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l. INTRODUCTION

In this paper we continue our study of unbounded operator algebras begun
in the previous papers [4-6]. The primary purpose of this paper is to investigate
the direct sum, /,»-direct sum and tensor product of unbounded Hilbert algebras
and their left EW#-algebras. The second purpose is to study classifications of
unbounded Hilbert algebras and of left EW=-algebras.

In this section let {&,},.; be a famil\ of unbounded Hilbert algebras &,
over (2,), - We define the direct sum ZAE,I o, of {Q/\}/\e1 Then ZPM Z, is an

unbounded Hilbert algebra over the direct sum Z/\GA (&), of the Hilbert
algebras {(Z,)o}sc.. - Furthermore, we shall define a new direct sum ., &,
called Z,»- dlrect sum. We find that Dhes Z, is an unbounded Hilbert algebra
containing ZAEA &, and L:,‘”(ZAEA (Z)0) = CraLs*((Z3)o)- Even if &, is a
Hilbert algebra for every A € A, @;.; &, is not always a Hilbert algebra. There
exist examples of such unbounded Hilbert algebras (Examples (1), (2) in Sect. 3).

An unbounded Hilbert algebra 2 over &, is called weakly unbounded if there
exists a family {(Z,),}hes of Hilbert algebras (£,), such that 2 is a dense *-sub-
algebra of @ ,(2,), . If EZ is a pure unbounded Hilbert algebra for every
non-zero projection E in %(Z,) N ¥o(Z,), then & is called strictly unbounded,
where %(2,) (resp. ¥4(Z,)) denotes the left (resp right) von Neumann algebra
of &Z,. Then there exists a projection E in % (Z,) N ¥ (Z,) such that EZ is
weakly unbounded, (I — E} & is strictly unbounded and & is a dense *-sub-
algebra of the direct sum EZ ®© ([ —- E)&r of K~ and (I — E) <.

We shall investigate the relation between the left ET¥*-algebras ’7/(2,\5/1 &),
WDy 4 D) and the product [T,eq #(2,) of the left EW=-algebras {#(Z))}rex -
Let U be a family of closable operators on a Hilbert space. Then we denote by
A the closure of .4 ¢ A and put W = {d; 1 W} Let @,.,B, be the direct

sum of von Neumann algebras B,. Then %(ZSA 2,) and #(D,. 4 Z,) are

EW¥*_subalgebras of the EW*-algebra [l #(Z,) under the operations of
strong sum, strong product, adjoint and strong scalar multiplication and

#(502,) — (&) - D@

A€A Ae.l 4 A€t

334
0022-247X/78/0642-0334$02.00/0

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.



UNBOUNDED OPERATOR ALGEBRAS 335

We shall study the left EW/*-algebra %(2) of a weakly or strictly unbounded
Hilbert algebra &. An EW#*-algebra ¥ is called weakly unbounded if there
exists a family {¥ ,\} rea Of von Neumann algebras U, such that A is a *-subalgebra

of I'[Ae AU, and ‘2[,, = @AEA A, . If there is not any non-zero projection E in

QIb N QID such that Q[E is a von Neumann algebra, then  is called strictly
unbounded (, where U denotes the reduced EW#-algebra of ). We can show
that & is a weakly (resp. strictly) unbounded Hilbert algebra if and only if
U (%) is a weakly (resp. strictly) EW#-algebra. Furthermore, there exists a pro-
jection E in #(Z,) N ¥y(D,) such that %(Z)g is a weakly unbounded EW#-
algebra, (&), ¢ is a strictly unbounded EW*-algebra and #%(Z) equals the
product of ¥(Z), and U(Z),_ -

