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Abstract

A setW C V(G) is calledhomogeneous a graphG if 2 << |W|<|V(G)| — 1, andN (x)\W =
N(y)\W for eachx, y € W.A graph without homogeneous sets is cafbeidhe A graphH is called a
(primal) extensiorof a graphG if Gis an induced subgraph bff andH is a prime graph. An extension
H of G is minimalif there are no extensions & in the set ISUbH)\{H}. We denote by EXG) the
set of all minimal extensions of a gragh

We investigate the following problem: find conditions under which(Bjtis a finite set. The main
result of Giakoumakis (Discrete Math. 177 (1997) 83-97) is the following sufficient condition.

Theorem. If every homogeneous set of G has exactly two verticesHRER) is a finite set.

We extend this result to a wider class of graphs. A graggnipleif it is isomorphic to an induced
subgraph of the pathy.

Theorem. If every homogeneous set of G induces a simple graphER&G) is a finite set.

We show that our result is best possible in the following sense. Specifically, we prove that for every
non-simple graptF there exist a grapls and a homogeneous sétof G such thatw induces a
subgraph isomorphic 6 and Ex{G) is infinite.
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1. Introduction

The neighborhoodof a vertexx € V(G) is the setNg(x) = N(x) of all vertices in
G that adjacent ta.

Definition 1. Let G andH be graphs. Aubstitution of H in G for a vertex € V(G) is the
graphG (v — H) consisting of disjoint union dfl andG — v with the additional edge-set
{xy:xeV(H),y € Ng(v)}.

Definition 2. For a class? of graphs, itsubstitutional closure?* consists of all graphs
that can be obtained frost by repeated substitutions, i.?} is generated by the following
rules:

(S1): 2 € #*, and
(S2): ifG, H € #* andv € V(G), thenG(v — H) € 2*.

Let ISub(G) be the set of all induced subgraphs of a gr&pfconsidered up to isomor-
phism]. A class of graph# is calledhereditaryif ISub(G) € £ for everyG € 2. For a set
of graphsZ, the class oZ-freegraphs consists of all grapssuch that ISulG) N Z = ¢.

Proposition 1. If 2 is a hereditary class the#* is also a hereditary class

Problem 1. For a hereditary class” given by a set Z of forbidden induced subgraimsl
a forbidden induced subgraph characterization of the substitutional clo%tire

De Simong3] and Bertolazzi et a[1] noted that Problem 1 is especially interesting in
the case wher#’ is a good class for the vertex packing problem, i.e., the weighted stability
number can be found in polynomial time for all graphsAnAlso, it is useful for the dom-
ination problem (Zverovicll0]) and for perfect graphs (Zverovich and Zverovj&H]).

We discuss the Reducing Pseudopath Method proposed by Zvel@iébr solving
Problem 1 for an arbitrary hereditary class. Note that implementation of this method is not
always straightforward.

Definition 3. A setW C V(G) is calledhomogeneouis a graphG if

(H1): 2<|WIL|V(G)| -1, and
(H2): N(x)\W =N(y)\W forall x,y e W.

According to (H2), a homogeneous $&tdefines a partitiortW U W+ U W~ = V(G)
such that

e every vertex ofVis adjacent to every vertex & ™ [notationW ~ W], and
e every vertex ofVis non-adjacent to every vertex B~ [notationW + W~].

By (H1), WH U W~ # ¢ for every homogeneous Sét
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Definition 4. A graph without homogeneous sets is calfgdne A graphH is called a
(primal) extensiorof a graphG if

(E1): Gis aninduced subgraph &f, and
(E2): His a prime graph.

Definition 5. An extensionH of G is minimal if there are no extensions @& in the set
ISub(H)\{H}. We denote by EX(G) the set of all minimal extensions of a gra@h

For a set of graphg we put

Ext(2) = | ] Ext(G),
GeZ

and we defin&Z? as the set of all minimal graphs in E&&) with respect to the partial order
‘to be an induced subgraph’. The following result is straightforward.

Theorem 1. If Z is the set of all minimal forbidden induced subgraphs for a hereditary
class? thenZ? is the set of all minimal forbidden induced subgraphs#8t.

2. Reducing pseudopaths

The notationt ~ y (respectivelyx + y) means thak andy are adjacent (respectively,
non-adjacent). For disjoint se¥sandyY, the notationX ~ Y (respectivelyX + Y) means
that every vertex oK is adjacent to (respectively, non-adjacent) to every vert&xlofcase
of X = {x} we also writex ~ Y andx + Y instead ofx} ~ Y and{x} + Y, respectively.

