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Abstract 

We introduce an exact algorithm for maximizing the number of satisfied constraints in an 
overconstrained CSP (Max-CSP). The algorithm, which can also solve weighted CSP, probabilistic 
CSP and other similar problems, is based on directed arc-inconsistency counts (DAC). The usage 
of DAC increases the lower bound of branch and bound based algorithms for Max-CSP, improving 
their efficiency. Originally, DAC were defined following a static variable ordering. In this paper, 
we relax this condition, showing how DAC can be defined from a directed constraint graph. These 
new graph-based DAC can be effectively used for lower bound computation. Interestingly, any 
directed constraint graph of the considered problem is suitable for DAC computation, so the selected 
graph can change dynamically during search, aiming at optimizing the exploitation of directed arc- 
inconsistencies. In addition, directed arc-inconsistencies are maintained during search, propagating 
the effect of value pruning. With these new elements we present the PFC maintaining reversible DAC 
algorithm (PFC-MRDAC), a natural successor of PFC-DAC for Max-CSP. We provide experimental 
evidence for the superiority of PFC-MRDAC on random and real overconstrained CSP instances, 
including problems with weighted constraints. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A discrete binary constraint satisfaction problem (CSP) is defined by a finite set of 
variables X = ( I. 1 n). a set of tinite domains (D, ]y=, and a set of binary constraints 
( R,j ). Each variable i takes values in its corresponding domain Di . A constraint R;, is 
a subset of D; x II, which only contains the allowed value pairs for variables i, ,j. An 
assignment of values to variables is complete if it includes every variable in X, otherwise 
it is incomplete. A .solutiotz for a CSP is a complete assignment satisfying every constraint. 
If the problem is overconstrained, such an assignment does not exist, and it may be of 
interest to find a complete assignment that best respects all constraints 12,121. In this paper. 
we focus on the Max-CSP problem, for which the solution of an overconstrained CSP is a 
complete assignment satisfying as many constraints as possible. The number of variables 
is II, the maximum cardinality of domains is d and the number of constraints is e. Letters 
i. ,j. k. denote variables, u. I?. c. . denote values, and a pair (i. u) denotes the value u 
of variable i 

Most exact algorithms for solving Max-CSP follow a brunch and bound schema. These 
algorithms perform a depth-first traversal on the search tree defined by the problem, where 
internal nodes represent incomplete assignments and leaf nodes stand for complete ones. 
Assigned variables are called past (P), while unassigned variables are called future (F). 
The distance of a node is the number of constraints violated by its-assignment. At each 
node, branch and bound computes the upper hour~d (UB) as the distance of the best solution 
found so far (complete assignment with minimum distance in the explored part of the 
search tree), and the louvr bound (LB) as an underestimation of the distance of any leaf 
node descendant from the current one. When UB < LB. we know that the current best 
solution cannot be improved below the current node. In that case, the algorithm prunes all 
its successors and performs backtracking. 

The efficiency of branch and bound based algorithms largely depends on the quality of 
the lower bound. which should be both as large and as cheap to compute as possible. At 
the current node, the simplest lower bound is di.stunce(P), the number of inconsistencies 
among past variables. It is improved in the partiuljimvard checking algorithm (PFC) [6J, 
which records lookahead effects on future variables in inconsistency counts (IC). The 
inconsistency count of value cl of a future variable i, ic;<,, is the number of past 
variables inconsistent with (i. 0). PFC lower bound is distance(P) + xIEF mina(ic;‘{). 
PFC also computes the lower bound associated with value b of future variable j, as 

distance(P) + icj/, + Ci~/: _(,l min,, (ic;,, ). Value b can be pruned when its associated 
lower bound reaches UB. PFC lower bound is improved including inconsistencies among 
future variables by the usage of directed trrc-inlonsistencv counts (DAC) [ 141. Given 
a static ordering in X. the directed arc-inconsistency count of value a of variable i. 

