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Abstract

A setW ⊆ V (G) is calledhomogeneousin a graphG if 2 � |W |� |V (G)| − 1, andN(x)\W =
N(y)\W for eachx, y ∈ W . A graph without homogeneous sets is calledprime. A graphH is called a
(primal) extensionof a graphG if G is an induced subgraph ofH, andH is a prime graph.An extension
H of G is minimal if there are no extensions ofG in the set ISub(H)\{H }. We denote by Ext(G) the
set of all minimal extensions of a graphG.

We investigate the following problem: find conditions under which Ext(G) is a finite set. The main
result of Giakoumakis (Discrete Math. 177 (1997) 83–97) is the following sufficient condition.

Theorem. If every homogeneous set of G has exactly two vertices thenExt(G) is a finite set.

We extend this result to a wider class of graphs. A graph issimpleif it is isomorphic to an induced
subgraph of the pathP4.

Theorem. If every homogeneous set of G induces a simple graph thenExt(G) is a finite set.

We show that our result is best possible in the following sense. Specifically, we prove that for every
non-simple graphF there exist a graphG and a homogeneous setW of G such thatW induces a
subgraph isomorphic toF and Ext(G) is infinite.
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1. Introduction

The neighborhoodof a vertexx ∈ V (G) is the setNG(x) = N(x) of all vertices in
G that adjacent tox.

Definition 1. Let G andH be graphs. Asubstitution of H in G for a vertexv ∈ V (G) is the
graphG(v → H) consisting of disjoint union ofH andG− v with the additional edge-set
{xy : x ∈ V (H), y ∈ NG(v)}.

Definition 2. For a classP of graphs, itssubstitutional closureP∗ consists of all graphs
that can be obtained fromP by repeated substitutions, i.e.,P∗ is generated by the following
rules:

(S1): P ⊆ P∗, and
(S2): ifG,H ∈ P∗ andv ∈ V (G), thenG(v → H) ∈ P∗.

Let ISub(G) be the set of all induced subgraphs of a graphG [considered up to isomor-
phism]. A class of graphsP is calledhereditaryif ISub(G) ⊆ P for everyG ∈ P. For a set
of graphsZ, the class ofZ-freegraphs consists of all graphsG such that ISub(G) ∩Z = ∅.

Proposition 1. If P is a hereditary class thenP∗ is also a hereditary class.

Problem 1. For a hereditary classP given by a set Z of forbidden induced subgraphs, find
a forbidden induced subgraph characterization of the substitutional closureP∗.

De Simone[3] and Bertolazzi et al.[1] noted that Problem 1 is especially interesting in
the case whereP is a good class for the vertex packing problem, i.e., the weighted stability
number can be found in polynomial time for all graphs inP. Also, it is useful for the dom-
ination problem (Zverovich[10]) and for perfect graphs (Zverovich and Zverovich[14]).

We discuss the Reducing Pseudopath Method proposed by Zverovich[9] for solving
Problem 1 for an arbitrary hereditary class. Note that implementation of this method is not
always straightforward.

Definition 3. A setW ⊆ V (G) is calledhomogeneousin a graphG if

(H1): 2� |W |� |V (G)| − 1, and
(H2): N(x)\W =N(y)\W for all x, y ∈ W .

According to (H2), a homogeneous setW defines a partitionW ∪ W+ ∪ W− = V (G)

such that

• every vertex ofW is adjacent to every vertex ofW+ [notationW ∼ W+], and
• every vertex ofW is non-adjacent to every vertex ofW− [notationW /∼ W−].

By (H1),W+ ∪W− �= ∅ for every homogeneous setW.
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Definition 4. A graph without homogeneous sets is calledprime. A graphH is called a
(primal) extensionof a graphG if

(E1): G is an induced subgraph ofH, and
(E2): H is a prime graph.

Definition 5. An extensionH of G is minimal if there are no extensions ofG in the set
ISub(H)\{H }. We denote by Ext(G) the set of all minimal extensions of a graphG.

For a set of graphsZ we put

Ext(Z)=
⋃

G∈Z
Ext(G),

and we defineZo as the set of all minimal graphs in Ext(Z)with respect to the partial order
‘to be an induced subgraph’. The following result is straightforward.

