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Abstract

A challenging issue with multi-objective particle swarm optimization (MOPSO) is the mechanism to select the optimal guides.

This paper presents a new strategy based on ranking dominance and integrates into MOPSO. By using the ranking information

and incorporating the chebychev distance of particle in objective space, we implement the selection of gbest and pbest simply

and elegantly. On the basis of ranking, we propose a new maintenance strategy for updating the external archive which can

obtain a more diverse and uniform distribution. Furthermore, a qualitative and quantitative analysis in terms of convergence

analysis over some benchmarks is presented, providing a basis for conclusions about the proposed method. showing that the

proposed method performs better than the adopted algorithms.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Particle swarm optimization algorithm [1] is a kind of swarm-based intelligence optimization method which

simulates the behavior of birds flocking. The particles move in a given objective space searching for the promising

solutions. Moreover, the particles communicate each other to optimize by using their previous best (pBest) and

global best (gBest) information in swarm. PSO is an efficient algorithm for solving single objective problems

[2][3][4] and achieving approving results. However, in the numerical optimization problems and practical engi-

neering applications, there always exist multiple objectives that need to be met at the same time, which are too

complex to simply apply the PSO to solve.

Recently, Multi-objective evolutionary algorithm (MOEA) has appeared to resolve such problems with desired

results [5] [6]. It does not depend on the problem itself. By using randomized initial individuals in the solution

space, the MOEA can find an ideal solution set. But the simple extension of the PSO to the multi-objective

optimization problem will face some difficulties:
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a. Relaxed dominance. By enlarging the dominant space to improve the weakness of Pareto dominance, and

it was claimed by Laumanns et al. [7]. To improve the effect of ε-dominance, Batista et al. [8] raised cone

ε-dominance. Also, Zou et.al [9] proposed L-dominance which is a variation from Pareto dominance.

b. Non-Pareto dominance. Such as Weighted sum [10], weighted Tchebycheff [11], decomposition-based

approach [12], Average ranking [13], Global Detriment [14] etc.

As for the optimal guides selection, there are several proposals in the literature for gBest and pBest selection. By

using the roulette-wheel selection method, which is a random selection, Coello et al. [15] presents the MOPSO to

choose the best local guide. Yen et al. [16] raised an adaptive cell-based technique guides selection. Mostaghim

[17] uses the sigma for the selection of gBest. For a bi-objective problem, sigma method can be drawn as follows:

σ =
f 2
1 − f 2

2

f 2
1
+ f 2

2

(1)

This paper uses the ranking-based approach, by incorporating the distribution information of individuals in

objective space, we put forward a new optimal guides selection strategy and apply it to the MOPSO. Different from

the aforementioned complex gBest pBest selection, this paper uses the ranking strategy and density information

of each particle in the whole population to gain the gBest and pBest which is elegant and efficient.

The paper is structured as follows. In section 2, some related works including MOPSO and ranking-based

methods are briefly introduced. Section 3 proposes and details the proposed ranking method. Section 4 shows the

performance assessment and statistical results among some classic MOEA and MOPSOs. Finally, section 5 draws

the conclusion and proposes the future work.

2. Related work

2.1. PSO algorithm

In PSO, each particle represents a solution in objective space. Two best guides exist in it, namely, the historical

best solution discovered by the particle itself (pBest) and the historical best solution identified by the entire

population (gBest). These two optimal guides are tracked and updated by the particles accordingly. The updating

mechanism is described as Eq. (2) and Eq. (3):

vi(k + 1) = ωvi(k) + c1r1[Pi − xi(k)]+ c2r2[Pg− xi(k)] (2)

xi(k + 1) = vi(k + 1) + xi(k) (3)

where, i = (1, 2, 3, · · ·N) is the index of particle, N is the size of population; vi(k) represents the velocity of

particle i in k-th iteration, similarly, xi(k) is the position of particle i in k-th iteration. w is the inertia weight and

the constants c1, c2 are the acceleration coefficients, r1 and r2 are random values uniformly distributing in interval

[0,1]; Pi is the personal best performance found so far by particle i while Pg is the global best position discovered

in the swarm.

