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Abstract

George Dantzig created the simplex algorithm for linear programming, perhaps the most important algorithm developed in the
20th century. This paper traces a single historical thread: Dantzig’s work on linear programming and its application and extension
to combinatorial optimization, and the investigations it has stimulated about the performance of the simplex algorithm and the
intrinsic complexity of linear programming and combinatorial optimization.
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1. Dantzig’s great contributions

George Dantzig will go down in history as one of the founders and chief contributors to the field of mathematical
programming, and as the creator of the simplex algorithm for linear programming, perhaps the most important
algorithm developed in the 20th century.

Dantzig’s formulation of linear programming as a broadly applicable tool for solving planning problems grew
out of his experience as a practical program planner for the US Air Force during and after World War II, and his
recognition that computers were emerging as a tool with vast potential for solving problems of planning and resource
allocation. The following quote illuminates Dantzig’s perspective on this work.

“Linear programming can be viewed as part of a great revolutionary development which has given mankind the
ability to state general goals and to lay out a path of detailed decisions to take in order to ‘best’ achieve its goals when
faced with practical situations of great complexity. Our tools for doing this are ways to formulate real-world problems
in detailed mathematical terms (models), techniques for solving these models (algorithms), and engines for executing
the steps of algorithms (computers and software).”

The noted combinatorial mathematician Alexander Schrijver has stated that “Linear programming forms the hinge
in the history of combinatorial optimization”. Indeed, many combinatorial optimization problems can be solved by
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representing them as linear programming problems, although formulating the right system of linear constraints to
achieve this representation can be a very subtle matter. Dantzig’s early work paved the way for this powerful approach
to combinatorial optimization. Although the field of combinatorial optimization has branched out in many directions,
including efficient algorithms for problems with special structure, cutting-plane methods, branch-and-cut methods,
NP-completeness, approximation algorithms for NP-hard optimization problems, and theoretical results on hardness
of approximation, the structure of the entire field was established by Dantzig and the generation of superb researchers
who developed the foundations of linear and nonlinear programming and network flow theory in the 1950s and early
1960s at research centers such as the Rand Corporation, Princeton University, the National Bureau of Standards and
IBM Research. My own lifelong interest in this field began with the opportunity to meet such giants as Dantzig,
Merrill Flood, Ray Fulkerson, Ralph Gomory, Alan Hoffman, Harold Kuhn and Albert Tucker at an IBM symposium
in 1959, near the beginning of my research career.

This paper follows a single historical thread: Dantzig’s work on linear programming and its application and
extension to combinatorial optimization, and the investigations it has stimulated about the performance of the simplex
algorithm, the intrinsic complexity of linear programming and combinatorial optimization, and the relevance of worst-
case performance as a measure of algorithmic efficiency.

For an overview of Dantzig’s achievements in mathematical programming up to 1963 the reader is referred to his
classic text “Linear Programming and Extensions” [18]. For a more rounded account of Dantzig’s contributions to
areas such as large-scale linear programming, economic modeling, linear programming under uncertainty, nonlinear
programming and complementarity problems see “The Basic George B. Dantzig”, Richard Cottle’s excellent
collection of selected papers by Dantzig [14].

2. Linear programming, the simplex algorithm and combinatorial optimization

Linear programming is the problem of minimizing a linear function subject to linear inequality constraints. It
can be stated algebraically as follows: Minimize c · x subject to Ax ≥ b and x ≥ 0. The data for the problem
consists of the n × d matrix A, the d-vector c and the n-vector b. The components of the d-vector x are the decision
variables of the problem. In planning problems the variables typically represent the amount of various items produced
or consumed and the linear inequalities represent constraints on the production or consumption processes, but, in the
diverse applications of linear programming, many other interpretations of the variables and constraints may arise.

Associated with every linear program is a dual linear program. The dual of the linear program min c · x subject to
Ax ≥ b and x ≥ 0 is the linear program max u · b subject to u′ A ≤ c and u ≥ 0. The duality theorem, which Dantzig
first heard of in a famous discussion with John von Neumann, states, among other things, that if a linear program and
its dual both have feasible solutions then both have optimal solutions, and the minimum value of c · x is equal to the
maximum value of u · b.

Geometrically, the linear programming problem is to find the furthest point in a given direction on a convex
polyhedron (the intersection of a finite number of half-spaces). If the polyhedron is nonempty and bounded then
an optimal solution exists and occurs at a vertex (extreme point) of the polyhedron. Starting at an initial extreme point
the simplex algorithm follows edges of the polyhedron, always moving in the desired direction, until an extreme point
is reached where no edge allows progress in the desired direction. Subject to a certain nondegeneracy condition, such
an extreme point provides an optimal solution. Each transition along an edge is called a pivot step. If an initial extreme
point is not available then one can be found by a so-called Phase I procedure which introduces additional variables to
create an artificial linear programming instance in which an initial extreme point is available and an optimal solution,
which can be found by the simplex method itself, yields the desired initial extreme point for the original problem. The
simplex method uses the Phase I procedure to find an extreme point of the polyhedron, followed by additional pivot
steps to find an optimal extreme point.

