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1. INTRODUCTION 

In this paper we continue our study of unbounded operator algebras begun 
in the previous papers [4-61. The primary purpose of this paper is to investigate 
the direct sum, Zzw-direct sum and tensor product of unbounded Hilbert algebras 
and their left ER’*-algebras. The second purpose is to study classifications of 
unbounded Hilbert algebras and of left ElV*-algebras. 

In this section let {PA}n..l be a family of unbounded Hilbert algebras 9,+ 
over (z%,+),, . We define the direct sum C,$,, 9’n of (G,JA6‘, . Then CA:, SA is an 
unbounded Hilbert algebra over the direct sum I.,:,, (U,a), of the Hilbert 
algebras {(~,JO}IE-, . Furthermore, we shall define a new direct sum isA,,, w 2 ,, 
called Zzw-direct sum. We find that G&., 
containing C,$, 

9,, is an unbounded Hilbert algebra 
9’A and L2U(xEn (Q,a),,) = @~SnLnw((QJo). Even if 5’;, is a 

Hilbert algebra for every h E (1, @yG., 9,, is not always a Hilbert algebra. There 
exist examples of such unbounded Hilbert algebras (Examples (I), (2) in Sect. 3). 

An unbounded Hilbert algebra 9 over SSO is called weakly unbounded if there 
exists a family {(9?JO)A}AEn of Hilbert algebras (90)A such that 9 is a dense “-sub- 
algebra of @‘& (a,,),, . I f  ES2 1s a pure unbounded Hilbert algebra for every 
non-zero projection E in @ZO(BO) n Y-,(9,,), then 3 is called strictly unbounded, 
where %!,,(5?,,) (resp. 9$(GSO)) denotes the left (req. right) von Neumann algebra 
of PO . Then there exists a projection E in S!JPO) n YG(90) such that E9 is 
weakly unbounded, (I - E) 2 is strictly unbounded and P is a dense “-sub- 
algebra of the direct sum EL2 @ (I ~~~ E) Y of EQ and (1~~ E) 8. 

W:e shall investigate the relation between the left ETV+-algebras -+71(xEA QA), 
%!(&, GBJ and the product nAEn %(SJ of the left EK+-algebras cJZ(9J},aGzI . 
Let 91 be a family of closable operators on a Hilbert space. Then we denote by 
a the closure of -4 E PI and put a = .[a; d E ?!L}. Let EjAESI ‘B,+ be the direct 

~- 
sum of von Neumann algebras B, . Then @(CA!?,, 9,J and CX(Q&n 9J are 

--- 
EW*-subalgebras of the El%‘*-algebra ndGn Q(S?J under the operations of 
strong sum, strong product, adjoint and strong scalar multiplication and 

*/~,~~~~)~~~~~~~~o((~~),). 
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We shall study the left EW+-algebra %(B) of a weakly or strictly unbounded 
Hilbert algebra 9. An EW#-algebra 2l is called weakly unbounded if there 

exists a family {21z,},,, of von Neumann algebras 211, such that g is a *-subalgebra 

of nAEn 21A and K = enEn 21c, . I f  there is not any non-zero projection E in 

2Tn (UT such that 2% is a von Neumann algebra, then 21 is called strictly 
unbounded (, where 21, denotes the reduced EW#-algebra of 21). We can show 
that Q is a weakly (resp. strictly) unbounded Hilbert algebra if and only if 

e(9) is a weakly (resp. strictly) ET%‘+-algebra. Furthermore, there exists a pro- 
jection E in %!r,(90) n $<(53,,) such that %‘(C& is a weakly unbounded EW#- 
algebra, @‘l(9),-, is a strictly unbounded I??+‘+-algebra and %(9) equals the 
product of %(SJ)~ and @(GB)l-E . 

