
Artificial Intelligence 107 (1999) 149-163

Artificial
Intelligence

Research Note

Maintaining reversible DAC for Max-CSP

Javier Larrosa a,1 , Pedro Meseguer b,*, Thomas Schiex c,2

a Departamento Llenguatges i Sistemes Informcitics, Universitat Politknica de Catalunya, Jordi Girona

Salgado, I-3. 08034 Barcelona, Spain

h lnstitut d’hwestigacici en Intel.lig?ncia Artificial, Consejo Superior Investigaciones CientQicas, IIIA-CSIC,

Campus Universitat Aut6noma de Barcelona, 08193 Bellaterra, Spain

’ INRA, Chemin de Borde Rouge, BP 27, 31326 Castanet-Tolosan Cedex, France

Received 10 August 1998; received in revised form 23 November 1998

Abstract

We introduce an exact algorithm for maximizing the number of satisfied constraints in an
overconstrained CSP (Max-CSP). The algorithm, which can also solve weighted CSP, probabilistic
CSP and other similar problems, is based on directed arc-inconsistency counts (DAC). The usage
of DAC increases the lower bound of branch and bound based algorithms for Max-CSP, improving
their efficiency. Originally, DAC were defined following a static variable ordering. In this paper,
we relax this condition, showing how DAC can be defined from a directed constraint graph. These
new graph-based DAC can be effectively used for lower bound computation. Interestingly, any
directed constraint graph of the considered problem is suitable for DAC computation, so the selected
graph can change dynamically during search, aiming at optimizing the exploitation of directed arc-
inconsistencies. In addition, directed arc-inconsistencies are maintained during search, propagating
the effect of value pruning. With these new elements we present the PFC maintaining reversible DAC
algorithm (PFC-MRDAC), a natural successor of PFC-DAC for Max-CSP. We provide experimental
evidence for the superiority of PFC-MRDAC on random and real overconstrained CSP instances,
including problems with weighted constraints. 0 1999 Elsevier Science B.V. All rights reserved.

Keywords: Maximal/partial constraint satisfaction; Branch and bound; Partial forward checking; Directed
arc-consistency

* Corresponding author. Email: pedro@iiia.csic.es.
’ Email: larrosa@lsi.upc.es.
* Email: tschiex@toulouse.inra.fr.

0004-3702/99/$ - see front matter 0 1999 Elsevier Science B.V. All rights reserved.
PII: SOOO4-3702(98)00108-8

1. Introduction

A discrete binary constraint satisfaction problem (CSP) is defined by a finite set of
variables X = (I. 1 n). a set of tinite domains (D,]y=, and a set of binary constraints
(R,j). Each variable i takes values in its corresponding domain Di . A constraint R;, is
a subset of D; x II, which only contains the allowed value pairs for variables i, ,j. An
assignment of values to variables is complete if it includes every variable in X, otherwise
it is incomplete. A .solutiotz for a CSP is a complete assignment satisfying every constraint.
If the problem is overconstrained, such an assignment does not exist, and it may be of
interest to find a complete assignment that best respects all constraints 12,121. In this paper.
we focus on the Max-CSP problem, for which the solution of an overconstrained CSP is a
complete assignment satisfying as many constraints as possible. The number of variables
is II, the maximum cardinality of domains is d and the number of constraints is e. Letters
i. ,j. k. denote variables, u. I?. c. . denote values, and a pair (i. u) denotes the value u
of variable i

Most exact algorithms for solving Max-CSP follow a brunch and bound schema. These
algorithms perform a depth-first traversal on the search tree defined by the problem, where
internal nodes represent incomplete assignments and leaf nodes stand for complete ones.
Assigned variables are called past (P), while unassigned variables are called future (F).
The distance of a node is the number of constraints violated by its-assignment. At each
node, branch and bound computes the upper hour~d (UB) as the distance of the best solution
found so far (complete assignment with minimum distance in the explored part of the
search tree), and the louvr bound (LB) as an underestimation of the distance of any leaf
node descendant from the current one. When UB < LB. we know that the current best
solution cannot be improved below the current node. In that case, the algorithm prunes all
its successors and performs backtracking.

