
THEORETICAL & APPLIED MECHANICS LETTERS 1, 042006 (2011)

Lagrangian formulation of continuum with internal long-range
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Abstract Based on a new definition of nonlocal variable, this paper establishes the Lagrangian
formulation for continuum with internal long-range interactions. Distinguished from the existing
theories, the nonlocal term in the Lagrangian formulation automatically satisfies the zero mean
condition determined by the action and reaction law. By this formulation, elastic wave in a rod with
the internal long-range interactions is investigated. The dispersion of the elastic wave is predicted.
c© 2011 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1104206]
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The origin of nonlocality is due to the long-range
interactions within material. This idea was first ad-
vanced by Kroner,1 and then systematically developed
into the nonlocal mechanics theory.2–6 So far, the non-
local mechanics theory has been applied to account for
some phenomena which are not explained by the classi-
cal elasticity and plasticity, such as stress singularity at
the crack tip, softening bands in tensile specimens and
dispersion of acoustic waves in solids, etc. With the de-
velopment of nanotechnology, considerable interests to
the nonlocal mechanics are once again excited.7–9 This
is due to the advantage that nonlocal models not only
involve the long-range interactions within material but
also exclude the limitation of the molecular dynamics
in length and time scale.

Recently, Paola et al.10,11 proposed a physically-
based nonlocal model in which the long-range interac-
tions among non-adjacent volume elements are incor-
porated into the balance equation. As shown in Fig. 1,
consider a rod with the internal long-range interactions.
The length and cross-section area of the rod are l and A,
respectively. Imagine the rod being equally divided into
n elements, so that the volume of every element (e.g.,
the ith element) is ΔVi = AΔxi, where Δxi = l/n. Let
Rij be the long-range action exerted by ΔVj on ΔVi.
In terms of the proposal advanced by Paola et al.,10,11

Rij is expressed as

Fig. 1. A rod model with the internal long-range interactions

a)Corresponding author. Email: huangzx@nuaa.edu.cn.

Rij = g(|xi − xj |)(uj − ui)ΔVjΔVi, (1)

where ui and uj are the displacement of the ΔVi and
ΔVj , respectively. g(|xj − xi|) is a weight function de-
pending on the distance between these two elements.
So the total long-range action exerted by the other ele-
ments on ith element can be written as

Ri =

n∑
j=1

Rij

= A2Δxi

n∑
j=1

g(|xi − xj |)(uj − ui)Δxj . (2)

All loads applied on the ΔVi include external body force
fi, the internal long-range action Ri and the contact
forces σiA and (σi +�σi)A exerted respectively by the
adjacent elements Vi−1 and Vi+1 on Vi. The Newton’s
law states that

(σi +Δσi)A− σiA+ ρAΔxifi +

A2Δxi

n∑
j=1

g(|xi − xj |)(uj − ui)Δxj

= ρAΔxiüi. (3)

Let n→∞, then Eq. (3) will lead to

∂σ

∂x
+ρf+A

∫ l

0

g(|x−y|)[u(y)−u(x)]dy = ρü(x). (4)

In Eq. (4), let

R = A

∫ l

0

g(|x− y|)[u(y)− u(x)]dy, (5)

which characterizes the long-range interactions within
the rod. Clearly, If the size of representative element is
far larger than the action scope of the long-range inter-
actions, then R is negligible. However, when entering



042006-2 Z. X. Huang Theor. Appl. Mech. Lett. 1, 042006 (2011)

micro/nano scale, R will become one of main factors to
govern the physical behaviors of materials. The effects
of the internal long-range interactions have been ob-
served in experiment.5 Recently, the first-principle cal-
culations also show the existence of long-range interac-
tions within materials.13

According to the action and reaction law, the sum of
all internal forces within a system should be zero. This
is the so-called zero mean condition. It is easy to be
certified by Eq. (5) that the integral of R on [0, l] is equal
to zero. So R satisfies the zero mean condition. By
means of Eq. (5) and the Hooke’s law (σ = E(∂u/∂x)),
Eq. (4) becomes

E
∂2u

∂x2
+ ρf +R = ρü. (6)

We find that Eq. (6) can be given by the Hamilton’s
principle provided by the Lagrangian density function
L takes the form below

L =
1

2
ρ(u̇)2 − 1

2
E

(
∂u

∂x

)2

− 1

2
Ru− fu. (7)

This idea will be expanded into a general theory latter.