Here is the main definition of the Reducing Pseudopath Method.

Definition 6. Let G be an induced subgraph of a graghand letw be a homogeneous set
of G. We define aeducing W-pseudopaffwith respect to Gin H as a sequence

R=(u1,us, ...,u;), t=1,
of pairwise distinct vertices of (H)\V (G) satisfying the following conditions:

(R1): there exist vertices1, w2 € W such that
(R1a): uy ~ wy, and
(R1b): ug # wa,
(R2): foreach =2,3,...,¢, either
(R2a): u; ~ u;—1 andu; + W U {u1, u, ..., u;_2}, or
(R2b): u; + u;j—1 andu; ~ W U {u1,uz, ..., u;—2}
[wheni =2, {ug, uz, ..., ui_2} =0,
(R3): foreveryi=1,2,...,t — 1, both
(R3a): u; ~W*, and
(R3b): u; + W—,
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(R4): either
(R4a): u; + x for a vertexx € W+, or
(R4b): u; ~ y foravertexy e W—.

We shall use the following result.

Theorem 2 (Zverovich[9] ). Let H be an extension of its induced subgrapha@d let W
be a homogeneous set of G. Then there exists a reducing W-pseudopath with respect to any
induced copy of Gin H

Definition 7. We denote by# (G, W) the set of all graphs that are obtained from a graph
G and a homogeneous $#tof G by adding a reducing/-pseudopath.

A homogeneous set is calledaximalif it is not contained in any other homogeneous
set. We denote by Ho() the set of all maximal homogeneous sets in a gi@ph

Algorithm 1 (Graph Extension

Input: a graplG.

Output: a set Ext= Ext(G).

Step 0. Sefp = {G}, Ext=¢, andi = 0.
Stepi(i>=1).

o If S; = ¢ then delete from Ext all graphd such that there exists a graph <
ISub(H)\{H} in Ext, return Ext and Stop.
e If S; # ¢ then for every graplf € S; proceed as follows:
o if Hom(F) = ¢ then includeF into Ext,
o if Hom(F) # ¢ then choose a s&’ € Hom(F') and put intoS;1 all graphs of
H(F, W),
o seti =i + 1 and go to Step @ 1).

Theorem 3 (Zverovich[9]). If the setExt is finite, thenGraph Extension Algorithngson-
structs it in a finite number of steps

3. Some examples

Here we construct extensions for some graphs that are implicitly or explicitly involved
into the proof of our main result (Theorem 5). They also illustrate Definition 6, Theorem 2,
and Fact 1 (it will be proved later).

First we consider graphs Chair aRdhown inFig. 1

Corollary 1 (Zverovich[9]). (i) Ext(Chain = FIS(G1, G, ..., G7) (Fig. 2).
(i) Ext(P) = FIS(H, Ha, . .., H7) (Fig. 3).
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Fig. 1. Chair andP.
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Fig. 2. Ex{Chain) = FIS(G1, G, ..., G7).

Proof. (i) Chair has exactly one homogeneous set, naniély {d, e} shownFig. 1 It
will be shown in Fact 1(i) that each extensidof Chair contains a sét = {a, b, ¢, d, €}
inducing Chair and a reducing, e}-pseudopathiu1) with respect taH (Y).

By (R1) and symmetry, we may assume thats adjacent tal andu4 is non-adjacent
toe. Sincer =1, (R4) implies that either; is non-adjacent ta or 1 is adjacent to at least
one ofb, c. As a result, we obtain seven graphd-ig. 2

(ii) P has exactly one homogeneous set, nani@ly {d, ¢} shown in sed=ig. 1 Thus,
we may use the same arguments as in (i)l

We denote byK1 U P3 a disjoint union ofK; and the pathPs.
Corollary 2 (Zverovich[9]). Ext(K1 U P3) = {Ps, Bull, A} (seeFig. 4).

Proof. We apply Fact 1(i) to the unique maximal homogeneous se&kt) P3. As a
result, we obtain graphBs, Bull, Chair andP. Corollary 1 implies that each extension of
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Fig. 3. EX(P) = FIS(H1, Ho, ..., Hy).
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Fig. 4. EX{K1 U P3) = Ext(03) = {Ps, Bull, A}.

Chair orP either

e isisomorphic toA, or
e containsPs or Bull as an induced subgraph,

seeFigs. 2and3. O
As usual,0, is the edgeless graph of order
Corollary 3 (Olariu [8]). Ext(0O3) = {Ps, Bull, A} (seeFig. 4).