2.2. Multi-objective optimization problems

Without loss of generality, a general minimized multi-objective problem can be stated as follows:

min Fi(X) = ( f1(Xi), f2(Xi), · · · , fM(Xi))
T (4)

X = (x1, · · · xn)

Y = F(X)

s.t.x = (x1, · · · xn) ∈ X ⊂ Rn

where the decision vector x claims to the decision space X, the objective function vector F(X) consists M(M ≥ 2)

objectives, Y ⊂ R
M represents the objective space, and f : Rn → RM is the objective mapping function.
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2.3. Ranking-based methods
The existing ranking-based methods mainly utilize a ranking function to gain the sort information in solution

space so as to distinguish the merits of the individuals. Ranking-based methods have the advantage in some ways,

they do not rely on Pareto dominance to push the population toward the Pareto front. In addition, as pinpointed

by Mendez et.al [18], these ranking-based methods have good results in less time compared to some Pareto-based

approaches. The existing methods mainly include the following.

Maximin: The maximin fitness function was proposed by Richard Balling and Scott Wilson in [19], where the

maximin fitness of design i is defined to be:

f itnessi = max
j�1

(min
k

( f i
k − f j

k )) (5)

Adriana et.al [18] analyzed the merits and faults on maximin and carried out some improvements for it.

Average Ranking (AR): This method was proposed by Bentley and Wakefield [13]. AR selects one objective

and builds a ranking list using the fitness of each solution for such objective. The AR is given as follows:

AR(Xi) =

M∑
m=1

rm(Xi) (6)

where rm(Xi) is the rank of Xi for the m-th objective. M is the number of objectives. It can be seen from the

definition of AR, it is easy to make individuals concentrated in a particular region especially the region close to

the objective.

Global Detriment (GD) On the basis of analyzing the deficiency of Pareto-based method, Garza et al. [14]

put forward Global Detriment and successfully applied to high-dimensional problems with a satisfactory results.

The GD fitness of a solution Xi is calculated as follows:

GD(Xi) =
∑

Xj�Xi

M∑
m=1

max( fm(Xi) − fm(Xj), 0) (7)

A solution Xi is better than Xj if it holds that GD(Xi) < GD(Xj).

Particularly, the GD method can get approving results to some extent. However, it can be seen from the

definition that it will assign large ranking value for the extreme points to be eliminated accordingly, whereas these

extreme points are a significant reference for decision-maker [20], as well as the aspect of the distribution.

3. The proposed Algorithm

3.1. Fusion ranking approach
Since the Average Ranking is easy to aggregate on the edge of optimal front while Global Detriment is easy

to exclude the extreme points, this paper integrates the strengths and weaknesses of AR and GD, and proposes a

new ranking scheme called fusion ranking which is described as follows.

FR(Xi) = ω1AR(Xi) + ω2GD(Xi) (8)

where, ω1 and ω2 are two coefficients in interval of [0,1] to coordinate the weight on AR and GD. We adopt

0.4 and 0.6 specifically. The lower of FR, the better the domination. Obviously, FR integrates the sequence of

solutions which favor the objective with the relative information between individuals. So that individuals in the

solution space can be more comprehensively assessed to guide the algorithm to converge.

The following is a small example to illustrate this case. For an optimization problem with two objectives,

Fig. 1 shows the six individuals from p1 − p6 and Table ?? lists the ranking values obtained by AR, GD, FR

respectively.