dac, ‘,, is the number of variables in X which are arc-inconsistent” with (i. a) and 
appear after i in the ordering. A new lower bound is distunce( P) + CiEl; min,(ic;,) + 

CieF mina(daci,,) 1141. providing variables are assigned following the static order. The 
second and third terms of this expression can be combined to form a better lower bound 
as distmce( P) + xiEF min,,(ic,,, +duc,,,) in the PFC-DAC algorithm [7]. Another way to 
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X=(1,2,3,4) D1 =D2=L+=D4=(a,b,c] 

RI2 = {@,b),(b,a), (c,b)) RIG = i(a,a)> (hb), (c.c)l R14 = {(a, b), (b, c), (c, a)1 

R23 = {(a> b), (a, c), (c, b)l R24 = {(b, a)> (b, c)) R34 = ((b, a)> (b, c)I 

P = {(I, a)), F = (2,3. ,417 DAC computed under lexicographical order 

distunce( P) = 0 

distance(P) + CiEF min, (iqu) = 0 + 0 = 0 

distance(P) + CjE~ mina(iciu) + CjEF mitla(&cj,) = 0 + 0 + 1 = 1 

distance(P) + Xi& minO (iCia +dacja) = 0 + 2 = 2 

Fig. 1. A simple problem and the computation of the four different lower bounds explained in Section 1, after 

assigning a to variable 1. Future variables are lexicographically ordered. Constraints among future variables are 

otiented, each constraint pointing to the variable which records its inconsistendes. The ic and dac counts of each 

future variable are shown. 

include inconsistencies among future variables is Russian doll search [ 131. An example on 
the computation of the above lower bound expressions appears in Fig. 1. 

Originally, DAC were defined following a static variable ordering. In this paper, we relax 
this condition, showing how DAC can be defined from a directed constraint graph. These 
new graph-based DAC can be effectively used for lower bound computation. Interestingly, 
any directed constraint graph of the considered problem is suitable for DAC computing, 

so the selected graph can change dynamically during search, in order to optimize the 
exploitation of directed arc-inconsistencies. In addition, directed arc-inconsistencies are 
maintained during search, propagating the effect of value pruning. With these new elements 
we present the PFC maintaining reversible DAC algorithm (PFC-MRDAC), a natural 
successor of PFC-DAC for Max-C?% This algorithm has been extended to the weighted 
CSP case and could be easily adapted to deal with other frameworks such as probabilistic 
or lexicographic (hierarchical) CSP [12]. 

2. Reversible DAC 

Originally, Wallace discarded the use of full arc-inconsistency counts (AC) (the arc- 
inconsistency count of value a of variable i, acia, is the number of variables which are arc- 
inconsistent with (i, a)), because they could record the same inconsistency in two different 
counts, so they could not be safely added for lower bound contribution [14] (see [l] for 



a new way to overcome this fact). Instead. he proposed DAC which do not suffer from 
this drawback. Following the work of Dechter and Pearl on directional consistency [5]. 
Wallace required a static variable ordering. each constraint being directed in the opposite 
sense of that ordering. From these directed constraints, DAC were precomputed before 
search. These DAC do not change during search. In addition, IC and DAC of each future 
value can be safely added because they always register different inconsistencies (IC register 
inconsistencies with past variables, while DAC register inconsistencies with subsequent 
variables in the ordering). These two properties are very convenient and make the algorithm 
conceptually simple and easy to implement. 

The essential point in the above description is that binary constraints have to be directed. 

A directed constraint only contributes to the DAC of one of its two variables, so its 
violation cannot be recorded in two different counts. However, constraint directions do 
not have to be induced by a static variable ordering. For lower bound computation this 
restriction is arbitrary and can be removed. at the cost of making the algorithm more 
complex. Therefore. we can define DAC based on a directed constraint graph. These 
new graph-based DAC can be effectively used to compute lower bounds. because no 
inconsistency duplication may occur. Interestingly, any directed constraint graph of the 
considered problem is suitable for DAC computation. Therefore. during search we can 
change the graph from which DAC are computed, looking for a good directed graph 
causing a high lower bound. 