Finally we shall consider the tensor product of unbounded Hilbert algebras.
Let &, (resp. &,) be an unbounded Hilbert algebra over (Z,), (resp. (Zs),)-
Then the algebraic tensor product %, X &, of Z; and 9, is an unbounded
Hilbert algebra over (2,), ® (Z,), - We shall investigate the left EW#-algebra
UD, XL, of Ty RXZ,. Let U, and A, be EW#-algebras on pre-Hilbert
spaces D, and D, respectively. For each T, e, and T, €A, we denote by
T, ® T, the smallest linear extension of the map & ® & — T,&; & Toé, where
£,€D; and £,eD, and set A, XU, ={T\ ® T,y; T1eW,, T, €Wy}, Then
A, @ A, is a H-algebra on D; ® D,, but A; ® W, is not generally
an ElW*-algebra. An EW#-algebra is called the tensor product of U, and
A, if it is minimal among EMW#-algebras AU such that Q—szz‘lTl); @m
and A DWZ (, where B; ® B, denotes the tensor product of von Neumann
algebras B, and B,) and is denoted by A; & A, . Does there exist the tensor
product of the EW*-algebras 9, and %, ? If W, = ¥(Z,) and W, = #(Z,), then
U(D,) ® U(Z,) exists and equals U(Z; & Z,).

2. PRELIMINARIES

We give here only the basic definitions and facts needed. For a more complete
discussion of the basic properties of unbounded Hilbert algebras and EW#*-
algebras the reader is referred to [4-7].

In this section let & be an unbounded Hilbert algebra over 2, in a Hilbert
space $. Then & is a Hilbert algebra and the completion of & is the Hilbert
space $. Let # (resp. #') be the left (resp. right) regular representation of 2
and let =, (resp. my') be the left (resp. right) regular representation of 2.
For each x € § we define my(x) and =y/(x) by:

mo®) E=mOx  m@)E=mBx (D).

Then my(x) and g (x) are linear operators on § with the domain Z,. The
involution on & is extended to an involution on §, which is also denoted by *
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Then we have

Wj = mo(x)*, o (¥%) = my'(x)* (xeH),
m(€) =m(&), 7)) =m'(6),  7(E¥) = (),
m'(§*) =7'()* (feD)

and for each A € € (the field of complex numbers) and ¢, ne &

(&) + () 1= m(&) + () = 7€ + 1),

w(€) - m(n) = m(€) () = m(¢n),

(), if A

L0 B
0 if A zo = m(A8)-

Acm(€) =
Therefore ;(5) is a *-algebra of closed operators on $ under the operations
of strong sum, strong product, adjoint and strong scalar multiplication. Similarly
1?97) is a *-algebra of closed operators on $.

Let ¢, be the natural trace on %y(Z,)* and let B(H) be the set of all bounded
linear operators on §. Putting (2,), = {x € H; 7—7@ € B(D)}, (Z,)s is a Hilbert
algebra containing &, . If 2, = (2,), , then %, is called a maximal Hilbert
algebra in . Let M (resp. M*) be the set of all measurable (resp. positive
measurable) operators on § with respect to % (Z,). For every T € MM+ we put

po(T) = sup[o(me(£)); 0 < mf#) < T, £ € (Dy)]

and

Log) ={T €W | Tl := po(| T|")/? <00}, 1 <p<oo.

Then || T'{, is called the L?-norm of T'€L?(¢y) and g, is called the integral on
LY¢g). If p = o0, we shall identify %,(Z,) with L*(¢,) and denote by || T'||,,
the operator norm of T € % (%,). We define L,»-spaces with respect to ¢, and
9, as follows;

Ly(do) = , () L7$o) and  Ly%Z,) = {x € H; mo(x) € Ly*(dy)}
<p<eo
respectively. Then L,*(%,) is an unbounded Hilbert algebra over (&), and &
is a *-subalgebra of L,*(Z,). Hence Ly*(%,) is maximal among unbounded
Hilbert algebras containing &, ([5] Theorem 3.9), and so it is called a maximal
unbounded Hilbert algebra of &, . If (2,), # 9, i.e., O is not a Hilbert algebra,
then L,*(%,) is pure [6, Theorem 3.4]. For 2 <{p < o0 we set

L’ (@) = {x e D m(x) €L b)), | xly =l m(@), (v €Ly?(Dy))-
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Then, for 2 <p <g< ®
L (Zo) = 9D Le"(Z0) D Ly(Zo) D Ly*(Zo) D Ly™(Zo) = (Do)s »

and so Ly*(Zg) = Necncw La™(Zy) (n; integer).