The simplex algorithm is possibly the most important algorithmic development of the 20th century. Several refined
modeling languages and software implementations of different variants of the simplex algorithm are widely used, and
they are consistently efficient in solving problems with tens of thousands or more of variables and constraints. The
simplex algorithm poses a dilemma to the theory of computation because, in contrast to its superb performance in
practice, pathological families of examples have been constructed showing that several of the principal variants of the
simplex algorithm can be made to run for an exponential number of steps. Thus the immensely successful algorithm
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on which the entire field of mathematical programming is based lacks a pedigree according to the main yardsticks of
the theory of computation, which measure an algorithm by its worst-case performance.

George Dantzig’s approach to optimization problems was fundamentally pragmatic. Despite the pathological
examples he knew that the simplex algorithm was an incomparably effective tool, and he bent his energies to
modeling real applications, producing improved software tools, and developing algorithms for special cases of linear
programming and extensions to integer, nonlinear and stochastic programming.

In this paper we describe some of the efforts of workers in the theory of computation to explain the success
of the simplex algorithm and explore the intrinsic complexity of linear programming. We will describe work on
the probabilistic analysis of versions of the simplex algorithm. We will present a very recent result showing that an
algorithm closely resembling the simplex algorithm solves the linear programming problem in randomized polynomial
time. We will also describe a recent attempt to develop a variant of the simplex algorithm which is strongly polynomial
– i.e., terminating within a number of steps bounded by a polynomial in n and d. Although Dantzig’s orientation was
deeply practical, he had a strong interest in these lines of theoretical investigation and made some effort to contribute
to them. We will also describe some linear programming algorithms that provably run in deterministic polynomial
time: the ellipsoid algorithm, which is primarily of theoretical interest, and the interior-point methods, which are
worthy competitors with the simplex algorithm in practice.

Integer programming is the problem of minimizing a linear function subject to linear constraints, with the additional
requirement that the decision variables be integer-valued. As we shall describe, Dantzig was among the first to
recognize the universal character of integer programming as a format for describing combinatorial problems. We will
describe his pioneering work showing that certain integer programming problems are solvable by linear programming,
since the integrality constraints will automatically be satisfied, as well as his early work on cutting-plane methods,
in which integer programming problems are solved by introducing linear constraints to eliminate fractional solutions.
We will go on to describe a major theme in combinatorial optimization, in which a problem which seems to require
integer programming can be formulated as a linear program by implicitly considering a possibly exponential number
of linear constraints inherent in the combinatorial structure of the problem, and obtaining solutions via the primal–dual
method, a simplex variant due to Dantzig, Ford and Fulkerson.

3. The theoretical efficiency of variants of the simplex method

From a practical point of view the efficiency of the simplex method is beyond doubt. The most efficient simplex
codes, such as CPLEX, typically solve linear programs with tens of thousands of variables and constraints, or more, in
a few minutes, with a number of pivot steps that is roughly linear in min(d, n), where d is the number of variables and
n is the number of constraints. On the other hand, for several of the common pivot rules, families of instances have
been constructed for which the number of pivot steps grows exponentially with min(d, n). Thus, from the point of view
of worst-case performance, these variants of the simplex algorithm are not efficient. The first of these constructions
was due to Klee and Minty [35] and a unified approach to constructing such families of examples is given in [8]. If
a randomized pivot rule is allowed then the situation is a bit more favorable: A randomized pivot rule for which the
expected number of pivots is nO(d) is given in [29].

Despite these negative results there have been many attempts to establish favorable theoretical properties of
some version of the simplex algorithm. The three principal directions have been probabilistic analysis, randomized
algorithms and the (thus far unsuccessful) search for a strongly polynomial variant.