2. I. Gmph-bused DAC 

A directed constraint graph of a CSP can be ot)tained from the usual constraint graph 
by selecting a direction for each edge. There are two possible directions for the edge- 
connecting variables i and ,j: from i to j, noted as (i. ,j). or from j to i, noted as (j. if. 

The edge direction indicates the variable that records the possible arc-inconsistencies: (j, i) 
means that arc-inconsistencies of R;; will be recorded in the DAC of i Given a directed 
graph G. we note EDGES(G) the list of all the directed edges of G and PRED(~, G) the set 
of variables j such that (,j. i) E EDGES(G). The directed arc-inconsistency count of value 
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a of variable i based on G, duci,(G), is defined as the number of variables in PRED(~, G) 

which are arc-inconsistent with (i, a). 
Regarding lower bound, it is clear that ciEx min,(daci,(G)) is a lower bound of the 

number of inconsistencies of any complete assignment. During search, the expression 
distance(P) + CicF min, (ici, + daci,(G)) is no longer a lower bound, because the 
addition icia + dacia (G) may duplicate inconsistencies if there are edges in G going from 
variables in P to variables in F. To obtain a correct lower bound, one can simply compute 
DAC from variables in F only. The new lower bound LB(P, F, GF) is, 

LB(P. F, GF) =distance(P) +Cmjn(ici,,+daci, (GF)), 

ieF 

where G F is the subgraph of G restricted to variables in F. Obviously, ici, + duci, (GF) 

can be added because they always record different inconsistencies. An example of graph- 
based DAC for lower bound computation appears in Fig. 2, where the selected directed 

graph differs in one edge from the graph induced under lexicographical ordering of 
future variables in Fig. 1. The lower bound associated with value b of future variable j, 
LB(P, F, GF)jb, is as usual, 

LB(P. F,G’)jh=distance(P)+icjbfdUCjb(GF) 

+ C m,1n ( icia +daci, (GF)). 

iEF. ifj 

During search the set F of future variables changes. As a consequence, the subgraph 
G F changes and DAC based on it also change. To efficiently compute DAC at each search 
node, we introduce a new data-structure GivesDac, which records the individual potential 

contribution of each variable to DAC in both directions for each constraint. If i, j E X, 
u E Di, GivesDuc(i, a, j) is true if j is arc-inconsistent with (i, a), and false otherwise. 
GivesDac requires O(ed) space. During search, we compute DAC at each node as follows. 
Let F and F’ be two sets of future variables such that they differ in the current variable 
i, F = F’ U (i). DAC based on GF’ are computed from DAC based on G F by removing 
the contribution of variable i to DAC of variables in F’. This contribution is recorded in 
GivesDuc, so the required computation is, 

ducjh(GF’) = 

1 

dacjh(GF) - 1 if GivesDac(j, b, i) = true and 
(i, j) E EDGES, 

dacjb(GF) otherwise. 

Incidentally, PFC with graph-based DAC is no longer subject to static variable ordering, 
so any dynamic ordering can be used. 

2.2. Dynamic gruph selection 

Values of graph-based DAC depend on the selected directed subgraph G F. The actual 
contribution of DAC to the lower bound depends on their addition to IC, which change 
during search. Given that any directed constraint graph is suitable for DAC computation, 
we can dynamically change the subgraph GF looking for the best subgraph for the current 



kversing edge: (4. 3) - (3.4). ElXir:c(G.! ) = ((3.4)). L&P. F. Ct.) = I + 3 =4 

IC. that is, the subgraph causing the largest increment to the lower bound. However, we 
have proved that finding the best subgraph is an NP-hard problem [ 1 I]. We avoid this 
problem by restricting ourselves to find a ,~oocl subgraph, by local optimization methods 
(see Section 4 for details). 