Let 7y» be the left regular repiesentation of Ly*(Z,). Then m%(Z) is a #-alge-
bra on Ly*(%Z,) under the involution m*(£)* = m,*(£*) and since %(Z,) Ly%{D,)
CLADy), U D)ILADe) = {TILADy); T e Uy} is a #-algebra on Li(Dy)
under the involution (T/Ly(Z))* = T*/L(Z,), where T|Ly*(Z,) denotes the
restriction of T' onto Ly*(Z,). We denote by #(2) the #-algebra on L(Z,)
generated by m*(@) and % D)/LsA(Dy). Then U(PD) and U(L(Dy)) are
EW#-algebras on Ly%(Z;) over U(D,). #(Z) is called the left EW#-algebra
of &. In particular, if (Z,), # O then #(L,(%Z,)) is a pure EW#-algebra [6,
Theorem 4.4].

3. l»-Direct Sums oF UNBOUNDED HILBERT ALGEBRAS

In this section let / be an infinite set and let {Z,},.4 be a family of unbounded
Hilbert algebras 2, over (Z,), . Let §, be the completion of &, for every Ae A
and let X,.4 %, be the Cartesian product of {Z,},c.. Under the operations:
&+ =+ b of6d ={eb), (&3 {nd ={&m} and G ={6%
{&) {m} € Kiea 9)« , 0 € ), Xycq 2, is a *-algebra.

We denote by 2,\5 12, the set of all elements of X, 4, P, with only a finite
number of non-zero coordinates. Then we can easily show that ZAE 19, is an
unbounded Hilbert algebra in the direct sum @, 9, of the Hilbert spaces %, .
We call Z,\E 1 9, the direct sum of the unbounded Hilbert algebras {2,})ca -
If 2, is a Hilbert algebra for every A e 4, then z,\e 1 Z, is a Hilbert algebra and

%(3°9) =@ u@).  %(3°2) =@ @

AEA Aeq Aed AeA

Now we shall define a new direct sum (called /,»-direct sum) of unbounded
Hilbert algebras.

ProrosiTioN 3.1. We set

@2, = tde X 25 Y | 6212 < coforall p > 2

Aeq Aeq AeA

Then @y, 2, is an unbounded Hilbert algebra in Do, H) containing 2,\62. 19D, .
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i P .
Proof. Leti{&\, tple &hp &, and a € €. Then we have

[Z Il & + ma \I;TP = [Z (ENIEEA ||p)p}l '

AELL Ae.l

< [Z | mﬁ]m + [Z 7 Hﬁ]l

A€l ALl

[Z : af”’z]w =l [Z l m\iﬁ]” ,

AEA Aed

Z I Emally < Z [ éallam | malen < 3 I[Z il f/\”% =+ Z i 77:\”3;]
AEA Ae A€ Aes

and

Z [ f,\*Hg: Z l fAlli’-

Aea Aea

Hence, {£,} + {’7/\} A&k b {6} e @ U‘;.Je/l Z,and [|{EHlp = [Xoeall &4 Hp]l P

is a norm on @Y., Z, . Furthermore, it is easily showed that ({&;} | {m)) ==

() * [{63%), (€} {03 |G = {im} [{E)*{6))) and 104 (@20 C (@rea 0o -
Thus @), Z, is an unbounded Hilbert algebra.

DEFINITION 3.2. @yy &, is called the Le-direct sum of the unbounded
Hilbert algebras {Z,},., and is also denoted by L»({Z,}).

Even if Z, is a Hilbert algebra for every A e A, @y, 4 2, is not always a Hilbert
algebra. That is, there are examples such that Dy, P, becomes a pure
unbounded Hilbert algebra.

Exampres. (1) For every positive integ(-;r n we denote by €, the complex
field € with the inner product (« | 8), := off/n%. We can easily show that G,
is a Hilbert algebra under the usual multlphcatlon of and involution «* == &.
Then,

D €, = Lo((1/n)

= Ho,}; ap € Cforeverynand ) |a,|?/n? < oo forallp =2

n=1

From [8, Example 3.5] @¢ €,, is a pure unbounded Hilbert algebra.
(2) We set (L=[0, 1]),, = L=[0, 1] (n = 1, 2,...). Then L®[0, 1] is a maximal
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Hilbert algebra under the usual operations and inner product (f|g) =
Ll, f(%) g(x) dx. We put

falx) ={logx], ln+ 1) <x < 1n,
=0, otherwise,
and
f=Uternfar):

Then, f,eL[0,1] ( = 1,2,...) and for & >2

YisE=3Y [

n=1 n=1 1/tn+

. 1
| log » |’”dx] :J | log x |* dx = Rl
Y] ]

Hence, fe @3 (L“[0, 1a. Since sup, | fal, = supallog(r + 1)] = oo,
FE (@5 (Le[0, 1D,)e. Thus @3 (L*[0, 1]), is a pure unbounded Hilbert
algebra.

