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Abstract

Autonomous robot road following has been widely investi-
gated since the early 1980s and, whilst much progress has
been shown, there is still no system which displays 100%
generality across all types of problem. This work shows
a novel approach to the problem, using the methodology
of Evolutionary Robotics to facilitate the autonomous emer-
gence of flexible, robust and general behaviours. One of the
unique aspects of this approach is to encourage the evolution
of a dynamic strategy of colour perception: facilitating the
combination of different channels of the colour space to per-
ceive contrast across a range of scenes where this would oth-
erwise be impossible. The results described herein demon-
strate the capability of this methodology to produce con-
trollers capable of generalising across a broad range of road
shapes to which the agents have not been previously exposed.
They also vindicate the effectiveness of a dynamic colour per-
ception strategy, enabling the controllers to perceive contrast
in a challenging variety of situations.

Introduction
In the realm of autonomous vehicles, road following, i.e., the
ability to detect and traverse a road surface without stray-
ing from the boundaries, is clearly an important problem.
As such, it has received much attention from artificial in-
telligence and autonomous robotics researchers over the last
thirty years (Dickmanns, 2002).

The earlier attempts employed hand-crafted controllers
focusing on roads that are clearly demarcated and delin-
eated (e.g., those that have either white lines or a clear high
contrast delineation between the road and non-road surfaces,
see Wallace et al., 1986; Waxman, 1985; Turk et al., 1988;
Kuan et al., 1988; Dickinson and Davis, 1988). The gen-
eral thrust of these approaches is to establish some sort of
model based on the a priori assumption that the agent is
already situated on the road, and by sampling its sensory
information accordingly. This model is then maintained by
monitoring prominent road features such as edges and lane
demarcations. In order to improve the flexibility and the ca-
pability of a solution to follow more road types, later re-
search looked at roads which have no clear demarcation,
have amorphous or unclear delineation of the road edges

and have low contrast between the road and the background
surface, and are subject to changing road conditions due to
e.g., shadows or reflections (see Crisman and Thorpe, 1988;
Kluge and Thorpe, 1990). To further address this prob-
lem, researchers started to investigate more adaptive, learn-
ing and connectionist based, rather than hand-crafted ap-
proaches (see Jochem et al., 1993; Pomerleau, 1997; Dick-
manns, 2002). Recent success in this field has also been
gained by combining these approaches with higher level,
more complex models and reasoning, facilitated by the in-
crease in available computing power over the last decade
and spurned by high profile involvement from the military
and commercial sectors (see Chen and Tsai, 1997; Aufrere
et al., 2000; Urmson et al., 2008).most recent approaches to
the road following problem then, range from these complex,
high-level models updated from multiple sensory sources
and requiring significant computational power, to more sim-
ple, reactive and robust systems with lower model complex-
ity and hence computational requirements (see Katramados
et al., 2009; Ososinski and Labrosse, 2012).

The road following problem, in common with many oth-
ers, has at its root a strong visual perception and feature
extraction component. One of the problems in such visual
discrimination tasks is a method of processing the input im-
ages in such a way as to reduce environmental distractions
(in this case for example, those arising from shadows or re-
flections) so as to allow extraction of the features relevant
to the problem, and to show clear contrast between the fea-
tures to be extracted. One such technique could be to ex-
amine and combine different representational components
of the image when transformed into colour spaces that sepa-
rate luminosity (brightness) information from chrominance
(colour) information. This can allow, for example, the ef-
ficient removal of shadows and effective dimensionality re-
duction of the problem by combining the remaining colour
components in ratios that provide good performance over a
range of possible scenes (see Woodland and Labrosse, 2005;
Benedek and Szirányi, 2007; Finlayson et al., 2006).