In the optimization process, the only elementary change allowed in GF is edge reversal 
(the set of nodes is fixed by F). Because of that. this approach is called reversible DAC. 
It requires updating the DAC of a variable if some of its incoming or outcoming edges are 
reversed. An example of edge reversal appears in Fig. 3. 

When an edge is reversed. DAC are updated as follows. Let G:‘ and Gc be two graphs 

thatdifferin onereversededge: (i. ,j) E EDGES. (,j. i) E EDGES(GF). DAC basedon 

Cc are computed from DAC based on Gr by removing the contribution of i and adding 
the contribution of ,j. Given that individual contributions are recorded in GivesDut, DAC 
updating is as follows, 

dLlCj,] (GS) = 
I 

cluc;,,(G[‘) - I if GiwsDtrc(,j. 0. i) = true, 

chc,,,(GI‘) if GilwDuc(,j. h. i) =,fulse, 

dU<,i,, (G[ ) = 
I 

&L.,~, (G{ ) + I if Gi\v.clktc(i. 0. ,j) = true. 

d~zc;~, ( G :’ ) if Givr.vlkzc(i. LI. ,j) =,ful.rr, 

~uc.~~ (G[) =duqc (G:) ifX # i.X F i. 

Regarding value pruning, the same strategy can be applied. A value h of a future variable 
,j can be pruned if there exists some subgraph (G’) such that LB( P, F, G F)jh reaches UB. 

Therefore, we can also modify the subgraph in order to find the best edges to prune future 
values. 



.I. Larrosa et al. /Artificial Intelligence 107 (19991 149-163 155 

Finding a good subgraph may not cause benefits if the final lower bound does not reach 
UB, because no pruning is done. To prevent useless efforts, it is interesting to estimate 
how much we can improve the lower bound. It is easy to see that, for any future variable 
i, any value a and any subgraph GF, duci,(GF) < aci,(F), where aci,(F) is the full 
arc-inconsistency count for value a of variable i computed from variables in F. Then, 
substituting DAC by AC in the lower bound expression, we get m(P, F) which is an 
upper bound of the best lower bound we could find among all possible directed subgraphs 

GF, 
- 
LB( P, F) = u?s~u~c~( P) + c mjn(ici, +aci, (F)). 

icF 
- 
ZB( P, F) is not a lower bound, but it is greater than or equal to the best graph-based lower 
bound at the current node. Therefore, if the above expression is lower than the current 
upper bound, there is no point in searching for better subgraphs because no subgraph will 
increase the lower bound enough to prune. The same analysis holds when looking for a 
good subgraph for value pruning. If value b of future variable j is considered for pruning, 
the expression, 

- 
LBjb(P, F, GF) = dkt~n~e(P) + iCjb +acjb(F) 

+ C m,‘n ( iCia +duCia (GF)) 
iEF, i#j 

is greater than or equal to any graph-based lower bound associated with value b obtainable 
by reversing edges starting or ending in j Therefore, if the above expression is lower than 
the current upper bound, there is no point in looking for a better subgraph by reversing 
those edges because none of those subgraphs will increase the lower bound enough to 
prune b. 

3. Maintaining reversible DAC 

The PFC-DAC algorithm computes DAC in a preprocessing step, and DAC do not 
change during search. This means that all recorded directed arc-inconsistencies hold before 
search starts. However, PFC-DAC prunes future values during its execution. This may lead 
to new directed arc-inconsistencies which are not recorded in the initial DAC because 
these are not updated during search. The maintaining reversible DAC approach consists 
in keeping DAC updated during search, considering value deletions in current domains. 
Maintained DAC are always higher than or equal to precomputed DAC, so they cause a 
higher lower bound: more branches may be pruned, more value deletions can occur, which 
are again propagated, etc. Maintaining DAC may cause a cascade effect that will anticipate 
dead-end detections. 

