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Abstract 

We present here a near-optimal broadcasting algorithm for a family of Cayley graphs, the 
pancake graphs. We also show that this algorithm can be applied to a wider class of recursively 
decomposable Cayley graphs. 

1. Introduction 

We use [43 for basic concepts in graph theory. Basic results in group theory can be 

found in [lo]. All the logarithms used here have base 2. The graphs and networks 

considered here are finite. Let G be a finite group and let 4 be a set of generators for 

G which is closed under inverses and which does not contain the identity element. The 

Cayley graph G associated with the group G and generator set 4 is the graph with 

vertex set G and there is an edge joining vertex u to vertex u #there is a generator g in 

4 such that ug = u. This resulting graph is simple and since 4 is closed under inverse 

group operation, it can be considered as an undirected graph. Also, since 4 generates 

G, the graph is connected. In [l] the Cayley graph model is used to define alternative 

models to the existing topologies of interconnection networks. One of the families of 

Cayley graphs presented in [l], which is a particularly attractive model for intercon- 

nection networks is the pancake graphs. We describe pancake graphs and list some of 

their properties in Section 2. 

In this paper we consider the problem of broadcasting in a pancake graph. In an 

interconnection network each vertex may represent a processor and each edge 

a two-way communication link. Broadcasting is the communication of a message or 

data, originated at a single vertex, to all the vertices of the network. In each unit of 

time a vertex can communicate with only one adjacent vertex and receive or send the 
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message. A survey of published results in the field of broadcasting in networks can be 

found in [9]. Let u be a message originator in a connected graph 9 of order N. The 

broadcast time b(u) of u is the minimum number of time units needed to broadcast 

a message originating at u. The broadcast time of the network 92 is defined as 

b(9) = max{b(u) ( u E %}. Since in any broadcasting process the number of vertices 

which have received the message at most doubles in each time unit, we have 

b(u) 3 [log NJ. Consequently, we have the following well-known fundamental result 

191. 

Theorem 1.1. Let 9 be a connected graph of order N. Then b(9) 3 rlogN1. 

For most graphs, however, the lower bound for the broadcast time cannot be 

attained. A broadcasting algorithm describes the communication route from the 

message originator to all the nodes in the network. It aims to complete the broadcast- 

ing process in minimum possible time. A broadcasting algorithm is a prerequisite for 

many fundamental computational algorithms in multiprocessor topologies. In [l] an 

O(nlogn) algorithm for finding the maximum of n! elements distributed among n! 

processors placed at the vertices of an n-pancake graph is presented. For the architec- 

ture of an interconnection network to be of practical use, it is necessary to have an 

efficient broadcasting algorithm. In [S], the authors present a recursive broadcasting 

algorithm on a class of Cayley graphs, the star graphs. We show here that their ideas 

can be generalized to obtain a near-optimal broadcasting algorithm for a wider class 

of recursively decomposable Cayley graphs (as defined in Section 3), which includes in 

particular the pancake graphs. 

Algebraic treatment of interconnection networks can also be found in [S, 71 and in 

more recent works [3,6]. These references show how group theory can be effectively 

employed in highly parallel computing. [6] presents construction of some Cayley 

graphs along with algebraic broadcast algorithms. A unified approach based on 

algebraic structures of the networks is used in dealing with communication in parallel 

networks in [7, 31. 

2. The pancake graphs 

Since the underlying group in the definition of a Cayley graph is finite, one can 

consider it to be a permutation group. In particular, let the underlying group be S,, 

the symmetric group of permutations on n symbols 1,2, . . . , n. An element g of S, will 

generally be denoted as a sequence of n distinct symbols (integers) in a row as 

g = ala2...a,, where for all i, 1 < ai < ~1. g(k) will denote the symbol in the kth 

position in g. For every permutation g in S, the multiplication on right by g gives 

a transformation of the group x -+ xg, which maps permutation x into permutation 

xg. Thus, considered as an operator a permutation will also be described by its effect 

on group elements and denoted as a product of independent cycles. In particular, the 
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Fig. 1. The 3-pancake graph. 

transposition interchanging the kth and jth symbols will be denoted by the cycle (jk). 