Theorem 1. If Z is the set of all minimal forbidden induced subgraphs for a hereditary
classP thenZo is the set of all minimal forbidden induced subgraphs forP∗.

2. Reducing pseudopaths

The notationx ∼ y (respectively,x /∼ y) means thatx andy are adjacent (respectively,
non-adjacent). For disjoint setsX andY, the notationX ∼ Y (respectively,X /∼ Y ) means
that every vertex ofX is adjacent to (respectively, non-adjacent) to every vertex ofY. In case
of X = {x} we also writex ∼ Y andx /∼ Y instead of{x} ∼ Y and{x} /∼ Y , respectively.

Here is the main definition of the Reducing Pseudopath Method.

Definition 6. Let G be an induced subgraph of a graphH, and letWbe a homogeneous set
of G. We define areducing W-pseudopath[with respect to G] in H as a sequence

R = (u1, u2, . . . , ut ), t�1,

of pairwise distinct vertices ofV (H)\V (G) satisfying the following conditions:

(R1): there exist verticesw1, w2 ∈ W such that
(R1a): u1 ∼ w1, and
(R1b): u1 /∼ w2,

(R2): for eachi = 2,3, . . . , t , either
(R2a): ui ∼ ui−1 andui /∼ W ∪ {u1, u2, . . . , ui−2}, or
(R2b): ui /∼ ui−1 andui ∼ W ∪ {u1, u2, . . . , ui−2}

[wheni = 2, {u1, u2, . . . , ui−2} = ∅],
(R3): for everyi = 1,2, . . . , t − 1, both

(R3a): ui ∼ W+, and
(R3b): ui /∼ W−,
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(R4): either
(R4a): ut /∼ x for a vertexx ∈ W+, or
(R4b): ut ∼ y for a vertexy ∈ W−.

We shall use the following result.

Theorem 2 (Zverovich[9] ). Let H be an extension of its induced subgraph G, and let W
be a homogeneous set of G. Then there exists a reducing W-pseudopath with respect to any
induced copy of G in H.

Definition 7. We denote byH(G,W) the set of all graphs that are obtained from a graph
G and a homogeneous setW of G by adding a reducingW-pseudopath.

A homogeneous set is calledmaximalif it is not contained in any other homogeneous
set. We denote by Hom(G) the set of all maximal homogeneous sets in a graphG.

Algorithm 1 (Graph Extension).

Input: a graphG.
Output: a set Ext= Ext(G).
Step 0. SetS0 = {G}, Ext = ∅, andi = 0.
Step i(i�1).

• If Si = ∅ then delete from Ext all graphsH such that there exists a graphH ′ ∈
ISub(H)\{H } in Ext, return Ext and Stop.

• If Si �= ∅ then for every graphF ∈ Si proceed as follows:
◦ if Hom(F )= ∅ then includeF into Ext,
◦ if Hom(F ) �= ∅ then choose a setW ∈ Hom(F ) and put intoSi+1 all graphs of
H(F,W),

◦ seti = i + 1 and go to Step (i+ 1).

Theorem 3 (Zverovich[9] ). If the setExt is finite, thenGraph Extension Algorithmcon-
structs it in a finite number of steps.

3. Some examples

Here we construct extensions for some graphs that are implicitly or explicitly involved
into the proof of our main result (Theorem 5). They also illustrate Definition 6, Theorem 2,
and Fact 1 (it will be proved later).

First we consider graphs Chair andP shown inFig. 1.

Corollary 1 (Zverovich[9] ). (i) Ext(Chair)= FIS(G1,G2, . . . ,G7) (Fig. 2).
(ii) Ext(P )= FIS(H1, H2, . . . , H7) (Fig. 3).
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Fig. 1. Chair andP.
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Fig. 2. Ext(Chair)= FIS(G1,G2, . . . ,G7).

Proof. (i) Chair has exactly one homogeneous set, namelyW = {d, e} shownFig. 1. It
will be shown in Fact 1(i) that each extensionH of Chair contains a setY = {a, b, c, d, e}
inducing Chair and a reducing{d, e}-pseudopath(u1) with respect toH(Y).

By (R1) and symmetry, we may assume thatu1 is adjacent tod andu1 is non-adjacent
to e. Sincet = 1, (R4) implies that eitheru1 is non-adjacent toa or u1 is adjacent to at least
one ofb, c. As a result, we obtain seven graphs ofFig. 2.