Proof. Applying Fact 1(i) to any homogeneous set®f producesk1 U P3. Now the result
follows from Corollary 2 Fig. 5. O

Corollary 4 (Brandstadt et al[2]). Ext(K1 U P4) ={L1, Lo, ..., Lo} (seeFig. 6).
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Fig. 5. K1 U Py.
Ly Ly L3
L4 L5 L6
°
Ly Lg Ly

Fig. 6. EX{K1 U Pg) ={L1, Lo, ..., Lo}.

Fig. 7.02 U K>.

Proof. We apply Fact 1 to the homogeneous g&etb, ¢, d}. The statement (i) of Fact 1
produces graphsgi, Lo, ..., Lg. The statement (ii) of Fact 1 produces [if u, satisfies
(R2b)] and a redundant graph i satisfies (R2a)]. [J

Now we consider grapl®, U K> shown inFig. 7.
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Corollary 5. Ext(O2 U K2) ={G1, Go, ..., G7, L1, L3, La} (Figs. 2and6).

Proof. We apply Fact 1(i) to the homogeneous &etd}. It gives Chair and; U P4. Now
the result follows from Corollary 1(i) and Corollary 41

4. Main results

We investigate the following problem: find conditions under which Bxtis a finite set. In
view of Theorem 3itis akey problem in finding forbidden induced subgraph characterization
of the substitutional closure of hereditary classes. For a gggapgt HomIind G) ={G (W) :
W is a homogeneous set 6f. We solve the following problem.

Problem 2. Characterize lists L of graphs such tHaxt(G) is finite for each graph G with
HomInd(G) = L.

The main result of Giakoumak]5] is the following sufficient condition.

Theorem 4 (Giakoumakig5]). If every homogeneous set of G has exactly two vertices
thenExt(G) is a finite set

A graph issimpleif it is isomorphic to an induced subgraph [not necessarily proper] of
the pathP4. We generalize Theorem 4 as follows.

Theorem 5. If every homogeneous set of G induces a simple gtiy@mExt(G) is a finite
set

Proof. We choose a maximal homogeneousWetdf G. We use notatioPs = (a, b, ¢, d)
to indicate thata and d are end-vertices of thé&s, andb and ¢ are mid-vertices of
the P4, O

Fact 1. Let W be a homogeneous set indhd let H be an extension of G. If W induces
P5, P3, Po, P3, 0r P4 = (a, b, c,d), then either

(i) there exists a sét C V (H) that induces Gand H contains a reducing W-pseudopath
(u1) with respect taH (Y), or

(i) W = {a,b,c,d} and there exists a sef < V(H) that induces Gand H
contains a reducing W-pseudopati, u2) with respect toH (Y); moreover N (u1) N
W = {b, c}.

Proof. Let X C V(H) be a set that inducésin H. By Theorem 2, there exists a reducing
W-pseudopattR = (u1, uo, ..., u;) with respect taG = H(X) in H. We may assume that
t has the minimum value taken over all induced copie§&ah H and all corresponding
reducing pseudopaths.

By (R1),u1 ~ w1 andui # wy for somewsy, wp € W.

Casel: W ={a, b,c,d} andN(uy)) "W = {b, c}.
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If + = 2, we have nothing to prove. Let> 3. If u, satisfies (R2a) then the sBt’ =
{a, b, u1, uz} inducesPy. If u, satisfies (R2b) then the s8t’ = {a, uz, c, u1} inducespPy.
As it follows from (R3), the se¥ = (X\W) U W’ inducesG.

The condition (R2) implies thakR’ = (u3, ug4, ..., u;) is a reducingNV-pseudopath with
respecttas = H (Y) in H. SinceR’ is shorter thaR, we obtain a contradiction to minimality
of R.

Case2: The condition of Case 1 does not take place.

Suppose that>2. It is easy to see that there exists a veriexs W such that the set
Y = (X\{w2)}) U {u1} inducesG. Recall that according to (R3)3 ~ W+ anduy + W—,
sincer > 2.

The condition (R2) implies thaR’ = (u, us, ..., u,) is a reducingV-pseudopath with
respecttas = H (Y) in H. SinceR’ is shorter thaR, we obtain a contradiction to minimality
of R Thusr=1. O

We denote by Com(gy) the number of connected components of a gr@pte put
c(G) = max{Comp(G), Comp(G)},
wheregG is the complement dB.
Fact 2. If ¢(G) >3 thenExt(G) is a finite set.

