
 Procedia Computer Science 10 (2012) 482 – 489

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.06.062

The 3rd International Conference on Ambient Systems, Networks and Technologies
(ANT)

An Aspect-Oriented Language for
Product Family Specification�

Qinglei Zhang, Ridha Khedri, Jason Jaskolka

Department of Computing and Software, Faculty of Engineering,

McMaster University, Hamilton, Ontario, Canada

Abstract

Aspect-orientation is a paradigm for managing the separation of crosscutting concerns and decomposing a system

using more than one criterion. This paper proposes an aspect-oriented approach at the feature-modeling level to better

handle crosscutting concerns in the modeling of product families of ambient systems.

Based on the specification language of PFA (Product Family Algebra), we present a language AO-PFA (Aspect-

Oriented Product Family Algebra) that extends the aspect-oriented paradigm to feature modeling. The language provides

full facilities for articulating aspects, advice, and pointcuts in feature modeling. We illustrate the scope and flexibility

of the proposed language through the discussion of several feature-modeling situations.

c© 2012 Published by Elsevier Ltd.

Keywords: software product families, aspect-oriented software development, early aspects, formal methods, formal

specification languages

1. Introduction and Motivation

Ambient systems involve a multitude of heterogeneous features that are interconnected and that supply

end users with a variety of data and functionality. Their stability is contingent on requirements that can

cope with high variability. Due to the amount of data collected from the environment and the complexity

of the hardware and software involved in collecting and acting on it, ambient systems’ environments pose

special challenges to the feature-modeling process. The variety of hardware leads to a variety of possible

technologies, which in turn, leads to some predictable variability of the family of similar systems. This

point has been pointed to by Parnas [1] as early as 1976. Product family modeling was proposed to deal

with this problem. It proposes the simultaneous development of a family of products, rather than of one

product at a time. Concerning the variability in the requirements of systems in general, there are two

classes of variability: predictable and unpredictable. There are some requirements that predictably vary and

therefore can be included in the feature model of the product family from the beginning. For instance, if

we were modeling a family of robots, with our knowledge of the available technology, we can predict that

we might have different collision detection systems (e.g. infra-red based and radio based). We then would

�This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Grant Number

RGPIN227806-09.

Email addresses: zhangq33@mcmaster.ca (Qinglei Zhang), khedri@mcmaster.ca (Ridha Khedri), jaskolj@mcmaster.ca

(Jason Jaskolka)

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

483 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

have systems with different detection features that we include from the start in the feature model of a robot

product family. One situation that illustrates unpredictability of some features of a family of systems can

be easily illustrated with a security related situation. To remotely communicate with an ambient system,

we often use an authentication feature that is in charge of identifying the caller agent. After a while, we

find that there is a flaw in the authentication feature due to the presence of other features. In other words,

the feature interaction of the authentication feature and other features make it possible for an intruder to

take control of some systems of the family. The question then becomes how to quickly amend the current

feature model to ensure that all the product families that involve the identified configuration of features gets

amended to replace the flawed configuration by another configuration of features. This change to the family

due to the security issue cannot be predicted at the time of the feature modeling of the family. When the flaw

is revealed, we might have several systems that are already deployed in their environment. Sometimes, the

remedy of the detected defect in a product family leads to the introduction of new variability in the family

or to the amendment of the existing variability by confining it to some products but not others.

Dealing with predictable variability is the topic of a wide literature of feature-modeling techniques [2,

3, 4, 5, 6]. Unpredictable variability, however, is somewhat limited. In dealing with ambient systems, one

cannot dismiss unpredictable variability and it ought to be given a wide attention. A flexible approach to

adapt the feature models regarding unpredictable variabilities in various ways are demanded. Especially,

the dynamic characteristic of ambient systems make the quick change to the system a priority that ought

to be carried out in a speedy manner. Consequently, it is critical to develop an adaptable and evolvable

systems while managing the complexity of the systems. Modularization of concerns is essential to man-

age complexity of ambient systems. However, some concerns are inherently spread over and intertwined

with other concerns, and therefore resist such modularization by conventional approaches. As illustrated

in [7], multi-agent systems, which is an example of ambient systems, are associated with many crosscutting

concerns such as autonomy, communication, mobility, security, etc.. As hindering the maintainability and

modifiability of software qualities, crosscutting concerns make the ambient systems difficult to be adapted

and evolved. Aspect-oriented software development addresses the modularization of crosscutting concerns,