Finally we shall consider the tensor product of unbounded Hilbert algebras. 
Let 9r (resp. 9a) be an unbounded Hilbert algebra over (9?& (resp. (3&J. 
Then the algebraic tensor product 9?r @ 3s of Br and 9s is an unbounded 
Hilbert algebra over (P& 6J (%‘a)(, . We shall investigate the left EW#-algebra 

%($Br @Pa) of g1 (i7, G’a . Let 2l, and 2la be EW+-algebras on pre-Hilbert 
spaces 10, and ID, respectively. For each Tl E ‘2lr and Tz E 21, we denote by 
T, @ T2 the smallest linear extension of the map fr @ & --t TIEI @ T&, where 

5, E ID, and 5, E aa and set ?I, 0 2tI, = {T, @ T,; Tl E +2lr ? T, E 2L.a}. Then 
24 @ 21, is a #-algebra on a, @ as, but 2lr @ 211, is not generally 
an EW-#-algebra. An EW#-algebra is called the tensor product of 21, and 

21, if it is minimal among EW+-algebras 2l such that Fb = O, 0 O, 

and % 3 ‘II, @ 21, (, where 8, @ 23, denotes the tensor product of von Neumann 
algebras 23, and 23,) and is denoted by 21, @ 211,. Does there exist the tensor 

product of the EW#-algebras 21, and 21, ? If  21, = 4V(9$) and 21, = %(9’,), then 
@(Qr) @ 9(9,) exists and equals 4?(9, @ 9.J. 

2. PRELIMINARIES 

We give here only the basic definitions and facts needed. For a more complete 
discussion of the basic properties of unbounded Hilbert algebras and EW#- 
algebras the reader is referred to [47]. 

In this section let 9 be an unbounded Hilbert algebra over GB,, in a Hilbert 
space 9. Then P,, is a Hilbert algebra and the completion of CZO is the Hilbert 
space !?J. Let 7~ (resp. m’) be the left (resp. right) regular representation of 9 
and let nO (resp. no’) be the left (resp. right) regular representation of go. 
For each s E sj we define n,,(x) and ‘rra’(x) by: 

?T&) [ = ZX) x, Tj’(x) t = TJ(5) .r (t f  9”). 

Then n,,(.v) and r,,‘(x) are linear operators on & with the domain SB,, . The 
involution on 9 is extended to an involution on 5, which is also denoted by *. 
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Then we have 

and for each h E CC (the field of complex numbers) and 5, T] E g 

Therefore n(g) is a *-algebra of closed operators on 9 under the operations 
of strong sum, strong product, adjoint and strong scalar multiplication. Similarly 

n’(O) is a *-algebra of closed operators on B. 
Let +,, be the natural trace on Bt,(B,,)+ and let S(S) be the set of all bounded 

linear operators on !+j. Putting (g& = (x E J3; V,(X) E’%(B)}, (g&, is a Hilbert 
algebra containing BO . If  9s = (CB,&, , then g,, is called a maximal Hilbert 
algebra in $. Let W (resp. 9X+) be the set of all measurable (resp. positive 
measurable) operators on 8 with respect to @&z%r,). For every T E ‘Xl+ we put 

Tao = su~[do(&?); 0 G n&) G T, 5 E (%$1 
and 

LP(c&,) = :TE%Q; I/ Tllp := p,,(l T I”)“” < co), l<p<CO. 

Then I/ T /I9 is called the D-norm of T ED(&,) and pFLo is called the integral on 
,V(+,). I f  p = co, we shall identify e&g,,) with L”(&,) and denote by 11 T Ila 
the operator norm of T E %&go). We define Law-spaces with respect to & and 
go as follows; 

and 

respectively. Then Lzw(%,,) is an unbounded Hilbert algebra over (g,,),, and 9 
is a *-subalgebra of Lzw(s,,). Hence Lzo(~,,) is maximal among unbounded 
Hilbert algebras containing B,, ([5] Th eorem 3.9), and so it is called a maximal 
unbounded Hilbert algebra of gO . I f  (g,Jb # !?J, i.e., $ is not a Hilbert algebra, 
then Lzw(a,,) is pure [6, Theorem 3.41. For 2 < p < co we set 
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Then, for 2<p<q<oo 