3.1. Probabilistic analysis

Borgwardt [11,12], Smale [41] and Megiddo [38] showed that, for certain simplex variants, the expected number
of pivot steps is bounded by a polynomial in n and d when the instances are drawn from a spherically symmetric
distribution. Haimovich [27] and Adler [1] initiated a line of research, further refined in [44,6,5] showing that, for any
constraint matrix A, the expected number of pivot steps for a parametric simplex algorithm is bounded above by a
quadratic function of n and d when the directions of the inequalities are chosen at random. However, it is not clear
that results proved under the assumptions of spherical symmetry or random directions for the inequalities have much
power to explain the performance of the simplex algorithm on real-life instances.
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3.2. Smoothed analysis

Recently the concept of smoothed analysis of algorithms was introduced and applied to linear programming in [42],
giving a somewhat more satisfying insight into the favorable performance of the simplex algorithm. The paper [42]
considers a two-phase simplex algorithm based on a shadow vertex pivot rule. The shadow vertex algorithm is defined
as follows. Suppose we are given a vertex x∗ of the polyhedron Q = {x |Ax ≥ b}. Let t be a d-vector such that x∗ is
an optimal solution of the linear program min t · x subject to x ∈ Q. Define the (c, t)-shadow S of the polyhedron Q
as the projection of Q onto the two-dimensional space spanned by the vectors t and c. Let xopt be an optimal extreme
point solution of: min c · x such that x ∈ Q. The boundary of the shadow S contains a path from the image of x∗ to the
image of xopt, and the shadow vertex algorithm passes through the preimages in Q of the vertices along this path in S.
This path along the edges of Q can be computed by suitable pivot steps without explicitly constructing the polygon S.
The two-phase shadow vertex algorithm applies this method first to a Phase I linear program using artificial variables
to obtain a vertex of Q, and then to the polyhedron Q.

The main result of [42] states that if we take any linear programming instance min c · x subject to Ax ≥ b with
d variables and n constraints, and then perturb each entry of A and b independently by adding a Gaussian random
variable of mean 0 and standard deviation σ L , where ai is the i th row of Ā, bi is the i th component of b, and L is
the maximum Euclidean length of any vector (ai , bi ), then the expected number of pivot steps required to solve the
resulting perturbed linear program will be bounded by a certain polynomial P(n, d, 1

σ
).

The implications of this result are clearest for applications in which the data arise from some measurement or
estimation process and are inherently noisy; in such cases one may think of the estimation process as inherently
providing the required random perturbation of the true values of the data. Even there, it is troubling that the standard
deviation of the perturbations needs to be large to ensure a reasonable running time, and is the same for all elements
A and b, whether they are large or small. Moreover, the analysis has little meaning in the applications of linear
programming to combinatorial problems, where A may contain a zero-one submatrix representing a discrete structure
such as the node-arc incidence matrix of a graph; small perturbations of the matrix in such cases may destroy the
meaning of the linear programming model. It would be of interest to extend the theorem to perturbations that alter
some of the data while leaving the combinatorial structure unchanged.

3.3. A randomized polynomial-time simplex-like algorithm

The paper [33] gives a randomized polynomial-time algorithm based on simplex-like pivot steps which, on any
linear programing instance possessing an optimal solution, produces an optimal solution with probability at least 3/4.
We shall give a brief sketch of this algorithm, neglecting several essential technical details.

The algorithm is based on a reduction from the linear programming problem to the problem of determining whether
a polytope defined by linear inequalities is bounded, together with the use of the shadow-vertex simplex method to
test boundedness in polynomial time (with high probability).

The linear program is in the form: Maximize c · x subject to Ax ≤ b.
Assuming that this program and its dual are both feasible and bounded, x and y are optimal solutions for the primal

and dual respectively if and only if they satisfy the following system of inequalities and equalities:

Ax ≤ b, AT y = c, y ≥ 0 and c · x = b · y.

In polynomial time one can construct matrices A1 and A2 such that the following are equivalent:

(i) The linear program is feasible;
(ii) The zero vector is in the convex hull of the rows of A1;

(iii) The zero vector is in the interior of the convex hull of the rows of A2;
(iv) The polytope {w|A2w ≤ b1} is bounded, where b1 is an arbitrary positive vector.

A1 is constructed from the linear program by simple transformations: replacing each variable by the difference of
two nonnegative variables, introducing slack variables and rescaling, producing the homogeneous system A1z = 0,
z ≥ 0, z 6= 0, whose feasibility is equivalent to (ii). A2 is constructed from A1 by applying a small perturbation
to avoid the degenerate case in which the zero vector is on the boundary of the convex hull of the rows of A1. The
equivalence of (iii) and (iv) is a generic property, holding for any matrix A2.
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One can prove (iv) by exhibiting vertices that maximize and minimize some linear objective function. Moreover,
from these vertices one can backtrace in polynomial time through the constructions of A2 and A1 to obtain an optimal
solution to the original linear program.

To prove (iv), the algorithm picks a random positive vector b1 and a random linear objective function d · z and
runs the shadow-vertex algorithm, over a 2-dimensional subspace containing d, for a polynomial-bounded number
of steps. It can be shown that, with probability at least 1/2, the algorithm will either find vertices maximizing and
minimizing d · z, thus proving (iv), or will reach a vertex of large norm. In the latter case, the right-hand side b1 is
suitably modified and the shadow-vertex algorithm is repeated. It can be shown that, with high probability, a proof of
(iv) will be obtained within polynomially many iterations if (iv) holds.