Now, for 2 < k < n consider the permutation gk which Jeeps the first (leftmost) 

k symbols, similar to the Pipping with a spatula the top k pancakes from a stack 

of n pancakes. We have gk= k[k- l][k-2]...21[k+ l][k+2]...n. Let & 

= { gk ( 2 d k ,< n}. Clearly, for all k, gk = g; ‘. Therefore, &, is closed for inverses. 

Also, since the composition gkg2gk results in the transposition ([k - l] k), it follows 

that & generates S,. 

The n-pancake graph (or the pancake graph on n symbols) 9& is the Cayley graph 

associated with the permutation group S, and the generator set +,,. Fig. 1 shows the 

3-pancake graph 9S3 and Fig. 2 shows the 4-pancake graph 9Jd. The symbols used in 

permutations here are A, B, C, D instead of 1,2, 3,4. Note that if x = yg, for some k, 

2 ,< k < n, then y = xg, and the edge joining vertices x and y can be labeled gk, or for 

the sake of convenience, simply k. 

2.1. Properties of pancake graphs 

The pancake graphs are introduced in [l] and it is shown there that they present 

a good alternative to the widely used interconnection network models of n-cube. 

Clearly, the order of an n-pancake graph is n! and it is regular of degree n - 1. It is 

proved in [l] that its diameter is not more than 2n - 3. Now for given degree of n - 1 

the order of the multidimensional cube is 2”- ’ and for given diameter of 2n - 3 the 

order of the cube is 22nP3. Therefore, comparing graphs of the same order, the 

pancake graphs have smaller diameter and degree than the n-cubes. Two properties of 

pancake graphs particularly of use in this paper are: the vertex symmetry and the 

hierarchical nature of the pancake graph. 

A graph 9 is said to be vertex symmetric if for every pair of vertices u and v in 

9 there is an automorphism of 9 that maps u into v. A vertex symmetric graph looks 
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Fig. 2. The 4-pancake graph. 

the same from each vertex. By using algebraic properties of the underlying group 

structure, it is shown in [l] that every Cayley graph is vertex symmetric. 

The hierarchical nature of the pancake graph makes it possible to decompose an 

n-pancake graph 9,, into (n - 1)-pancake graphs. Let n 3 3. First we consider the set 

F of all permutations in S, with n in the nth position. This forms a subgroup of S, of 

order (n - l)! and is isomorphic to S,_ 1, the symmetric group of all permutations on 

n - 1 symbols 1,2, .., n - 1. Considered as vertices of ?Z,,, elements of F are joined 

only by edges corresponding to the generators &, _ 1 = { ,gk 12 ,< k ,< n - l}. Also, if 

u is in F and is joined to v in 99” by an edge corresponding to any generator in & 1, 
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then v is also in F. Thus the symbol n may be ignored and one can see that the 

subgraph induced on F is the (n - 1)-pancake graph gn_ 1 with vertex set S,_ 1 and 

generator set q!+ r. 

Now let a be one of the n - 1 symbols: 1,2,. .., n - 1. Then as in the preceding 

paragraph it can be seen that the set of permutations in S, with a in the nth position 

induces a subgraph isomorphic to the pancake graph 9’_ 1 if the symbols n and a are 

interchanged. Thus one can express $!I,, as a vertex disjoint union of n pancake graphs 

of order (n - l)! and the only edges connecting any two of these subgraphs are those 

corresponding to the generator gn. Clearly each one of these n copies of gn_ I, being an 

(n - 1)-pancake graph, can itself be decomposed as a disjoint union of n - 1 pancake 

graphs each of order (n - 2)!, interconnected by edges corresponding to the generator 

gn_ 1. This decomposition can be continued recursively down to pancake graphs of 

size 2. Fig. 2 shows the 4-pancake graph as a disjoint union of 4 isomorphic copies of 

3-pancake graphs interconnected by edges labeled 4. 