and provides a powerful way to handle crosscutting concerns in ambient systems. We find that software en-

gineering deals with a similar problem at the programming level using aspect-oriented techniques. However,

at the programming level, these techniques showed very mixed results. Aspect-oriented programming leads

to systems with high modifiability, but at the same time the performance is hindered [8]. Also, the complex-

ity of the programming languages compared to that of the language we are using at the feature-modeling

level makes the aspect weaving process very convoluted and prone to several aspectual compositional prob-

lems. These problems are very minimal at the feature-modeling level. That is why we conjecture that

aspect-oriented techniques, while they exhibited mixed results at the programming level, can be helpful at

the feature-modeling level.

This paper is about a language which is built on the language of product family algebra that would enable

us to systematically amend a product family to deal with unpredictable changes as soon as they are revealed.

We would have the specification of the family that is to be amended, which we call the base specification,

and add to it the specification of the aspect we ought to address. It is through the weaving process that we

generate the specification of the amended family. The base specification of a family is commonly referred to

as the feature model. This paper builds on the work presented in [9, 10, 11, 12] by expanding the language

of PFA to an aspect-oriented language.

The remainder of the paper is organised as follows. Section 2 introduces the related background knowl-

edge. Section 3 presents the proposed specification language and its usage. Section 4 discusses other works

reported in the literature of aspect-oriented software development and product family engineering. Finally,

in Section 5, we conclude and give the highlights of our current and future work.

2. Background
2.1. Product Family Algebra

Product family algebra extends the mathematical notions of semirings to describe and manipulate prod-

uct families. A semiring is an algebraic structure consisting of a set S with a commutative and associative

binary operator + and an associative operator ·. An element 0 ∈ S is the identity element with respect to +,

484 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

〈PFASpec〉 := (〈Basic Feature〉 | %〈comment txt〉\n)+

(〈Labelled Family〉 | %〈comment txt〉\n)+

(〈Constraint〉 | %〈comment txt〉\n)∗

〈Basic Feature〉:=bf 〈base feature id〉%〈comment txt〉\n
〈Labelled Family〉:=〈family id〉 =〈Family Term〉

%〈comment txt〉\n
〈Constraint〉:=constraint(〈Family Term〉, 〈Family Term〉,

〈Family Term〉)%〈comment txt〉\n
〈Family Term〉:=0 | 1 | 〈base feature id〉 | 〈family id〉

| 〈Family Term〉 + 〈Family Term〉
| 〈Family Term〉 · 〈Family Term〉

〈base feature id〉:=String of letters, numbers and “ ”

〈family id〉:=String of letters, numbers and “ ”

〈comment txt〉:=String of letters, numbers, symbols

and space.

(a) PFA Specification Grammar

Specification 1:

% declarations of basic features

1. bf move control

2. bf light display

3. bf configure

% definitions of labeled product families

4. optional light display = light display+ 1 % an optional feature

5. optional configure = configure + 1

6. base functionality = move control · light display

7. optional base functionality = move control

· optional light display

8. full functional elevator = base functionality · configure

9. elevator product line = optional base functionality

· optional configure

% a constraint

10. constraint(configure, elevator product line, light display)

(b) Base Specification of The Elevator Product Family

Fig. 1. PFA Language Grammar and an Example

while an element 1 ∈ S is the identity element in S with respect to ·. In addition, operator · distributes over

operator + and element 0 annihilates S with respect to ·. We say a semiring is commutative if operator · is
commutative and a semiring is idempotent if the operator + is idempotent.

Definition 1 (e.g., [11]). A product family algebra is a commutative idempotent semiring (S ,+, ·, 0, 1),
where each element of the semiring is a product family.
Within the context of product family engineering, the operator + is interpreted as a choice between two

product families and the operator · is interpreted as a mandatory composition of two product families. The

element 0 represents the empty product family and the element 1 represents a product family consisting

of only a pseudo-product which has no features. Optional features can be interpreted as a choice between

the features and the pseudo-product 1. With these interpretations, all other concepts in product family

modeling can be expressed mathematically. Formal definitions for features, products, and families can be

found in [9, 11].