We shall show that Lz“’(zg 1 (2)0) = @nen L#((2))0)- Let X, be a linear
operator on §, with the domain Z(X,) for every Ae /. We define the linear
operator {X,} on § := D4 H1 with the domain Z({X,}) as follows:

2(X)) = fmle9; x e D(X,) forallAe dand ) || X%, B < ooz

A€A s ’
{X0} ) = {Xwah {x} e 2({X)).

Let X, be a densely-defined closable operator on §, and let X, = U, | X, |
be the polar decomposition of X, for every Ae A. We set X = {X,}and U =
{U,}. Then we can easily show that: X = {X,}, X* = {X,*},| X | ={| X, [} and
X = U| X | is the polar decomposition of X. From the above facts we obtain
the following lemma.

LemMa 3.3. Let m, (resp. my) be the left regular representation of the Hilbert
algebra Zi (D))o (tesp. (D,)o). Suppose that x ={x,}€ 9. Let mw(x)) =
U, | mgM(x))| be the polar decomposition of my)(x,) and let U = {U,}. Then:

(1) mo(x) = {m(=)}
@ |7 = { =)}
(3) mo(x) = U | my(x)| is the polar decomposition of mo(x).

TueOREM 3.4. The maximal unbounded Hilbert algebra L,*(3, (D)) of
zfi 1 (D)), equals the L-direct sum @, s L*((2,)o) of the maximal unbounded
Hilbert algebras L>((2,)o) of (£))s -

Proof. Suppose that x = {x,} eLz‘v(Zfz 4 (D)) Let my (resp. my?) be the left
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regular representation of the Hilbert algebra 22 4(Z)) (resp. (Z,)). Let
mo(x) = U | my(x)| be the polar decomposition of my(x) and let U = {U,}. Then,
by Lemma 3.3, m*(x,) = U, | nOA(vA)‘ is the polar decomposition of 7N(x,). We
have | my(x)] = Ukmy(x) = wO(U*x) and U*xelL ‘“(ZAEA (Z2,)o)- Let ¢, (resp.
¢,") be the natural trace on 97/0(2,‘e 4 (Z2)o)T (resp. Uy((Z))o)*) and let g (resp.
") be the integral on L(¢) (resp. LY (éy")). For each integer n >> 2 we have

Il = o} m()I™) = prglmo((TFx)™))

= (U2 | Uks) = 3 (Uy*x)" | Uptay)

AeA

= Z Mol(”oA(UA*"A)“) = z po (| (x).)[n)

A AEA

= llxlz.
prey:
Hence, L “’(ZAe 4 (2,)0) C @rn L“((2)))- On the other hand, @, Ls#((2)),)
is an unbounded Hilbert algebra containing Z,\e 4 (@) (Prop. 3.1) and
L, (Z,\e 4(2))) is maximal among unbounded Hilbert algebras containing
Zi 4 (D)) [5] Theorem 3.9), and so the reverse inclusion is sat1sﬁed
Thus, Z/\EA (2,), is a Hilbert algebra and @, (2,),, Z,\eA Dy, Oven 2

and @y, L:*((2,)o) are unbounded Hilbert algebras. Furthermore, they have
the following inclusions:

@ (@/\)O 123 @
TO@)C  CD2,CDLA@) — L ( 5 (-%)o)-
Acd ZG—) 9 red A€d Al

If &, is pure for some Ae A, then Z;«GZA Dy, Coren D s DieaLe(22),) are
clearly pure. We shall consider the problem: “Is @,.,L,*(2,),) is pure?”’
From [6, Theorem 3.4], if §, is not a Hilbert algebra then L,*((2,),) is pure, and
50 @y s L*((2,)y) is pure. Hence we have only to consider the above problem
when the Hilbert space $, is a Hilbert algebra for every Ae /.