This algorithm runs in time polynomial in the number of bits needed to specify the linear program, but not in
strongly polynomial time.

3.4. Towards a strongly polynomial simplex algorithm

Computational complexity theorists define a polynomial-time algorithm as one in which the number of steps to
solve any instance is bounded by a polynomial function of the number of bits needed to represent the instance. An
algorithm is called strongly polynomial if its input is an array of rational numbers, the only operations allowed are
arithmetic operations and comparisons, the number of steps required to solve any instance is a polynomial function of
the dimension of the array, and the lengths in bits of all intermediate results are polynomial in the length of the input.
For example, the Gaussian elimination algorithm for inverting a n×n matrix is strongly polynomial, because the input
contains n2 numbers and the number of operations is O(n3). A strongly polynomial algorithm for the minimum-cost
flow problem, a special case of the linear programming problem, is given in [43].

While practical implementations of the simplex algorithm may involve many details of finite precision and
numerical roundoff, it is attractive to take a more algebraic view in which the input consists of rational numbers
and the algorithm is restricted to exact arithmetic operations and comparisons. Moreover, if one could show in
this algebraic framework that some simplex variant was strongly polynomial, it would not be difficult to transfer
the analysis to a finite precision model, yielding a polynomial-time algorithm. For this reason, Dantzig and others
expended considerable effort on trying to find a strongly polynomial variant of the simplex algorithm. To achieve this
it would be sufficient to find a variant in which the number of pivot steps is bounded by a polynomial in n.

3.4.1. The Hirsch conjecture and abstract polytopes
Consider the simplex algorithm in the case where the feasible set Q = {x |Ax ≥ b, x ≥ 0} is a bounded polyhedron

in d-space defined by n + d constraints, and an initial vertex v is given. To solve this instance the simplex algorithm
must perform pivots corresponding to the successive edges along a path from the start vertex to the optimal vertex, and
the number of pivots will be the length of this path. Define the diameter of a bounded polyhedron as the maximum,
over all pairs (s, t) of vertices, of the minimum number of edges in a path from s to t . Then there cannot exist a pivot
rule yielding a strongly polynomial algorithm unless the diameter of any bounded polyhedron is no greater than some
polynomial-bounded function of n and d .

The well-known Hirsch conjecture [18] states that a bounded polyhedron in Rd defined by n constraints has
diameter at most n − d . This conjecture remains open, and the best upper bound on diameter currently known is
nlog2 d+2, due to Kalai and Kleitman [30].

Dantzig’s keen interest in the Hirsch conjecture led to his formulation of the concept of an abstract polytope and
his investigation of this concept with Ilan Adler, one of his first Ph.D. students at Stanford [2,3]. An abstract polytope
is defined by a universe of n + d elements and a graph in which each vertex is labeled with a distinct set of d elements
from the universe, such that:

1. If two vertices are adjacent then the intersection of their label sets has cardinality d − 1;
2. If two vertices have label sets S and T then they are joined by a path in which the label set of each vertex is a subset

of S ∪ T .

Under a nondegeneracy assumption we can associate an abstract polytope with a bounded polyhedron Q =

{x |Ax ≥ b, x ≥ 0} where A is n × d . The graph of the abstract polytope is the graph determined by the vertices
and edges of Q, the universe is the set of n +d linear inequalities, and the label of each vertex is the set of inequalities
that hold as equalities at that vertex.
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Since every nondegenerate inequality system determines an abstract polytope, an upper bound on the diameter of
the graph of an abstract polytope would imply the same upper bound on the diameter of a polytope. However, although
they established many interesting properties of abstract polytopes, Adler and Dantzig did not succeed in establishing
an upper bound on diameter that was polynomial in n and d.

3.4.2. Achieving polynomial diameter
Koltun [36] suggested an approach that gets around the potential difficulty that the diameter may not be polynomial-

bounded. The approach considers the feasibility problem of testing whether a system Ax ≥ b of n linear inequalities
in d nonnegative variables has a solution. A strongly polynomial algorithm for the feasibility problem would imply a
strongly polynomial algorithm for the optimization version of the problem.

Koltun’s arrangement method transforms a linear programming feasibility instance with d variables and n
constraints to an optimization instance with d + 1 variables and n constraints on a bounded polyhedron with diameter
at most d(n − 2d + 1), thus eliminating the potential obstacle of super-polynomial diameter.