This idea is similar to maintaining arc-consistency (MAC) in the CSP context [lo]. Both 
algorithms follow the same idea: detecting arc-inconsistencies caused by pruned values. 
However, differently from MAC, new directed arc-inconsistencies do not cause immediate 
value pruning. They are recorded in the corresponding DAC, which are later used for lower 
bound computation, value pruning, etc. To maintain DAC, any arc consistency algorithm 



(along with adequate data structures) can be adapted to propagate the effect of value 
removal in both directions for each constraint. 

4. The PFC-MRDAC algorithm 

For the sake of simplicity and brevity, we only give a high-level description of the 
algorithm (e.g.. context restorations after value deletions. edge reversals and icldac 

modifications are left behind the scene). For the tinest level of detail, we urge the reader to 
fetch the source code. available at http : .bww.lsi.upc.es,' '"larrosa/PFC-MRDAC. 

A first version of the algorithm W:IS detailed in 181. although it has been significantly 
improved since. Differences with this initial version are emphasized in the sequel. The 
code presented depends on a specitic propagation mechanism with its data-structures. 
Any modern arc-consistency propagation mechanism (AC4, AC6, AC7. .) can be used. 
A DeletionStream is used to keep a list of values whose deletion must be propagated. 

The general principle of the algorithm is to rely first on available lower bounds 
L&P, F. GF) and I,B(Y. F. G”‘)j/,. obtained using the graph inherited from the parent 
node. If these lower bounds are not large enough to backtrack, better lower bounds are 
sought by optimizing the directed graph and propagating deletions in each case. Before 
the main function MRDAC is called, one should initialize the arc-consistency propagation 
data-structures which will also initialize tht: tk~;,, and GiwsDw;,,, data-structures. The 
initialization is straightforward and not described here. It can be performed in time Ofed’). 

After a value LI has been assigned to a variable i. and if LB( P. F. G”) is lower than the 
current upper bound Bestd, the LookAhead function is in charge of updating the iCj/, of 

every value of all future variables connected to i and also to detect a first set of prunable 
values on all future variables. Prunable values are those (,j. h) such that LB( P. F, G’),I, 

is larger than the current upper bound. Contrary to the initial version described in [8], each 
value deletion is added to Delctior~Strurm instead of being immediately propagated. 

If LookAhead causes no domain wipe-out. rhe GreedyOpt function tries to improve the 
lower bound LB(P. I;‘. GF) by optimizing the directed graph GF inherited from the parent 
node. The problem being NP-hard [ I I 1, we use a simple greedy local search algorithm: 
for each (i. ,j) E EDGES(G”). we check whether reversing it into (,j. i) may increase the 
lower bound or not. Let (I E II; and h E Dj be values having the minimum (ic + due) of 

variables i and ,j at the current node. Reversing edge (i. ,j) may increase the lower bound 
only when it does not contribute to do,/, and its reversal (,j. i) will contribute to dac;,,. In 
terms of GivesDac, these conditions are expressed as follows. 

GivesDac(,j. b. i) =,ful.w and Givr.sDcrc(i. (I. ,j) = true 

If this condition does not hold. reversing (i. .j) cannot cause any improvement to the lower 
bound. Therefore. only edges satisfying the above condition are reversed. The local search 
process terminates when no edge reversal can produce a lower bound increment. The 
resulting subgraph is noted as c”. 

Now, if the new lower bound is not large enough to backtrack, the Delete function 
performs further pruning: for each value (i, CI) considered for deletion, this function first 
tries to delete the value using LB( P. F. g” ),(, If this is not possible and if LBiu( P. F. G”) 
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_ 
MRDAC(S, d, F: FD, GF); 
if F = 0 then 

Bestd t d; 
Bests t S; 

else 

i t PopAVariable(F); 

while (FDi # 0) do 

Q t PopAValue(FDi); 

Newd t d + zcia -I- daci,; 
if (Newd + CjEF minbEFD, (icjb + dncjb) < Bestd) then 

mwFD t LookAhead(i, a, F, FD); 
if (TWipeOut(newFD)) then 

NmGF t GreedyOpt(GF. F, newFD); 
if (Newd + CiEF 

__,I 

mimEnepoFo, (icjb + dacjb) < Bestd) then 

newFLI t Delete(F, NewFD, NewGF); 
if (lWipeOut(newFD)) then 

1.1 NewFD t PropAndDel(F, newFD); 

1 if (lWipeOut(newFD)) then MRDAC(SU {(i, a)}) Newd, F, NewFD, NewGF); 

Function 1. PFC-MRDAC main function. S is the current assignment. d its distance, F and FD are the future 

variables and their domains, G F is the current directed graph. 