The efficiency of branch and bound based algorithms largely depends on the quality of
the lower bound. which should be both as large and as cheap to compute as possible. At
the current node, the simplest lower bound is di.stunce(P), the number of inconsistencies
among past variables. It is improved in the partiuljimvard checking algorithm (PFC) [6J,
which records lookahead effects on future variables in inconsistency counts (IC). The
inconsistency count of value cl of a future variable i, ic;<,, is the number of past
variables inconsistent with (i. 0). PFC lower bound is distance(P) + xIEF mina(ic;‘{).
PFC also computes the lower bound associated with value b of future variable j, as

distance(P) + icj/, + Ci~/: _(,l min,, (ic;,,). Value b can be pruned when its associated
lower bound reaches UB. PFC lower bound is improved including inconsistencies among
future variables by the usage of directed trrc-inlonsistencv counts (DAC) [141. Given
a static ordering in X. the directed arc-inconsistency count of value a of variable i.

dac, ‘,, is the number of variables in X which are arc-inconsistent” with (i. a) and
appear after i in the ordering. A new lower bound is distunce(P) + CiEl; min,(ic;,) +

CieF mina(daci,,) 1141. providing variables are assigned following the static order. The
second and third terms of this expression can be combined to form a better lower bound
as distmce(P) + xiEF min,,(ic,,, +duc,,,) in the PFC-DAC algorithm [7]. Another way to

J. Larrosa et al. /ArtiJcial Intelligence 107 (1999) 149-163 151

X=(1,2,3,4) D1 =D2=L+=D4=(a,b,c]

RI2 = {@,b),(b,a), (c,b)) RIG = i(a,a)> (hb), (c.c)l R14 = {(a, b), (b, c), (c, a)1

R23 = {(a> b), (a, c), (c, b)l R24 = {(b, a)> (b, c)) R34 = ((b, a)> (b, c)I

P = {(I, a)), F = (2,3. ,417 DAC computed under lexicographical order

distunce(P) = 0

distance(P) + CiEF min, (iqu) = 0 + 0 = 0

distance(P) + CjE~ mina(iciu) + CjEF mitla(&cj,) = 0 + 0 + 1 = 1

distance(P) + Xi& minO (iCia +dacja) = 0 + 2 = 2

Fig. 1. A simple problem and the computation of the four different lower bounds explained in Section 1, after

assigning a to variable 1. Future variables are lexicographically ordered. Constraints among future variables are

otiented, each constraint pointing to the variable which records its inconsistendes. The ic and dac counts of each

future variable are shown.

include inconsistencies among future variables is Russian doll search [131. An example on
the computation of the above lower bound expressions appears in Fig. 1.

Originally, DAC were defined following a static variable ordering. In this paper, we relax
this condition, showing how DAC can be defined from a directed constraint graph. These
new graph-based DAC can be effectively used for lower bound computation. Interestingly,
any directed constraint graph of the considered problem is suitable for DAC computing,

so the selected graph can change dynamically during search, in order to optimize the
exploitation of directed arc-inconsistencies. In addition, directed arc-inconsistencies are
maintained during search, propagating the effect of value pruning. With these new elements
we present the PFC maintaining reversible DAC algorithm (PFC-MRDAC), a natural
successor of PFC-DAC for Max-C?% This algorithm has been extended to the weighted
CSP case and could be easily adapted to deal with other frameworks such as probabilistic
or lexicographic (hierarchical) CSP [12].

2. Reversible DAC

Originally, Wallace discarded the use of full arc-inconsistency counts (AC) (the arc-
inconsistency count of value a of variable i, acia, is the number of variables which are arc-
inconsistent with (i, a)), because they could record the same inconsistency in two different
counts, so they could not be safely added for lower bound contribution [14] (see [l] for

a new way to overcome this fact). Instead. he proposed DAC which do not suffer from
this drawback. Following the work of Dechter and Pearl on directional consistency [5].
Wallace required a static variable ordering. each constraint being directed in the opposite
sense of that ordering. From these directed constraints, DAC were precomputed before
search. These DAC do not change during search. In addition, IC and DAC of each future
value can be safely added because they always register different inconsistencies (IC register
inconsistencies with past variables, while DAC register inconsistencies with subsequent
variables in the ordering). These two properties are very convenient and make the algorithm
conceptually simple and easy to implement.

The essential point in the above description is that binary constraints have to be directed.