Koltun’s original construction is rather elaborate. Two recent working papers achieve the same properties with more
natural constructions. Hazan and Megiddo [28] consider the standard “Phase I” technique of recasting the feasibility
problem as an optimization problem: Minimize eT s subject to Ax +s ≥ b, s ≥ 0, where e is a vector of 1’s. Adler and
Koltun [4] take the feasibility problem in the form Ax = b, x ≥ 0 and recast it as the following optimization problem:
Minimize eT x− subject to Ax+

− Ax−
= b, x+

≥ 0, x−
≥ 0. In each case, the authors show that the polyhedron in

their optimization problem has a polynomial-bounded diameter.
These results imply that the solution of a linear programming feasibility problem is polynomial-time reducible

to the solution of a linear programming optimization problem on a polytope with polynomial-bounded diameter.
Although these results remove the obstacle of a potentially superpolynomial-size diameter, they leave open the
challenge of finding a strongly polynomial version of the simplex algorithm.

4. Linear programming lies in P

The efficiency of several different variants of the simplex method, contrasted with their exponential running time on
artificially constructed instances, stimulated great interest in the question of whether the linear programming problem
is solvable in polynomial time by a deterministic algorithm. This question was resolved affirmatively by Khachiyan
in 1979 [34].

4.1. Linear programming lies in N P ∩ co − N P

Until Khaciyan proved his result the linear programming feasibility problem had an anomalous status from the
point of view of computational complexity theory because it lay in the intersection of the complexity classes NP and
co − N P and yet was not known to lie in P . To explain this further, let us recall some of the concepts of complexity
theory. A (decision) problem is defined as a subset L of {0, 1}

∗, the set of finite strings over the alphabet {0, 1}. For
example, the problem of recognizing composite numbers is defined as the set of binary representations of composite
numbers. A problem L lies in P if there is a deterministic polynomial-time algorithm for recognizing the strings in
L . L lies in NP (nondeterministic polynomial time) if there is a polynomial-time verification algorithm which accepts
pairs (x, w), where x is a string and w is a string of length polynomial in the length of x , such that the following
property holds: a string x lies in L if and only if there exists a string w such that the polynomial-time verifier accepts
(x, w). For example, if L is the set of binary representations of composite numbers, then string x lies in L if and
only if there is a string w such that the number represented by w is a proper divisor of the number represented by
x . Since this property of the pair (x, w) can be checked in polynomial time, the set of composite numbers lies in
NP. The central problem of complexity theory is whether P = N P . Finally, L lies in co − N P if and only if the
complementary set {0, 1}

∗
− L lies in NP.

It is immediate that P is contained in N P ∩ co − N P . Complexity researchers tend to conjecture that P is a proper
subset of N P ∩ co − N P , although no proof is known, and a proof would settle in the negative the open question
of whether P = N P . However, very few natural examples are known of problems that lie in N P ∩ co − N P , but
have not been shown to lie in P . For some time the most prominent candidates were the linear programming feasibilty
problem and the problem of deciding whether a number is prime, which was proven to lie in P in 2002 [7].
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We can define the linear programming feasibility problem as the set of pairs (A, b) such that Ax = b has a
nonnegative solution (the use of equalities instead of inequalities in the presence of nonnegativity constraints does not
affect the complexity of the problem). The fact that this problem lies in both NP and co− N P follows from the Farkas
lemma, which states that, for any m × n matrix A and m-vector b, exactly one of the following holds:

1. There exists a nonnegative vector x such that Ax = b;
2. There exists a vector p such that p′ A ≥ 0 and p′b < 0.

Moreover, the length of the binary representation of x in case (1) and p in case (2) is bounded by a polynomial in the
length of the binary encoding of the pair (A, b). Thus the Farkas lemma implies that this problem lies in both NP,
with x as a witness of feasibility, and in co − N P , with p as a witness of infeasibility.

4.2. The ellipsoid algorithm

Although it was strongly suspected that linear programming feasibility lies in P , no proof was known until 1979,
when Khaciyan presented his ellipsoid algorithm. An ellipsoid in Rd is the image of the unit ball under a positive
definite linear transformation. Algebraically, it is defined as the set of points in Rd satisfying (x − z)′ D−1(x − z) ≤ 1,
where D is a positive definite d × d matrix and the point z is called the center of the ellipsoid.The algorithm is based
on the geometric fact that, in Rd , if E is an ellipsoid and H is a halfspace with the center of the ellipsoid on its
boundary, then E ∩ H is contained in an ellipsoid F such that vol(F) ≤ exp( −1

2d+1 )V ol(E), and a specification of F
can be computed efficiently from a specification of E .