Suppose that §, is a Hilbert algebra for every Ae 4. @, 9, is not always
pure. In fact, the complex field € is a Hilbert space and a Hilbert algebra under
the usual multiplication o, involution o* = & and inner product (x| 8) = «f.
Putting §, =€ (n = 1, 2,...), @5, H, = I Hence @Y H,, is a Hilbert algebra.
We shall consider under what conditions @., 9, is pure. We set

LS = {xe@ O Y lImlp<of, 2<p<oo,

Aed A€A
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L9 = {x} € @D s sup || 4, o < 00¢,

AeA AeA

L) = () LS =® 61

2 p<o AeAa

LemMa 3.5. L*({9,}) is @ maximal Hilbert algebra and 1,*({9,}) is a maximal
unbounded Hilbert algebra over 1,*({9,}) in @rca Ox.For ¢ >p = 2,

@ 9,2 L"({H) 2 B({9:) 2 é $:2L{HNO Y 6i

AEA Aeq AEA

and

D 6= () LS  (n; integer).

A€A 2gn<on

Proof. From [6, Lemma 3.1], for x, € $, we have

[l <Ixlz-+linl, ¢>p>2

Hence, L¥({$,}) C L7({$H,}). The other arguments are easily shown.

ProrosiTioN 3.6.  The following conditions are equivalent.

(1) @yes Oi s pure.

) @hea D2 # L2({D)-

(3) @iea D # L2({DA)), t-e.; Dica i is not a Hilbert algebra.

(4) There exists a sequence {e,} of non-zero projections e, in 9, (A, € A)
such that ¥y [l ea 3 < 0. '

(5) Izp({gf\}) 2 lzq({g),\}) for some g > p = 2.

(6) Dica $D22 LP({Da}) for each p > 2.

Proof. From Theorem 3.4, @, 4 H» :sz(zfz 4 9,) and it is a maximal
unbounded Hilbert algebra over 4,*({9,}) in @4 9. Hence Proposition 3.6
follows from [6, Theorem 3.4].

We shall investigate the relation between the left EW*-algebras %(Zfz 4D
U(Dyen Z,) and the product T, %(D,) of the left EW#-algebras #(2,).
UTiea 2)) and U 2)) are EWr-algebras on @hes LA(@0)) =
L;’(Zh@;,1 (2))0) over @nea %o((2))). Let A, be an EW#*-algebra on a pre-

Hilbert space D, and let ), be the completion of D, . The product [T s U, :=
{(4,); 4, €U,} is defined as follows:
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fl(n ‘2[,\) = 3 be® 1= @ HumeDforalldedand Y || Ay, | < x
€.l

A€, Ael

for all AAe»zI,\; R I o R g B o 7 (H A )
A€
From [4, Theorem 3.7} [Tica, 15 an EW=-algebra on Z([LieaW,) over
@rea (Wy)y - We previously defined a closed operator {4,} (4, €,) on § as
follows:

G = Yo €95, 2L forall e A snd . Ty 1 < wl |

AeA )
) oy = m), ) e 2(dy)

We denote the set {{A a}s Ay €Ay} of closed operators on $ by X;)Ellglj Then
it is easily proved that {4,y =(4) 4,) for every (4,) € [Thea U, , and so X,\eA A, =
TTiea 2, . It follows that X;°, 9, is an EW#-algebra over @,c1(U,), -

ProrositioN 3.7. J?/(Zﬁ/, 2,) and U(Dyen Z,) are EW*-subalgebras of the
EW*-algebra X~ U(Z,) under the operations of strong sum, strong product,

adjoint and _and_strong scalar multiplication and ”?/(ng A D) = U By s D)y =
(Xiea "7/(91\))0 = Enea ((Z)1)o)-

4. WEAKLY UNBOUNDED HILBERT ALGEBRAS

In this section let & be a pure unbounded Hilbert algebra over &, in a Hilbert
space 9. If E' is a projection in %Zy(Z,) N ¥4(Z,), then we have

(ES) (Em) = E(&n),  (EO* =Ef*,  £qeQ.

Hence £ is an unbounded Hilbert algebra containing the Hilbert algebra EZ, .
From Examples in Section 3 even if & is pure, EZ is not always pure. So, we
shall consider a classification of unbounded Hilbert algebras.