However, it should be obvious that a fixed combination
of colour components will never be able to show good con-
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trast for all possible road following scenarios: we may well
encounter scenes for which a broadly good combination of
colour components actually shows very little contrast due to
the nature of the colours represented in the scene. One solu-
tion to this problem may be to examine multiple components
of the colour space simultaneously, dynamically choosing
only those components (or combinations of components)
that yield high contrast. However, for systems where in-
put informational throughput may be limited such as low
power embedded systems, or those using neural networks
(i.e., where dimensionality reduction is necessary), it will
not be possible to appraise all of this information concur-
rently. Similarly, there may be colour channels which yield
very high contrast within the image, but not amongst the
features that are relevant to the particular problem at hand.
It should be clear then, that a method of dynamically com-
bining various components of colour spaces in a way which
aids feature detection by removing unwanted artefacts and
increasing the contrast available between the relevant fea-
tures for extraction is required for optimal performance of
such visual perception and discrimination tasks.

With that in mind, we propose a solution to the road fol-
lowing problem using artificial neural network controllers
synthesised by evolutionary computation techniques. We il-
lustrate a system that is capable of successfully navigating
roads in a variety of distinct simulated environments based
on visual information in an integrated action-perception loop
where the neural mechanisms that govern perception (iden-
tification of the road features) and action (motor activations
and changes in colour perception) are not only tightly cou-
pled, but are one and the same. In this study, we examine the
combination of the standard RGB colour space components
to increase contrast between the desired features, under the
assumption that a similar process could be used with compo-
nents of other colour spaces (that better separate luminance
from chrominance) to augment this aim, and to reduce dis-
turbances caused by shadow or reflections. We analyse how
a system of dynamic colour perception contributes to the
overall road-following effectiveness of the controllers and
we show that without this adjunct to perception, the agent
would be unable to solve all of the road following tasks pre-
sented in this simulated environment.

In summary then, the main objective of this study is to
apply evolutionary robotics to the road following problem to
produce a solution which will coordinate vision and action
in a single, unified sensory-motor controller. Further, we
aim to show that a dynamic method of dimensionality reduc-
tion, arrived at in tandem with the road following behaviour,
will prove beneficial in solving the problem at hand. The
evolved agents are capable of developing a general strategy
for staying on poorly demarcated and delineated roads based
on single camera visual input. Moreover, they are also able
to dynamically adjust their colour perception, in real time, to
increase the efficacy of road following in environments with

Figure 1: Pioneer robot

different or changing colour properties.

The Robot and the Simulation Environment
A simulated robot is required to navigate various types of
road using visual input. Our simulation models a Pio-
neer 3-AT 4-wheeled skid steer all terrain research robot
as shown in Fig. 1. The simulation also comprises a 3D
model of an environment, rendered using OpenGL (http:
//www.opengl.org) that provides the sensory informa-
tion that the robot perceives through its camera. This envi-
ronment contains only 3 visual components: a tiled textured
horizontal plane on which the robot travels (the ground), a
textured deviated surface rendered on this plane (the road),
and a sky-box to provide the illusion of sky.

The virtual camera renders the 3D scene from the point
of view of a camera mounted on top of the virtual robot. It
is configured to have a frustum representative of real-world
cameras that may be used to capture the scene. For final
evolution to produce effective solutions, this would need to
match exactly the specific camera being used. As this had
not been chosen at the time of evolution, representative val-
ues were used with the understanding that changing the frus-
tum would not significantly affect the results and that we are
showing that the general concept of using camera images in
this way is sound.

The visual input for the robot’s controller is generated by
significantly reducing the resolution of each camera image.
Our simulated camera renders images at 250 × 200 pixels.
We overlaid a 5 × 5 grid on each image, with each square
grid covering 2000 pixels. The robot sensory input is made
of 25 numerical values generated as follows. For each grid
square, a mean value for each colour component is calcu-
lated by summing red, green, and blue components of each
pixel within this square separately, then dividing by the total
number of pixels residing in this grid square. In this way we
have 3 values per grid square corresponding to the contribu-
tions of red, green and blue elements in the image. We then
combine these components by multiplying each by α, β, and
γ respectively, and then summing to produce a final single
numeric value for each square. α, β, and γ are floats in [0, 1]
generated by the robot controller at each time step. They are
normalised so they sum to 1 hence they represent the ratios
in which the red, green, and blue channels should be mixed
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Figure 2: The neural network. The lines indicate the ef-
ferent connections for only one neuron of each layer. Each
hidden neuron receives an afferent connection from each in-
put neuron and from each hidden neuron, including a self-
connection. Each output neuron receives an afferent connec-
tion from each hidden neuron.