A directed constraint only contributes to the DAC of one of its two variables, so its
violation cannot be recorded in two different counts. However, constraint directions do
not have to be induced by a static variable ordering. For lower bound computation this
restriction is arbitrary and can be removed. at the cost of making the algorithm more
complex. Therefore. we can define DAC based on a directed constraint graph. These
new graph-based DAC can be effectively used to compute lower bounds. because no
inconsistency duplication may occur. Interestingly, any directed constraint graph of the
considered problem is suitable for DAC computation. Therefore. during search we can
change the graph from which DAC are computed, looking for a good directed graph
causing a high lower bound.

2. I. Gmph-bused DAC

A directed constraint graph of a CSP can be ot)tained from the usual constraint graph
by selecting a direction for each edge. There are two possible directions for the edge-
connecting variables i and ,j: from i to j, noted as (i. ,j). or from j to i, noted as (j. if.

The edge direction indicates the variable that records the possible arc-inconsistencies: (j, i)
means that arc-inconsistencies of R;; will be recorded in the DAC of i Given a directed
graph G. we note EDGES(G) the list of all the directed edges of G and PRED(~, G) the set
of variables j such that (,j. i) E EDGES(G). The directed arc-inconsistency count of value

J. Larrosa et al. /Arti$cial Intelligence 107 (1999) 149-163 153

a of variable i based on G, duci,(G), is defined as the number of variables in PRED(~, G)

which are arc-inconsistent with (i, a).
Regarding lower bound, it is clear that ciEx min,(daci,(G)) is a lower bound of the

number of inconsistencies of any complete assignment. During search, the expression
distance(P) + CicF min, (ici, + daci,(G)) is no longer a lower bound, because the
addition icia + dacia (G) may duplicate inconsistencies if there are edges in G going from
variables in P to variables in F. To obtain a correct lower bound, one can simply compute
DAC from variables in F only. The new lower bound LB(P, F, GF) is,

LB(P. F, GF) =distance(P) +Cmjn(ici,,+daci, (GF)),

ieF

where G F is the subgraph of G restricted to variables in F. Obviously, ici, + duci, (GF)

can be added because they always record different inconsistencies. An example of graph-
based DAC for lower bound computation appears in Fig. 2, where the selected directed

graph differs in one edge from the graph induced under lexicographical ordering of
future variables in Fig. 1. The lower bound associated with value b of future variable j,
LB(P, F, GF)jb, is as usual,

LB(P. F,G’)jh=distance(P)+icjbfdUCjb(GF)

+ C m,1n (icia +daci, (GF)).

iEF. ifj

During search the set F of future variables changes. As a consequence, the subgraph
G F changes and DAC based on it also change. To efficiently compute DAC at each search
node, we introduce a new data-structure GivesDac, which records the individual potential

contribution of each variable to DAC in both directions for each constraint. If i, j E X,
u E Di, GivesDuc(i, a, j) is true if j is arc-inconsistent with (i, a), and false otherwise.
GivesDac requires O(ed) space. During search, we compute DAC at each node as follows.
Let F and F’ be two sets of future variables such that they differ in the current variable
i, F = F’ U (i). DAC based on GF’ are computed from DAC based on G F by removing
the contribution of variable i to DAC of variables in F’. This contribution is recorded in
GivesDuc, so the required computation is,

ducjh(GF’) =

1

dacjh(GF) - 1 if GivesDac(j, b, i) = true and
(i, j) E EDGES,

dacjb(GF) otherwise.

Incidentally, PFC with graph-based DAC is no longer subject to static variable ordering,
so any dynamic ordering can be used.

2.2. Dynamic gruph selection

Values of graph-based DAC depend on the selected directed subgraph G F. The actual
contribution of DAC to the lower bound depends on their addition to IC, which change
during search. Given that any directed constraint graph is suitable for DAC computation,
we can dynamically change the subgraph GF looking for the best subgraph for the current

kversing edge: (4. 3) - (3.4). ElXir:c(G.!) = ((3.4)). L&P. F. Ct.) = I + 3 =4

IC. that is, the subgraph causing the largest increment to the lower bound. However, we
have proved that finding the best subgraph is an NP-hard problem [1 I]. We avoid this
problem by restricting ourselves to find a ,~oocl subgraph, by local optimization methods
(see Section 4 for details).

In the optimization process, the only elementary change allowed in GF is edge reversal
(the set of nodes is fixed by F). Because of that. this approach is called reversible DAC.
It requires updating the DAC of a variable if some of its incoming or outcoming edges are
reversed. An example of edge reversal appears in Fig. 3.