DrerinrtiON 4.1, & is called a weakly unbounded Hilbert algebra if there
exists a family {2,},c, of Hilbert algebras such that & is a dense *-subalgebra of
@®es 2. If EZ is a pure unbounded Hilbert algebra for every non-zero
projection E in % y(D,) N ¥4(ZD,), then D is called a strictly unbounded Hilbert
algebra.

ProrositioN 4.2. The following conditions are equivalent.
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(1) & is weakly unbounded.

(2) There exists a family {E,},c. of mutually orthogonal projections in
UNZLy) N\ VKD, such that Y, 4 Ey = I and E,2 is a Hilbert algebra for every
Aedd

Proof. 1= (2) Suppose that there exists a family {&,},c, of Hilbert
algebras such that 2 is a dense *-subalgebra of @), 2, . Let §, be the comple-
tion of Z,. Then, § = @4 9, - Furthermore, we can easily show that the
projection E, (:= P%,) onto §, belongs to #(Z,) N ¥(Zy), Yaea Ex = I and
E,2C%2,. Since &, is a Hilbert algebra, E,2 is a Hilbert algebra.

(2) = (1) Putting U¢ = {E,£} (6 D), U is an isometric isomorphism
of & onto @y, 4 E,&. Identifying 2 with U2, & is clearly a dense *-subalgebra
of @y E\Z.

ProrosiTioN 4.3.  The following conditions are equivalent.
(1) L(Zy) is weakly unbounded.
(2) There exists a family {E;}cq of mutually orthogonal projections in

UNZy) N VD) such that 3, 4 Ey = I, E,$ is a Hilbert algebra for every Ae A
and Ly(Z) = Tren E29-

Proof. (2) = (1) Obvious.

(1) = (2) From Proposition 4.2 there exists a family {E)},, of mutually
orthogonal projections in %(2,) N ¥((Z,) such that ¥, 4 E), = I and E,L»(D,)
is a Hilbert algebra for every AeA. From Theorem 3.4, Ly%(Z,) =
@Ohen Ls(E\Zy). Furthermore, E,L;(Dy) = Ly(E,%,), and so Lo(E,2,) is a
Hilbert algebra. From [6, Theorem 3.4], (E;,2,), = L,(E\%,) = E,$. Hence
E,$ is a Hilbert algebra and L,*(ZDy) = @y E29-

THeoReM 4.4.  There exists a projection E in Uy(Dy) N ¥o(Dy) such that:

(1) EZ is weakly unbounded and (I — E) 2 is strictly unbounded;

(2) & is a dense *-subalgebra of the direct sum ED © (I — E) D of the
unbounded Hilbert algebras EZ and (I — E) 2,

(3) (Zo) = E(Zo)y ® I — E) (Zo)s -

Proof. If there is not any non-zeio projection E in % (%) N ¥((2,) such
that EZ is a Hilbert algebra, then & is strictly unbounded. If there exists a
projection E; such that E,2 is a Hilbert algebra, then (I — E,)Z is a pure
unbounded Hilbert algebra. Then if there is not any non-zero projection E, such
that I — E; > E, and E,Z is a Hilbert algebra, then (I — E,) & is strictly
unbounded. So, we have only to put E = E| . If otherwise, (I — E,) 2 is pure.
Thus, by Zorn’s lemma there exists a maximal family {E,},., of mutually
orthogonal projections in %(Z,) N ¥4(D,) such that E,2 is a Hilbert algebra
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for every Ae . Putting E =3, .1 E,, EZ is a weakly unbounded Hilbert
algebra. Furthermore, by the maximality of {E,},.,, if £ 5= I then (I — E) &
is a strictly unbounded Hilbert algebra. It is easy to show that F satisfies the
conditions (2) and (3) of the theorem.

CoOROLLARY 4.5. There exists a projection I in U %) N Y (Z,) such that
L(EZy) is weakly unbounded, Ly“((I — E) %) ts strictly unbounded and Ly“(Z)
= L Y(ED,) @ L((I — E) &%,). Furthermore, there exists a family {E\},.. of
mutually orthogonal projections in U\ (D,) N V(D) such that E =73, 4 E,.
E,$ is a Hilbert algebra for every A€ A and Ly(EDy) = @y E\9.