and so L2w(QO) = n2~,<mL2”(9t,) (n; integer). 
Let r2u be the left regular representation of Law(.9,,). Then ZT~~(~‘) is a #-alge- 

bra on &~(9,,) under the involution ma”(.Q+ = ~~~(t*) and since Sa(Z2a) L,‘$Qs) 
C L,w(~,), @,,(S20)/L2w(9,,) : = { T/L,~(53,,); T E %,-,(9J} is a #-algebra on L2w(9,,) 
under the involution (T/L2w(S@‘,))# = T*/Lzw(9J, where T/L$(9,,) denotes the 
restriction of T onto L2w(BO). We denote by S!(9) the #-algebra on L,o(~,,) 
generated by z-aw(9) and @,,(~3?~)/&~(2?~). Then a!(9) and @(La”(9,,)) are 
EIV#-algebras on Law(9,,) over +Yo(G2,J. 3?(g) is called the left EW#-algebra 
of 9. In particular, if (9,Jh # Sj then “?1(L2w(9%,)) is a pure EIP-algebra [6, 
Theorem 4.41. 

3. Z2W-D~~~~~ SUMS OF UNBOUNDED HILBERT ALGEBRAS 

In this section let A be an infinite set and let {52A}AEA be a family of unbounded 
Hilbert algebras BA over (g,J,, . Let B,+ be the completion of gA for every h E A 
and let XAEA B,, be the Cartesian product of {9A}AEn. Under the operations: 

&I + hJ = {CL + ~3, 453 = -Mih R3 Id = KPIJ and &I* = @‘A*) 
(&I, id E LA ~~ , 01 E a), LA4 g%n is a *-algebra. 

We denote by x:, gA the set of all elements of XlsA 9,+ with only a finite 
number of non-zero coordinates. Then we can easily show that z,$, ~2~ is an 
unbounded Hilbert algebra in the direct sum Onon 4$A of the Hilbert spaces Sj, . 
We call xj!, ~23~ the direct sum of the unbounded Hilbert algebras (BA}AEn. 
If gA is a Hilbert algebra for every h E A, then EEA G?,, is a Hilbert algebra and 

Now we shall define a new direct sum (called Zaw-direct sum) of unbounded 
Hilbert algebras. 

PROPOSITION 3.1. We set 

Then @yEA SA is an unbounded HiZbert aZgebra in @,,EA $n containing x2,9,, . 
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DEFINITION 3.2. @yEA B,, is called the Zaw-direct sum of the unbounded 

Hilbert algebras J } (CA AEA and is also denoted by Zaw({.S?,,}). 

Even if BA is a Hilbert algebra for every X E A, @TEA LB,, is not always a Hilbert 
algebra. That is, there are examples such that @I;~, CSA becomes a pure 
unbounded Hilbert algebra. 

EXAMPLES. (1) For every positive integer rz we denote by (5, the complex 
field (1. with the inner product (a I ,Q :-= c&z”. We can easily show that C& 
is a Hilbert algebra under the usual multiplication c@ and involution 01* == &. 
Then, 

& 0, = P({ll~*H 

:= (ol,);a,ECforeverynand f  ] 
I 

~,]~/n*<coforallp>2 . 
72=1 I 

From [8, Example 3.51 0: C& is a pure unbounded Hilbert algebra. 

(2) We set (La[O, l])% =L”[O, l] (n = 1, 2,...). Then Lm[O, l] is a maximal 
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Hilbert algebra under the usual operations and inner product (fig) = 

Jif(x)g(x) dx. We put 

f&9 = I 1% x I 9 l/(n + 1) < x < l/n, 
ZZ 0, otherwise, 

and 

f = (fl If2 ,...,f?a v...). 

Then, fn EL~[O, l] (n = 1, 2 ,...) and for K >, 2 

1 log x Jk dx] = I1 1 log x jk dx = h!. 
0 

Hence, f E 0; (L”[O, l])n . Since sup% ljfn (I- = supJlog(n + l)] = CO, 
f  6 (@E (Lm[O, l])Jo . Thus 0’;: (L=[O, l])n is a pure unbounded Hilbert 
algebra. 