(ii) P has exactly one homogeneous set, namelyW = {d, e} shown in seeFig. 1. Thus,
we may use the same arguments as in (i).�

We denote byK1 ∪ P3 a disjoint union ofK1 and the pathP3.

Corollary 2 (Zverovich[9] ). Ext(K1 ∪ P3)= {P5,Bull, A} (seeFig. 4).

Proof. We apply Fact 1(i) to the unique maximal homogeneous set ofK1 ∪ P3. As a
result, we obtain graphsP5, Bull, Chair andP. Corollary 1 implies that each extension of
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Fig. 3. Ext(P )= FIS(H1, H2, . . . , H7).

Fig. 4. Ext(K1 ∪ P3)= Ext(O3)= {P5,Bull, A}.

Chair orP either

• is isomorphic toA, or
• containsP5 or Bull as an induced subgraph,

seeFigs. 2and3. �

As usual,On is the edgeless graph of ordern.

Corollary 3 (Olariu [8] ). Ext(O3)= {P5,Bull, A} (seeFig. 4).

Proof. Applying Fact 1(i) to any homogeneous set ofO3 producesK1 ∪P3. Now the result
follows from Corollary 2 (Fig. 5). �

Corollary 4 (Brandstädt et al.[2] ). Ext(K1 ∪ P4)= {L1, L2, . . . , L9} (seeFig. 6).
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Fig. 5.K1 ∪ P4.

Fig. 6. Ext(K1 ∪ P4)= {L1, L2, . . . , L9}.

Fig. 7.O2 ∪K2.

Proof. We apply Fact 1 to the homogeneous set{a, b, c, d}. The statement (i) of Fact 1
produces graphsL1, L2, . . . , L8. The statement (ii) of Fact 1 producesL9 [if u2 satisfies
(R2b)] and a redundant graph [ifu2 satisfies (R2a)]. �

Now we consider graphO2 ∪K2 shown inFig. 7.
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Corollary 5. Ext(O2 ∪K2)= {G1,G2, . . . ,G7, L1, L3, L4} (Figs. 2and6).

Proof. We apply Fact 1(i) to the homogeneous set{c, d}. It gives Chair andK1 ∪P4. Now
the result follows from Corollary 1(i) and Corollary 4.�

4. Main results

We investigate the following problem: find conditions under which Ext(G) is a finite set. In
view ofTheorem 3 it is a key problem in finding forbidden induced subgraph characterization
of the substitutional closure of hereditary classes. For a graphG, let HomInd(G)={G(W) :
W is a homogeneous set ofG}. We solve the following problem.

Problem 2. Characterize lists L of graphs such thatExt(G) is finite for each graph G with
HomInd(G)= L.

The main result of Giakoumakis[5] is the following sufficient condition.

Theorem 4 (Giakoumakis[5] ). If every homogeneous set of G has exactly two vertices,
thenExt(G) is a finite set.

A graph issimpleif it is isomorphic to an induced subgraph [not necessarily proper] of
the pathP4. We generalize Theorem 4 as follows.

Theorem 5. If every homogeneous set of G induces a simple graph, thenExt(G) is a finite
set.

Proof. We choose a maximal homogeneous setW of G. We use notationP4 = (a, b, c, d)

to indicate thata and d are end-vertices of theP4, and b and c are mid-vertices of
theP4. �

Fact 1. Let W be a homogeneous set in G, and let H be an extension of G. If W induces
P2, P3, P 2, P 3, or P4 = (a, b, c, d), then either

(i) there exists a setY ⊆ V (H) that induces G, and H contains a reducing W-pseudopath
(u1) with respect toH(Y), or

(ii) W = {a, b, c, d} and there exists a setY ⊆ V (H) that induces G, and H
contains a reducing W-pseudopath(u1, u2) with respect toH(Y); moreover, N(u1) ∩
W = {b, c}.

Proof. LetX ⊆ V (H) be a set that inducesG in H. By Theorem 2, there exists a reducing
W-pseudopathR = (u1, u2, . . . , ut ) with respect toG=H(X) in H. We may assume that
t has the minimum value taken over all induced copies ofG in H and all corresponding
reducing pseudopaths.