3. The recursively decomposable Cayley graphs 

Let us note that the recursive decomposition of the pancake graph 9’,, as seen before 

is possible due to the following property of the generator set &,. For each r with 

2 < r < n, the generators { g1 12 < t < r}, when applied to any permutation in S,, leave 

all but the leftmost r - 1 symbols unchanged. Therefore, we find it natural to consider 

a more general class of Cayley graphs, namely, Cayley graphs with the property of 

being recursively decomposable (or with property RD for short) as defined below. 

Definition 3.1 (Property RD). A Cayley graph 9 has property RD if, for some n > 2, 

its vertex set is S,, the group of all permutations on n symbols, and its generator set 

4 satisfies the following conditions: 

(1) 4 contains exactly n - 1 elements and for each gE 4, g = g-r. 

(2) There exists an ordering gz, g3, . . . , gn of the elements of $J such that 

(a) for all Y, with 2 d r d n - 1, g,(k) = k for Y < k < n, 
(b) for all r, with 2 d r < n, g,(l) = r and gr(r) = 1. 

Note that S, is the vertex set of Y if and only if order of Q is n!. Also, the condition 

(2) on q5 in Definition 3.1 can alternatively be stated as 

(2a) for all r, with 2 < r < n - 1, the permutation g* leaves the symbols in positions 

r + 1, r + 2, . . ..n unchanged and 

(2b) for all r, with 2 < r < n, gr interchanges the symbols in the first and the rth 

positions. 

We will refer to the graphs satisfying the conditions in Definition 3.1 as Cayley 

graphs of order n! (or Cayley graphs on n symbols) with property RD. Clearly the 

pancake graphs, taken with the natural ordering of the generators as g2, g3, . . ..gn 

possess the RD property. Another family of Cayley graphs, the star graphs, is studied 
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in [l, 21. The vertex set of a star graph of order n!, or an n-star graph, is the group 

S, and the generator set consists of n - 1 transpositions (lk) for k d 2 d n. It is easy to 

see that with natural ordering of these generators star graphs possess property RD. 

More generally, star graphs can be decomposed recursively using an arbitrary order- 

ing of the generators. 

The following property of the generators of a Cayley graph satisfying the conditions 

of Definition 3.1 can easily be proved by induction on r. We omit the proof. 

Lemma 3.2. Let n 3 2 and let 9 be a Cayley graph on n symbols with property RD. 

Then for every r, with 2 d r < n, the set { gt / 2 < t < r} generates S,, the group of all 

permutations of r symbols in the leftmost r positions. 

Proposition 3.3. Every Cayley graph of order n!, n 3 3, with property RD can be 

expressed as afinite vertex disjoint union of n copies of a Cayley graph of order (n - l)! 

with property RD. 

Proof. Let n >, 3 and let 9 be a Cayley graph on n symbols with property RD. Then 

the vertex set of $9 is S, and the set 4 of generators of te has n - 1 elements. Let the 

generators be ordered as g2, g3, . . . , g,,. Since for every g E 4, g = g i, every edge in the 

graph can be labeled unambiguously with one of the generators in 4. For each integer 

b with 1 < b < n, consider the set of permutations Fb = {g E S, ) g(n) = b) and let 

%b be the subgraph induced by Fb. Then 99 is a vertex disjoint union of the 

n subgraphs Zb for 1 < b < n. Note that due to condition (2a) of Definition 3.1, for 

each b with 1 < b < n, if x E Fb, then for all k, 2 < k .$ n - 1, xg, is also in Fb whereas, 

by condition (2b), xg, is not in Fb. Let $ = { gk12 d k d n - l}. Then any edge of 9 is 

labeled with a generator in Ic/ if and only if it is within Z,, for some b and it is labeled 

with g,, if and only if it interconnects pi and ~j for some i and j, 1 d i, j d n, i # j. 