respectively. As pixel colour values are in the range 0-255,
we then divide by 255 to scale this value between 0 and 1.

Controller and the Evolutionary Algorithm
The robot controller is composed of a continuous time recur-
rent neural network (CTRNN) of 25 visual input neurons, 6
inter-neurons, and 7 output neurons (see Beer and Gallagher,
1992). The structure of the network is shown in Fig. 2. The
states of the output neurons are used to control the speed of
the left and right wheels as explained later, and they define
the ratios for colour mixing. The values of sensory, internal,
and output neurons are updated using equations 1, 2, and 3.

yi= gIi; for i ∈ {1, ., 25}; (1)

τiẏi=−yi +
31∑

j=1

ωjiσ(yj + βj); for i = {26, ., 31}; (2)

yi=
15∑

j=12

ωjiσ(yj + βj); for i = {32, ., 38}; (3)

with σ(x) = (1 + e−x)−1. In these equations, using terms
derived from an analogy with real neurons, yi represents the
cell potential, τi the decay constant, g is a gain factor, Ii
with i = {1, .., 11} is the activation of the ith sensor neu-
ron, ωji the strength of the synaptic connection from neu-
ron j to neuron i, βj the bias term, σ(yj + βj) the firing
rate (hereafter, fi). All sensory neurons share the same bias
(βI ), and the same holds for all motor neurons (βO). τi and
βi with i = {26, .., 31}, βI , βO, all the network connection
weights ωij , and g are genetically specified networks’ pa-
rameters. At each time step, the output of the left motor is
ML = f33 − f32, and the right motor is MR = f35 − f34,
with ML,MR ∈ [−1, 1]. The firing rates f36, f37, f38 are

Figure 3: Road tile construction and circle approximation

normalised such that α + β + γ = 1. Cell potentials are
set to 0 when the network is initialised or reset, and equa-
tion 2 is integrated using the forward Euler method with an
integration time step ∆T = 0.2.

A simple evolutionary algorithm using linear ranking is
employed to set the parameters of the networks (Goldberg,
1989). The population contains 60 genotypes. Generations
following the first one are produced by a combination of
selection with elitism, recombination, and mutation. For
each new generation, the three highest scoring individuals
(“the elite”) from the previous generation are retained un-
changed. The remainder of the new population is generated
by fitness-proportional selection from the 30 best individuals
of the old population. Each genotype is a vector comprising
243 real values (228 connections, 6 decay constants, 8 bias
terms, and a gain factor). Initially, a random population of
vectors is generated by initialising each component of each
genotype to values chosen uniformly random from the range
[0,1]. New genotypes, except “the elite”, are produced by
applying recombination and mutation. Each new genotype
has a 0.3 probability of being created by combining the ge-
netic material of two parents. During recombination, one
crossover point is selected. Genes from the beginning of the
genotype to the crossover point are copied from one parent,
the other genes are copied from the second parent. Muta-
tion entails that a random Gaussian offset is applied to each
real-valued vector component encoded in the genotype, with
a probability of 0.05. The mean of the Gaussian is 0, and its
standard deviation is 0.1. All vector component values are
constrained to remain within the range [0,1].

The visual scene
Textures that represent real world scenarios were chosen for
the road and ground surfaces from the plethora available at
the multitude of free texture resources on the internet. In
order to simulate roads with amorphous nondescript edges,
the edges of road textures were manually faded out using
noisy paintbrush tools in image manipulation software, and
then alpha-blended with the underlying ground texture.