Proof. This follows from Theorem 3.4, Proposition 4.3 and Theorem 4.4.
We shall consider a classification of the left EW*-algebra #%(Z) of the
unbounded Hilbert algebra 2.

DEerINITION 4.6. Let A be an EW#*-algebra on a pre-Hilbert space D. If
there exists a family {¥,},c, of von Neumann algebras 9, such that % is a
*_subalgebra of X, M, and W, = @4 A, , then A is called a weakly un-
bounded EW#*-algebra.

Let E be a projection in A, N W,’, Tx the restriction of T onto ED and let
W, = {Tg; T e U} From [4, Theorem 3.1] Ay is an EW*-algebra on ED.

DreriNiTION 4.7. An EW#-algebra U is called a strictly unbounded EW=-
algebra if there is not any non-zero projection E in 2, N ,’ such that A is a
von Neumann algebra.

THEOREM 4.8. & is a weakly (resp. strictly) unbounded Hilbert algebra if and
only if U(Z) is a weakly (vesp. strictly) unbounded EW*-algebra.

Proof. Suppose that & is weakly unbounded, that is, there exists a family
{Z,}1e of Hilbert algebras &, such that & is a dense *-subalgebra of @, &, .
Clearly #y(Zy) = Grena %(Z,) and #(Z) is a *-subalgebra of (T, Z)).
From Proposition 3.7. #(@F., &,) is a *-subalgebra of X?:A (). Hence
U(Z) is weakly unbounded.

Conversely suppose that #(&) is weakly unbounded, that is, there exists a
family {20,},c4 of von Neumann algebras U, on Hilbert spaces $, such that
WD) is *-subalgebra of XZ; U, and Uy(Dy) = Brea Uy - Weset § = Dyea H1
and E, = P9, for all Ac4. Then we can easily show that E,e @,., U, N
©Onea Wy = UZo) N Vo(Zo), 2ieaky=1 and %(9)5,\ =UED)=1U,.
Since A, is a von Neumann algebra for every A € 4, E,2 is a Hilbert algebra for
every Ae . From Proposition 4.2, & is weakly unbounded. Similarly (2) is
showed.
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THEOREM 4.9. There exists a projection E in Uy D) N V' (2,) such that:

(1) U(D)g is a weakly unbounded EW#-algebra and U(D),_g ts a strictly
unbounded EW#*-algebra;

(2) U(2) equals the product U(D)e x U(D),_x of the EW*-algebras
YD)y and WD),k -

Proof. From Theorem 4.4 there exists a projection E such that EZ is
weakly unbounded and (I — E)} 2 is strictly unbounded. By Theorem 4.8
U(D)e (resp. U(Z);-g) is a weakly (resp. strictly) unbounded EW#*-algebra.
Putting &(T) ={Tg, T;_g}, D is an isomorphism of #(Z) onto % (D)X
U(D);_r and Ly(Dy) = EL(Dy) @ (I — E) L"(Z,). Hence we can identify
U(D) with U(D)g X U(D);_g -

5. TeNsor Propucts oF UNBOUNDED HILBERT ALGEBRAS

Let 2, (resp. &,) be an unbounded Hilbert algebra over (2,), (resp. (Z,),).
Let 2, ® &, be the algebraic tensor product of &, and &,. We can easily
show that 7, &) %, is an unbounded Hilbert algebra over (2,), ® (Z,), under
the involution (£, X &)* = £* @ &* and inner product (¢, ® & |9, ®n,) =
(€1 1m) (& | 75). We call it the tensor product of &, and &, .

If X] and X, are linear operators on Hilbert spaces $, and &, respectively,
then we define their algebraic tensor product, denoted by X; ® X, , to be the
smallest linear extension of the map x; & x, — X%, ® X,x, where x; € 2(X,)
and x, € Z(X,). If X, and X, are closed operators, then we define X; ® X,
to be the closure of X; & X, and call it the strong tensor product of X and X, .
From [11, Theorem 8.1] if X; and X, are closed, densely-defined operators,
then (X, ®@ X,)* = X;* ® X,*.