By (R1),u1 ∼ w1 andu1 /∼ w2 for somew1, w2 ∈ W .
Case1:W = {a, b, c, d} andN(u1) ∩W = {b, c}.
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If t = 2, we have nothing to prove. Lett�3. If u2 satisfies (R2a) then the setW ′ =
{a, b, u1, u2} inducesP4. If u2 satisfies (R2b) then the setW ′ = {a, u2, c, u1} inducesP4.
As it follows from (R3), the setY = (X\W) ∪W ′ inducesG.

The condition (R2) implies thatR′ = (u3, u4, . . . , ut ) is a reducingW-pseudopath with
respect toG=H(Y) in H. SinceR′ is shorter thatR, we obtain a contradiction to minimality
of R.

Case2: The condition of Case 1 does not take place.
Suppose thatt�2. It is easy to see that there exists a vertexw ∈ W such that the set

Y = (X\{w2}) ∪ {u1} inducesG. Recall that according to (R3),u1 ∼ W+ andu1 /∼ W−,
sincet�2.

The condition (R2) implies thatR′ = (u2, u3, . . . , ut ) is a reducingW-pseudopath with
respect toG=H(Y) in H. SinceR′ is shorter thatR, we obtain a contradiction to minimality
of R. Thus,t = 1. �

We denote by Comp(G) the number of connected components of a graphG. We put

c(G)= max{Comp(G),Comp(G)},

whereG is the complement ofG.

Fact 2. If c(G)�3 thenExt(G) is a finite set.

Proof. Without loss of generality we may assume thatG is disconnected. Specifically,
G hasc�3 componentsG1,G2, . . . ,Gc. If c�4 thenG contains a homogeneous set
V (G1)∪V (G2)∪V (G3) which induces a non-simple graph, a contradiction. Thus,c= 3.

The homogeneous setV (Gi) ∪ V (Gj ), 1� i < j�3, must induce a simple graph. It is
clear thatGi,Gj ∈ {K1,K2} and thatG has at most one componentK2. Recall thatKn
denotes the complete graph of ordern. Thus,G is eitherO3 orO2 ∪K2.

By Corollary 3, Ext(O3) consists of three graphs. By Corollary 5, Ext(O2 ∪K2) consists
of ten graphs. �

In view of Fact 2, it remains to consider case wherec(G)�2.

Fact 3. Letc(G)�2, and let W be a maximal homogeneous set in G. If H is obtained from
G by adding a reducing W-pseudopathR = (u1, u2, . . . , ut ), thenc(H)= 1.

Proof. First we suppose thatG is a connected graph. By (R1a),u1 ∼ w1 ∈ W . By (R2),
each vertexui , i = 2,3, . . . , t , is adjacent to exactly one ofui−1, w1. This observation and
the connectedness ofG imply thatH is also a connected graph.

Let nowG be a connected graph. By (R1b),u1 /∼ w2 ∈ W . By (R2), each vertexui ,
i = 2,3, . . . , t , is adjacent to exactly one ofui−1, w2. HenceH is also a connected graph.
Thus, ifc(G)= 1 thenc(H)= 1.

Suppose thatG has two connected componentsG1 andG2. Clearly,W = V (Gi) for
i ∈ {1,2},W+ = ∅ andW− = V (Gj ), whereGj ∈ {G1,G2}\{Gi}.
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According to (R1a),u1 ∼ w1 ∈ W = V (Gi). As before, (R2) implies thatR ∪ V (Gi) is
in the same component ofH. SinceW+ = ∅, the condition (R4b) must hold, i.e.,ut ∼ y

for somey ∈ W− = V (Gj ). ThereforeH is a connected graph.
In a similar way we can prove that ifH is also a connected graph.�

Below c(G)�2 andH is a graph obtained fromG by adding a reducingW-pseudopath
R = (u1, u2, . . . , ut ).

Fact 4. If X is a maximal homogeneous set of H then eitherX ∩ R = ∅ or R ⊆ X.

Proof. If X ∩ R = ∅ then the proof is complete. Otherwise we can choose the minimum
i ∈ {1,2, . . . , t} such thatui ∈ X.