We devised three complementary scenes, each of which
featured only two of the three colour components (red, green
and blue). The third component is randomly varied with
noise, and hence unable to contribute to the final contrast
between road and background visible in the scene. Giving
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this randomly varied colour component strong weight in the
colour combination would actively detract from the struc-
tured contrast visible between road and non road surfaces. In
this way, the agent has to choose—by appropriately setting
α, β, and γ for each environment—the colour components
which assist in solving the problem, and disregard those that
do not show the pattern that is being sought. This random
colour variation was first undertaken at the pixel level, but
later reimplemented to occur at the grid average level. In
this way, with any static (i.e., not changing with respect to
the environmental features) selection of colour combination
there would always be one scene in which the controller was
unable to detect any contrast. In addition, as there was a
requirement that the agents evolve a general strategy that
was able to cope with the road surface being both brighter
(having higher values) than the background, and vice versa,
scenes were carefully devised with the properties shown in
Table 1. As long as the differences between the higher and
lower values were kept constant, this should result in the
following attributes. In 3 colour grey scale, all of the scenes
would show no contrast between the road and non road sur-
faces. By choosing a single colour component, the agent
would see positive contrast for the road in one scene, neg-
ative in another, and no contrast in the third. By choosing
to combine two fixed colour components, the results would
be the same. With this configuration, the only means by
which the agent can successfully navigate all three scenes,
and hence score maximum fitness, is by changing which
colour components are examined between or during trials.

Each agent is evaluated against 6 different environments:
two road shapes (one starting with a left bend, the other with
a right bend) for each of the 3 colour scenes. At each gener-
ation, 6 different road shapes are generated using the follow-
ing algorithm. First, a single square road tile is placed at the
centre point of the ground plane at a world relative heading
of 0◦. A random angle is then chosen between two bounds
(initially ±20◦) and a centre point coordinate position is cal-
culated for the new tile by applying basic trigonometry to
translate it forward by 0.75 times the size of the road tile
along this new angle. The new tile is then placed at this po-
sition and rotated by the angle, as shown in 3. This process
is repeated for the number of road tiles required (in our ex-
periment, 20) with the centre point position and total angle
of each road tile stored for later use. In rendering, only the

Table 1: Table showing road scene properties. H refers to
higher values, L refers to lower values.

Red Green Blue
Scene 1 Noise L on road H on road
Scene 2 H on road Noise L on road
Scene 3 L on road H on road Noise

angles are required: each road tile is rotated by, and trans-
lated along, this angle by OpenGL.

The Fitness Function
All of the individuals in a population are evaluated against
the same 6 environments to yield a proper comparison of
the agent’s performance, and new random road shapes were
generated for each generation to expose them to as wide a
variety of road following scenarios as possible. At the be-
ginning of each trial (e), the robots are placed at the start of
the road at a random orientation between ±30◦.

The fitness function used in this approach is heavily in-
spired by that found in (Suzuki et al., 2005). This is a func-
tion which rewards forward progress of the robot, and is cal-
culated and tallied at each time step based on the left (Sl)
and right (Sr) wheel speeds, and the naı̈ve straight-line dis-
tance reward applied at the end of the trial. The distance
from the starting point to the final agent position is calcu-
lated as a percentage of the distance from the starting point
to the end point of the road. This is multiplied by a reward
factor and added to the fitness to further encourage the agent
to reach the end of the road. There are situations however
where this strategy will be counter-productive: e.g., when a
road curves round so that the end point is closer to the start
point than other positions on the road where the trial might
terminate. However, it was concluded that with our random
strategy of road building, such occurrences are rare enough
not to adversely affect the system.