When an edge is reversed. DAC are updated as follows. Let G:‘ and Gc be two graphs

thatdifferin onereversededge: (i. ,j) E EDGES. (,j. i) E EDGES(GF). DAC basedon

Cc are computed from DAC based on Gr by removing the contribution of i and adding
the contribution of ,j. Given that individual contributions are recorded in GivesDut, DAC
updating is as follows,

dLlCj,] (GS) =
I

cluc;,,(G[‘) - I if GiwsDtrc(,j. 0. i) = true,

chc,,,(GI‘) if GilwDuc(,j. h. i) =,fulse,

dU<,i,, (G[) =
I

&L.,~, (G{) + I if Gi\v.clktc(i. 0. ,j) = true.

d~zc;~, (G :’) if Givr.vlkzc(i. LI. ,j) =,ful.rr,

~uc.~~ (G[) =duqc (G:) ifX # i.X F i.

Regarding value pruning, the same strategy can be applied. A value h of a future variable
,j can be pruned if there exists some subgraph (G’) such that LB(P, F, G F)jh reaches UB.

Therefore, we can also modify the subgraph in order to find the best edges to prune future
values.

.I. Larrosa et al. /Artificial Intelligence 107 (19991 149-163 155

Finding a good subgraph may not cause benefits if the final lower bound does not reach
UB, because no pruning is done. To prevent useless efforts, it is interesting to estimate
how much we can improve the lower bound. It is easy to see that, for any future variable
i, any value a and any subgraph GF, duci,(GF) < aci,(F), where aci,(F) is the full
arc-inconsistency count for value a of variable i computed from variables in F. Then,
substituting DAC by AC in the lower bound expression, we get m(P, F) which is an
upper bound of the best lower bound we could find among all possible directed subgraphs

GF,
-
LB(P, F) = u?s~u~c~(P) + c mjn(ici, +aci, (F)).

icF
-
ZB(P, F) is not a lower bound, but it is greater than or equal to the best graph-based lower
bound at the current node. Therefore, if the above expression is lower than the current
upper bound, there is no point in searching for better subgraphs because no subgraph will
increase the lower bound enough to prune. The same analysis holds when looking for a
good subgraph for value pruning. If value b of future variable j is considered for pruning,
the expression,

-
LBjb(P, F, GF) = dkt~n~e(P) + iCjb +acjb(F)

+ C m,‘n (iCia +duCia (GF))
iEF, i#j

is greater than or equal to any graph-based lower bound associated with value b obtainable
by reversing edges starting or ending in j Therefore, if the above expression is lower than
the current upper bound, there is no point in looking for a better subgraph by reversing
those edges because none of those subgraphs will increase the lower bound enough to
prune b.

3. Maintaining reversible DAC

The PFC-DAC algorithm computes DAC in a preprocessing step, and DAC do not
change during search. This means that all recorded directed arc-inconsistencies hold before
search starts. However, PFC-DAC prunes future values during its execution. This may lead
to new directed arc-inconsistencies which are not recorded in the initial DAC because
these are not updated during search. The maintaining reversible DAC approach consists
in keeping DAC updated during search, considering value deletions in current domains.
Maintained DAC are always higher than or equal to precomputed DAC, so they cause a
higher lower bound: more branches may be pruned, more value deletions can occur, which
are again propagated, etc. Maintaining DAC may cause a cascade effect that will anticipate
dead-end detections.

This idea is similar to maintaining arc-consistency (MAC) in the CSP context [lo]. Both
algorithms follow the same idea: detecting arc-inconsistencies caused by pruned values.
However, differently from MAC, new directed arc-inconsistencies do not cause immediate
value pruning. They are recorded in the corresponding DAC, which are later used for lower
bound computation, value pruning, etc. To maintain DAC, any arc consistency algorithm

(along with adequate data structures) can be adapted to propagate the effect of value
removal in both directions for each constraint.

4. The PFC-MRDAC algorithm

For the sake of simplicity and brevity, we only give a high-level description of the
algorithm (e.g.. context restorations after value deletions. edge reversals and icldac

modifications are left behind the scene). For the tinest level of detail, we urge the reader to
fetch the source code. available at http : .bww.lsi.upc.es,' '"larrosa/PFC-MRDAC.

A first version of the algorithm W:IS detailed in 181. although it has been significantly
improved since. Differences with this initial version are emphasized in the sequel. The
code presented depends on a specitic propagation mechanism with its data-structures.
Any modern arc-consistency propagation mechanism (AC4, AC6, AC7. .) can be used.
A DeletionStream is used to keep a list of values whose deletion must be propagated.