Now F,, is a subgroup of S, of order (n - l)! and is isomorphic to S,_ 1 the 

symmetric group of permutations of n - 1 symbols. By Lemma 3.2, II/ is a set of 

generators for F,,. The induced subgraph is thus a Cayley graph yi”, with vertex set 

F, and generator set $. Since $ c 4, all the conditions of Definition 3.1 are satisfied 

for $ and yi”, clearly has property RD. Furthermore for each b, 1 < b < n - 1, the 

induced subgraph on Fb, namely Z,,, is isomorphic to Ye, under interchange of 

symbols n and b which associates x E Fb to x(bn) E F,,. Thus 9 is a vertex disjoint union 

of n copies of ZH, each with generator set $ and with property RD. We note that these 

n subgraphs are interconnected by edges labeled g,,. 0 

4. A near-optimal broadcasting algorithm 

Algorithm broadcast-message: In this section we present a near-optimal broadcast- 

ing algorithm on Cayley graphs on n symbols with RD property. This algorithm 
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works recursively, exploiting the hierarchical structure of RD graphs. It generalizes 

the recursive broadcasting algorithm on star graphs given in [S], to the class of Cayley 

graphs with RD property. In particular, it gives a broadcasting algorithm on pancake 

graphs. 

Let 9 be a Cayley graph of order n! with RD property. The algorithm is 

presented below as procedure broadcast-message with two subprocedures: procedure 

phase-one and procedure phase-two. The parameters are: n, where n! is the 

order of the Cayley graph and v, the message originator. Since 9 is vertex 

symmetric, the same algorithm works for every message originator u. A copy of 

the algorithm is to be executed concurrently and synchronously at all the nodes 

of the network. We say the message is sent along dimension k if it is sent along 

edge gk. At each time unit the algorithm determines at each node the dimension 

through which it should communicate with an adjacent node. The notations gk, 

Xk and & are used as in preceding sections. The two main steps in the algorithm 

are: 

Step 1. Starting from v, send the message to one vertex (say vk) in zk, for each 

k such that 1 < k d n. 

Step 2. For each k with 1 < k < n, apply the algorithm recursively (and concurrent- 

ly) to the n Cayley graphs %k of order (n - l)! with message originator rk. 

Since the graph #k itself is an RD graph, it admits of a decomposition into n - 1 

RD subgraphs each of order (n - 2)! consisting of all the permutations in S, which 

have same two symbols in the last two positions, the symbol in the nth position being 

k. At the second recursive step the algorithm sends the message to one message 

originator vertex in each one of these n(n - 1) subgraphs. Thus continued recursive 

application of the algorithm results in recursive decomposition of 9 into Cayley 

graphs of order 2. Each one of these graphs has 2 permutations which differ only in the 

first (leftmost) symbol and one of the 2 nodes becomes a message originator. At this 

stage all message originators send the message through dimension 2. This completes 

the broadcasting process. 

Procedure phase-one (n, v); (2; is the message originator in RD Cayley graph of 

order n!, for n > 2. The message is sent using each one of the dimensions 

2, 3, . . . ) n - 1 exactly once. Total time taken is [log@ - l)]. For each vertex u, 

which is not a message originator, the source_dimension is the dimension through 

which u receives the message. Initially, the value of source-dimension of the 

message originator v is 1 and for all other vertices it is 0. Every vertex sends the 

message through its target-dimension which is a function of its sourceedimen- 

sion and the current unit of time.} 

begin 

for time := 1 to r log@ - l)] do 

{at each vertex do} 

begin 

if source-dim(u) > 0 then 
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begin 

target-dim(u) := source-dim(u) + 2’ime- ’ ; 

if target-dim(u) < max(3, n) then send message 

along target-dimension(u); 

end; 

if u receives the message then 

source-dim(u):= dimension through which u receives the message; 

end 

end; {phase-one} 

Procedure phase-two (n); {This procedure sends the message through dimension 

n to one node each in the subgraphs Xb of order (n - l)!. The source_dimension 

of such a node is set to 1 indicating that it will be the message originator in this 

subgraph. Total time taken by this step is 1 unit.) 

begin 

{at each vertex u do} 

if source-dim(u) > 0 then 

begin 

if source-dim(u) > 1 then source-dim(u):= 0; 

send message along dimension n; 

end; 

if u receives the message in this phase then source_dim(u):= 1; 

end; { phaseetwo} 

And now the main procedure: 

