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Abstract 

In this paper, we propose a new semi-supervised DR method called sparse projections with pairwise constraints 
(SPPC). Unlike many existing techniques such as locality preserving projection (LPP) and semi-supervised DR 
(SSDR), where local or global information is preserved during the DR procedure, SPPC constructs a graph 
embedding model, which encodes the global and local geometrical structures in the data as well as the pairwise 
constraints. After obtaining the embedding results, sparse projections can be acquired by minimizing a L1 
regularization-related objective function. Experiments on real-world data sets show that SPPC is superior to many 
established dimensionality reduction methods. 

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Harbin University of Science 
and Technology 
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1. Introduction 

In general, existing dimensionality reduction methods can be roughly categorized into supervised 
ones, semi-supervised ones and unsupervised ones. In supervised DR scenarios where data samples are 
accompanied with class labels, Fisher Linear Discriminant (FLD) [1] is the most popular one. It can find 
the optimal discriminant projection in terms of class labels obtained in advance. FLD has two famous 
variants, called Marginal Fisher Analysis (MFA) [2] and Local Fisher Discriminant Analysis (LFDA) [3]. 
Unsupervised DR methods project input data onto a low-dimensional manifold without any constraint or 
class label information. Principle Component Analysis (PCA) [4] is the most popular method among this 
category, which obtains linear subspace spanned by the leading eigenvectors of the data’s covariance 
matrix. Locally Linear Embedding (LLE) [5] is another popular unsupervised algorithm which computes 
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low dimensional neighborhood preserving embeddings of high dimensional data. Other unsupervised 
ones include Neighborhood Preserving Embedding (NPE) [6], Locality Preserving Projections (LPP) [7], 
Laplacian Eigenmap [8], ISOMAP [9], etc. Semi-supervised DR (SSDR) [10] is essentially semi-
supervised PCA, which uses pairwise constraints to find the projective direction together with unlabeled 
instances. Semi-supervised Discriminant Analysis (SDA) [11] expands FDA to semi-supervised scenarios 
in terms of labeled instances. In addition, other semi-supervised DR methods based on pairwise 
constraints are related to semi-supervised clustering [12-18]. 

In this paper, motivated by the recent development of sparse learning [19-21], we propose a novel 
semi-supervised DR algorithm called Sparse Projection with Pairwise Constraints (SPPC). Specifically, 
we present a graph Laplacian formulation to integrate global and local structures of the data. After getting 
the embedding results, lasso regression can be naturally applied to obtain sparse basis functions for 
finding the optimal projective direction. Moreover, a tuning parameter is employed to control the weights 
between supervised and unsupervised terms of the objective function.  

2. Spare Projections with Pairwise Constraints    

2.1. Model formulation 

We may apply a k-nearest neighbor graph to formulate the relationship between nearby data instances. 
More specifically, an edge is put between nodes i and j if xi and xj are close, i.e. xi and xj are among k
nearest neighbors. The corresponding weight matrix P is defined as follows: 
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where Nk (xi) denotes the set of k nearest neighbors of xi. Thus, we minimize the following loss function 
[7] to learn an appropriate representation with the local geometrical structure.  
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The goal of Eqn. (2) is to make near instances in the original space as close as possible in the 
embedding space. Thus, the objective function in semi-supervised DR algorithm is minimized as follows: 
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where nM and nC are the numbers of must-link constraints and cannot-link constraints, respectively.  
Concretely, we minimize the following objective: 
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To understand the proposed algorithm easily, we reduce Eqn. (4) as follows: 
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Thus, we can simplify Eqn. (5) or Eqn. (6) as minimizing J(a) w.r.t. aT a = 1, where 
min  ( )
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Clearly, the projective vector a that minimizes Eqn. (7) is given by the minimum eigenvalue solution 
to the generalized eigenvalue problem: 

TXLX a aλ=                                                                                                                                        (8) 

2.2. A general model for sparse projection 

After obtaining weight matrix S from Eqn. (6), we aim to minimize the following objective function 
to obtain a sparse projection:  
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 Directly solving Eqn. (9) is NP-hard. In the following we present an efficient method to overcome 
this issue, which is the same as [19]. Firstly, the projective vector a is obtained by optimizing Eqn. (7). 
Secondly, we may get the embedding results: 

T
i iy a x=                                                                                                                                           (10) 

Finally, lasso regression is used to get a sparse projective vector. Let a%  be the sparse approximation 
of a. Minimizing Eqn. (9) is transformed to minimizing the following objective function: 
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 Further reducing Eqn. (11), we have 
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3. Experimental Results 

3.1. Experimental setup 

It is worthwhile to point out that we apply K-means to cluster the instances in the embedding space. 
We also compare the proposed algorithm with representative DR algorithms including the following five 
methods: SSDR [10], LMDM [16], LPP [7], SPG [19], and SDRS [23]. 

We compared all these algorithms on three benchmark data sets, including TDT2, Reutersa and 
USPSb. The statistics of all data sets are described in Tables 1-2. We ran different algorithms for 40 times 
on each data set and the comparison was based on the average performance. 

a http://www.zjucadcg.cn/dengcai/Data/TextData.html 
b http://www.zjucadcg.cn/dengcai/Data/MLData.html
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The clustering result is evaluated by comparing the obtained cluster label of each instance with that 
provided by each data set. Normalized mutual information metric (NMI) is applied to evaluate these 
algorithms, which is defined as follows [15,17,19]: 
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Table 1. Summary of TDT2 and USPS used in our experiment         Table 2. Summary of Reuters used in our experiment 
Data set Dimension Instance Class
TDT2 
TDT2 
TDT2 

1500
1500
1500

8761
9030
9594

9
10
11

TDT2 
USPS
USPS
USPS
USPS

1500
256
256
256
256

9968
6010
7000
8126
9298

12
7
8
9

10

3.2. Experimental results 

We selected the same number of must-link constraints and cannot-link constraints from the data sets 
randomly according to the ground truth in our experiments. The same constraints are used for SSDR, 
LMDM and SDRS. The corresponding results are shown in Figs. 1 and Table 3.  
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Fig. 1. (a)Clustering performance on TDT2 with 600 constraints ; (b)Clustering performance on USPS with 600 constraints 

Table 3. Clustering performance on Reuters with 600 constraints (%) 
c SSDR LMDM LPP SPG SDRS SPPC 
3
4
5
6
7
8
9

10

56.66
58.87
57.40
56.31
59.42
53.04
51.00
53.29

55.36
52.47
51.67
50.34
56.97
51.02
48.55
49.64

47.90
48.29
49.02
50.11
49.37
42.41
39.33
43.20

49.25
54.24
53.57
49.87
54.83
46.54
44.90
48.49

60.22
61.09
60.87
59.31
61.24
57.36
55.39
57.04

66.31 
68.52 
67.98 
65.30 
69.67 
62.55 
60.37 
61.28 

4. Conclusions 

In this paper, we propose a simple but efficient sparse projection with pairwise constraints algorithm 
called SPPC. We construct a new affinity graph to encode the global and local geometrical structures in 
the data as well as the pairwise constraints. The sparse projections can be obtained by solving an 
optimization problem which using techniques from lasso regression. Experimental results on real-world 
data sets show that SPPC leads to considerable improvements in embedding and clustering over 
conventional dimensionality reduction methods.  

Data set Dimension Instance Class
Reuters
Reuters
Reuters
Reuters
Reuters
Reuters
Reuters
Reuters

1000
1000
1000
1000
1000
1000
1000
1000

3979
5030
4594
5168
6766
7980
8538
8137

3
4
5
6
7
8
9

10
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