To combat the behaviour of a robot travelling in tight cir-
cles at the start point in order to “game” the fitness func-
tion without traversing any of the road, a penalty was added,
such that the final fitness is halved if the agent remains on
the starting road tile at the end of the trial. Furthermore, to
encourage even more strongly the robot to avoid leaving the
confines of the road, the fitness is multiplied by a factor of
1.2 if the trial was not terminated by a failed road bounds
check. This serves to make a clear distinction between be-
haviours where the robot gets most of the way down the
road, but leaves the road at the very end of the trial, and
where the robot reaches the end of the road without doing
so. Therefore, the final fitness (F) for each genotype is cal-
culated as:

F =
1

E

E∑

e=0

fe; (4)

fe=ηλ


 1

T

T ′∑

t=0

g(Sl, Sr, t) +H
Da

Dr


 ; (5)

g(Sl, Sr, t)= (St
l + St

r)


 1−

√
|St

l − St
r|

2× Smax


 ; (6)

where E = 6 is the number of evaluations or trials per geno-
type, η = 0.5 if the robot remains on the first road tile at the
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end of the trial, otherwise η = 1.0; λ = 1.2 if the robot does
not leave the road during the trial, otherwise λ = 1.0; T is
the maximum number of time steps in a trial (180 for these
experiments); T ′ is the number of time steps experienced by
the agent during this trial (for example, 100 where the trial is
terminated after 100 time steps due to the robot leaving the
road); Da is the straight line distance from the start point
to the final agent position at the end of the trial and Dr is
the straight line distance from the start point to the centre of
the final road tile; H = 1000 is a constant, Smax being the
maximum allowable wheel speed setting, in this case 300.

It should be noted that this fitness function makes no
mention of the road, and the requirement to stay within its
bounds. Rather, the trial is stopped prematurely when a
robot leaves the road surface, so maximum fitness is only
available to those agents that are capable of staying on the
road throughout the full duration of the trial. To check
whether a robot is on the road, we used the following cri-
teria. The road is treated as a series of overlapping circles
rather than squares, as shown in Fig. 3. By checking if the
centre of the robot is further away from a centre point than
the circle approximation radius, we can tell if it lies inside
or outside of this circle.

Results
Our objective is to synthesise controllers for autonomous
robots required to visually navigate road surfaces without
straying from the boundaries. We looked at roads which
have unclear delineation of the edges, and situated in en-
vironments with different colour properties. The robots are
required to dynamically combine—by appropriately setting
α, β, and γ for each environment— various components of
the colour spaces in order to detect road edges and to distin-
guish the road from the background.

Ten evolutionary runs, each using a different random ini-
tialisation were carried out for 2000 generations. Two evo-
lutionary runs managed to generate robots with sufficiently
high fitness to indicate that they are capable of success-
fully navigating all the three road scenes. The other eight
runs produced only sub-optimal solutions. Due to the nature
of the evolutionary process and fitness function, we cannot
guarantee that the individuals with the highest fitness are
those that have evolved the most robust general strategies.
It is likely, in fact, that these fitness values actually represent
the agents that are the “luckiest” with respect to the random
variation occurring in the simulation. To deduce which are
actually the most useful evolved individuals, we further eval-
uated a selection of the most fit genotypes across a broader
range of tests with systematic variation.

Post-evaluation test I
In this test, a suite of road following scenarios is generated,
with parameters pertaining to road shapes and starting an-
gles systematically adjusted between them. The fittest in-

dividual from the 100 fittest generations from each of the
two successful evolutionary runs are then evaluated against
the same set of conditions, allowing for a side by side com-
parison of their general effectiveness at such road following
tasks. Together, the evaluations performed in Test I repre-
sent an examination of the effectiveness of the agent’s road
following behaviour across a set of scenarios to which it has
not been exposed during evolution. This test, therefore, is
performed with the aim of demonstrating the generality of
the road following solution produced.