LookAhead(i, ta, F, k’D); 
foreach j E F do 

foreach b E FD, do 

if 

_I 

((j, ;) E EDGES(G) and lGiuesDac(i, a,$) or 

((;,j) E EDGES(C) and TGioesDcx(j, b, i)) them 
Lif (Inconsistent(i, a, j, b)) then increment(icjb); 

if (Newd + &Ep_ljj rn&FDI (ickc + duck,) + dUC,ib + icjb 2 Bestd) then 

Prune(j, b); 

1 DeletionStrenm t DeletronStreom U {(j, b)) ; 

return Updated domains; 

Function 2. PFC-MRDAC look-ahead function, (I, n) is the assignment to propagate, F is the set of future 

variables. 

is larger than the current upper bound, it temporarily reverses all edges such that 
GivesDac(i, a, j) is true. If the resulting lower bound LBi, is large enough, (i, a) is 
deleted and added to DeletionStream. The subgraph cF is restored and the process iterates 
considering a new future value. This local optimization of the graph for each value was not 
present in the initial version of the algorithm [8]. It significantly improves performance. If 
no wipe-out occurs, the PropAndDel function propagates all pending deletions, and updates 
DAC accordingly (which may cause further deletions), until a fixpoint is reached or a wipe- 
out occurs. It is not detailed here and it can rely on any modern AC propagation mechanism. 
The only difference with classical AC behavior is that when a value (i, a) loses all support 



GreedyOpt(G, F, Fl?): 
Stop t false; 

while 3top do 

SaveMzn t CJEF rnkh~r,, (icjb -I- daCjb)i 

foreach ;,j E F’ s.t. (i,j) E EDGES(G) do 

MinFrom t mh,cFD, (ici, + duei,); 

MinIb t mirbEFD), (jcjh + &6clh)j 

if (~GivtsDuc(j, argminbEFn, (%cjt, + dac,b), i) and 

Giz~esDoc(i,argmin,Elzn,(ic,, + $uc;,). j)) then 

_I 

Reverse((i,j), C:): 

if (min,E~~z (ici, + dac,,) + nlir~~,~, (ic,jb + dacjb) < ,$~ilin~?“rorn + MinTo) then 

Reverse( (j, i). G); 

if (SaveMin = C,7,Pq mh&~n, (iC,;;b + dacjb)) then stop c tme; 

return Updated graph 

FkuxXloll 2. Finding o “pood” dirrctcd graph. G i\ the current directed graph. 

Reverse((i, j),C); 

EIX;I~S(G) t b;r)(;bs(Ci) - {(i, j)} U {(j,i)}; 

foreach a E D; do if GluesDac(i, u, j) then Increment(daci,); 

foreach b E D, do if GiuesDac(j, b, i) then Decrement(dac,b); 

___~_ - 
Delete(F. FU, G): 

foreach i E F do 

foreach CL E k’D, do 

if (Newd + CkEp-llI rr~i~q~~~, (ickc + duck,.) + dac,, + iqa 2 Hestd) then 

Prune(i, a): 

I IklclionStwarl2 t /)c~l~llonS1~~cl,,, u { (i. u)}; 

else if (:Vewd + CkEt~ iLi IIIIII,.~~T~~ (inky. t du~l;~) + acia + icl,, 2 Bestd) then 

Stack t a; 
foreach j E F s.t. (i, j) E EDGES(G) do 

if 

i 

(GivesDac(i, a, j) = true) then 

Reverse((i,j),G): 