We shall show that Law(x& (9,JJ = @~E,L,w((9A)o). Let X, be a linear 
operator on b,, with the domain 9(X,) f or every X E A. We define the linear 
operator {X,,} on $3 := oAEn !$A with the domain 9({XJ) as follows: 

5?({XA)) = 
1 
{x,,} E 6; xA E 9(X,) for all h E A and c (I X,x, ]I”, < CO 1 

AEA !’ 

-vGl h> = VGXAh h> f =ww>. 

Let X, be a densely-defined closable operator on 5A and let x = VA I x 1 
be the polar decomposition of rA for every h E A. We set X = (X,) and U = 
(VA). Then we can easily show that: X = (x}, X* = (X,+*1, ] X ) = {I x I> and 
X = U I X 1 is the polar decomposition of X. From the above facts we obtain 
the following lemma. 

LEMMA 3.3. Let rrO (resp. roA) be the left regular representation of the Hilbert 

algebra IX& @JO (rev. (%)o). 
-- 

S PP u ose that x = {xn} E &. Let rroA(x,J = 

U,, 1 ad( be the polar decomposition of T,,~(.Q) and let U = (UJ. Then: 
- - 

( 1) now = +oO”(xA>>~ 
-- 

(2) I Sol = II ~oA(%N~ 
(3) no(x) = U ( rr,(r)l is the polar decomposition of n,(x). 

THEOREM 3.4. The maximal unbounded Hilbert algebra Lzw(C& (S8Jo) of 
x2,,, (gA),, equals the 12”-direct sum @&,, L2w((.C@A)o) of the maximal unbounded 

Hilbert algebras L2w((Q,,)o) of (B,Jo . 

Proof. Suppose that x = {x,J EL~(~E~ (22,&J. Let no (resp. v,,~) be the left 
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regular representation of the Hilbert algebra xAt, (2Ja (resp. (Q,,)s). Let 

a) = Zr j n,,(x)I be the polar decomposition of ~3”) and let U = {Ua}. Then, 
-- 

by Lemma 3.3, .rrd(x,) = ZT,, ] rrsd(.~~)l is the polar decomposition of 7~aA(.r~). We 
-~ 

have 1 nc,(x)l = Uris = ~,,(U*X) and V*X ~La~(z~z~ (~,,)J. Let #,, (resp. 
4:) be the natural trace on +‘/a(~,~, (gA),,)+ (resp. @,,((gA)J+) and let pO (resp. 
~2) be the integral on Li(&,) (resp. L’(&*)). For each integer n > 2 we have 

= ((72*x)“-1 1 U”x) = c ((u,*x,)“-l 1 u,*x,) 
hEA 

= Ll Po+oYUa*XA)n) = ;A POYI ~rnl”) 

Hence, Law(E& (S+J,,) C G&, L,w((~A),J. On the other hand, @& ZZW((Qh),J 
is an unbounded Hilbert algebra containing CAT, (.C@J,, (Prop. 3.1) and 
&w(xAzA (gA),,) is maximal among unbounded Hilbert algebras containing 
CA:,, (BJ,, ([5] Theorem 3.9), and so the reverse inclusion is satisfied. 

Thus, CA& (~,,)a is a Hilbert algebra and C&,, @Jo , Z,& ~2~ , &, 9,\ 
and @~EnL2W((B,1)o) are unbounded Hilbert algebras. Furthermore, they have 
the following inclusions: 

If  g,, is pure for some h E A, then x2, gA , @tA &SA , @~E,L,w((S,Jo) are 
clearly pure. We shall consider the problem: “Is @~SnLa~((~A)o) is pure ?” 
From [6, Theorem 3.41, if $A is not a Hilbert algebra thenLaW((~,),) is pure, and 
so ~~~nL2~((GA)o) is pure. Hence we have only to consider the above problem 
when the Hilbert space !& is a Hilbert algebra for every h E A. 