Now suppose we wish to decide whether Q = {x |Ax ≥ b} is nonempty. We assume for simplicity that we are
given A, b and positive numbers V and v such that Q is either empty or has d-dimensional volume at least v, and Q is
contained in a ball E0 of volume V centered at the origin. Then, starting with E0, the algorithm constructs a sequence
of ellipsoids containing Q of smaller and smaller volume by repeating the following step: If the center of the current
ellipsoid E lies in Q then declare that Q is nonempty and halt. Otherwise, one of the linear inequalities defining Q
is violated at the center. This inequality defines a hyperplane separating the center from Q, and the next ellipsoid in
the sequence contains the intersection of E with the halfspace consisting of those points separated from the center by
the hyperplane. The process continues until either a feasible point is determined or the volume of the ellipsoid drops
below v, implying that Q must be empty, since, if Q were nonempty, any ellipsoid containing Q would have volume
at least v.

It can be shown that the number of iterations of the ellipsoid method is O(L6) where L is the number of bits
required to specify the matrix A and vector b. It follows that the ellipsoid method is a polynomial-time algorithm for
the linear programming feasibility problem, and it can also be extended to a polynomial-time algorithm for solving
the optimization problem of minimizing c · x subject to the system of linear inequalities Ax ≥ b.

In practice, the ellipsoid method is far inferior to the simplex algorithm and has little practical utility, since its
typical number of iterations is close to the worst-case number. It does have the attractive theoretical property that
it yields a polynomial-time algorithm for any optimization problem of the form min c · x subject to x ∈ Q, where
Q is a convex body in Rd for which the following separation problem can be solved in polynomial time: given a
point x ∈ Rd , either determine that x ∈ Q or find a hyperplane separating x from Q. This property of the ellipsoid
algorithm has been a powerful tool for showing that particular combinatorial optimization problems are solvable in
polynomial time. The ellipsoid method has also been extended to solve general semidefinite programs and convex
quadratic programs.

4.3. Interior point algorithms

In contrast to the simplex algorithm, which follows the edges of the polyhedron Q, interior point methods follow
a path through the interior of Q. Starting with Karmarkar’s seminal 1984 paper [31] interior point methods were
developed that run in polynomial time and rival or sometimes even surpass the efficiency of the simplex algorithm
in practice. These methods start with a feasible point and follow a path that seeks to decrease the objective function
while staying away from the boundary of Q. A good overview of these methods is given in [10]. Today’s software
libraries for linear programming often include implementations of both the simplex algorithm and an interior point
algorithm. Both types of algorithms continue to be immensely valuable in practice, and there is no clear criterion for
choosing one algorithm over the other in a given application.
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5. Dantzig’s contributions to combinatorial optimization

Integer programming is the problem of minimizing a linear function subject to linear inequality constraints and the
requirement that the variables assume integer values. Nearly all combinatorial optimization problems of interest can
be expressed naturally as integer programs in which each variable is constrained to be zero or one. In principle any
integer program can be converted to a linear program by adjoining a finite number of linear inequality constraints that
are not included in the original constraints of the integer program but are implied by those constraints. Such additional
constraints are called cuts. In 1958 Gomory [26] gave a general method for solving any integer programming problem
in a finite number of steps by starting with the given linear inequality constraints and generating cuts in the course of
executing the simplex algorithm.

We describe three aspects of the interplay between linear programming and integer programming:

1. The identification by Dantzig and others of classes of integer programming problems in which the integrality
constraints can be discarded, since the extreme point solutions of the linear inequality constraints are guaranteed
to be zero-one vectors; such problems can be solved efficiently as linear programs.

More generally, the integrality gap of an integer program is the difference between its optimal value and the
optimal value of its linear programming relaxation, which is obtained by discarding the integrality constraints, thus
admitting fractional solutions. For many combinatorial optimization problems expressed as integer programs, it
can be proven that the integrality gap is small, and a provably near-optimal solution can be constructed from the
linear programming relaxation, either by rounding the optimal fractional solution or by using a modification of
the primal–dual method to obtain a feasible integer solution to the primal and an optimal solution to the dual, and
showing that their values are close. This approach yields polynomial-time approximation algorithms guaranteed
to provide near-optimal solutions for a wide class of NP-hard combinatorial optimization problems. An excellent
treatment of this approach is given in [45].

2. A seminal 1954 paper by Dantzig, Fulkerson and Johnson [22] in which a 49-city traveling-salesman problem
is solved by a cutting-plane method which adds judiciously chosen cuts in the course of executing the simplex
algorithm.

3. A powerful approach, pioneered by Jack Edmonds, for solving combinatorial problems with a special structure.
The key idea is to express the given problem as a linear program with a very large but systematically defined set
of constraints. These constraints can be handled implicitly within the primal–dual method (a variant of the simplex
algorithm invented by Dantzig, Ford and Fulkerson [20]), yielding a polynomial-time algorithm. In addition,
comparison of the implicitly defined linear program and its dual yields an interesting theoretical characterization
of the optimal solution.