Procedure broadcast-message (n, v); {broadcasts message in a RD Cayley graph 

of order n!. v is the message originator.} 

begin 

if n > 2 then phase-one (n, v); 

phase-two (n); 

if n > 2 then 

begin 

{at each vertex u do} 

if source-dim(u) = 1 then broadcast-message (n - 1, u); 

end; 

end; 

4.1. Analysis qf the algorithm 

Theorem 4.1. Let 9,, be a Cayley graph of order n! with RD property and let v be 

any vertex in 3”. Then procedure broadcast-message (n, v) will broadcast a message 
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from v to all vertices of Yn in time 

n-l 

B(gJ = 1 rlogd + n - 1. 
p=2 

Proof. Without loss of generality, we may assume that initially the message originator 

is e = 1 2 . . . n and that procedure phase-one is called with parameters n and e. In 

phase-one every path along which the message is sent has the following property. 

Starting from e, the edges in the path are chosen in increasing order of dimension. 

Because of the conditions (2a) and (2b) of Definition 3.1, it follows that if a vertex 

u receives a message through edge gk, then the first symbol in u is k. Moreover, each 

one of the edges (gk 12 < k < n - l> is used exactly once in phase-one. Therefore, at 

the end of this phase, for each k with 1 < k < n - 1, there is one vertex with starting 

symbol k which has received the message. When procedure phase-two is called, each of 

these vertices sends the message along dimension n. Therefore, at the end of 

phase-two, for each k with 1 < k d n, there is a vertex with last symbol k which has 

received the message. These n vertices are the message originators in the correspond- 

ing subgraphs of order (n - l)! to which they belong. The algorithm continues 

recursively down to decomposition into subgroups of size 2. Thus clearly, a call to 

procedure broadcast-message with parameters n and u will transmit the message from 

v to all the vertices of 5?,,. 

Procedure phase-one will be called with message originators in subgraphs of 

successively diminishing order and thus the values taken by the first parameter will be 

p = n,n - 1 , . . . . 2. When 3 < p < n, the message will be sent along dimensions 

2, 3, . . . , p - 1 in phase-one and along dimension p in phase-two. Therefore, the total 

time taken will be rlog(p - 1)1+ 1. When p = 2 phase-one will not be called and 

phase-two will send the message along dimension 2 and thus will use 1 unit of time. 

Let p(v) denote the time algorithm broadcast_message takes to broadcast a message 

from v and p($?,,) denote the maximum of /I(v) taken over v in 9,,. The vertex 

transitivity of Y,, implies /I(u) = /I(cY~). Thus the broadcast time of algorithm broad- 

cast-message is given by 

PC%,) = 1 + i rlog(p - l)] + n - 2 
p=3 

n-1 

= C rlogpj+n-1. 0 
p=2 

Since 9,, is of order n!, using the lower bound for the optimal broadcast time h(Ym) 

given in Theorem 1.1, we have 

b(9J 2 rlogn!l. 

Since 9,, is regular of degree n - 1 which is strictly less than logn! (with the 

exception of n = 1,2), it is not possible for any broadcasting algorithm for ‘ZJ,, to attain 
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Table 1 
Comparison of Br(n) and log n! 

n BTW rlogn!l n BT(4 rlogn!l 

3 3 3 12 40 29 

4 6 5 13 45 33 
5 9 1 14 50 37 
6 13 10 15 55 41 

7 17 13 16 60 45 
8 21 16 17 65 49 
9 25 19 18 71 53 

10 30 22 19 77 51 
11 35 26 20 83 62 

this lower bound. Moreover, 

riognq= i iogp r 1 p=2 

n-1 

= c rlOgpl + rlOgnl - (n - 2). 
p=2 

Combining this inequality with the expression for fl(9”) we get 

b(%J G rlogn!l + 2n - 3 - rlognl. 

Therefore, the broadcast time fi(‘?J,,) appears to be very close to the optimum value. 

The proof of Theorem 4.1 does not use any other specific property of the graphs (or 

generators) involved except those stated in the Definition 3.1. Therefore, the broadcast 

time of our algorithm in all such graphs of order n!, including the pancake graphs and 

the star graphs, is p(‘+?,J. We will denote this broadcast time by IIT since it depends 

only on the size n! of the Cayley graph 9,, with RD property. Table 1 compares the 

two functions rlogn!l and IV(n) = zili rlogpl + y1- 1 for some values of n. 