For elements a and b of a product family algebra, the subfamily relation (≤) is defined as a ≤ b ⇐⇒d f

a + b = b. The subfamily relation indicates that for two given product families a and b, a is a subfamily

of b if and only if all the products of a are also products of b. For elements a and b of a product family

algebra, the refinement relation (
) is defined as a
 b ⇐⇒d f ∃(c |: a ≤ b · c). The refinement

relation indicates that for two given product families a and b, a is a refinement of b if and only if every

product in family a has at least all the features of some products in family b. For elements a, b, c, d and

a product p of a product family algebra, the requirement relation (→) is defined in a family-induction style

as: a
p→ b ⇐⇒d f p
 a =⇒ p
 b, and a

c+d→ b ⇐⇒d f a
c→ b∧ a

d→ b. Given elements a, b, and c, a
c→ b

is read as “a requires b within c”.

A tool based on product family algebra, called Jory [13], is used to represent and manipulate product

families. Jory uses a specification language called PFA (Product Family Algebra). The grammar of PFA

is given in Figure 1(a). In PFA, there are three types of specification constructs: basic feature declara-

tions, labeled product families, and constraints. Each basic feature is declared with a basic feature label
preceded by the keyword bf. Each product family is defined as an equation with a product families label
at the left side and a product family algebra term at the right side. A constraint is represented by a triple

preceded by the keyword constraint, and corresponds to a requirement relation in product family algebra.

Constraints are specified for view reconciliation [10] of product families. Specification 1 in Figure 1(b)

specifies an elevator product family using the PFA language of Jory. In this specification, Lines 1–3 specify

three basic features, Lines 4–9 specify product families as labeled terms based on product family alge-

bra, and Line 10 specifies a constraint as defined in product family algebra. According to product family

algebra, for example, an optional feature light display is specified by a term light display +1 in Line 4.

In Line 6, the base functionality is specified by the term move control · light display, meaning the family

base functionality includes the two mandatory features move control and light display. Line 10 corresponds

485 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

to configure
elevator product line−→ light display in product family algebra, meaning that in the product family

elevator product line, the feature configure requires the feature light display. The reader can find more

details on the use of this mathematical framework to specify product families in [9, 11, 12].

We will use the elevator system as a running example in this paper. We consider two unpredictable

variabilities, light reset and failure capture, in the product family. Inherently, the light reset feature depends

on the light display feature, and the failure capture depends on both the move control and the light display.

Moreover, we consider a mandatory feature log is added to the feature model of configure due to an evolution

process. Assume Specification 1 in Figure 1(b) is the initial PFA specification of the elevator product family.

In Section 3, we illustrate how to integrate features light display, failure capture, and log to the original

specification using the proposed aspect-oriented technique.

2.2. Aspect-Orientation: Basic Concepts

Aspects are introduced to explicitly encapsulate and implement crosscutting concerns in one module.

At different software development stages, the meanings of aspects vary in accordance with the granularities

of the concern abstractions. Nevertheless, several terminologies are widely and commonly used by the

community of aspect-oriented software engineering. First, a join point refers to a point in the execution

of the base program where an aspect could be introduced. A pointcut selects a set of join points where a

certain aspect should be positioned. An advice defines the amendment which should be introduced at the

selected join points. Lastly, weaving is the process of combining aspects with a base program. In essence,

pointcuts identify join points where an aspect should be introduced, while advice defines the specification

of the crosscutting concern.

3. Aspect Orientation at the Feature Level
We extend the aspect-oriented notions to PFA specifications of feature models. We call the proposed

language AO-PFA (Aspect-Oriented Product Family Algebra). In product family algebra, all kinds of com-

mon and variable characteristics of product families are described and unified as product family terms. In

other words, the basic constructs of product family algebra specifications are product family terms. Intu-

itively, join points in our technique should be in the form of product family terms and the pointcut language

defines quantification statements over those product family terms. Based on the mathematical setting of

PFA specifications, an aspect in AO-PFA is compactly specified as follows:

Aspect 〈aspectId〉 = 〈Advice(jp)〉
where jp ∈ (

scope, expression, kind
)

The triple (scope, expression, kind) is the pointcut language of AO-PFA, which specifies the quantifica-

tion statement for selecting join points. The equation 〈aspectId〉 = 〈Advice(jp)〉 is the body of the aspect

which specifies the new advice being introduced at selected join points. In the remainder of this section, we

present a detailed discussion on join points, pointcuts, advice, and aspects in AO-PFA.

3.1. Join Points in AO-PFA

We have mentioned above that join points in PFA specifications are in the form of product family terms.