The general principle of the algorithm is to rely first on available lower bounds
L&P, F. GF) and I,B(Y. F. G”‘)j/,. obtained using the graph inherited from the parent
node. If these lower bounds are not large enough to backtrack, better lower bounds are
sought by optimizing the directed graph and propagating deletions in each case. Before
the main function MRDAC is called, one should initialize the arc-consistency propagation
data-structures which will also initialize tht: tk~;,, and GiwsDw;,,, data-structures. The
initialization is straightforward and not described here. It can be performed in time Ofed’).

After a value LI has been assigned to a variable i. and if LB(P. F. G”) is lower than the
current upper bound Bestd, the LookAhead function is in charge of updating the iCj/, of

every value of all future variables connected to i and also to detect a first set of prunable
values on all future variables. Prunable values are those (,j. h) such that LB(P. F, G’),I,

is larger than the current upper bound. Contrary to the initial version described in [8], each
value deletion is added to Delctior~Strurm instead of being immediately propagated.

If LookAhead causes no domain wipe-out. rhe GreedyOpt function tries to improve the
lower bound LB(P. I;‘. GF) by optimizing the directed graph GF inherited from the parent
node. The problem being NP-hard [I I 1, we use a simple greedy local search algorithm:
for each (i. ,j) E EDGES(G”). we check whether reversing it into (,j. i) may increase the
lower bound or not. Let (I E II; and h E Dj be values having the minimum (ic + due) of

variables i and ,j at the current node. Reversing edge (i. ,j) may increase the lower bound
only when it does not contribute to do,/, and its reversal (,j. i) will contribute to dac;,,. In
terms of GivesDac, these conditions are expressed as follows.

GivesDac(,j. b. i) =,ful.w and Givr.sDcrc(i. (I. ,j) = true

If this condition does not hold. reversing (i. .j) cannot cause any improvement to the lower
bound. Therefore. only edges satisfying the above condition are reversed. The local search
process terminates when no edge reversal can produce a lower bound increment. The
resulting subgraph is noted as c”.

Now, if the new lower bound is not large enough to backtrack, the Delete function
performs further pruning: for each value (i, CI) considered for deletion, this function first
tries to delete the value using LB(P. F. g”),(, If this is not possible and if LBiu(P. F. G”)

.I. Larrnsn et al. /Artificial Intelligence 107 (1999) 149-163 157

_
MRDAC(S, d, F: FD, GF);
if F = 0 then

Bestd t d;
Bests t S;

else

i t PopAVariable(F);

while (FDi # 0) do

Q t PopAValue(FDi);

Newd t d + zcia -I- daci,;
if (Newd + CjEF minbEFD, (icjb + dncjb) < Bestd) then

mwFD t LookAhead(i, a, F, FD);
if (TWipeOut(newFD)) then

NmGF t GreedyOpt(GF. F, newFD);
if (Newd + CiEF

__,I

mimEnepoFo, (icjb + dacjb) < Bestd) then

newFLI t Delete(F, NewFD, NewGF);
if (lWipeOut(newFD)) then

1.1 NewFD t PropAndDel(F, newFD);

1 if (lWipeOut(newFD)) then MRDAC(SU {(i, a)}) Newd, F, NewFD, NewGF);

Function 1. PFC-MRDAC main function. S is the current assignment. d its distance, F and FD are the future

variables and their domains, G F is the current directed graph.

LookAhead(i, ta, F, k’D);
foreach j E F do

foreach b E FD, do

if

_I

((j, ;) E EDGES(G) and lGiuesDac(i, a,$) or

((;,j) E EDGES(C) and TGioesDcx(j, b, i)) them
Lif (Inconsistent(i, a, j, b)) then increment(icjb);

if (Newd + &Ep_ljj rn&FDI (ickc + duck,) + dUC,ib + icjb 2 Bestd) then

Prune(j, b);

1 DeletionStrenm t DeletronStreom U {(j, b)) ;

return Updated domains;

Function 2. PFC-MRDAC look-ahead function, (I, n) is the assignment to propagate, F is the set of future

variables.

