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Abstract

This paper presents a new methodology to estimate the orientation of a quadrotor using single low cost IMU sensor. The 
proposed solution uses two extended Kalman filters (EKF) along with a Direction Cosine Matrix (DCM) algorithm. An EKF is 
used to filter the noise signal of the angular rates measured by a 3-axis gyroscope sensor. Subsequently, a DCM algorithm uses 
the filtered gyro signal along with the reading from a 3-axis accelerometer and a 3-axis magnetometer sensor to compute the 
Euler angles. Finally, another EKF is presented to improve the estimation of the Euler angles. A complete simulation platform 
was developed using MatLab software to test the performance of the proposed method and compare it with two alternative 
methods.
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1. Introduction

In the last decade, unmanned aerial vehicles (UAV) have received considerable attention covering a wide area of 
applications for both indoor and outdoor navigation tasks. Due to several key advantages, quadrotor has recently 
been drawing a major focus of research attention over other UAVs for indoor navigation applications. The quadrotor 
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design and technology have been significantly enhanced in the last few years. These enhancements make it able to 
achieve a high dynamical maneuverability. It is also recognized for its compact size, simple mechanical system, 
vertical takeoff/landing ability, improved payload, longer flight time, and variety of onboard sensors. These key 
advantages make the quadrotor suitable for fast maneuvering within complex indoor environments occupied with 
different obstacles, and for accomplishing certain navigation tasks.

However, fast and accurate estimates of the vehicle’s state are needed in order to achieve high maneuverability 
within a bounded indoor environment. The attitude and attitude rates of the quadrotor are especially important for 
stabilizing the quadrotor within complex indoor environments. Therefore, the quadrotor is installed with different 
sensors to measure its attitude and altitude within indoor and outdoor environments. Among these sensors are 
inertial measurement unit (IMU) with three mutually-orthogonal accelerometer sensors and gyroscope sensors, 
global positioning system (GPS) receivers, sonars, barometric systems, camera vision systems, optical flow sensors, 
and a laser/infrared rangefinder and depth systems.

There are many techniques and algorithms that have been introduced recently to improve the accuracy of the 
Inertial Navigation Systems (INS). An Implementation and comparisons between several algorithms for step 
detection, stride length, heading and position estimation is introduced for low-performance Micro-Electro-
Mechanical (MEMS) inertial sensors while under classical coning motion in [1]. However in [2], an enhance INS 
solutions were proposed by estimating the measurement noise statistics. Also, an Error modification and an accuracy 
enhancement have been done using a fusion scheme of two-step adaptive robust filtering based on the observability 
of the parameters in [3]. In [4], the author made an improvement in the integrated navigation system by using a
probabilistic bias fault detection method. Though in [5], an intelligent fusion method that takes into account the 
possible, varying, delay between INS and GPS measurements was proposed. In [6], the author shows a reduced INS 
to improve the system performance for a land vehicle aided by GPS single point positioning solution and the 
velocity derived from GPS carrier phase measurements.

The DCM algorithm is commonly used for estimate the Euler angles. The DCM algorithm improves the 
estimation of the Euler angles and minimizes its error by using the reading from the gyro sensor along with readings 
from the accelerometer and the magnetometer. Different methods and techniques have been developed using the 
DCM algorithm. A direct complementary filter is formulated as deterministic observer kinematics are imposed 
directly on a 3D special orthogonal group and driven by reconstructed attitude and angular velocity measurements in 
[7]. In [8], a nonlinear complementary filter that combines gyro meter output for high frequency estimation with 
integrated accelerometer output for low frequency attitude estimation is proposed. Also, [9] introduces a 
complementary filter that evolves on the Special Euclidean Group SE (3) using a combination of low-cost INS and a 
vision sensor. The author In [10] proposes a coupled non-linear attitude estimation and control design for the 
attitude stabilization of low-cost aerial robotic vehicles.

A new approach for estimating the orientation of a quadrotor using a single low-cost IMU sensor is presented in 
this paper. The proposed hybrid solution contains two extended Kalman filters (EKF) along with a Direction Cosine 
Matrix (DCM) algorithm. An EKF utilizes the dynamics of the quadrotor to filter the noise on the body frame 
angular rates measured by the three-axis gyroscope sensor. Next, a DCM algorithm uses the filtered gyro signal 
along with the reading from a three-axis accelerometer and magnetometer sensor to estimate the Euler angles. In the 
final step, an additional EKF is presented to enhance the final estimates of the Euler angles.

The layout of this paper is as follows. In Section 2, the quadrotor modeling is discussed. The development of the 
proposed hybrid approach is demonstrated in Sections 3 and 4. Section 5 presents the performance of the proposed 
hybrid approach. Finally, conclusion remarks are made in Section 6.