5. Conclusion 

We have presented in this paper a recursive broadcasting algorithm for intercon- 

nection networks which have the topology of Cayley graphs of order n! whose 

generators satisfy the RD property. These topologies include the pancake graphs as 

well as the star graphs. Such graphs can be decomposed into smaller graphs with RD 

property. The broadcasting algorithm presented here exploits this hierarchical nature 

of these Cayley graphs and in that sense is a natural generalization of the broadcasting 
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algorithm for the n-cube. In [S] the authors have shown that their recursive broad- 

casting algorithm for star graphs works in near-optimal time. We have shown here 

that algorithm broadcast-message will accomplish broadcasting on pancake graphs 

in near-optimal time. 

As seen in Section 4 the broadcast time BT(n) for algorithm broadcast-message 

holds for all Cayley graphs of order n! with RD property. We can now define a new 

class of Cayley graphs which have RD property and (consequently broadcasting time 

sr(n) by algorithm broadcast-message) as follows. Let 4 be the set of generators 

g2, g3, . . . . gn of the n-pancake graph and let $ be the set of generators fi,f3, . . . . fn of 

the n-star. Both the graphs have the same vertex set S,. Let us recall that for all k with 

2 < k ,< n, gk is the flip of first k symbols andf, is the transposition (lk). Note that 

fk = gk for k = 2, 3. The property RD will hold even if we take certain combinations of 

the generators from the two sets. For example let 4 < M < n. Consider the set x of 

generators ha, h3, . . . . h,, where 

hk=gk if kdM and hk=fk if k>M. 

It is not difficult to see that x generates S, and the Cayley graph A,, associated with 

S, and x satisfies the RD property. A,, will be decomposed into smaller Cayley graphs 

which do not all necessarily look like A,, however they all satisfy the RD property. 

For any Y with 2 < Y < n, all the subgraphs at the rth stage of decomposition will be 

isomorphic. Algorithm broadcast-message will still be applicable and the broadcast- 

ing process will be completed successfully in time Br(n). One can also consider the set 

of generators w2, wj, . . . . w,, where 

wk=fk if k<M and &=gk if k>M 

and the same observation is true. It remains to be seen, however, what attractive 

properties such mixture of topologies may have. 

Another family of Cayley graphs with RD family, which may be considered to be in 

between the star graphs and the pancake graphs, may be defined making use of the 

following observation. The generatorf, of star graphs consists of a single transposi- 

tion (1 k) whereas the generator gk of pancake graphs is a composition of Lk/2J 

transpositions. 

gk = WG’Ck - 11)(3Ck - W...(LWJ r(k + 2)/21). 

We can choose an integer C 3 2 and define the n - 1 generators of S, using the 

compositions of only C of these transpositions from left. For example, let n > 5 and 

C = 2. Then the set 0 of generators s2, s3, . . . , s, will be given by 

sk = gk if k < 5 and sk = (lk)(2 [k - 11) if 5 < k < n. 

Clearly, 0 generates S, and satisfies RD property. 

In algorithm broadcast-message once a vertex becomes a message originator in 

a subgraph at a certain level of recursion, it remains from then on a message 
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originator in subgraphs of smaller sizes to which it belongs, created in succeeding 

recursive calls. In phase-one of every recursive call a message originator in a subgraph 

of order m! sends messages along dimensions 2, 3, 5,. .., 1 + 2* where 1 + 2* < m. 

Thus, for example, the initial message originator e = 1 2 . ..n sends in phase-one 

messages along the same [log n1 dimensions even though its degree is II - 1. e sends 

the message to u = 2 13.. . n along dimension 2 in phase-one of every recursive call, 

that is n - 1 times. In all but the last of these calls, that is n - 2 times, u sends the 

message to v = n(n - 1 j.. .3 1 2 along dimension n. This redundancy however does not 

result in overall delay since meanwhile the message is being sent, in parallel, to newer 

nodes in other subgraphs entered for the first time. 
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