Suppose that jjA is a Hilbert algebra for every h E A. @yEA !+jh is not always 
pure. In fact, the complex field C5 is a Hilbert space and a Hilbert algebra under 
the usual multiplication q!?, involution a * = E and inner product (a ] /3) = c@. 
Putting $jn = C5 (n = 1,2,...), 0; Sj, = 12. Hence 0: !+jn is a Hilbert algebra. 
We shall consider under what conditions @yEA JSn is pure. We set 
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LEMMA 3.5. 12”({$jn}) is a maximal Hilbert algebra and Z2”({$3,,}) is a maximal 

unbounded Hilbert algebra over Z,“((!&]) in GlEn GA . For q > p > 2, 

and 

Proof. From [6, Lemma 3.11, for .rA E $3,, we have 

Hence, 4*(CkN C 4W33s>~ Th e ot h er arguments are easily shown. 

PROPOSITION 3.6. The following conditions are equivalent. 

(1) CEIL gA is Pure. 
(2) OLI 3% z ~2”wm 
(3) BAEn !& # Z2m((5A}), i.e., @jlcn SSn is not a HiZbert algebra. 

(4) There exists a sequence (e,,,} of non-zero projections e, in !& (A, E A) 

such that XE, [I e, 11,” < 00. 
n 

(5) 4W553) 2 4W5~>> for sonle 4 > P 2 2. 
(6) OAEA h 3 PM533) for each P > 2. 

Proof. From Theorem 3.4, @ye, !?J~ = Law(x& $,J and it is a maximal 
unbounded Hilbert algebra over Iz”({bA}) in @&,, !?J~ . Hence Proposition 3.6 
follows from [6, Theorem 3.41. 

We shall investigate the relation between the left El&@-algebras %(xE, gA), 
@(@YE, BA) and the product nAEA @(.9,J of the left El&‘+-algebras +Y(S@J. 

@(CA?, =%) and WO~sA %> are El@+-algebras on @ye, ~5,~((9~),,) = 

Law(J& (~9~)~) over eAEA ‘?~O((9A)O). Let ‘21A be an EW#-algebra on a pre- 
Hilbert space YDA and let Sj, be the completion of DD, . The product nAEA ‘$& := 
{(Ah); A, E’&} is defined as follows: 
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for all A,, E ‘X,, , 
1 

(&AA) (A-,,: =-= {=l,s,)) (Xh] E a n ‘-I![,\ . 
t I AE;l 

From [4, Theorem 3.71 nnCn PI, is an EIP-algebra on G+(&A ‘?U,j) over 

aAEn (a,), . We previously defined a closed operator {z,,} (A,, E VIA) on $j as 

follows: 

9((z)) = !{.v,+} E $; xA E 9(x,) for all h E A and c 11 A,x, 11: < co 
l 

1 
AE-4 1’ 

-g} (“TJ = (-a,xJ, {A$ E q(LT&. 

We denote the set {{JA}; A, E%~} of closed operators on !?J by Xyz,:,p,,K. Then 
it is easily proved that {xA} = (A,) for every (A,) E JJAEA C?IA , and so XyfA K = -- 
nACn VI, . It follows that Xi:,, oz is an EIVf-algebra over oA,., (VI,), . 

PROPOSITION 3.7. J2(~& 52J and “!(@yG, 6‘ J,,) are EW+-subalgebras of the 

E W*-algebra XAEA Op 4%(2?,,) under the operations of strong sum, strong product, 

adjoint and strong scalar multiplication and “u(xE,, Y,,),, = -@(@ye, 9,), = 

( %:A *@A))b = cEAE.1 ~o(P*)cJ. 

4. \VEAKLY UNBOUNDED HILBERT ALGEBRAS 

In this section let S.@ be a pure unbounded Hilbert algebra over gO in a Hilbert 
space $. If  E is a projection in %0(90) n 9;(52,,), then we have 

Hence EB is an unbounded Hilbert algebra containing the Hilbert algebra E$ZO . 
From Examples in Section 3 even if 9 is pure, ELM is not always pure. So, we 
shall consider a classification of unbounded Hilbert algebras. 