5.1. Linear programs with integer extreme points

The general form of a zero-one integer program is: min c · x subject to the linear constraints Ax ≥ b and the
integrality constraints x ∈ {0, 1}

d . Many of the landmark results in combinatorial optimization show that, for particular
problems, the extreme points of the the system of linear constraints also satisfy the integrality constraints. In such cases
the integrality constraints can be dropped and the problem can be solved as a linear program.

One of the first results along these lines is due to Dantzig [15], who observed that the assignment problem has this
special structure. The assignment problem can be stated as follows: given n workers and n jobs, let ci j be the cost of
assigning worker i to job j ; find a one-to-one assignment of workers to jobs that minimizes total cost. The integer
programming formulation is:

min
∑

i
∑

j ci j xi j subject to: for all i and j , xi j ≥ 0; for all j ,
∑

i xi j = 1; for all i ,
∑

j xi j = 1; and the integrality
of the xi j , with the interpretation that xi j = 1 if worker i is assigned to job j . Dantzig noted that, by a theorem
of Birkhoff, the extreme points of the system of linear inequalities are zero-one vectors representing the one-to-one
assignments of workers to jobs, so the explicit integrality constraints can be dropped and the problem can be solved
as a linear program.

This result was the precursor of a major stream of research identifying classes of zero-one integer programs that are
naturally presented as integer programs, but can be solved as linear programs, since the extreme points of the system
of linear constraints are integral.

In a 1956 paper [21] Dantzig and Fulkerson showed that the max-flow problem with integer capacities can be
cast as a linear program with integral extreme points. Application of the duality theorem to this program yields a
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proof of the max-flow min-cut theorem. Similar results hold for the min-cost flow problem and for many other basic
optimization problems. In the same vein, Dantzig formulated the shortest-path problem as a linear program, and
gave a combinatorial description of the application of the simplex algorithm to this problem; however, the resulting
shortest-path algorithm turned out to require exponential time in the worst case. Additional contributions of Dantzig
to shortest-path algorithms are given in [16,19].

5.2. The traveling-salesman problem

In [22] Dantzig, Fulkerson and Johnson initiated the study of cutting-plane methods by solving a 49-city instance of
the traveling-salesman problem: given n cities and the cost of traveling from any city to any other, find a minimum-cost
route which starts at a given city, visits all the others, and returns to its starting point.

Let ci j be the travel cost between city i and city j , and, for i < j , let xi j be 1 if cities i and j are adjacent in
the tour, and 0 otherwise. Then the objective function is

∑
i
∑

j>i ci j xi j and the following fundamental inequalities
hold: xi j ≥ 0; for all i ,

∑
j>i xi j = 2. Dantzig, Fulkerson and Johnson solved the 49-city instance by solving a

sequence of linear programs, starting with the fundamental inequalities, and adding successive cuts as required to
exclude fractional optimal solutions. Most of these cuts were of one of the following two forms, where S is a subset
of {1, 2, . . . , n}:
(a)

∑
i, j⊆S,i< j xi j ≤ |S| − 1, where S ⊂ {1, 2, · · · , n}

(b)
∑

i< j,|{i, j}∩S=1 xi j ≥ 2,
but a few additional cuts of an ad hoc nature were required in order to exclude fractional optimal solutions.

This breakthrough by Dantzig, Fulkerson and Johnson stimulated great interest in the use of cutting-plane methods
for integer programming problems. Today cutting-plane methods have become a reliable tool for solving general
zero-one integer programming instances, as well as a variety of combinatorial problems with special structure.

Over the years the art of solving large traveling-salesman problems by cutting-plane methods (sometimes combined
with partial enumeration of cases) has risen to a very high degree of sophistication. Instances with a few thousand
cities can often be solved to optimality within minutes or hours. As of 2006 the largest instance with a proven optimal
solution (excluding specially constructed ones with a trivial solution) had 24,978 cities. Applegate, Bixby, Chvatal and
Cook [9] report the construction of a tour that is provably within 0.112% of optimal for an instance with 1,904,711
cities, at a cost of 256.1 CPU days of computer time.

5.3. Combinatorial problems as linear programs

In principle any zero-one integer program can also be written as a linear program by adjoining a finite number
of cuts to the original linear inequalities. In some notable cases there is an elegant interpretation of the minimal
set of required cuts, and the discovery of these cuts illuminates the combinatorial structure of the problem at hand.
Such a discovery occurs in the seminal paper “Paths, Trees and Flowers” [23] by Jack Edmonds, which concerns the
construction of maximum matchings. Additional examples of this approach are given in [24], in several other papers
by Edmonds, and in the books [37,39,40].