However, within a PFA specification, there are two roles for the same form of product family terms. They are

either being defined or being referenced. For example, in Figure 1(b), the product family base functionality
is being defined at the left side in Line 6, while it is being referenced at the right side in Line 8. Consequently,

there are two types of join points: definition join points and reference join points. Integrating new aspects at

the two types of join points corresponds to two different situations when handling the requirements. Roughly

speaking, the specified product family term can be considered as a white box in the former case, whereas it

can be considered as a black box in the latter case. Introducing an advice at a definition join point affects the

internal description of the specified product family term, whereas introducing an advice at a reference join

point affects the descriptions of product families including the specified product family terms. Moreover,

when it comes to the detailed level of features, introducing advice at these two types of positions can cause

very different results. Therefore, it is necessary to distinguish between the definition and reference positions

of a product family term at the abstract feature-modeling level. The differences between these two types of

join points are discussed further when specifying pointcuts, advice, and aspects.

486 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

3.2. Pointcuts in AO-PFA
In existing aspect-oriented techniques, three attributes are generally used to specify a pointcut: the

scope of join points, a predicate that captures dynamic properties, and the form and position of join points.

Therefore, the pointcut language is expressed as a triple (scope, expression, kind) in AO-PFA.

The first component of the pointcut triple, scope, bounds the selecting scope of join points in PFA. Two

types of scopes are designed: within and hierarchy. Scopes of type within capture join points within spec-

ified lexical structures, while scopes of type hierarchy capture join points within the hierarchical property

of features in the feature models. We use “:” and “;” to express the combination of two scopes. Separating

two scopes by “:” indicates that eligible join points are within the union of the two specified scopes. Sep-

arating two scopes by “;” indicates that eligible join points are within the intersection of the two specified

scopes. Moreover, we use protect(scope) to specify that eligible join points are excluded from the scope.

In particular, when no scope is specified, the scope base is considered by default, indicating that the whole

base specification is in the scope.

The second component of the pointcut triple, expression, is a Boolean expression on the language of

product family algebra, which captures characteristics of the product families corresponding to the base

specification. Boolean expressions work as guards for the selected join points. When no expression pointcut

is specified, the expression true is taken by default.

The third component of the pointcut triple, kind, is used to specify the exact form and position of join

points. Unlike scopes and expressions of pointcuts, there is no default value for the kind of a pointcut. The

kind of pointcut must be explicitly specified for each aspect. With regard to the three types of specification

constructs in PFA, the kinds of pointcuts are specified as feature-related (i.e., declaration and inclusion),

family-related (i.e., creation, component creation, and equivalent component), and constraint-related (i.e.,

constraint[position list]). Particularly, declaration, creation, and component creation pointcuts introduce

new specifications at definition join points, whereas inclusion, component, equivalent component, and con-
straint[position list] pointcuts introduce new specifications at reference join points. Moreover, the difference

between creation and component creation pointcuts resides in whether we change the definition of the spec-

ified families directly or whether we change the definition of their components. The difference between

component and equivalent component pointcuts resides in whether the reference is direct or indirect.

3.3. Advice and Aspects in AO-PFA
As given previously, the body of an aspect is specified by an equation 〈aspectId〉 = 〈Advice(jp)〉. Ac-

cording to the effect of an aspect upon join points (i.e., augmenting, narrowing, and replacing), we indicate

that 〈Advice(jp)〉 is always specified by a product family term; either a ground term or a term with variable jp.

Augmenting aspects add features to the original specifications. In other words, for an augmenting aspect,

the advice is specified by a product family term constructed with variable jp. We further classify augmenting

aspects with respect to definition join points and reference join points. Refine aspects augment the original

product families where they are defined, whereas extend aspects augment original product families where

they are referenced.

Narrowing aspects simply result in the absence of original join points. The advice of narrowing aspects

can be specified as the constant element 1 of product family algebra. This means that a product or family is

replaced by the neutral product denoted by 1 (a pseudo product that has no features). Similar to augmenting

aspects, narrowing aspects are further classified into discard and disable aspects. Discard aspects narrow

product families or basic features where they are defined, whereas disable aspects narrow product families

or basic features where they are referenced.

Replacement aspects replace the appearance of original join points with other product families. In this

case, the advice can be specified in the form of a ground product family term (i.e., a term constructed

without variables). Similarly, we distinguish replace aspects and substitute aspects to respectively refer to

effects on definition join points and reference join points.