As can be seen from the Fig.1, AR gains the same two sort values and {p1, p2, p6} are three top points,

whereas GD put the {p1, p2, p3, p4} into the front seats. However, FR combines both advantages to obtain a

relatively satisfactory sort.
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Table 1. Ranking values obtained by AR, GD and FR

p1 p2 p3 p4 p5 p6

AR 6 4 7 7 10 6

GD 2 0.4 1.2 2.3 3.5 2.7

FR 3.6 1.84 3.52 4.18 6.1 4.02
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Fig. 1. A graphic illustration on AR, GD and FR

3.2. Optimal guides selection and archive maintenance
In mono PSO, the swarm pursues the orientation of pBest and gBest and can converge rapidly. More impor-

tantly, the gBest and pBest can be identified easily and explicitly because of the sole objective. However, optimal

guides are not so simple to be determined in the general MOP, due to the fact that the Pareto-based dominance

cannot obtain a specific relation facing multimodal or weak efficient solutions, but the optimal guides are crucial

for the convergence of algorithm. At this point some of the random selection such as roulette selection strategy

will reduce the efficiency and effectiveness of the algorithm.

Notice that in section 3.1, we have gained the ranking information that the individual among the whole popu-

lation, so we can get the merits of individual, which can clearly portray the relation between individuals.

On the other hand, the diversity of obtained solutions is also a primary concern of an algorithm [21][22],which

can offer more reference information to the decision-maker. Since the optimal guides is the manipulator of the

swarm, their direction will determine the way of the algorithm directly.

In order to give greater redundancy to optimal guides, we use the sum of Chebychev distance [23] of particle

to the rest of the items in objective space as a measurement of particle’s density to obtain the distribution of the

particles in the solution space. Let M be the number of objective. Then the Chebychev distance of any two

individuals is shown in the Eq. (9).

d(
→
p ,
→
p∗ ) = max

1≤ j≤M

{∣∣∣p∗j − p j

∣∣∣} (9)

For particle Xi, the density information is stated as follows:

D(Xi) =

pop∑
j=1
i� j

d(Xi, Xj) (10)
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where, D(Xi) is the chebychev distance between Xi and Xj. The greater D(Xi) is, the fewer the particles are

around it with a better distribution. After obtaining the distribution of the particles, we combined the merits of the

individuals to gain the comprehensive ranking which is shown in Eq. (11).

CR(Xi) =
FR(Xi)

D(Xi)
(11)

By Eq. (11), we get the properties of the particles that contain the dominance and distribution. Consequently,

in this paper, we take the first 50% of CR value into the external archive directly. In each iteration, after acquiring

the CR value, the external file set is updated, which discards the complex external archive maintenance method.

In optimal guides, as the overall ranking information of the swarm has been obtained including the merits and the

distribution of the particles, we take the following approach for the selection of optimal guides.

gBest : According to the CR value, the particle with the minimum CR value is taken as the gBest of the swarm;

pBest : Compare the current CR value of the individual with the historical value. Take the smaller one as

the pBest to participate in the iteration. We call this algorithm MOPSO-CR

3.3. Algorithm Procedure

In light of the framework of PSO and ranking operations, the MOPSO-CR process is described as follows.

BEGIN
1.Initialize: pop. Size N, objective number M,

2.For each particle i,
Generate the position and velocity of each particle randomly,

Evaluate

End for

3.Update external archive

4.For t=1 to max generations (max.gen)

For each particle i in swarm,

Calculate the FR (Eq. (8)) D (Eq. (9)) CR (Eq. (10))

Obtain the gBest and pBest;
Update the velocity, position of each particle (Eq. (2) , Eq. (3))

Push the particles on top 50% of CR values into external

archive

End For

For each particle j in External archive

Calculate the FR (Eq. (8)) D (Eq. (9)) CR (Eq. (10)) of each particle

in external archive

Merge the swarm

End for

Update external archive

t ← t + 1

End For

END

3.4. Computational complexity analysis

By analyzing the procedure in section 3.3, we can see that the main complexity of the algorithm lies in the

calculation of CR value. The complexity of some main scenarios are shown in Table.2.