Let a continuum occupy the domain Ω in the three-
dimensional Euclidean space, and every particle in the
continuum be referred to a group of the orthogonal
Cartesian coordinates x = {x1, x2, x3} specifying its po-
sition in Ω. The function ϕ = ϕ(t, x) denotes a field
variable defined on Ω. Depending on circumstances,
ϕ is a scalar, vector or tensor. Similar to Eq. (5), the
nonlocal variable of ϕ is defined as

〈ϕ〉 = ϕ(t,x)

∫
Ω

g(|x− y|)dv(y)−∫
Ω

g(|x− y|)ϕ(t,y)dv(y). (8)

Let L = L(t, x, ϕ, ϕ̇, ϕ,k, 〈ϕ〉) (k = 1 − 3). If neces-
sary, the nonlocal variables 〈ϕ̇〉 and 〈ϕ,k〉 may be conve-
niently inserted into L. But in this case, the boundary
conditions will become complicated. Then the action
functional of ϕ reads

A[ϕ] =

∫ t1

t0

∫
Ω

L(t,x, ϕ, ϕ̇, ϕ,k, 〈ϕ〉)dv(x)dt. (9)

By means of Eq. (9), the first variation of the action

functional is written as

δA[ϕ]

=

∫ t1

t0

∫
Ω

(
∂L

∂ϕ
δϕ+

∂L

∂ϕ̇
δϕ̇+

∂L

∂ϕ,k
δϕ,k +

∂L

∂〈ϕ〉δ〈ϕ〉
)
dv(x)dt

=

∫ t1

t0

∫
Ω

[
∂L

∂ϕ
− d

dt

(
∂L

∂ϕ̇

)
−(

∂L

∂ϕ,k

)
,k

]
δϕdv(x)dt+

∫
Ω

∂L

∂ϕ̇
δϕ

∣∣∣∣
t1

t0

dv(x) +

∫ t1

t0

∫
∂Ω

∂L

∂ϕ,k
nkδϕds(x)dt+∫ t1

t0

∫
Ω

∂L

∂〈ϕ〉δ〈ϕ〉dv(x)dt, (10)

where ∂Ω is the boundary surface of Ω and nk denotes
the unit normal vector on ∂Ω. It is easy to calculate
that∫

Ω

∂L

∂〈ϕ〉δ〈ϕ〉dv(x) =
∫
Ω

〈
∂L

∂〈ϕ〉
〉
δϕdv(x). (11)

Here, a shortened form similar to Eq. (8) is used,〈
∂L

∂〈ϕ〉
〉

=
∂L

∂〈ϕ〉
∫
Ω

g(|x− y|)dv(y)−∫
Ω

g(|x− y|) ∂L

∂〈ϕ〉dv(y). (12)

Substituting Eq. (11) into Eq. (10) leads to

δA[ϕ]

=

∫ t1

t0

∫
Ω

[
∂L

∂ϕ
− d

dt

(
∂L

∂ϕ̇

)
−
(

∂L

∂ϕ,k

)
,k

+

〈
∂L

∂〈ϕ〉
〉]

δϕdv(x)dt+

∫
Ω

∂L

∂ϕ̇
δϕ

∣∣∣∣
t1

t0

dv(x) +

∫ t1

t0

∫
∂Ω

∂L

∂ϕ,k
nkδϕds(x)dt. (13)

Let ∂Ω = ∂Ω1 ∪ ∂Ω2, ∂Ω1 ∩ ∂Ω2 = ∅. On ∂Ω1, ϕ
takes a given value ϕ̄. So the boundary condition on
∂Ω1 reads