Case1:W ∩X �= ∅.
Letw ∈ W∩X.We choose the maximumj ∈ {i, i+1, . . . , t}such thatui, ui+1, . . . , uj ∈

X. Suppose thatj� t − 1. Condition (R2) implies thatuj+1 is adjacent to exactly one of
uj ,w. Sinceuj ,w ∈ X andX is a homogeneous set, we haveuj+1 ∈ X, a contradiction to
the choice ofj. Thusj = t andui, ui+1, . . . , ut ∈ X.

If i = 1 thenR ⊆ X and the proof is complete. Leti�2. By the choice ofi, u1 /∈X. The
vertexut satisfies either (R4a) or (R4b). By symmetry, we may assume that (R4a) holds,
i.e.,ut /∼ x for somex ∈ W+.

By the definition ofW+, w ∼ x. Sinceut , w ∈ X andX is a homogeneous set,x ∈ X.
According to (R3a),u1 ∼ x. Sincex ∈ X, u1 /∈X andu1 ∼ x, we haveu1 ∈ X+. By
(R1b),u1 /∼ w2 for somew2 ∈ W . Sinceu1 ∈ X+ andu1 /∼ w2, w2 /∈X. It follows
from w2 ∈ W andx ∈ W+ thatw2 ∼ x. Sincew2 /∈X, x ∈ X andw2 ∼ x, we obtain
w2 ∈ X+.

Now we choose the maximumk ∈ {1,2, . . . , i − 1} such thatu1, u2, . . . , uk ∈ X+.
Condition (R2) implies thatuk+1 is adjacent to exactly one ofuk,w2. Sincew2, uk ∈ X+,
uk+1 /∈X. By the choice ofk, uk+1 /∈X+. Henceuk+1 ∈ X−.

It is clear thatk + 1< i� t , i.e.,uk+1 �= ut . Condition (R3a) implies thatuk+1 ∼ W+.
In particular,uk+1 ∼ x. On the other hand,x ∈ X anduk+1 ∈ X−, so uk+1 /∼ x, a
contradiction.

Case2:W ∩X = ∅.
Subcase2(a).|X ∩ R|�2:
Let ui, uj ∈ X ∩ R, where 1� i < j� t . We choose the maximumk ∈ {j, j + 1, . . . , t}

such thatuj , uj+1, . . . , uk ∈ X. We show thatk = t .
Suppose thatk� t − 1. Condition (R2) implies thatuk+1 is adjacent to exactly one of

uk, ui ; recall thati < j�k. Since bothuk andui belong to a homogeneous setX,uk+1 ∈ X,
a contradiction. Thus,k = t andut = uk ∈ X.

As before, we shall assume that (R4a) holds [the case where (R4b) holds is similar].
Thenut /∼ x for somex ∈ W+. Condition (R3a) andx ∈ W+ imply thatui ∼ x. Since
ui, ut ∈ X, ui ∼ x andut /∼ x, we havex ∈ X.

Further,W ⊆ X+. Indeed,x ∼ W ,W ∩X=∅ andx ∈ X. According to (R1b),u1 /∼ w2
for somew2 ∈ W . Sincew2 ∈ W ⊆ X+ andu1 /∼ w2, u1 /∈X. In fact,u1 ∈ X+, since
u1 ∼ x andx ∈ X.
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We choose the maximuml ∈ {1,2, . . . , i − 1} such thatu1, u2, . . . , ul ∈ X+. It follows
from (R2) thatul+1 is adjacent to exactly one oful, w2. Sinceul, w2 ∈ X+, ul+1 /∈X.
Clearly,l + 1� i < j� t , i.e.,ul+1 �= ut .

By (R3a),ul+1 ∼ x ∈ W+. It follows from ul+1 /∈X, x ∈ X, andul+1 ∼ x that
ul+1 ∈ X+, a contradiction to the choice ofl.

Subcase2(b).X ∩ R = {ui}:
By the definition of homogeneous set,|X|�2. Hence there exists a vertexw ∈ X\{ui}.

According to the condition,W ∩X = ∅. Thereforew ∈ W+ ∪W−.
We shall assume thatw ∈ W+. The case wherew ∈ W− is similar. Sincew ∈ W+,

w ∼ W . It follows fromw ∈ X,X ∩W = ∅ andw ∼ W thatW ⊆ X+.
According to (R1b),u1 /∼ w2 for some vertexw2 ∈ W . Sincew2 ∈ W ⊆ X+ and

u1 /∼ w2, we haveu1 /∈X. We show thatu1 ∈ X+. By (R3a),u1 ∼ w ∈ W+ [since
1< i� t ]. But w ∈ X andu1 /∈X. Henceu1 ∈ X+.