The evaluation scenarios are produced by varying the al-
lowable bounds between which angles (θ) are chosen for
road tile placement. Two roads are generated for each of
the following four configurations (for a total of 8 scenar-
ios), where θ is a randomly selected angle that each tile is
placed at, between the following bounds: 1) ±20, 2)±30,
3)±40, and 4)±50. 6 further scenarios are generated us-
ing roads featuring smooth, contiguous bend, where the tile
placement angle is kept constant and uniform between road
tiles. Three constant tile placement angle values are used to
generate these roads, corresponding to shallow, medium and
sharp corners: 20◦, 30◦ and 40◦. Angles greater than these
resulted in unrealistic looking roads with tighter corners than
one would reasonably expect such a road-following vehicle
to be capable of traversing. To avoid the road looping back
on itself to form a circle, the direction of the placement an-
gle is reversed once the total corner angle reaches 110◦. Two
roads are generated for each of the three cornering angles de-
scribed (for a total of 6 scenarios), the first starting with a left
turn, the second with a right. Finally, we included a straight
road without corners to ensure that agents are effective on
simpler tasks.

All of the above 15 evaluation scenarios (8+6+1) are gen-
erated with a fixed tile width of 140cm. Visually, they are
of mostly uniform but slightly variable width due to the
noisy fading to background of the road edges, representing
more ill-defined roads. The visible road width is therefore
roughly 120cm, or roughly twice the diameter of our simu-
lated robot. Accordingly, the circle radius used for the road
bounds approximation test is 60cm. Each road has a total
traversable length of 28m. Each of the above road shapes is
rendered in the three colour and texture combinations used
for evolution, resulting in 45 evaluation scenes. Individu-
als are evaluated against each scene 5 times with different
initial robot headings. Relative to the first road tile place-
ment angle, these are: −45◦, −22.5◦, 0◦, 22.5◦ and 45◦. A
trial is considered successful if the robot successfully nav-
igates to the penultimate road tile, to take into account er-
ratic behaviour caused by the road ending in the robot’s field
of view. In unsuccessful trials, the percentage of navigable
road tiles successfully traversed is recorded.

The results of test I are shown in Table 2. We can see from
this table that the best performers succeed in getting to the
end of the road in almost 85% of the 225 individual evalua-
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Figure 4: The performance of the best 2 individuals broken
down by test type. Red bars for agent 2-1834, green bars for
agent 6-1802.

tions. This is no mean feat, as they not only contain a chal-
lenging set of environments featuring diverse colours and
textures and some obtuse, complex road shapes with sharp
turns and currently unnavigable portions of the road in the
field of view, but also place robots at a variety of starting
headings, pointing more towards the sides of the road than
the agents were evolved to cope with. It is also clear that
both successful evolutionary runs produced roughly equally
effective solutions.

Using the best individual from each run, measured by suc-
cess percent, we looked at how they fare with the different
problem types. In Fig. 4 the percentage success is broken
down across the three coloured road scenes, the different an-
gled random and bendy roads, the straight road, and differ-
ent starting headings. Comparing the three coloured scenes

Table 2: The top ten Test 1 performers

Run-Gen. Success % Mean distance Std. dev.
2-1834 84.89 14.87 27.27
6-1802 84.00 5.25 12.89
2-1972 83.11 15.79 25.12
6-1939 83.11 8.92 15.27
2-1966 82.22 19.03 26.52
6-1825 82.22 15.28 20.16
2-1951 81.78 17.75 22.03
2-1838 81.33 13.10 25.68
6-1882 80.44 10.61 19.17
2-1808 80.44 7.95 16.80

from Fig. 4 we can see that both agents perform better on
scene 2 than the others. This could be due to it being a
slightly easier colour/texture combination than the others,
with slightly more contrast visible between road and non-
road areas, but it may also be down to random occurrences
in the pattern of evolution. The agents likely evolve to solve
a particular coloured scene first, before learning to change
their colour perception—it might simply be that both agents
happened to learn this scene first, and therefore had more
“practice” completing it.