Proof. Without loss of generality we may assume tliais disconnected. Specifically,
G hasc>3 componentsG1, Go, ..., G.. If ¢>4 thenG contains a homogeneous set
V(G1) U V(G2) UV (G3) which induces a non-simple graph, a contradiction. Thas3.

The homogeneous s&i(G;) U V(G;), 1<i < j <3, must induce a simple graph. It is
clear thatG,, G; € {K1, K2} and thatG has at most one componekip. Recall thatk,
denotes the complete graph of oraehus,G is eitherO3 or O2 U Ko.

By Corollary 3, Ext O3) consists of three graphs. By Corollary 5, E2b U K») consists
of ten graphs. [J

In view of Fact 2, it remains to consider case whe(@) < 2.

Fact 3. Letc(G) <2, and let W be a maximal homogeneous set in G. If H is obtained from
G by adding a reducing W-pseudopah= (u1, ua, ..., u;), thenc(H) = 1.

Proof. First we suppose th&? is a connected graph. By (R1a), ~ wi; € W. By (R2),
eachvertex;,i =2,3,...,1t,Iis adjacent to exactly one of_1, wy. This observation and
the connectedness &fimply thatH is also a connected graph.

Let now G be a connected graph. By (R1ka), + wy € W. By (R2), each vertex;,
i=2,3,...,1,is adjacent to exactly one of_1, w,. HenceH is also a connected graph.
Thus, ifc(G) = 1 thenc(H) = 1.

Suppose thaG has two connected componer@g and G,. Clearly, W = V(G;) for
i€{l,2}, Wr=gandW~ =V (G,), whereG; € {G1, G2}\{G,}.
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According to (R1a)u1 ~ w1 € W = V(G;). As before, (R2) implies thak U V(G;) is
in the same component &f. SinceW™ = @, the condition (R4b) must hold, i.e;; ~ y
for somey e W~ = V(G). ThereforeH is a connected graph.

In a similar way we can prove thatH is also a connected graph(J

Below ¢(G) <2 andH is a graph obtained fror® by adding a reducingV-pseudopath
R = (ui,uo,...,u;).

Fact 4. If X is a maximal homogeneous set of H then eitien R =@ or R C X.

Proof. If X N R = ¢ then the proof is complete. Otherwise we can choose the minimum
ie{l,2...,t}suchthau; € X.

Casel: WN X # 0.

Letw e WNX.We choosethe maximuyne {i,i+1, ..., t}suchthaty;, u;y1,...,u; €
X. Suppose thaf <t — 1. Condition (R2) implies that;; is adjacent to exactly one of
uj, w. Sinceu;, w € X andXis a homogeneous set, we havg 1 € X, a contradiction to
the choice of. Thusj =t andu;, u;41, ..., u; € X.

If i =1thenR € X and the proof is complete. Lét: 2. By the choice of, u1 ¢ X. The
vertexu, satisfies either (R4a) or (R4b). By symmetry, we may assume that (R4a) holds,
i.e.,u, + x forsomex € W+,

By the definition of W+, w ~ x. Sinceu,, w € X andX is a homogeneous sat,c X.
According to (R3a)u; ~ x. Sincex € X, u1 ¢ X andui ~ x, we haveu; € X*. By
(R1b),u1 + wy for somew, € W. Sinceu; € X* anduy + wo, wy ¢ X. It follows
fromwy € W andx € W thatw, ~ x. Sincews ¢ X, x € X andw, ~ x, we obtain
wy e XT.

Now we choose the maximuim € {1,2,...,i — 1} such thatuy, up, ..., ux € Xt.
Condition (R2) implies that,_ 1 is adjacent to exactly one af,, wo. Sincewy, uy € X,
urr1 ¢ X. By the choice ok, u;1 ¢ X+. Henceuy,1 € X ™.

Itis clear thatk + 1 <i <t, i.e.,ux+1 # u;. Condition (R3a) implies that; 1 ~ W.
In particular,ux4+1 ~ x. On the other handy € X andug+1 € X, SOuxy1 # x, a
contradiction.

Case2:.WNX=4¢.

Subcase(a).| X N R| >2:

Letu;, u; € X N R, where I<i < j <tr. We choose the maximuine {j, j +1,...,1}
such that;, u;y1,...,u; € X. We show thak = 1.