It can be seen that the complexity of the proposed algorithm is O(MN2), the same as the NSGA-II.
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Table 2. Computational complexity on MOPSO-CR

Scenario Time complexity

Fusion Ranking O(MN2)

Selection of pBest O(N)

Election of gBest O(N)

Updating the velocity and position O(MN)

External archive maintenance O(MN)

Table 3. Adapted parameters for each candidate

NSGA-II MOPSO-σ MOPSO-CD MOPSO-CR

Pc=1.0

Pm=1/n

w=0.4

c1=2

c2=2

Mr=0.03

w=0.4

c1=2

c2=2

Mr=0.03

w=0.4

c1=2

c2=2

4. Performance assessment

4.1. Experimental setup

To test the effectiveness of the algorithm, this section offers the performance comparisons among some repre-

sentative and specialized algorithms (NSGA-II [24], MOPSO-σ [17], MOPSO-CD [25]) which validate on some

standard benchmark functions including KUR [26], ZDT{1, 2} [27], DTLZ{1, 2} [28]. The selected benchmarks

cover types of MOPs, with linear, convex, concave, etc., with two or three optimization objectives. The parameters

of adopted algorithms and benchmark suites are shown in Table 3 and Appendix A respectively.

4.2. Performance metrics

Generally speaking, the assessment of an algorithm are mainly from the convergence and diversity. Due to

this fact, the following two widely used metrics are adopted to perform the proposed approaches:

Generational distance (GD) [29]: measures the difference between the obtained approximation set of non-

dominated solutions and the true Pareto front. This metric is defined as Eq. (11):

GD � 1

n

√√ n∑
i=1

d2
i (12)

where di is the Euclidean distance between the non-dominated solution i and its nearest member in Pareto font.

The smaller the GD, the better the performance. A value of zero indicates all the found non-dominated solutions

lie in the Pareto front.

Error Ratio (ER) [29]: measures the error percentage of obtained non-dominated solutions. It is defined as:

ER =
1

n

n∑
i=1

ei (13)

For ER, the smaller, the better. A value of zero reveals that all found non-dominated solutions belong to the true

Pareto front.

4.3. Results and discussion

Before proceeding to any inference, it is instructive to visualize the experiment to gain some insight on the

features of the obtained results. Fig.2-Fig.6 show the convergence and distribution of the candidates.
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Fig. 2. Non-inferior solutions obtained by candidates on KUR. (a)NSGA-II(b) MOPSO-σ (c) MOPSO-CD (d) MOPSO-CR
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Fig. 4. Non-inferior solutions obtained by candidates on ZDT2. (a)NSGA-II(b) MOPSO-σ (c) MOPSO-CD (d) MOPSO-CR

In bi-objective issues, each algorithm can achieve a proximate and uniform solutions which indicates the

candidates can deal with these simple bi-objective problems easily and efficiently. And MOPSO-CR gained the

stable performance compared to other algorithms. However, the situation is a little different in tri-objective issues.

NSGA-II has a little deviation on DTLZ1, a proportion of solutions are diverged from true pareto front. Like

bi-objective, MOPSO-CR gains the decent behaviour.

After visually demonstrating the results, we implement a quantitative analysis on metrics of GD and ER

which are shown in Table 4 and Table 5. Thirty independent runs are implemented for each test problem to avoid

randomness, and the statistics values include mean value (Mean) and standard deviations (Std.). Bold number is

the winner in such corresponding performance metric.
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Table 4. Comparison results of NSGA-II, MOPSO-σ, MOPSO-CD and MOPSO-CR based on IGD.

Instance
NSGA-II MOPSO-σ MOPSO-CD MOPSO-CR

Mean Std. Mean Std. Mean Std. Mean Std.

KUR 5.20E-03 4.26E-04 4.90E-03 3.83E-04 4.71E-03 2.91E-04 3.82E-03 2.77E-04

ZDT1 4.41E-03 3.25E-04 3.79E-03 5.60E-04 5.72E-03 8.26E-04 3.97E-03 5.22E-04

ZDT2 3.19E-03 4.34E-04 7.31E-03 5.29E-04 5.44E-03 3.36E-04 3.72E-03 3.09E-04

DTLZ1 6.79E-03 5.37E-04 4.81E-03 4.11E-04 3.28E-03 2.19E-04 4.13E-03 3.44E-04

DTLZ2 3.52E-03 4.42E-04 3.19E-03 5.99E-04 3.38E-03 4.77E-04 2.73E-03 2.71E-04

Table 5. Comparison results of NSGA-II, MOPSO-σ, MOPSO-CD and MOPSO-CR based on ER

Instance
NSGA-II MOPSO-σ MOPSO-CD MOPSO-CR

Mean Std. Mean Std. Mean Std. Mean Std.