DEFINITION 4.1. 9 is called a weakly unbounded Hilbert algebra if there 

exists a family {9A}Apn of Hilbert algebras such that 59 is a dense *-subalgebra of 
@ye,, B,, . I f  EL@ is a pure unbounded Hilbert algebra for every non-zero 
projection E in @O(90) n “tr,(B& then 9 is called a strictly unbounded Hilbert 
algebra. 

PROPOSITION 4.2. The follozuing conditions are equivalent. 
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(1) 9 is weakly unbounded. 

(2) There exists a family {EA}AEn of mutually orthogonal projections in 
%&9o) n rt’;l(90) such that xAEA E,, = I and E,,9 is a Hilbert algebra for every 
x EA. 

Proof. 1 =r (2) Suppose that there exists a family {9,},,, of Hilbert 
algebras such that 9 is a dense *-subalgebra of @YE, 9,, . Let $,, be the comple- 
tion of PA . Then, sj = aAEA, GA . Furthermore, we can easily show that the 

projection EA (:= P!+j,,) onto !& belongs to %,,(Ba) n V0(9,,), xAon E,, = I and 
E,,9 C 9,, . Since 9,, is a Hilbert algebra, E,,9 is a Hilbert algebra. 

(2) -=- (1) Putting C’[ = {EJ} (4 E B), U is an isometric isomorphism 
of 9 onto E,I~~,, E,@. Identifying 9 with U9, 9 is clearly a dense *-subalgebra 

of &, E,,9. 

PROPOSITION 4.3. The following conditions are equivnlent. 

(1) LaW(9,,) is weakly unbounded. 

(2) There exists a family {E,,},,EA of mutually orthogonal projections in 
eO(Q,,) n Y;(G+o) such that xAEli E, = I, E,& is a Hilbert algebra for every h E A 
and Lzw(9,,) = @ye, EAe. 

Proof. (2) => (1) Obvious. 

(I) 3 (2) From Proposition 4.2 there exists a family {E,},,,,, of mutually 
orthogonal projections in 9Y0(9s) n Vs(g,,) such that C,,EA E,, = I and E,L,w(9,,) 
is a Hilbert algebra for every X E A. From Theorem 3.4, L,w(BJ = 
@yEA LzU(E,@,). Furthermore, E,J,,W(90) = LsW(E@,,), and so J~~~(E,@,,) is a 
Hilbert algebra. From [6, Theorem 3.41, (E,@,& =L,W(E,i90) = E,+j. Hence 
E,$j is a Hilbert algebra and Law(BO) = @YE, E,&. 

THEOREM 4.4. There exists a projection E in %,,(9J n ^r2(9,,) such that: 

(1) Eg is weakly unbounded and (I - E) 9 is strictly unbounded; 

(2) S is a dense *-subalgebra of the direct sum EB @ (I - E) 9 of the 
unbounded Hilbert algebras E9 and (I - E) 93; 

(3) K&h = E(%,h 0 (I - E) (%h . 

Proof. I f  there is not any non-zero projection E in @a(9,,) n V&9o) such 
that ES? is a Hilbert algebra, then 9 is strictly unbounded. If  there exists a 
projection E, such that E,B is a Hilbert algebra, then (I - E1) 9 is a pure 
unbounded Hilbert algebra. Then if there is not any non-zero projection E, such 
that I - E1 >, E, and E&9 is a Hilbert algebra, then (I - E1) 9 is strictly 
unbounded. So, we have only to put E = E1 . I f  otherwise, (I- E,) 9 is pure. 
Thus, by Zorn’s lemma there exists a maximal family {EA}AEA of mutually 
orthogonal projections in @a(B,,) n %<(B,,) such that E,,CB is a Hilbert algebra 
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for every h E (1. Putting E = xhG., E,, , E9 is a weakly unbounded Hilbert 
algebra. Furthermore, by the maximality of {EA}AEn, if E f; I then (I - E) 9. 
is a strictly unbounded Hilbert algebra. It is easy to show that E satisfies the 
conditions (2) and (3) of the theorem. 