Comparing the performance across the set of random
roads with different placement angles, we can see that the
agent from run 2 (hereafter, Agent 2) showed roughly uni-
form performance of around 85% across all 4 road types.
This serves to show that it has evolved a highly general, ef-
fective road following behaviour, with difference in success
rates largely unaffected by the coarseness of random road
angles. The difference in performance between Agent 2 and
the agent from run 6 (hereafter, Agent 6), at the 20◦ random
road is striking and somewhat surprising. One might ex-
pect both agents to perform very well on this road as it most
closely resembles those that they were evolved against. We
can also see that Agent 6’s performance drops off on the
other angled roads, in contrast to Agent 2’s broadly uniform
performance, suggesting that Agent 6 has specialised on the
20◦ road to the detriment of the more difficult roads, whilst
Agent 2 represents the more general solution at these road
types, though showing somewhat worse performance on the
simpler challenges. Interestingly, this situation does appear
to be reversed for straight roads, where Agent 2 significantly
outperforms Agent 6.

We can also see that both agents perform uniformly in a
very effective manner when started at angles in the range
−22.5◦ ≤ θ ≤ 22.5◦, with a drop off in performance for
both agents when places at angles beyond this range. This
can be explained by the fact that although, during evolution,
all agents are placed at world relative heading of 0◦, the ran-
dom changes in road tile angles will subject them to situa-
tions where they are pointing up to 20◦ from the centre line
of the road, and they have hence developed strategies to miti-
gate this situation. What is surprising is that both agents per-
form worse when the agent is facing far to the left (45◦ start-
ing angle) than when it is subjected to such angles in the op-
posite direction. There is no obvious reason for this from the
attributes of the evolutionary trials, other than that, through
random fluctuations, the agents may have been exposed to
more left turns than right. In summary then, the agents com-
plete these evaluation tests with high effectiveness and there
is not a great deal to choose between them. Any significant
out-performance by one agent in a test, is made up for, ei-
ther by more generality of the other agent across more tests,
or an out-performance of the other agent on a different test.
This demonstrates therefore, the capability of the evolution-
ary process to produce effective agents that encapsulate a
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general solution to the road following problem and are able
to perform successfully across a wide variety of road types.

Post-evaluation test II
Having analysed the generality and effectiveness of the road
following behaviour in the previous test, it would also be
useful to appraise the performance of the dynamic colour
selection strategy evolved to show contrast in a variety of
colour and texture scene combinations. To this end, the
agent is exposed to 30 different scene texture combinations,
representing all the possible combinations of the 6 textures
shown in Fig. 5, using each texture as both road and ground
surface. In order that the variance that we see in trial per-
formance is due to the difference in texture combinations,
rather than the varying performance across road shapes and
starting angles, each agent is tested against roads generated
using the same algorithm as that used in evolution to rep-
resent challenges of the sort with which the evolved agents
should be most familiar. Similarly, rather than varying the
starting heading of the agents on the road, each agent is
started with a world relative heading of 0◦ as in evolution.
75 such roads are generated, and rendered in each of the 30
possible texture combinations, resulting in 2250 total evalu-
ations per agent.

The results of this test, with respect to the different
coloured scenes are plotted in Fig. 6. The labels for the bars
of the histogram are in the form X/Y/Z where X is the agent
number, Y is the first texture and Z is the second, accord-
ing to the labels in Fig. 5. The bars are grouped by agent
for each texture combination: the left bar being Agent 2,
the right Agent 6, allowing direct comparison between the
agents on different scenes. Each individual bar represents
the mean percentage success rate for one agent across 150
trials: 75 road shapes with a particular road/ground texture
combination, and the same 75 shapes with the reverse com-
bination. The proportion of light and dark areas of each bar
then represent the success rate for each of these individual
reversals. For example, the bar labelled ’2/B/T3’ shows the
performance of Agent 2, using a combination of ’Blue as-
phalt’ and ’Asphalt 3’ textures: the dark portion of the bar
showing the success rate with ’Blue asphalt’ road on ’As-
phalt 3’ ground, the light portion showing the reverse.