1 Stack t ,Slack U {(j, i)}; 

if (Neud + CkCF-lll IIIII~~FII~ (%ckc + dark,) + dacia + ic,, 2 Nestd) then 

1 

Prune(i, a): 

DeletionStream t DeletaonStream u ((i, (I)}; 

foreach e E <Stack do Reverse(e, C); 

return Updated domains 
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on a constraint Rij, the value (i, a) is not deleted. Instead, GivesDac(i, a, j) becomes true 
and the corresponding dacia is incremented if the edge (i, j) is currently directed towards 
i. This may increase the minimum of (ici, + duq,). The condition for pruning used here 
is the same as in the LookAhead function. 

5. Experimental results 

In our first experiment, we have evaluated the performance of our algorithms on 
over-constrained binary random CSP. A binary random CSP class is characterized by 
(n, d, p1, ~2) where IZ is the number of variables, d the number of values per variable, 
pl the graph connectivity defined as the ratio of existing constraints, and p2 the constraint 
tightness defined as the ratio of forbidden value pairs. The constrained variables and the 
forbidden value pairs are randomly selected [9]. Using this model, we have experimented 
on the following problem classes: 

(1) (10,10,1, P2j, (2) (15,5,1, P2), 

(3) (15,10,50/105, pz), (4) (20,5,100/190, P2). 

(5) (25, 10,37/300, p2), (6) (40,5,55/780, ~2). 

Observe that (1) and (2) are highly connected problems, (3) and (4) are problems with 
medium connectivity, and (5) and (6) are sparse problems. For each problem class and 
each parameter setting, we generated samples of 50 instances. 

Each problem is solved by three algorithms: PFC-DAC as described in [7] and PFC 
maintaining reversible DAC using an AC6-based propagation mechanism. As in [8], we 
also tested out a simplified version of PFC-MRDAC, called PFC-RDAC that does not 
propagate deletions (the call to the PropAndDel function on line 1.1 of the main function is 
not performed). PFC-DAC usesfonvard degree, breaking ties with backward degree [7] as 
static variable ordering. PFC-RDAC and PFC-MRDAC use domain size divided byforward 
degree as dynamic variable ordering. Values are always selected by increasing ic + due. All 
three algorithms share code and data structures whenever it is possible. Experiments were 
performed using a Sun Spare 2 workstation. 

Fig. 4 reports the average visited nodes to solve the six problem classes. For all problem 
classes, it is observed that PFC-RDAC and MRDAC visit significatively less nodes than 
PFC-DAC, and this gain increases with problem tightness. PFC-MRDAC visits less nodes 
than PFC-RDAC, and this gain tends to decrease with problem tightness. Regarding 
computational effort, Fig. 5 reports the average cpu-time required to solve the six problem 
classes (since the overhead produced by RDAC and MRDAC is consistency-check free, we 
use cpu-time instead the number of consistency checks). Cpu-time results are in agreement 
with those of visited nodes: PFC-RDAC improves PFC-DAC in practically all problem 
classes, and the gain grows with problem tightness. PFC-RDAC can be up to 2000 times 
faster than PFC-DAC on the tightest sparse instances. Typical improvement ratios range 
from 2 to 30 for tightly constrained problems. Regarding PFC-MRDAC, it visits less nodes 
than PFC-RDAC but it performs more work per node. As global effect, PFC-MRDAC 
performance is very close to that of PFC-RDAC. Typically, maintaining DAC on dense 



problems is not cost effective. and PFC-RDAC IS 4ightly faster than PFC-MRDAC. The 
situation is reversed on sparse problems where PFC-MRDAC is from 1.2 to 1.75 times 
faster than PFC-RDAC. We have observed that using a dynamic variable ordering in 
conjunction with PFC-MRDAC causes only a small performance improvement. 