is larger than the current upper bound, it temporarily reverses all edges such that
GivesDac(i, a, j) is true. If the resulting lower bound LBi, is large enough, (i, a) is
deleted and added to DeletionStream. The subgraph cF is restored and the process iterates
considering a new future value. This local optimization of the graph for each value was not
present in the initial version of the algorithm [8]. It significantly improves performance. If
no wipe-out occurs, the PropAndDel function propagates all pending deletions, and updates
DAC accordingly (which may cause further deletions), until a fixpoint is reached or a wipe-
out occurs. It is not detailed here and it can rely on any modern AC propagation mechanism.
The only difference with classical AC behavior is that when a value (i, a) loses all support

GreedyOpt(G, F, Fl?):
Stop t false;

while 3top do

SaveMzn t CJEF rnkh~r,, (icjb -I- daCjb)i

foreach ;,j E F’ s.t. (i,j) E EDGES(G) do

MinFrom t mh,cFD, (ici, + duei,);

MinIb t mirbEFD), (jcjh + &6clh)j

if (~GivtsDuc(j, argminbEFn, (%cjt, + dac,b), i) and

Giz~esDoc(i,argmin,Elzn,(ic,, + $uc;,). j)) then

_I

Reverse((i,j), C:):

if (min,E~~z (ici, + dac,,) + nlir~~,~, (ic,jb + dacjb) < ,$~ilin~?“rorn + MinTo) then

Reverse((j, i). G);

if (SaveMin = C,7,Pq mh&~n, (iC,;;b + dacjb)) then stop c tme;

return Updated graph

FkuxXloll 2. Finding o “pood” dirrctcd graph. G i\ the current directed graph.

Reverse((i, j),C);

EIX;I~S(G) t b;r)(;bs(Ci) - {(i, j)} U {(j,i)};

foreach a E D; do if GluesDac(i, u, j) then Increment(daci,);

foreach b E D, do if GiuesDac(j, b, i) then Decrement(dac,b);

___~_ -
Delete(F. FU, G):

foreach i E F do

foreach CL E k’D, do

if (Newd + CkEp-llI rr~i~q~~~, (ickc + duck,.) + dac,, + iqa 2 Hestd) then

Prune(i, a):

I IklclionStwarl2 t /)c~l~llonS1~~cl,,, u { (i. u)};

else if (:Vewd + CkEt~ iLi IIIIII,.~~T~~ (inky. t du~l;~) + acia + icl,, 2 Bestd) then

Stack t a;
foreach j E F s.t. (i, j) E EDGES(G) do

if

i

(GivesDac(i, a, j) = true) then

Reverse((i,j),G):

1 Stack t ,Slack U {(j, i)};

if (Neud + CkCF-lll IIIII~~FII~ (%ckc + dark,) + dacia + ic,, 2 Nestd) then

1

Prune(i, a):

DeletionStream t DeletaonStream u ((i, (I)};

foreach e E <Stack do Reverse(e, C);

return Updated domains

.I. L.arrosu et al. /Artificial Intelligence 107 (1999) 149-163 159

on a constraint Rij, the value (i, a) is not deleted. Instead, GivesDac(i, a, j) becomes true
and the corresponding dacia is incremented if the edge (i, j) is currently directed towards
i. This may increase the minimum of (ici, + duq,). The condition for pruning used here
is the same as in the LookAhead function.

5. Experimental results

In our first experiment, we have evaluated the performance of our algorithms on
over-constrained binary random CSP. A binary random CSP class is characterized by
(n, d, p1, ~2) where IZ is the number of variables, d the number of values per variable,
pl the graph connectivity defined as the ratio of existing constraints, and p2 the constraint
tightness defined as the ratio of forbidden value pairs. The constrained variables and the
forbidden value pairs are randomly selected [9]. Using this model, we have experimented
on the following problem classes:

(1) (10,10,1, P2j, (2) (15,5,1, P2),

(3) (15,10,50/105, pz), (4) (20,5,100/190, P2).

(5) (25, 10,37/300, p2), (6) (40,5,55/780, ~2).

Observe that (1) and (2) are highly connected problems, (3) and (4) are problems with
medium connectivity, and (5) and (6) are sparse problems. For each problem class and
each parameter setting, we generated samples of 50 instances.