Suppose that <t — 1. Condition (R2) implies thai; 1 is adjacent to exactly one of
uy, u;; recallthat < j <k. Since bothi; andu; belong to a homogeneous 3611 € X,

a contradiction. Thug =r andu; = u; € X.

As before, we shall assume that (R4a) holds [the case where (R4b) holds is similar].
Thenu, + x for somex € WT. Condition (R3a) and € W™ imply thatu; ~ x. Since
ui,u; € X, u; ~ x andu, + x, we havex € X.

Further,W € X*. Indeedx ~ W, WNX =@ andx € X.According to (R1b)u1 * w>
for somew, € W. Sincewp, € W € X+ andui + wp, u1 ¢ X. In fact,u; € X+, since
u1 ~ x andx € X.
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We choose the maximuine {1, 2, ..., i — 1} such thatsq, up, ..., u; € XT. It follows
from (R2) thatu,; is adjacent to exactly one af, wo. Sinceu;, wy € X, ujy1 ¢ X.
Clearly,l + 1<i < j<t,i.€.,uj41 # uy.

By (R3a),u;11 ~ x € WT. It follows from u;;1¢ X, x € X, andu;11 ~ x that
u;+1 € XT, a contradiction to the choice bf

Subcas(b). X N R = {u;}:

By the definition of homogeneous sgX,| > 2. Hence there exists a vertexe X\{u;}.
According to the conditionW N X = . Thereforew ¢ WT U W™.

We shall assume that ¢ W*. The case where € W~ is similar. Sincew ¢ W™,
w ~ W. ltfollows fromw € X, XN W =¢ andw ~ W thatW € XT.

According to (R1b)u1 + wy for some vertexw, € W. Sincew, € W € X* and
ui * wp, we haveus ¢ X. We show thatu; € X*. By (R3a),u; ~ w € W [since
1<i<t].Butw € X anduy ¢ X. Henceuy € X*.

Now we choose the maximum € {1,2,...,i — 1} such thatuy, up, ..., u;y € X*.
According to (R2), the verte; 1 is adjacent to exactly one af;,, w». Since both:; and
woare inX™+, up 1 ¢ X.

By (R3a),urr1 ~ w € WT; recall thatk + 1<i<t. Sincew € X, ug11 ~ w
anduyy1¢ X, we haveu, 1 ¢ X*. We obtain that, 1 € X, a contradiction to the
choice ofk. [

Fact 5. If X is a homogeneous set of H aRdC X, thenY = X\ R is a homogeneous set
of GwithY N W # @andY N (WHUW™) # 0.

Proof. Note that the sétis a homogeneous set@if and only if | Y| > 2. So it is sufficient
toshowthatt N W £ @andY N(WT U W™) #£ 4.

First, letr >2. By (R1),u1 ~ w1 anduj + wy for some verticesy, wp € W. It follows
from (R2) anduy # u, that eithem; ~ {w1, wa} oru, + {wy, wo}.

If u, ~ {wy, wp} thenw, € X. Indeed,wy ¢ X [sincew, + u1 andu; € X] and
wp ¢ X~ [sincewz ~ u; andu, € X]. Similarly, if u; # {w1, wz} thenws € X. Thus,
1X N{wg, wal|=1andlY N W|=]Y N{w1, wa}| >1.

Further, we prove that N (WU W™) # @. If (R4a) holds them, + x for some vertex
x € Wt.By (R3a)u1 ~ sx. Sinceu, + x andu; € X,x ¢ X*. Sinceu; ~ x anduy € X,
x¢ X .Wehavex € X,orx e YNWT,

Similarly, if (R4b) holds theny N W—|>1.

It remains to consider the case= 1. By the definition of a homogeneous séf) > 2.
Hence there is a vertax € X N V(G).

Casel: w € W and (R4a) holds.

By (R4a),u1 = u,; + x for some vertexx € W+. Butw € W is adjacent toc € W+.
Sincew, u1 € X, we havex € X. Thus,|Y N W*|>1 completing the proof,

Case2: w € W and (R4b) holds.

By (R4b),u1 =u, ~ y forsome vertexy € W*. Butw € W is non-adjacentty € W~.
Sincew, u1 € X, we havey € X. Thus,|Y N W~| >1 and the proof is complete.