KUR 1.72E-01 6.77E-02 8.33E-02 2.98E-03 3.42E-02 1.19E-03 2.20E-03 1.18E-04

ZDT1 9.70E-02 3.22E-02 5.63E-02 1.27E-03 6.39E-01 2.02E-01 8.97E-02 2.93E-02

ZDT2 5.22E-02 3.10E-03 8.94E-02 4.30E-02 3.18E-02 9.10E-03 8.70E-03 2.11E-03

DTLZ1 3.27E-01 8.90E-02 3.90E-02 1.45E-02 8.01E-02 3.89E-02 1.09E-01 5.21E-03

DTLZ2 9.42E-02 2.27E-02 8.70E-02 4.12E-02 9.02E-02 3.20E-02 3.92E-03 1.13E-03
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5. Conclusion and future work

For the average ranking is easy to aggregate on the edge of optimal front and Global Detriment is easy to

exclude the extreme points, this paper integrates the merits and drawbacks of AR and GD, and proposes a new

ranking scheme called fusion ranking which incorporates the average ranking and global detriment. On the basis of

ranking and density information which obtained by chebychev distance among particles, we propose a new optimal

guides selection strategy. Furthermore, in aspect of external archive updating, we present a new maintenance

strategy by utilizing the ranking and density information, which makes the obtained solutions have more diversity

and uniformity. The following performance assessment verifies the effectiveness of the proposed method.

Further work remains to be conducted on incorporating the ranking strategy into some other evolutionary

algorithms and algorithms with higher dimensions.
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Appendix A. Related benchmark functions

Instance Expression Dim. Obj. Domain Properties

KUR

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f1(x) =

2∑
i=1

(−10 exp(−0.2
√

x2
i + x2

i+1
))

f2(x) =
3∑

i=1
(|xi|0.8 + 5 sin (xi)

3)

3 2
−5 ≤ xi ≤ 5

(i = 1, 2, · · ·m)

Disconnected

PF

ZDT1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x) = x1, f2(x) = g(1 − √ f1/g )

g(x) = 1 + 9
m∑

i=2
xi/(m − 1)

30 2 0 ≤ xi ≤ 1 Convex PF

ZDT2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x) = x1, f2(x) = g(1 − ( f1/g )2)

g(x) = 1 + 9
m∑

i=2
xi/(m − 1)

30 2 0 ≤ xi ≤ 1 Non-convex PF

DTLZ1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f1(x) = 0.5x1x2 · · · xm−1[1 + g(xm)]

min f2(x) = 0.5x1x2 · · · (1 − xm−1)[1 + g(xm)]
...

min fm−1(x) = 0.5x1(1 − x2)[1 + g(xm)]

min fm(x) = 0.5(1 − x1)[1 + g(xm)]

g(xm) = 100[|xm| + ∑
xi∈xm

(xi − 0.5)2 − cos(20π(xi − 0.5))]

10 3
0 ≤ xi ≤ 1

(i = 1, 2, · · ·m)
Linear PF

DTLZ2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f1(x) = [1 + g(xm)] cos(x1
π/2) · · · cos(xm−2

π/2) cos(xm−1
π/2)

min f2(x) = [1 + g(xm)] cos(x1
π/2) · · · cos(xm−2

π/2) sin(xm−1
π/2)

min f3(x) = [1 + g(xm)] cos(x1
π/2) · · · sin(xm−2

π/2)
...

min fm(x) = [1 + g(xm)] sin(x1
π/2)

g(xm) =
∑

xi∈xm

(xi − 0.5)2

10 3
0 ≤ xi ≤ 1

(i = 1, 2, · · ·m)
Concave