Now we choose the maximumk ∈ {1,2, . . . , i − 1} such thatu1, u2, . . . , uk ∈ X+.
According to (R2), the vertexuk+1 is adjacent to exactly one ofuk,w2. Since bothuk and
w2 are inX+, uk+1 /∈X.

By (R3a),uk+1 ∼ w ∈ W+; recall thatk + 1< i� t . Sincew ∈ X, uk+1 ∼ w

anduk+1 /∈X, we haveuk+1 /∈X+. We obtain thatuk+1 ∈ X+, a contradiction to the
choice ofk. �

Fact 5. If X is a homogeneous set of H andR ⊆ X, thenY = X\R is a homogeneous set
of G withY ∩W �= ∅ andY ∩ (W+ ∪W−) �= ∅.

Proof. Note that the setY is a homogeneous set inG if and only if |Y |�2. So it is sufficient
to show thatY ∩W �= ∅ andY ∩ (W+ ∪W−) �= ∅.

First, lett�2. By (R1),u1 ∼ w1 andu1 /∼ w2 for some verticesw1, w2 ∈ W . It follows
from (R2) andu1 �= ut that eitherut ∼ {w1, w2} or ut /∼ {w1, w2}.

If ut ∼ {w1, w2} thenw2 ∈ X. Indeed,w2 /∈X+ [sincew2 /∼ u1 andu1 ∈ X] and
w2 /∈X− [sincew2 ∼ ut andut ∈ X]. Similarly, if ut /∼ {w1, w2} thenw1 ∈ X. Thus,
|X ∩ {w1, w2}|�1 and|Y ∩W |� |Y ∩ {w1, w2}|�1.

Further, we prove thatY ∩ (W+ ∪W−) �= ∅. If (R4a) holds thenut /∼ x for some vertex
x ∈ W+. By (R3a),u1 ∼ sx. Sinceut /∼ x andut ∈ X, x /∈X+. Sinceu1 ∼ x andu1 ∈ X,
x /∈X−. We havex ∈ X, or x ∈ Y ∩W+.

Similarly, if (R4b) holds then|Y ∩W−|�1.
It remains to consider the caset = 1. By the definition of a homogeneous set,|X|�2.

Hence there is a vertexw ∈ X ∩ V (G).
Case1:w ∈ W and (R4a) holds.
By (R4a),u1 = ut /∼ x for some vertexx ∈ W+. Butw ∈ W is adjacent tox ∈ W+.

Sincew, u1 ∈ X, we havex ∈ X. Thus,|Y ∩W+|�1 completing the proof,
Case2:w ∈ W and (R4b) holds.
By (R4b),u1 =ut ∼ y for some vertexy ∈ W+. Butw ∈ W is non-adjacent toy ∈ W−.

Sincew, u1 ∈ X, we havey ∈ X. Thus,|Y ∩W−|�1 and the proof is complete.
Case3:w ∈ W+.
By (R1b),u1 /∼ w2 for some vertexw2 ∈ W . It follows fromw ∈ W+ andw2 ∈ W that

w ∼ w2. Sincew, u1 ∈ X, u1 /∼ w2 andu ∼ w2, we havew2 ∈ X. Thus,|Y ∩W |�1.
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Case4:w ∈ W−.
By (R1a),u1 /∼ w1 for some vertexw1 ∈ W . It follows fromw ∈ W− andw1 ∈ W that

w /∼ w1. As before,w1 ∈ X. Thus,|Y ∩W |�1. �

Fact 6. If X is a maximal homogeneous set in H, thenX ∩R = ∅ and X is a homogeneous
set of G.