Let %, and A, be EW*-algebras on D, and D, respectively. Then we have,
foreach S;, TyeW,and S,, T, WU, , T, ® Ty is a bilinear map of Ty and T;
($1 @ ST, ® Ty) = $1T; ® STy (Ty @ Tp)” = Ty @ Ty*. We denote
by A, @ N, the *-algebra on D, ® D, generated by {T, X Ty; T, €N, ,
T, e},

DeriNiTiON 5.1, Let U, and A, be EW#-algebras on D, and D, respectively.
An EW#-algebra is called the tensor product of 2, and 2, if it is minimal among
EW#*-algebras 9 such that A, = (A,), @ (W), and A D A, @ A,, (where
B, ® B, denotes the tensor product of von Neumann algebras B, and B,) and
is denoted by U, @ U, .

We shall consider the problem: “Does there exist the tensor product of each
EW#-algebras %, and A,?” When U, and U, are the left EW*-algebras of
unbounded Hilbert algebras &, and &, respectively, we shall find that the answer
is affirmative.
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Lrvmma 5.2, Let &, be an unbounded Hilbert algebra over (&), and let $;
be the completion of &; (i = 1,2). Let myt (resp. 7%, my, 7 w3, w) be the left
regular representation of (<)), (resp. (Z)o, (Z1)g 1 (ZaYg. L Zay 7 X 7).
Then:

(1) oy &, ) = mol{xy) (2 () == my' () @ 7" ( ) (v €D, e De)s
2) (& &)= w(E) D w(b) = 7(E) @ (&) (fredn, e D).

Proof.  For every n, € (%), and 3 € (Z3)y, (my'(%1) @ mo*(%2)) (11 % 7m2) =
mo(%y @ x5) (9 @ mp).  Hence,  ml(xy) & my¥(y) = my(x; X a5).  Clearly,
me' (%) & g (xp) C 7ol (%)) @ 7o*(%3). On the other hand, my(x;* & x,*) =
77'0(("1 @ 3‘2)*) = mo(ay (%) 1‘2)* D (ml(x) @ 7 (Vo))* = 7701(‘ )" @ mot(xy)

o (%, ) @ m(xe®). Thus, ml(%;) & mp(xy) = mel(x;) @ mo*(xy). Similarly (2) i
shown.

THEOREM 5.3. Let &y and &, be unbounded Hilbert algebras over (&), and
(%), respectively. Then U(2,) R U(2,) exists and equals U(Z| = T ). +

Proof. Since &, (' &, is an unbounded Hilbert algebra over (Z), X{(Z5) ,
U(D, & %) is an EW*-algebra on Ly*((21)y ® (Z2)o) over Xy((Zy)y X (Z2)o)-
Hence,

ULy R Zs)o = Uo((Z1)o ® (Z2)o)
= %(Z1)o) ® Us((Z>2)o)
= U(%1)s ® Q/(gzﬁ :

Next we shall show that #(2, X Z,) D %(2,) Q %(Z,). Let my! (resp. 72, 7y,
(me®), (my®)?, my®) be the left regular representation of (%), (resp. (Z.),
(Z1)0 @ (Da)o » Ly*((Z1)o), La*((ZL2)o)s L*((Z1)o @ (Z2)o))- From Lemma 5.2, for
every ¥, € &, and x, € &, we have
(m)! (31) @ (ma) (%) = ()" (1) @ (ma®)* (x2)
= (%)) @ 7o (x)
= mo(xy () 43) = 72wy &) ).

Furthermore, %%, ® D)y = U(Z1), @ U(Dy), D U(Dy), D U(Z,), . Hence
we have U(2,) @ U(ZD,) C U(D, X %,). Finally we shall show that
YD, ® D) is minimal among EW+-algebras A such that A, = %(2,), ®
U(Z,), and N D U(D,) ® U(D). Suppose that A is such an EW#-algebra. For
every %, €%, and x,€ D, , m¥(x; & %) = (72 (%)) & (m,2)? (x,). Hence,
w2 (%, @ %) € U(Dy) R U(D,) C U. Furthermore, #(2y R D)y = #(Z1)y D
U(Dy), = W, . Since U(D, ® Z,) is a *-algebra generated by (7, R Z»),
and 7,2, ® Z,), we get U(Z, > Z,) CA.
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CoRrOLLARY 5.4. If 2 and % are Hilbert algebras, then U(Ly(Zy) ®
YLDy = U(L(D) @ LAZy?) and they are EW#-subalgebras of
UL (2 ® 2%).
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