2. Quadrotor Modeling

2.1. Basic Knowledge:

To describe the motion of quadrotor, it is necessary to define a suitable coordinate system. The body-frame is a
right-hand reference denoted by xB, yB, zB and it is attached to the centre of gravity of the quadrotor. The earth-fixed 
frame is an inertial right-hand reference denoted by xE, yE, zE. E are denoted by they 
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represent the attitude of the quadrotor and are defined by the orientation of B-frame with respect to the E-frame. A 
rotation matrix is needed to map the orientation of a vector from B-frame to E-frame and vice versa. The rotation 
matrix is described in (1). Figure 1 describes the reference frames used in this paper.

)()()( xyz RRRR (1)

where, )(zR denotes the rotation about the z-axis with the angle , )(yR denotes the rotation around the y-
axis with  with the angle , and )(xR denotes the rotation around the x-axis with the angle .

Fig. 1. Body frame and earth fixed frame.

2.2. Dynamic Model

The quadrotor’s dynamical model includes the nonlinear equations of motion, along with the actuators dynamics 
and saturation limits [11]-Error! Reference source not found.. The model that was used in this paper is 
represented in (2).

= (  +   )   1
= (  +   )  1

=  + (  ) 1
=     +  2
=     +  3
=     +  4

(2)

where X, Y and Z represents the position of the center of gravity of the quadrotor with respect to the inertial 
frame. ,   are the angular rates with respect to the body frame, m is the quadrotor’s mass, I , I , I are the 
moments of inertia along X,Y and Z axes respectively. U is throttle force, U , U , U are roll, pitch and yaw 
moments respectively.

The actuator’s dynamics are governed by the following equations.



271 Bara J. Emran et al.  /  Procedia Technology   15  ( 2014 )  268 – 277 

= ( + + + )= ( + )= ( + )= ( + + )
(3)

where  is the propeller’s speed of motor i, is the thrust factor, is the drag factor and is the radius of the 
quadrotor.

3. Direction Cosine Matrix (DCM)

The DCM is a method used to compute the Euler angles using information from the rate gyros, accelerometers, 
magnetic compass and/or GPS. Integrating the gyroscope sensor’s readings is the primary source of orientation 
information to obtain the Euler angles. The integration process will introduce numerical errors which will violate the 
orthogonality constraints in the direction cosine matrix. Also, the gyro drift and gyro offset will cause a gradual 
accumulation of errors in the Euler angles values. To solve this problem, a renormalization process in the direction 
cosine matrix has been used to satisfy the orthogonality constraints. In addition, two reference vectors with a PI 
control are used to minimize the offsets and the drifts in the gyro’s readings.

Due to the rotation of body frame with respect to the navigation frame, the update of the attitude DCM can be 
found using the following differential equation ( ) = ( ) × ( ) (4)

where ( ) is a vector fixed in the body frame and ( ) is the vector rotational rate of the body frame. Using the 
dynamic equation above, the relation between the rotation matrix and the angular rate can be expressed in a matrix 
form as follows: ( + ) = ( )  + ( ) ( )( + ) =  ( ) 1 1 1

(5)

where: =  , =  , =  (6)

to enforce the orthogonality condition on the rotation matrix. With X and Y being columns of R(t) the orthogonal 
error between the two vectors is found as follows:

 =   = [ ] (7)

Then, by rotating each vector, in the opposite direction, by half of the error will ensure the orthogonally in the 
rotation matrix:
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= = 2= = 2
(8)

Next, a cross product between the orthogonal vectors X and Y is done to ensure the orthogonally in the Z-vector:

= = × (9)

By scaling each vector (7),(8) and (9), we can assure the normalization conditions of the rotation matrix. The 
rows of the rotation matrix are enforced to have a magnitude of 1.0 as:

= ,         =  ,          = (10)

The GPS provides a drift-free reference vector for the yaw orientation (heading angle). As a result, it has been 
used as a reference for the horizontal projection of the X axis (roll axis). Figure 3 along with equations (11 - 13) 
explain how the yaw correction vector has been computed, where (XbMagn) denotes the reference vector obtained 

m) is the magnetometer’s measured yaw, 
[xe ,ye ,ze] is the earth frame, [xb ,yb ,zb] is the body frame and Xbp is the projection of xb on the xy plane. The 
coordinated of the reference vector, XbMagn in the earth frame are first obtained from the following equations 

 =  ( ) =  ( ) (11)

Fig. 2. Yaw correction.
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The yaw corrections (rotation around the earth z-axis) is then obtained in the earth frame by the negative of the 
cross product between the first two entries of the Xb and with the x and y components of XbMagn as:

=    –  (12)

The rotational angular error between the XbMagn vector and the projection on the horizontal plane of the roll axis 
of the IMU is an indication of the amount of drift. The yaw angle correction angle is obtained in body frame by 
multiplying the result of equation (13) by the z-row of the rotation matrix as:

=  (13)

3.1. Gravity Acceleration Reference:

The accelerometer readings can be considered as a direct measurement of the orientation while a gyroscope 
measures the time rate change of the orientation. As a result, it has been used as a reference vector for the Z-axis 
acceleration.