With regard to 〈aspectId〉, there is a slight difference for specifying aspects that relate to different types

of join points. If the aspects relate to definition join points, 〈aspectId〉 should specify new labels that

define new product family terms. If the aspects relate to reference join points, 〈aspectId〉 should always

be expressed as a variable jp that refers to join points. Furthermore, as mentioned earlier, the type of join

487 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

〈AspectSpec〉 := (〈Aspect〉\n)+

〈Aspect〉 := 〈aspectId〉 = 〈Advice(jp)〉\n where jp ∈ 〈POINTCUT〉
〈aspectId〉 := identifiers of aspects

〈Advice(jp)〉 := product family terms defined in PFA using a variable ’jp’

〈POINTCUT〉 := (base, 〈EXPRESSION BASED〉, 〈Constraint-related〉)
|(〈SCOPE〉, 〈EXPRESSION BASED〉, 〈Feature-related〉)
| (〈SCOPE〉, 〈EXPRESSION BASED〉, 〈Family-related〉)

〈SCOPE〉:=〈SCOPE〉 ; 〈SCOPE〉|〈SCOPE〉 : 〈SCOPE〉|base

| within{〈PF label〉}| hierarchy{〈PF label〉}|protect{〈PF label〉}
〈EXPRESSION BASED〉:=Boolean expression upon PFA

〈Feature-related〉:=declaration{〈PFT〉}|inclusion{〈PFT〉}
〈Family-related〉:=creation{〈PFT〉}|component creation{〈PFT〉}

|component{〈PFT〉}|equivalent component{〈PFT〉}
〈Constraint-related〉:=constraint[〈list〉]{〈PFT〉}
〈list〉:=left〈list’〉|middle〈list’〉|right〈list’〉
〈list’〉:=, left〈list’〉|, middle〈list’〉|, right〈list’〉|ε
〈PFT〉:=product family terms defined in PFA.

〈PF label〉:=identifiers of product families.

(a) Aspect Specification Grammar

Specification 2: Using component creation pointcut

1. bf move control
2. bf light display

bf failure capture

move control new = move control · failure capture

light display new = light display · failure capture· · ·
6. base functionality = move control new · light display new· · ·

Specification 3: Using equivalent component pointcut
· · ·

bf failure capture· · ·
6. base functionality = move control · light display

7. option base functionality = move control · light display
· failure capture + move control

8. full functional elevator = base functionality · failure capture

· configure· · ·
Specification 4: Using non-default scope pointcut

bf failure capture· · ·
9. elevator product line = move control + base functionality

· failure capture + full functional elevator
· failure capture· · ·

(b) Resulting PFA specifications

Fig. 2. Weaving Aspects

points is decided by the kind of pointcut. Therefore, given the syntax of an aspect in AO-PFA, we can

directly categorise the aspect according to its form of 〈Advice(jp)〉 and the third component of the pointcut

triple. Such a classification of aspects is to help the modular reasoning on aspects in the context of product

families.

3.4. Specifying Pointcuts, Advice and Aspects with AO-PFA
Taking Specification 1 of Figure 1(b) as the base specification, we use several examples to illustrate

the usage and flexibility of the proposed language. The grammar of the proposed language for aspect

specifications is given in Figure 2(a). More examples detailing the usage of all constructs can be found

in [14].

(1) Suppose that we want to capture any defective behaviour in the product family base functionality.

However, the base functionality is composite and we cannot be sure which component might cause

the defective behaviour. Therefore, we need to add a failure capture feature to each of its compo-

nents, move control and light display. To specify this requirement, we use an aspect with a compo-
nent creation pointcut as follows:

Aspect jp new = jp · failure capture

where jp ∈ (
base, true, component creation(base functionality)

)

The component creation pointcut refers to the definitions of all components in the base functionality.

The resulting specification is Specification 2 of Figure 2(b). According to the classification described in

Section 3.3, the aspect is a refine aspect.

(2) Alternatively, suppose that we want to capture any equivalent defective behaviour in the base functionality
product family from the base specification. However, assume that we are not allowed to make changes

to the definition of the product family base functionality. This requirement is able to be specified by an

aspect with an equivalent component pointcut as follows:

Aspect jp = jp · failure capture

where jp ∈ (
base, true, equivalent component(base functionality)

)

488 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

The equivalent component pointcut refers to all equivalent appearances, (i.e., both direct and indi-

rect references) of the base functionality. The resulting specification is Specification 3 of Figure 2(b).

