccessful (Höglund & Alatalo 321 

1995), but they may gain indirect fitness benefits by increasing the mating success of 322 

close relatives displaying on the same lek (Kokko & Lindström 1996). Here, we show 323 
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that male indirect fitness benefits are very small in the black grouse because newcomers 324 

joined leks holding few close relatives and because close relatives to the newcomers 325 

generally had low mating success.  326 

The lack of strong kin structures in black grouse and several other lekking bird 327 

species (Supporting Table S1) may seem surprising given these species’ extreme 328 

mating skew (Kokko et al. 1999a), which combined with male philopatry in birds 329 

(Greenwood 1980) should facilitate the formation of kin structures in males (Hamilton 330 

1964). However, key differences in morphology and life histories (Paradis et al. 1998) or 331 

landscape structures (e.g. Bélisle et al. 2001) may lead to substantial inter- and 332 

intraspecific variation in natal dispersal which may dampen the formation of large kin 333 

groups. Male natal philopatry has been confirmed in black grouse by radio tracking 334 

(Caizergues & Ellison 2002; Warren & Baines 2002) and genetic studies (Höglund et al. 335 

1999; Lebigre et al. 2008). But, the low genetic differentiation found among males in the 336 

same study population (Lebigre et al. 2008) suggests that among lek gene flow is 337 

substantial and that male may also disperse among leks. The likelihood of kin group 338 

formation in lekking species might also be overestimated if there is a mismatch between 339 

the observed large variation in male mating success and reproductive success. This 340 

might be the case in systems where females mate with multiple males on multiple leks or 341 

outside leks (Petrie et al. 1992; Lank et al. 2002), but it is unlikely in black grouse since 342 

polyandry is rare and observations provide reliable estimates of male reproductive 343 

success (Alatalo et al. 1996; Lebigre et al. 2007). Therefore, male dispersal and a low 344 

recruitment rate (Ludwig et al. 2010) are the most parsimonious explanations for the lack 345 

of strong kin structures in this black grouse population. 346 

Key life-history traits such as clutch size or adult longevity are widely expected to 347 

shape the evolution of sociality (Hatchwell & Komdeur 2000, Hatchwell 2009) because 348 

they underpin the formation of kin groups. In black grouse, the most dominant black 349 
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grouse males rarely retain their dominant position and generally have one clear peak of 350 

mating success at age 2-4 (Kokko et al. 1999b) meaning that sons may join their fathers’ 351 

lek after their age of peak mating success. A full and half-siblings have often the same 352 

age (i.e. the vast majority of them will be hatched the year of their father’s peak mating 353 

success), they will often have an equally low likelihood of mating due to their limited lek 354 

experience. Therefore, even if groups do comprise close relatives, individuals’ indirect 355 

fitness benefits might be limited if their kin have low reproductive prospects or if their 356 

parents have short tenures of dominant positions. 357 

 358 

Context-dependence of newcomers’ indirect fitness benefits 359 

Male indirect fitness benefits were primarily influenced by population density and 360 

newcomers’ age. Specifically, the interaction between age and population density was 361 

significant when indirect fitness was estimated using RQG and when the likelihood of 362 

gaining indirect fitness benefits using k was considered. These effects were due to the 363 

high indirect fitness benefits of yearling newcomers during the increasing phase of the 364 

population density. Therefore, the high recruitment rates and survival probabilities of this 365 

cohort during increasing density led to increased likelihood of displaying with a close 366 

relative and hence increasing indirect fitness benefits as reported in other systems 367 

(Piertney et al. 2008, Nussey et al. 2005). Previous studies have shown that ecological 368 

conditions can lead to changes in individual behaviour (reviewed in Hatchwell 2009; 369 

Lehmann & Rousset 2010), and our study shows that demographic changes can in turn 370 

influence the magnitude of individuals’ indirect fitness benefits. Therefore, the indirect 371 

fitness benefits of group membership are context-dependent but in spite of this variation 372 

their overall magnitude remains small.  373 

 374 

Conclusions 375 
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Fully understanding the role of kin selection in the evolution of any trait requires 376 

quantifying all indirect effects associated with this trait. In this study, we quantified one of 377 

these indirect effects and found that in black grouse there was a small positive indirect 378 

fitness benefit gained through increasing lek size. These should be discounted by the 379 

indirect fitness benefits which would have been gained had the newcomer joined another 380 

lek and the indirect costs due to kin competition (Maynard Smith 1964; Griffin & West 381 

2003) which are difficult to quantify with our current data. Marked males are very rarely 382 

resighted far from the study sites. Therefore, they were unable to join the other leks used 383 

in this study (distant of 9-36km) and a detailed observations of the territorial males 384 

displaying on leks located in the vicinity of the studied sites is needed to estimate the 385 

indirect fitness benefits a specific newcomer would have gained had he joined another 386 

lek. Quantifying the magnitude of kin competition requires detailed information of the 387 

fitness costs of lekking with close relatives. While the lek display is energetically costly to 388 

all males in black grouse (Lebigre et al. 2013) and results in substantial fitness costs to 389 

yearling newcomers (Siitari et al. 2007), these data cannot be used to estimate the 390 

fitness costs of lekking with close relatives as unmanipulated black grouse choose 391 

where and when they join leks according to their current body condition (Alatalo et al. 392 

1992; Hovi et al. 1994; Kervinen et al. 2012) and may modulate their behaviour 393 

according to their kinship to minimise these fitness costs (see e.g. Reynolds et al. 2012). 394 