COROLLARY 4.5. There exists a projection E in +YO(gO) n Y J5ko) such that 
L,~(E9,,) is weakly unbounded, Lzw((l - E) GZO) is strictly unbounded and L,w(2?,,) 
=L,w(E9,) @Lzw((l - E) go). Furthermore, there exists a fumily {E,J,,E,, of 
mutually orthogonal projections in %,,(9J n $$(S@,,) such that E = CAGS, E,, , 

E,& is a Hilbert algebra for erery X E A and Lzw(Eg,,) = @I;~,~ E,& 

Proof. This follows from Theorem 3.4, Proposition 4.3 and Theorem 4.4. 
We shall consider a classification of the left EW#-algebra JGY(~?) of the 

unbounded Hilbert algebra 9’. 

DEFINITION 4.6. Let 91 be an EIV*-algebra on a pre-Hilbert space 5 If 
there exists a family {%A}h.l, of von Neumann algebras ‘$I, such that 3 is a 
*-subalgebra of XyfA 2I,, and sb = BAG-,, 91, , then ‘?I is called a weakly un- 

bounded EIV#-algebra. 
Let E be a projection in !&, n &‘, TE the restriction of T onto EID and let 

?I, = {TE; T E ‘$I}. From [4, Theorem 3.11 ‘8, is an EM+-algebra on ES. 

DEFINITION 4.7. An EIV+-algebra 2l is called a strictly unbounded EWF- 
algebra if there is not any non-zero projection E in &, n ?&,’ such that ?& is a 
von Neumann algebra. 

THEOREM 4.8. 9 is a weakly (resp. strictly) unbounded Hilbert algebra if and 

only if e’(9) is a weakly (resp. strictly) unbounded E W*-algebra. 

Proof. Suppose that 9 is weakly unbounded, that is, there exists a family 

@,&‘l of Hilbert algebras 9,, such that 9’ is a dense *-subalgebra of ayE, 5?,, . 

Clearly @,-,(9,,) = @I\En BO(9J and %V(9?) is a *-subalgebra of ??($ye,, g,,). 

From Proposition 3.7. @(@yG, 9,)) is a ‘-subalgebra of XyE.,, %‘/,(L,). Hence 
g(g) is weakly unbounded. 

Conversely suppose that “p(9) is weakly unbounded, that is, there exists a 
family {aI,>,,, of von Neumann algebras 211, on Hilbert spaces $A such that 

e(9) is *-subalgebra of X,“,q, ‘%A and %,,(9s) = olsll VI,, . We set $ = eAEn 9~~ 
and EA = Psj,, for all h E II. Then we can easily show that E,, E GAcn 91, n 

- ~ 
G&n M,’ = @@s) n V’@,,), xAGn EA = I and @(B)EA = @(E@) = !2I, _ 
Since 9l,, is a von Neumann algebra for every h E d, E,@ is a Hilbert algebra for 
every /\ E /I. From Proposition 4.2, B is weakly unbounded. Similarly (2) is 
shovved. 
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THEOREM 4.9. There exists a projection E in %,-,(9,,) n +~(C?JJ such that: 

(1) 4?(5& is a weakly unbounded EW#-algebra and “Z(9),-E is a strictly 
unbounded EW#-algebra; 

(2) S!(9) equals the product @(C& ;< 4Y(9),-E of the EW#-algebras 
@(C& and ‘7((9),-E . 

Proof. From Theorem 4.4 there exists a projection E such that ES?!? is 
weakly unbounded and (I - E) 2 is strictly unbounded. By Theorem 4.8 
q/(C& (resp. %?(2?)& is a weakly (resp. strictly) unbounded EW#-algebra. 
Putting (P(T) = {TE , TIpE}, @ is an isomorphism of e(g) onto %!(@c x 
%(3),-c and Law(g,,) = ELp(g,,) @ (I - E)L,w(Z30). Hence we can identify 

@(g) with “7/(2)E >( @‘C(Z~),-~. 