Proof. Suppose thatX ∩ R �= ∅. By Fact 4,R ⊆ X. We denoteY = X\R. By Fact 5,
Y is a homogeneous set inG with Y ∩ W �= ∅ andY ∩ (W+ ∪ W−) �= ∅. Let Y ′ be a
maximal homogeneous set inF that containsY. SinceY ∩ W �= ∅, Y ′ ∩ W �= ∅. Since
Y ∩ (W+ ∪W−) �= ∅, Y ′ �= W . We arrive to a contradiction to a result of Gallai[4] (see
also[7]) that if c(G)�2 then the maximal homogeneous sets ofG are disjoint. Note that
Gallai’s theorem is formulated forc(G)= 1, but the casec(G)= 2 is straightforward. �

According to Fact 6, all homogeneous sets inH are homogeneous sets ofG. Hence they
induce simple graphs.

In view of Theorem 5, it is not surprisingly that Ext(K1 ∪P4) is a finite set, see Corollary
4. Brandstädt et al.[2] proved that Ext(K1,3) is also a finite set [consisting of 12 graphs].
Note that the unique homogeneous set ofK1,3 inducesO3 which is not a simple graph.
Nevertheless we show that Theorem 5 is best possible in the following sense.

Theorem 6. For every non-simple graph F, there exist a graph G and a homogeneous set
W of G such that W induces a subgraph isomorphic to F andExt(G) is infinite.

Proof. We start with some simple observations.�

Fact 7. At least one of F orF has a cycle.

Proof. If both F andF are acyclic, thenF is a simple graph. Indeed, the class of simple
graphs is characterized byC3, C3 andC5 as minimal forbidden induced subgraphs.�

Without loss of generality we may assume thatF contains a cycleD. Let J be a graph in
Ext(F ) of minimum order. We construct a graphG as a disjoint union ofF and a cycleC
of order|V (J )| + 1.

Fact 8. C has at least five vertices.

Proof. By Fact 7, |V (F)|� |V (D)|�3. Hence|V (J )|�4 and C has |V (J )| + 1�5
vertices. �

We denoteW = V (F). Clearly,W is a homogeneous set ofG andW inducesF.

Fact 9. Every homogeneous set of G that does not containV (C) is a homogeneous set of F.

Proof. By Fact 8,V (C) has no homogeneous sets. SinceC is a component ofG, V (C)
cannot contain a vertex of a homogeneous set. Finally,V (G)\V (C)= V (F). �
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To show that Ext(G) is infinite, we shall construct a sequence of graphs

(Hj : j = 1,2, . . .) (1)

that will be shown to contain an infinite subsequence of pairwise distinct graphs from
Ext(G). First, we define graphsLi , i = 1,2, . . ., as follows:

• take disjoint copies ofJ, C and a pathPi = (v1, v2, . . . , vi),
• choose verticesx ∈ V (J ) andy ∈ V (C), and
• add edgesxv1 andviy.

By the construction and Fact 7, eachLj is a prime graph that containsG as an induced
subgraph. ThereforeLj contains some graphHj ∈ Ext(G) as an induced subgraph. We fix
Hj and include it into (1).

Fact 10. Hi contains C and a cycleD′ of order|V (D)| with V (D′) ⊆ V (J ).

Proof. The cycleC is the unique longest cycle in bothG andHi . SinceG is as an induced
subgraph ofHi , V (C) ⊆ V (Hi).

Further, no vertex in{v1, v2, . . . , vi} ∪ V (C) belongs to a cycle of orderV (D) in Li .
SinceG is as an induced subgraph ofHi andD is a cycle ofG,Hi must contain a cycleD′
of order|V (D)| andV (D′) ⊆ V (J ). �

SinceHi is a prime graph, it must be connected. Every path inLi that connectsC and
D′ contains all verticesv1, v2, . . . , vi . We have

|V (Hi)|� |V (D′)| + |V (C)| + i (2)

and

|V (Hi)|� |V (Li)| = |V (J )| + |V (C)| + i,

or

i� |V (Hi)| − |V (J )| − |V (C)|. (3)

Inequalities (2) and (3) imply that

|V (Hi+k)|� |V (Hi)| + k − (|V (J )| − |V (D)|). (4)

As it follows from (4),|V (Hi+k)|� |V (Hi)| + 1 if k= |V (J )| − |V (D)| + 1. Thus, we can
define an infinite subsequence of the sequence (1) puttingj = (|V (J )| − |V (D)| + 1)m for
m= 1,2, . . . . Since all graphs in this subsequence have different orders, they are pairwise
distinct.

Theorems 5 and 6 solve Problem 2 completely.
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