Each problem is solved by three algorithms: PFC-DAC as described in [7] and PFC
maintaining reversible DAC using an AC6-based propagation mechanism. As in [8], we
also tested out a simplified version of PFC-MRDAC, called PFC-RDAC that does not
propagate deletions (the call to the PropAndDel function on line 1.1 of the main function is
not performed). PFC-DAC usesfonvard degree, breaking ties with backward degree [7] as
static variable ordering. PFC-RDAC and PFC-MRDAC use domain size divided byforward
degree as dynamic variable ordering. Values are always selected by increasing ic + due. All
three algorithms share code and data structures whenever it is possible. Experiments were
performed using a Sun Spare 2 workstation.

Fig. 4 reports the average visited nodes to solve the six problem classes. For all problem
classes, it is observed that PFC-RDAC and MRDAC visit significatively less nodes than
PFC-DAC, and this gain increases with problem tightness. PFC-MRDAC visits less nodes
than PFC-RDAC, and this gain tends to decrease with problem tightness. Regarding
computational effort, Fig. 5 reports the average cpu-time required to solve the six problem
classes (since the overhead produced by RDAC and MRDAC is consistency-check free, we
use cpu-time instead the number of consistency checks). Cpu-time results are in agreement
with those of visited nodes: PFC-RDAC improves PFC-DAC in practically all problem
classes, and the gain grows with problem tightness. PFC-RDAC can be up to 2000 times
faster than PFC-DAC on the tightest sparse instances. Typical improvement ratios range
from 2 to 30 for tightly constrained problems. Regarding PFC-MRDAC, it visits less nodes
than PFC-RDAC but it performs more work per node. As global effect, PFC-MRDAC
performance is very close to that of PFC-RDAC. Typically, maintaining DAC on dense

problems is not cost effective. and PFC-RDAC IS 4ightly faster than PFC-MRDAC. The
situation is reversed on sparse problems where PFC-MRDAC is from 1.2 to 1.75 times
faster than PFC-RDAC. We have observed that using a dynamic variable ordering in
conjunction with PFC-MRDAC causes only a small performance improvement.

Our second experiment considers the Radio Link Frequency Assignment Problem
(RLFAP). It is a communication problem where the goal is to assign frequencies to a set
of radio links in such a way that all the links may operate together without noticeable

J. Larrnsa et al. /Artificial Intelligence 107 (1999) 149-163 161

Fig. 5. Average CPU versus tightness for six classes of binary random problems.

interference [3]. Some RLFAP instances can be naturally cast as weighted binary Max-
CSP where each forbidden tuple has an associated penalty cost. We have extended DAC-
based algorithms to this framework and tested them on four publicly available RLFAP

subinstances called CELAR6-SUBi (i = 1, . . . , 4) in [3]. Each CELAR6-SUBi is a sub-
instance of CELAR6_SUBi+l and is therefore presumably easier to solve. As in the
previous experiment, each instance is solved with the same three algorithms. The same
static and dynamic variable ordering heuristics are used. However, they are extended to the

Table I

Cost of solving mstances I to 4 or the CELARh problems

PFC-DA< PFC-RDAC

Node\ Cpu time Node?. Cpu time

SUBI x. I x IOX 5.2 x IO’ I.9 Y I07 3.5 x 103

SUB?_ 4.x x IO” 3 0 x IO5 1.7 .x IO” 2.9 x Id

SUB3 1.7 x IO”1 x.3x IO 77r 10~ 7. I x I(?

SUB4 I.2> IO” 3-!x lo’

PFC-MRDAC

NO&S Cpu time

I.8 x 106 2.6 x 103

I.6 x IO’ 7.3 x IOJ

3.7 x IO’ 6.X x IO”

I.2 x IOX 7.6 x lo5

weighted case: each constraint has a contribution to its connecting variables degree equal

to the sum of its penalty costs.
Table I shows the cost required to prove optimality (i.e., the upper bound is initialized

with the optimum cost) by DAC-based algorithms. We report both number of visited nodes
and cpu-time in seconds. PFC-RDAC clearly outperforms PFC-DAC regarding both time
and visited nodes. In the first three instances PFC-RDAC is more than ten times faster than
PFC-DAC. In the last instance PFC-DAC was aborted when it did not finish its execution
within ten times the time required by PFC-RDAC. Regarding PFC-MRDAC, it visits about
ten times less nodes than PFC-RDAC. However. the gain is not as large in terms of cpu-
time because of the overhead of propagation. Nonetheless, PFC-MRDAC is always the
fastest algorithm and its speedup over PFC-RDAC is clearly worth.