A matching in a graph is a set of edges, no two of which meet at a common vertex. In the cardinality matching
problem the goal is to construct a matching with a maximum number of edges. In the weighted matching problem
each edge has a positive weight, and the goal is to find a matching of maximum total weight.

A graph is called bipartite if its vertex set can be partitioned into two parts, such that each edge has an end point in
each part; equivalently, a graph is bipartite if all its cycles are of even length. In the special case of a bipartite graph the
weighted matching problem is equivalent to the assignment problem, and can therefore be solved as a linear program
in accordance with the aforementioned result in [15].

In [23] Edmonds gave a polynomial-time algorithm for the cardinality matching problem in a general graph. His
result can be derived either by combinatorial reasoning or through the lens of linear programming. The starting point
for the combinatorial approach is the following observation. Let M be a matching in the graph G, and let M̄ be the
set of edges of G not in M . If M is not of maximum cardinality then there is an augmenting path relative to M : i.e., a
simple path which begins and ends at a vertex that is not covered by M , and in which the edges of M̄ and M alternate.

Given a matching M and an augmenting path P , the set of edges M ⊕ P , where ⊕ denotes ”exclusive or”, is
a matching, and |M ⊕ P| = |M | + 1. Thus, one can construct a maximum-cardinality matching by augmenting
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along augmenting paths as long as possible; however, in the non-bipartite case, it is tricky to find an augmenting
path. Edmonds gave a subtle efficient algorithm for finding an augmenting path, based on repeatedly discovering a
certain type of maximally matched odd-cardinality set of vertices called a blossom, contracting the blossom to a single
vertex, and searching for an augmenting path in the resulting graph. This yielded a polynomial-time algorithm for the
maximum-cardinality matching problem.

To extend this result from the cardinality matching problem to the weighted matching problem an approach based
on linear programming is useful. One can write the weighted matching problem as a zero-one integer program with
a variable xe for each edge. The objective function to be minimized is

∑
cexe where ce is the weight of edge e, and

there is a linear constraint for each vertex v, stating that the sum of the xe on edges incident with v is at most 1.
However, the extreme points of this linear program are not necessarily integral. The key observation is that we can
get a linear program with integral extreme points by adding the odd-set constraints, which state that, if S is a set of
of 2r + 1 vertices for some positive integer r , then the sum of the xe over all edges with both end points in S is at
most r . Once these additional odd-set constraints are added the system of linear inequalities turns out to have integer
extreme points, so that the weighted matching problem can be approached as a linear program, and a polynomial-time
combinatorial algorithm for the weighted matching problem can be derived by emulating the primal–dual algorithm,
a variant of the simplex method developed by Dantzig, Ford and Fulkerson [20].

5.4. Dantzig’s views on integer programming

According to my colleague Ilan Adler, who was one of Dantzig’s first Ph.D. students at Stanford, George
emphasized in his classes that mixed integer programming could be regarded as essentially a universal format for
expressing combinatorial optimization problems. In his paper “On the Significance of Solving Linear Programs with
Some Integer Variables” [17] he gave a number of techniques for expressing various types of complex constraints
as systems of linear inequalities in which some variables are constrained to be integers. The constraints include
dichotomies, k-fold alternatives, selection from many pairs of regions, discrete variable problems, conditional
constraints and finding a global minimum of a concave function. In particular, he showed that the fixed charge problem,
the traveling salesman problem, the orthogonal Latin square problem and the problem of four-coloring a map could
be expressed as mixed integer programs.

Although George’s discussion of the universality of mixed integer programming was informal, it can be viewed as
a precursor of the work on NP-completeness, which emerged in the early 1970s [13,32,25]. Let K and L be subsets of
{0, 1}

∗. K is called polynomial-time transformable to L if there is a polynomial-time function f : {0, 1}
∗

→ {0, 1}
∗

such that, for all x ∈ {0, 1}
∗, x ∈ K if and only if f (x) ∈ L . A set L in NP is called NP-complete if every problem

in NP is transformable to L .Thus the NP-complete problems are universal; they have enough generality to encompass
every problem in NP. If L is NP-complete then L lies in P if and only if P = N P .

Given a combinatorial optimization problem we can usually describe a closely related feasibility problem of
essentially the same complexity. If we can show that this feasibility problem is NP-complete, it follows that the
optimization problem is solvable in polynomial time if and only if P = N P . Using this approach we can show
that a large class of combinatorial optimization problems, including zero-one integer programming and the traveling-
salesman problem, are solvable in polynomial time if and only if P = N P . In practice, this is taken as evidence that
no general method of solving such a problem can avoid combinatorial explosions; however, the theoretical question
of whether P = N P remains open.

To close on a personal note, I would like to acknowledge that Dantzig’s views on the universality of integer
programming were among my motivations for exploring NP-completeness.
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