Case3:w € W+,

By (R1b),u; + wy for some vertexw, € W. It follows fromw € W+ andw;, € W that
w ~ wy. Sincew, u1 € X, ug # wz andu ~ wy, we havew, € X. Thus,|Y N W|>1.
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Cased:w e W™
By (R1a),u1 # w1 for some vertexw; € W. It follows fromw € W~ andw, € W that
w 7+ wi. As beforews € X. Thus,|lY N W|>1. O

Fact 6. If X is a maximal homogeneous set intHenX N R =@ and X is a homogeneous
set of G

Proof. Suppose thak N R # @. By Fact 4,R € X. We denoteY = X\R. By Fact 5,
Y is a homogeneous set@®@with Y N W £ @andY N (WT U W™) # @. LetY’ be a
maximal homogeneous set hthat containg’. SinceY N W # @, Y N W # . Since
YN(Wtuw™) £0,Y # W.We arrive to a contradiction to a result of Gall4] (see
also[7]) that if ¢(G) > 2 then the maximal homogeneous set&dadre disjoint. Note that
Gallai’s theorem is formulated fef{G) = 1, but the case(G) = 2 is straightforward. [

According to Fact 6, all homogeneous setsliare homogeneous sets®f Hence they
induce simple graphs.

In view of Theorem 5, it is not surprisingly that ExXf; U Py) is a finite set, see Corollary
4. Brandstadt et a[2] proved that ExtK1 3) is also a finite set [consisting of 12 graphs].

Note that the uniqgue homogeneous seKafs inducesOz which is not a simple graph.
Nevertheless we show that Theorem 5 is best possible in the following sense.

Theorem 6. For every non-simple graph,fhere exist a graph G and a homogeneous set
W of G such that W induces a subgraph isomorphic to FEaxidG) is infinite

Proof. We start with some simple observationd.]
Fact 7. At least one of F oF has a cycle

Proof. If both F andF are acyclic, theri is a simple graph. Indeed, the class of simple
graphs is characterized I35, C3 andCs as minimal forbidden induced subgraph£.]

Without loss of generality we may assume tRatontains a cycl®. LetJ be a graph in
Ext(F) of minimum order. We construct a graghas a disjoint union oF and a cycleC
of order|V(J)| + 1.

Fact 8. C has at least five vertices

Proof. By Fact 7,|V(F)|>|V(D)|>3. Hence|V(J)|>4 andC has|V(J)| + 1>5
vertices. [J

We denoteV = V (F). Clearly,Wis a homogeneous set @fandW inducesF.
Fact 9. Every homogeneous set of G that does not coritai) is a homogeneous set of F

Proof. By Fact 8,V (C) has no homogeneous sets. Si@es a component o6, V (C)
cannot contain a vertex of a homogeneous set. Finalig)\VvV(C) = V(F). O
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To show that EXtG) is infinite, we shall construct a sequence of graphs
(Hi:j=12..) Q)

that will be shown to contain an infinite subsequence of pairwise distinct graphs from
Ext(G). First, we define graphs;,i =1, 2, ..., as follows:

o take disjoint copies aJ, C and a pathP; = (v1, v2, ..., v;),
e choose vertices € V(J) andy € V(C), and
e add edgeswvi andv;y.

By the construction and Fact 7, eath is a prime graph that contairis as an induced
subgraph. Therefore; contains some grapH; e Ext(G) as an induced subgraph. We fix
H; and include it into (1).
Fact 10. H; contains C and a cycl®’ of order|V (D)| with V(D) C V (J).
Proof. The cycleC is the unique longest cycle in bothand H;. SinceG is as an induced
subgraph ofH;, V(C) C V(H;).

Further, no vertex iffv1, vz, ..., v;} U V(C) belongs to a cycle of ordér (D) in L;.
SinceG is as an induced subgraph &f andD is a cycle ofG, H; must contain a cycl®’
of order|V(D)| andV (D) C V(J). O

SinceH; is a prime graph, it must be connected. Every path;ithat connect€ and
D’ contains all verticess, vy, ..., v;. We have

|V(H)| = [V(D) +|V(O)| +i 2
and

IVHDISIVL)I= VDI + VO] +1,
or

iZ|V(H)| = V(D] = V(O] 3)
Inequalities (2) and (3) imply that

\V(Hii)| 21V H)| + k= (V)] = V(D)D. (4)
As it follows from (4),|V (H; )| = |V (H)| + 1if k= |V (J)| — |V(D)| + 1. Thus, we can
define an infinite subsequence of the sequence (1) pyttagV (J)| — |V (D)| + Lym for
m=1,2,....Since all graphs in this subsequence have different orders, they are pairwise

distinct.
Theorems 5 and 6 solve Problem 2 completely.
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