Given that the accelerometer measures specific force, the gravity acceleration reference vector can be calculated 
using the following equation: =  (14)

By assuming small body acceleration in case of hovering situation, a simplification could be done in (15). The 
acceleromter will be assumed to measure only the gravity acceleration reference vector. (15)

The cross product between the normalized Z-vector in (10) and the gravity acceleration reference vector (16) 
produces the roll-pitch rotational correction vector in the reference body frame:

=  × ( ) (16)

3.2. PI controller

The total correction vector is obtained by a weighted sum of the rotational drift correction vectors in (11) and 
(17) as: =   +  (17)

Then the total Correction vector TCorr is fed to a PI controller as follows:=  = +   ( )=  + (18)

where Kp is the proportional gain and KI is the integration gain. Next, the Correction vector is added to the gyro 
vector to produce a corrected gyro vector.
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=  +  (19)

Where Gyro is the three-axis gyro measurement vector and Corr is the gyro offset and drift correction vector.

4. Extended Kalman Filter (EKF)

The Kalman -varying system that evaluates the state 
estimate that minimizes the mean-square error. In a situation where either the system state dynamics or the 
observation dynamics are nonlinear, the probability density functions conditions that provide the minimum mean-

EKF [16]. The EKF implements a KF for a system dynamics that results from the linearization of the original non-
linear dynamic equation around the state estimates. 

Consider the non-linear dynamics: ( ) = ( ), ( ) + ( )( ) = ( ) + ( ) (20)

v(k) and w(k) are white Gaussian, independent random processes with zero mean and corresponding covariance 
matrices represented as: ( ) ~ 0, ( )( ) ~ 0, ( ) (21)

In this paper the proposed solution was developed using two EKF which are the “Rate EKF” and “Euler EKF”. 
These two filters are described below.

4.1. Rate EKF

The rate extended Kalman filter is used to filter the gyroscope sensors measurement. The rate EKF takes the rate 
gyro sensor’s readings as the measurement vector and the actuator commands as the input vector. Then by using the 
nonlinear model of the quadrotor (2) it filters the measurements of the gyroscope. The state matrices of the rate EKF 
are shown below: ( ) =  ( ) + ( ) + ( )( ) =  ( ) +  ( ) (22)

where:

( ) =           , =  0 00  0  0 0  , = (23)

The state variables are chosen as: = [ ]  (24)

The measurements are:
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= [ ]  (25)

Linearizing the function ( ) using (31):

=   0    0      0 0   0 (26)

where  = 0.65, = 0.6889.

The result of the rate EKF in filtering the gyro’s readings is shown in Figure 3. In each sub-figure, the truth 
angular rate, measured angular rate and filtered angular rate are shown. It can be seen that the EKF filter reduces the 
noise in the measured angular rates along the three body axes.

Fig. 3. Rate EKF results in filtering the gyroscope readings

4.2. Euler EKF

The Euler EKF is used to improve the estimate of the Euler angles. The Euler EKF takes the filtered angular rate 
as the input vector. On the other hand, the Euler angles computed using the DCM algorithm are taken as the 
measurement vector. With the Euler angle state vector given as= [ ]   (27)

The dynamics of this state are given as: ( ) =  ( ), ( ) + ( ) (28)

where, with = , = and   = :

( ) =  100 (29)

and the input vector is given as:
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( ) = [ ] (30)

On the other hand, the measurement equation used by the Euler EKF is given as

( ) =  ( ) +  ( ) (31)

where the measurements vector is given as: = [ ]  (32)

and the measurement matrix is therefore given as = (33)

Next, simulation results are shown to demonstrate the accuracy of the proposed algorithm.

5. Simulation Result

As a proof of the validity of the presented algorithm, different tests are done. The Three algorithms are compared 
to estimate the Euler angles. The first method is conducted using the sensors readings directly with the DCM 
algorithm. The result of this method will be shown as blue solid line. Subsequently, the second method is done using 
the Rate EKF, which filters the gyros readings, along with the DCM algorithm. The result of this method will be 
shown using a green solid line. Finally, the third method is done utilizing both the Rate EKF and the Euler EKF with 
the DCM algorithm to estimate the Euler angles. The result of this method will be shown using a black dashed line. 
The true Euler angles are shown in the red solid line. Moreover, Monte Carlo tests are presented to prove the 
reliability of the algorithm in Table 1.

Table 1. The Average of the RMSE of the Monte Carlo tests.

Method Roll Pitch Yaw
DCM + Rate EKF + Euler EKF 0.0859 0.3151 0.0186

Fig. 4. Roll angle estimation.
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6. Conclusion

In this paper, an algorithm was proposed to enhance the estimation of the Euler angles and rates of a quadrotor 
using the DCM algorithm with two extended Kalman filters. The results show a noticeable improvement in the 
output of the gyroscope sensors. Additionally, an enhancement of the Euler angles estimates are achieved by using 
the filtered quadrotor’s angular velocity along with the proposed Euler angles EKF. Monte Carlo tests were 
performed to show the enhancement in the estimation accuracy using the proposed method in comparison to using 
the DCM approach only or using the DCM approach with the rate EKF only.
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