5. TENSOR PRODUCTS OF UNBOUNDED HILBERT ALGEBRAS 

Let Qr (resp. g2) be an unbounded Hilbert algebra over (2@r),, (resp. (B&J. 
Let .C?i @ ga be the algebraic tensor product of gr and ga . We can easily 
show that ~22~ 0 Q2 is an unbounded Hilbert algebra over (9& @ (ga),, under 
the involution (5, @ &)* = 5,” @ 4,” and inner product (5, @ ,$,I ~i @ q2) = 

([,I qi) (t,I q.,). We call it the tensor product of g1 and G2a . 
I f  Xi and X2 are linear operators on Hilbert spaces sj, and !& respectively, 

then we define their algebraic tensor product, denoted by X, @ X2, to be the 
smallest linear extension of the map xi @ x2 --f X,x, @ X,x, where xi E 9(X,) 
and x2 E 9(X2). I f  Xi and X2 are closed operators, then we define X, @ X2 
to be the closure of Xi @ X2 and call it the strong tensor product of X, and X2 . 
From [ll, Theorem 8.11 if Xr and X2 are closed, densely-defined operators, 
then (X, @ X2)* = Xi* @ X2*. 

Let ‘$I, and 2I, be EW+-algebras on 3, and ID, respectively. Then we have, 

for each S, , TI E ‘LI, and S, , Tz E ‘%a, TI @ T, is a bilinear map of TI and T,; 
(S, (2~ S,) (TI @j TJ = S,T, @ S,T,; (TI @ T,)” = T1+ @ T,*. We denote 
by 2I, @ ?I, the ‘-algebra on ‘D, @ Da generated by {TI 0 T,; TI E 91, , 
T, E Pt,}. 

DEFINITION 5.1. Let 2Ii and 2& be E W+-algebras on Ti), and 9, respectively. 
An EW#-algebra is called the tensor product of 21z, and $?I2 if it is minimal among 

EW+-algebras 21 such that !& =(ru,), 0 (a,>, and 3 3 ‘u, @ ?I,, (where 
b, @ b, denotes the tensor product of von Neumann algebras B, and 23,) and 
is denoted by ‘$I, @ 2I, . 

We shall consider the problem: “Does there exist the tensor product of each 
EW#-algebras ‘$1, and ‘II, ?” When %, and ‘?I2 are the left EW#-algebras of 
unbounded Hilbert algebras G1 and g2 respectively, we shall find that the answer 
is affirmative. 
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THEOREM 5.3. Let Y, and gz be unbounded Hilbert algebras over (9,)” and 
(9.& respectiz-ely. Then 4Y(S??1) @ %(a,) exists and equals %(U, 3 9,). I 

Proof. Since Y, @I G, is an unbounded Hilbert algebra over (&,j, ,$‘!(P&, , 
%!(.9r @ G2.J is an Em’+-algebra on ~5,~((5??,), @ (BJa) over JY,,((PJ,, (3 (9?)J. 

Hence, 

Next we shall show that “?1(9$ @9a) 3 %‘(9r) 13 @(aa). Let n,,t (resp. ,,,a, no, 
(~a”)~, (7~,~)~, raw) be the left regular representation of (.9r),, (resp. (9&, 

(9do 0 (%& , LB(y((~l)o),L2W((~2)o), L,w((91), $3 (9&J). From Lemma 5.2, for 
every .zr E Z2t and -r2 E ZP2 we have 

__~___ 
Furthermore, ‘?@%r @ 9& = wb @jb 3 %‘(9&, @ @(52& . Hence 
we have @Y(Z&) @ ‘%(%?J C 4?(9r @ 3,). Finally we shall show that 

-- 
‘%(9, @B,) is minimal among I%‘+-algebras ‘% such that ‘& 1 J?J(%+~)~ @ 

) (2 4?(.99). Suppose that PI is such an EW*-algebra. For 
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COROLLARY 5.4. If 92 and 9,” are Hilbert algebras, then S(L,w(Q!,l) @ 

‘qL,q.cq)) = qL,qS2~1) @ L2qQo*)) and they are EN’+-subalgebras of 
qL2”(c2,j1 @ 23$2)). 
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