Therefore, additional analyses are needed to fully quantify the magnitude of the indirect 395 

effects associated with group display in lekking species.  396 

Sexual selection is clearly the main factor driving the evolution and maintenance 397 

of group displays such as the leks (Höglund & Alatalo 1995), but the influence of kin 398 

selection on the relationship between group size and mating success has never been 399 

previously quantified. This study is the first to unequivocally show that the direct mating 400 

success of males joining leks far outweighs the indirect fitness benefits gained through 401 
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increasing group size. Therefore, male indirect fitness benefits are solely context-402 

dependent by-products of male group display and kin selection is very unlikely to 403 

contribute substantially to the maintenance of male aggregations in this black grouse 404 

population.  405 
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Supporting Figure S1. Influence of population density and male age on the newcomers’ 428 

indirect fitness benefits. Newcomers’ indirect fitness benefits were estimated here using 429 

Queller and Goodnight’s estimator (RQG). The effect of population density on 430 

newcomers’ indirect fitness benefits are showed for yearling (black dots, solid lines) and 431 

older newcomers (open dots, dashed lines). 432 

 433 

434 
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Figure legends: 610 

Figure 1. Relationship between lek size and the total number of copulations observed in 611 

any given lek. The line represents the predicted values of the linear mixed effect model. 612 

 613 

Figure 2. Distribution of the relatedness between newcomers and the other lekking 614 

males (panel A) and the distribution of the mating success the lekking males closely 615 

related to at least one newcomer (panel B). Relatedness was estimated using Queller 616 

and Goodnights’ estimator (RQG). The insert shows the distribution of the mating success 617 

of the newcomers’ fathers.  618 

 619 

Figure 3. Distributions of the newcomers’ indirect (panels A and B) and direct mating 620 

success (panel C). The indirect fitness benefits were estimating by multiplying the 621 

coefficient of kinship (k, panel A) or relatedness (RQG, panel B) to the expected mating 622 

success of the other lekking males, had the newcomer not been present. White and 623 

black bars in panel C represent the direct mating success of yearling and older 624 

newcomers respectively. 625 
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Table 1.  Summary statistics of the indirect and direct mating success of the newcomers to a lek. Statistics are presented across a) 626 

all males, b) yearling newcomers (1 year old), and c) older newcomers (> 1yr old). Two measures of relatedness were used: the 627 

kinship between individuals and Queller and Goodnight’s estimator of relatedness (RQG). Non explicit table entries are: proportion of 628 

males with zero mating success (prop. zeroes), median (med.) interquartile range (IQR) and standard deviation (SD).  629 

 630 

 Indirect mating success Direct mating success 

 Kinship RQG    

 Prop. Zeroes Med. IQR Mean SD IQR Prop. Zeroes Med. IQR 

a) Overall (N = 104) 0.36 0.04 0.00-0.11 0.02 0.20 -0.12-0.15 0.68 0 0-1 

b) Yearling males (n = 61) 0.30 0.04 0.00-0.15 0.04 0.21 -0.09-0.16 0.82 0 0-0 

c) Older males (n = 43) 0.44 0.03 0.00-0.08 -0.01 0.18 -0.12-0.11 0.49 1 0-2 

 631 
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Table 2. Most parsimonious models explaining the variation in newcomers’ indirect fitness benefits estimated using two measures of 632 

relatedness; kinship coefficient (k) and Queller and Goodnight’s estimator of relatedness (RQG). Non explicit table entries: sample 633 

size (N), degrees of freedom (df), F values for ANOVAs and Residual Deviance for logistic regressions (F / Res. Dev.), P-value (P), 634 

difference in the degrees of freedom during model selection (df2-df1), F value of the changes in sum of squares (ANOVA) or 635 

deviance (Logistic regression, generalised linear model), P-value of the stepwise backward selection method. 636 

 637 

 Indirect mating success  Model type N Independent variables Omitted terms df F / Res. 
Dev. 

P df2-df1 F 
(SS/Deviance) 

Pback 

a) Relatedness (RQG) ANOVA 104 Density  2 0.87 0.42    

    Age  1 1.66 0.20    

    Age:Density  2 5.07 <0.01    

     Site - - - -4 0.80 (-0.12) 0.53 

b) Kinship (k, binary) Logistic regression 104 Density  2 129.01 0.04    

    Age  1 125.88 0.08    

    Site  4 117.66 0.08    

    Density:Age  2 110.09 0.02    

c) Kinship (k, only if >0) Generalised linear model 66  Density    -2 1.98 (-3.82) 0.14 

     Age    -1 1.69 (-1.50) 0.19 

     Site    -4 1.60 (-4.97)   0.19 

     Density:Age    -2 0.40 (-0.63) 0.67 
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Table 3. Relative contributions of direct (D) and indirect (I) components to the variance 638 

in mating success across newcomers. Both the kinship between individuals (k) and 639 

Queller and Goodnight’s estimator of relatedness (RQG) were used as measures of 640 

relatedness. Abbreviations are standardised variance in male mating success (IT the 641 

sum of newcomers’ direct and indirect mating success), standardised variances in male 642 

direct mating success (ID), standardised variances in male indirect mating success (II),  643 

covariance between newcomers’ direct and indirect mating success (covID,I). Values in 644 

parenthesis indicate the ratio of the standardised (co)variance of each component to IW.  645 

 646 

 K RQG 

a) IT 3.40 3.93 

b) ID 3.45 (1.01) 3.95 (1.01) 

b) II 0.02 (0.01) 0.05 (0.01) 

c) 2*covID,I -0.06 (-0.02) -0.08 (-0.02) 

 647 

 648 
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Figure 1.  
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Figure 2. 
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Figure 3.  
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