From the results of these tests, a few issues of note be-
come apparent. Firstly it would appear that Agent 6 broadly
outperforms Agent 2 in many of these trials. This likely sug-
gests that Agent 6 has evolved a more general and effective

(a) (b) (c) (d) (e) (f)

Figure 5: a) Grass (G), b) Sand (S); c) Blue asphalt (B); d)
Asphalt 1 (T1); e) Asphalt 2 (T2); f) Asphalt 3 (T3)

Figure 6: Comparison of both agent’s performance across a
range of scenes.

strategy for dynamic colour perception than Agent 2, though
it is also possible that this is in some part due to it having
evolved road following strategies that are more specialised
to the type of road shapes present in evolution. We can also
see that, for the majority of texture combinations, there is at
least one reversal of road and ground textures that an agent
is able to solve to a high degree of efficiency, i.e., there is
normally a coloured bar portion at least 0.4 units long, a
percentage success rate of 80 % for this road/ground texture
combination. There is also a problem visible here though,
as a number of scenes can only be solved effectively in one
of the two reversals of road and ground texture. This shows
a lack of generalisation in the solution. There is however
another problem visible in this data. There are some scenes
in which no agent can reliably detect contrast and solve the
road, for either reversal of road and ground textures. This
effect is most pronounced for S/T2 texture combination and
it is believed this is due to the colours in both textures being
too similar for either combination of them to reveal signifi-
cant contrast.

Conclusion
In this work, we have demonstrated a technique, using evo-
lutionary robotics, to design effective road-following be-
haviours in simulated agents controlled by artificial neural
networks. We have shown that, by presenting a set of chal-
lenges with diverse colour properties, we can encourage the
evolution of an autonomous, dynamic approach to colour
perception which enables evolved agents to perceive con-
trast in scenes where this would otherwise be impossible.

The process of evolution seems to have produced a range
of effective and general solutions, which encapsulate not
only a robust solution to road following, but also a system of
dynamic colour perception that is able to show contrast be-

Bioinspired Robotics

1023 ECAL 2013



tween road and non-road surfaces across a range of scenes
where a constant grey-scale conversion would fail. Through
performing a range of tests, we ascertained which of the so-
lutions is more generally effective, irrespective of their fit-
ness scores which could be influenced by luck. By breaking
down the results of post-evaluation tests, we have shown that
the most effective agents show good generality in their road
following ability, being capable of following roads differ-
ing significantly from those that they were evolved against.
Their generality with respect to starting angles is not as
strong, but this is expected as they were not deliberately ex-
posed to a representative selection of these when evolving.

In examining the most effective produced agents with re-
spect to their colour and road perception abilities it becomes
clear that there are a few limits to their generality. In some
instances (though not in others) the agents are not able to fol-
low both reversals of road and ground textures, suggesting
an inability to deal with certain combinations of values de-
marcating the road, even when contrast is visible. We have
suggested that this could be mitigated either with more di-
verse evolution scenes, or an extra output node to reverse
the visual input values. Similarly, we believe the slightly re-
duced performance on a couple of scenes in post-evaluation
tests can also be improved with a better strategy to noise in
the simulation. However, in spite of these slight problems, it
seems the broad aim of evolving controllers with a dynamic
approach to colour perception has been met, and the agents
are able to detect contrast in a number of scenes where this
would otherwise be impossible.

This work has been undertaken as a theoretical proof-
of-concept: to show that the desired road following and
dynamic colour perception behaviours can be produced
through artificial evolution of neural network controlled
robots. The transferral of such a system onto real robotics
hardware has not been broached. We are aware that there
are a number of issues which may affect the ability of this
evolved controller to successfully cross the ”reality gap”.
Future work will concentrate on this challenge.

References
Aufrere, R., Chapuis, R., and Chausse, F. (2000). A fast and robust

vision based road following algorithm. In Proc. of the 4th

IEEE Intelligent Vehicles Symposium, 2000, pages 192–197.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamic neural
networks for adaptive behavior. Adaptive Behavior, 1(1):91–
122.
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