Our second experiment considers the Radio Link Frequency Assignment Problem 
(RLFAP). It is a communication problem where the goal is to assign frequencies to a set 
of radio links in such a way that all the links may operate together without noticeable 



J. Larrnsa et al. /Artificial Intelligence 107 (1999) 149-163 161 

Fig. 5. Average CPU versus tightness for six classes of binary random problems. 

interference [3]. Some RLFAP instances can be naturally cast as weighted binary Max- 
CSP where each forbidden tuple has an associated penalty cost. We have extended DAC- 
based algorithms to this framework and tested them on four publicly available RLFAP 

subinstances called CELAR6-SUBi (i = 1, . . . , 4) in [3]. Each CELAR6-SUBi is a sub- 
instance of CELAR6_SUBi+l and is therefore presumably easier to solve. As in the 
previous experiment, each instance is solved with the same three algorithms. The same 
static and dynamic variable ordering heuristics are used. However, they are extended to the 



Table I 

Cost of solving mstances I to 4 or the CELARh problems 

PFC-DA< PFC-RDAC 

Node\ Cpu time Node?. Cpu time 

SUBI x. I x IOX 5.2 x IO’ I.9 Y I07 3.5 x 103 

SUB?_ 4.x x IO” 3 0 x IO5 1.7 .x IO” 2.9 x Id 

SUB3 1.7 x IO”1 x.3x IO 77r 10~ 7. I x I(? 

SUB4 I.2> IO” 3-!x lo’ 

PFC-MRDAC 

NO&S Cpu time 

I.8 x 106 2.6 x 103 

I.6 x IO’ 7.3 x IOJ 

3.7 x IO’ 6.X x IO” 

I.2 x IOX 7.6 x lo5 

weighted case: each constraint has a contribution to its connecting variables degree equal 

to the sum of its penalty costs. 
Table I shows the cost required to prove optimality (i.e., the upper bound is initialized 

with the optimum cost) by DAC-based algorithms. We report both number of visited nodes 
and cpu-time in seconds. PFC-RDAC clearly outperforms PFC-DAC regarding both time 
and visited nodes. In the first three instances PFC-RDAC is more than ten times faster than 
PFC-DAC. In the last instance PFC-DAC was aborted when it did not finish its execution 
within ten times the time required by PFC-RDAC. Regarding PFC-MRDAC, it visits about 
ten times less nodes than PFC-RDAC. However. the gain is not as large in terms of cpu- 
time because of the overhead of propagation. Nonetheless, PFC-MRDAC is always the 
fastest algorithm and its speedup over PFC-RDAC is clearly worth. 

The CELAR-SUB3 and SUB4 instances have also been solved using an improved 
version of RDS [ 131 informed with good initial upper bounds. Their resolution took 
respectively more than 2.5 x IO6 and 5 x IOh seconds of Sparc.5 cpu-time (private 
communication of Simon de Givry (41). Although they cannot be directly compared with 
our results (different initialization and different computers), they give an approximate idea 
of the behaviour of different algorithms with problem size. 

6. Conclusions 

Branch and bound efficiency deeply depends on the lower bound quality. The reversible 
DAC-based lower bound we have introduced strongly improves existing lower bounds both 
in terms of branch pruning and value deletions. As a global effect, reversible DAC has 
enhanced the efficiency of the initial DAC-based algorithm by several orders of magnitude. 
It is worth noting that we have followed a rather simple local optimization strategy for 
subgraph optimization. More sophisticated strategies may provide further benefits. 

Maintaining RDAC causes a significant decrease in the number of visited nodes, 
although it does not always pay-off in problems where all constraints have the same 
importance. In the weighted CELAR problems, maintaining RDAC provides an important 
speed-up. This aspect may be of great interest for other real Max-CSP problems as well. 

For real problems involving both hard and soft constraints, the algorithms we introduced 
are ideal candidates for an hybridation with MAC algorithms [IO]: contrary to other recent 
algorithms for solving Max-CSP [7,13.15]. they can use dynamic variable orderings and 
will not artificially restrict the hybrid to static orderings. 
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