Straightforwardly, the aspect is an extend aspect according to the proposed classification.

(3) We continue with our running example to introduce a new failure capture feature in the base spec-

ification. Suppose we are required to capture all defective behaviours with the move control com-

ponent in the base functionality family. In addition, we only introduce the new feature within the

elevator product line family. The aspect below with a non-base scope pointcut can be used to express

this requirement.

Aspect jp = jp · failure capture

where jp ∈ (
within(elevator product line) ; hierarchy(base functionality), true, inclusion(move control)

)

The inclusion pointcut captures join points where the feature move control is referenced. The within
scope of the pointcut narrows the scope of join points to only Line 9 of Specification 1. Since hierarchy
specifies that the feature move control should be constructed from the family base functionality, we do

not compose failure capture with the first move control in Line 9. Specification 4 of Figure 2(b) shows

the result of weaving this aspect to Specification 1. The above aspect is also an extend aspect.

Although the term of the advice is the same for each aspect (i.e., Advice(jp) is jp · failure capture), the

resulting specifications are quite different. The join points of the aspects in Case (1) and Case (2) are

related to base functionality. The join points of the aspect in Case (3) are related to move control, while

base functionality only specifies the scope of join points. Furthermore, besides the slight difference in

meaning, the main difference between Case (1) and Case (2) resides in whether or not the definitions of the

base functionality family (or its components) have changed. The different effects of these aspects show that

our pointcut language is capable of distinguishing between slight differences among requirements.

4. Related Work and Discussion
At the modeling and specification level for product families, many efforts have been taken in the liter-

ature to manage the common and variable features. Our work aims to facilitate the management of com-

plexity in large feature models. Acher et al. [15] deal with a problem similar to that of our work, but in

a different way. With regard to the composition of feature models, they mainly focus on the insert and

merge operators. From our perspective, their merge operator can be handled by using view reconciliation

presented in [10, 11], and the insert operator can be handled with the aspect-oriented paradigm. Their work

considers the composition operators from the perspective of model integration, whereas our work discusses

the issue from the perspective of composition mechanisms for different concerns. We find other related

works [16, 17, 18, 19, 20, 21] that attempt to manage the variabilities in product families by introducing the

aspect-oriented paradigm to product families. In comparison with those approaches, our technique intro-

duces the aspect-oriented paradigm at the feature-modeling level. By appropriately mapping mechanisms

for aspects, we should handle aspects consistently and systematically from the feature-modeling level to the

concrete models and the implementation. Therefore, their techniques can be seen as complement techniques

to our method.

5. Conclusion and Future Work
In this paper, we introduced the aspect-oriented paradigm to feature-modeling techniques of product

families. We presented AO-PFA which extends aspect-oriented notations to specifications based on product

family algebra. The proposed language provides full facilities for articulating aspects, advice, and pointcuts

in feature modeling. The semantics of the language is based on the models of product family algebra that

are discussed in [9, 11]. We illustrated the scope and flexibility of the proposed language through the

discussion of several feature-modeling situations. It is important to ensure that composing new aspects will

not invalidate the original specification of base systems. Since our approach is constructed upon a formal

setting, it is easier for us to formally verify the validities of aspects with regard to base systems. In [14],

we have already established a set of criteria and propositions for formally detecting invalid aspects before

weaving them to base systems.

489 Qinglei Zhang et al. / Procedia Computer Science 10 (2012) 482 – 489

Ambient systems are systems that offer its users mobile and pervasive access to data and that are able

to adapt themselves to the particular user needs and profiles. Therefore, they ought to be systems that are

very prone to change. As users needs and the environment change, the developers need to quickly amend

the systems to cope with these changes. The environment for which these systems are developed are not

the same, however, they share common characteristics. Also, the users might have different needs but very

likely have common shared needs. Therefore, a family oriented approach is the approach recommended for

developing these systems. The paper proposes an approach to specify ambient systems as product families.

To enable ambient systems to evolve in order to fit their environments and their users needs, the paper

proposes the use of an aspect-oriented approach to amend their feature models.

We are using the work presented in [12] as the basis for our ongoing work on introducing finer granularity

aspects at the state level rather than at the feature level. The objective of this work is to get closer to

automatic code generation from the specification of the product family base, the specification of the aspects,

and the specification of the basic features. Höfner et al. [12] showed that it is an achievable objective. They

present the features of a family as requirements scenarios formalised as pairs of relational specifications of

a proposed system and its environment. The result of weaving aspects should lead to, among others, the

specification of a product presented using a slight variation of Dijkstra’s guarded command [22].