The CELAR-SUB3 and SUB4 instances have also been solved using an improved
version of RDS [131 informed with good initial upper bounds. Their resolution took
respectively more than 2.5 x IO6 and 5 x IOh seconds of Sparc.5 cpu-time (private
communication of Simon de Givry (41). Although they cannot be directly compared with
our results (different initialization and different computers), they give an approximate idea
of the behaviour of different algorithms with problem size.

6. Conclusions

Branch and bound efficiency deeply depends on the lower bound quality. The reversible
DAC-based lower bound we have introduced strongly improves existing lower bounds both
in terms of branch pruning and value deletions. As a global effect, reversible DAC has
enhanced the efficiency of the initial DAC-based algorithm by several orders of magnitude.
It is worth noting that we have followed a rather simple local optimization strategy for
subgraph optimization. More sophisticated strategies may provide further benefits.

Maintaining RDAC causes a significant decrease in the number of visited nodes,
although it does not always pay-off in problems where all constraints have the same
importance. In the weighted CELAR problems, maintaining RDAC provides an important
speed-up. This aspect may be of great interest for other real Max-CSP problems as well.

For real problems involving both hard and soft constraints, the algorithms we introduced
are ideal candidates for an hybridation with MAC algorithms [IO]: contrary to other recent
algorithms for solving Max-CSP [7,13.15]. they can use dynamic variable orderings and
will not artificially restrict the hybrid to static orderings.

J. Lmrosa et al. /Artificial Intelligencr 107 (1999) 149-163 163

Acknowledgements

The research of Javier Larrosa and Pedro Meseguer is supported by the Spanish CICYT
project TIC96-0721-C02-02. We thank Michel Lemaitre and GCrard Verfaillie, who read
a previous version of this paper providing useful comments. We also thank Miquel Angel
Garcia for revising the paper text.

References

[I] M.S. Affane, H. Bennaceur, A weighted arc consistency technique for Max-CSP, in: Proc. ECAI-98,

Brighton, UK, 1998, pp. 209-213.

[2] S. Bistarelli, U. Montanari, F. Rossi, Constraint solving over semirings, in: Proc. IJCAI-95, Montreal,

Quebec, 1995.

[3] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, J.P. Warners, Radio link frequency assignment, Constraints (to

appear).
[4] S. de Givry, Algorithmes d’optimisation sous contraintes Ctudies darts un cadre temps-reel, Ph.D. Thesis,

CERTIONERA-SupACro, 1988.

[5] R. Dechter, J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artificial Intelligence 34

(1988) l-38.

[b] E.C. Freuder, R.J. Wallace, Partial constraint satisfaction, Artificial Intelligence 58 (1992) 21-70.

[7] J. Larrosa, P. Meseguer, Exploiting the use of DAC in Max-CSP, in: Proc. CP-96, Boston, MA, 1996.

pp. 308-322.

[8] J. Larrosa, P. Meseguer, T. Schiex, G. Verfaillie, Reversible DAC and other improvements for solving Max-

CSP, in: Proc. AAAI-98, Madison, WI, 1998, pp. 347-352.

[9] P Presser, Binary constraint satisfaction problems: Some are harder than others, in: Proc. ECAI-94,

Amsterdam, The Netherlands, 1994, pp. 95-99.

[lo] D. Sabin, E.C. Freuder, Contradicting conventional wisdom in constraint satisfaction, in: Proc. ECAI-94,

Amsterdam, The Netherlands, 1994, pp. 125-129.

[11 J T. Schiex, Maximizing the reversible DAC lower bound in Max-CSP is NP-hard, Technical Report 1998/02,

INRA, July 1998.

[12] T. Schiex, H. Fargier, G. Verfaillie, Valued constraint satisfaction problems: hard and easy problems, in:

Proc. IJCAI-95, Montreal, Quebec, 1995, pp. 631637.

[131 G. Verfaillie, M. Lemaitre, T. Schiex, Russian doll search, in: Proc. AAAI-96, Portland, OR, 1996, pp. 181-

187.

[141 R. Wallace, Directed arc consistency preprocessing, in: M. Meyer (Ed.), Selected papers from the ECAI-94

Workshop on Constraint Processing, Lecture Notes in Computer Science, Vol. 923, Springer, Berlin, 1995,

pp. 121-137.

[151 R. Wallace, Enhancements of branch and bound methods for the maximal constraint satisfaction problem,

in: Proc. AAAI-96, Portland, OR, 1996, pp. 188-195.