ϕ|∂Ω1
= ϕ̄. (14)

At the initial and terminal time, we have

ϕ|t0 = ϕ̄0, ϕ|t1 = ϕ̄1. (15)

Due to Eq. (14), δϕ = 0 on ∂Ω1. Similarly, δϕ = 0 at
the initial and terminal time because of Eq. (15). Thus,
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Eq. (13) reduces to

δA[ϕ]

=

∫ t1

t0

∫
Ω

[
∂L

∂ϕ
− d

dt

(
∂L

∂ϕ̇

)
−
(

∂L

∂ϕ,k

)
,k

+

〈
∂L

∂〈ϕ〉
〉]

δϕdv(x)dt+

∫ t1

t0

∫
∂Ω2

∂L

∂ϕ,k
nkδϕds(x)dt. (16)

In terms of the Hamilton’s principle, we have δA[ϕ] =
0. So in Eq. (16), the fundamental lemma of variation
yields the below results:

(1) Euler-Lagrangian equation

d

dt

(
∂L

∂ϕ̇

)
+

(
∂L

∂ϕ,k

)
,k

− ∂L

∂ϕ
=

〈
∂L

∂〈ϕ〉
〉
. (17)

(2) Natural boundary condition

∂L

∂ϕ,k
nk

∣∣∣∣
∂Ω2

= 0. (18)

Equation (17) is also called the nonlocal Euler-
Lagrangian equation. Its right-side term is the nonlocal
term, called the nonlocal traction.

According to Eq. (12), it is easy to verify that the
nonlocal traction satisfies the following zero mean con-
dition∫

Ω

〈
∂L

∂〈ϕ〉
〉
dv(x) = 0. (19)

In the existing nonlocal Lagrangian formulations,5,12

the nonlocal term fails to satisfy the zero mean con-
dition. So Eq. (19) represents a notable difference be-
tween Eq. (17) and the other theories. Due to Eq. (19),
the integral of Eq. (17) over Ω has the same expression
as the ordinary Euler-Lagrangian equation.

Consider wave in an infinitely long rod with the
internal long-range interactions. Let

L =
1

2
ρu̇2 − 1

2
E

(
∂u

∂x

)2

− 1

2
〈u〉u, (20)

where

〈u〉 =
∫ ∞

−∞
g(|x− y|)[u(x)− u(y)]dy. (21)

Substituting Eq. (20) into Eq. (17), we have the follow-
ing wave equation

E
∂2u

∂x2
−ρ

∂2u

∂t2
=

∫ ∞

−∞
g(|x−y|)[u(x)−u(y)]dy. (22)

Let u = f(x)e−iωt. Then Eq. (22) reduces to

E
d2f

dx2
+ ρω2f(x)

=

∫ ∞

−∞
g(| x− y |)[f(x)− f(y)]dy. (23)

Taking the Fourier transform of Eq. (23), we obtain the
following dispersion relation

ω

c
= ±

√
k2 +

1

E
[ḡ(0)− ḡ(k)], (24)

where ḡ(k) denotes the Fourier transforms of g(|x|), k
is the wave number, c =

√
E/ρ is the wave velocity. If

the internal long-range interactions within material are
prescribed by the Morse potential, i.e.,

g(|x|) = a[exp (−2r|x|)− 2 exp (−r|x|)], (25)

then Eq. (24) leads to

ω

c
= ±

√
k2 + 6

√
2

π

a

E

[
r3

(k2 + 4r2)(k2 + r2)
− 1

4r

]
.

(26)

The dispersion curve determined by Eq. (26) is shown in
Fig. 2, which predicts the dispersion of elastic wave due
to the internal long-range interactions within material.
This dispersion possibly occurs in nano-structures, but
it awaits further verification.

Fig. 2. Dispersion of elastic wave due to the internal long-
range interactions.
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