References

[1] D. L. Parnas, On the design and development of program families, IEEE Trans. Software Eng. 2 (1) (1976) 1–9.

[2] K. Czarnecki, Generative programming, principles and techniques of software engineering based on automated configuration and

fragment-based component models, Ph.D. thesis, Technical University of Ilmenau (Oct. 1998).

[3] M. Eriksson, J. Börstler, K. Borg, The PLUSS approach-domain modeling with features, use cases and use realization, in: Proc.

of 9th International Conference on Software Product Lines, 2005, pp. 33–44.

[4] M. L. Griss, J. Favaro, M. d’Alessandro, Integrating features modeling with the RSEB, in: Proc. of the 5th International Confer-

ence on Software Reuse, 1998, pp. 76–85.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature oriented domain analysis (FODA) feasibility study, Technical Report

CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University (Nov 1990).

[6] M. Riebisch, K. Böllert, D. Streitferdt, I. Philippow, Extending feature diagrams with UML multiplicites (2002).

[7] K. E. Nygard, D. Xu, J. Pikalek, M. Lundell, Multi-agent designs for ambient systems, in: 1st International ICST Conference on

Ambient Media and Systems, 2010, pp. 10:1–10:6.

[8] J. Kuusela, H. Tuominen, Aspect-Oriented Approach to Operating System Development Empirical Study, Journal of Communi-

cation and Computer 6 (8) (2009) 233–238.

[9] P. Höfner, R. Khedri, B. Möller, Feature algebra, in: J. Misra, T. Nipknow, E. Sekerinski (Eds.), Formal Methods, Lecture Notes

in Computer Science, Vol. 4085, Springer-Verlag, 2006, pp. 300–315.

[10] P. Höfner, R. Khedri, B. Möller, Algebraic view reconciliation, in: Proc. of 6th IEEE International Conference on Software

Engineering and Formal Methods, 2008, pp. 85–94.

[11] P. Höfner, R. Khedri, B. Möller, An algebra of product families, Software and Systems Modeling 10 (2) (2011) 161–182.

[12] P. Höfner, R. Khedri, B. Möller, Supplementing product families with behaviour, International Journal of Informatics (2011)

245 – 266.

[13] F. Alturki, R. Khedri, A tool for formal feature modeling based on bdds and product families algebra, in: 13th Workshop on

Requirement Engineering, 2010, pp. 109–120.

[14] Q. Zhang, R. Khedri, J. Jaskolka, An aspect-oriented language based on product family algebra: Aspects specification and verifi-

cation, Tech. Rep. CAS-11-08-RK, McMaster University, Hamilton, Ontario, Canada, available: http://www.cas.mcmaster.

ca/cas/0template1.php?601 (Nov. 2011).

[15] M. Acher, P. Collet, P. Lahire, R. France, Composing feature models, in: M. van den Brand, D. Gaševic, J. Gray (Eds.), Software

Language Engineering, Vol. 5969 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp. 62–81.

[16] M. Alférez, J. Santos, A. Moreira, A. Garcia, U. Kulesza, J. Araújo, V. Amaral, Multi-view composition language for software

product line requirements, in: Proc. of the 2nd International Conference on Software Language Engineering, 2009, pp. 103–122.

[17] S. Apel, T. Leich, G. Saake, Aspectual mixin layers: Aspects and features in concert, in: Proc. of the International Conference

on Software Engineering, 2006, pp. 122–131.

[18] M. L. Griss, Implementing product-line features by composing component aspects, in: Proc. of First International Software

Product Lines Conference, 2000, pp. 271–288.

[19] I. Groher, M. Voelter, Xweave: Models and aspects in concert, in: Proc. of the 10th Workshop on Aspect-Oriented Modelling,

2007, pp. 35–40.

[20] N. Loughran, A. Rashid, Framed aspect: Support variability and configurability for AOP, in: Proc. of International Conference

on Software Reuse, 2004, pp. 127–140.

[21] M. Mezini, K. Ostermann, Variability management with feature-oriented programming and aspects, in: Proc. of the 12th ACM

International Symposium on Foundations of Software Engineering, 2004, pp. 127–136.

[22] E. Dijkstra, A discipline of programming, Prentice-Hall, 1976.

