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a b s t r a c t

We investigate the existence and efficient algorithmic construction of close to optimal
independent sets in random models of intersection graphs. In particular, (a) we propose
a new model for random intersection graphs (Gn,m,Ep) which includes the model of [M.
Karoński, E.R. Scheinerman, K.B. Singer-Cohen, On random intersection graphs: The
subgraph problem, Combinatorics, Probability and Computing journal 8 (1999), 131–159]
(the ‘‘uniform’’ random intersection graph models) as an important special case. We also
define an interesting variation of the model of random intersection graphs, similar in spirit
to random regular graphs. (b) For this model we derive exact formulae for the mean and
variance of the number of independent sets of size k (for any k) in the graph. (c) We then
propose and analyse three algorithms for the efficient construction of large independent
sets in this model. The first two are variations of the greedy technique while the third is a
totally new algorithm. Our algorithms are analysed for the special case of uniform random
intersection graphs.

Our analyses show that these algorithms succeed in finding close to optimal independent
sets for an interesting range of graph parameters.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Random graphs, introduced by P. Erdös and A. Rényi, still continue to attract a huge amount of research and interest in
the communities of Theoretical Computer Science, Graph Theory and Discrete Mathematics.

There exist various models of random graphs. The most famous is the Gn,p random graph, a sample space whose points
are graphs produced by randomly sampling the edges of a graph on n vertices independently, with the same probability
p. Other models have also been quite a lot investigated: Gn,r (the ‘‘random regular graphs", produced by randomly and
equiprobably sampling a graph from all regular graphs of n vertices and vertex degree r) and Gn,M (produced by randomly
and equiprobably selecting an element of the class of graphs on n vertices havingM edges). For an excellent survey of these
models, see [1,3].

In this work we investigate, both combinatorially and algorithmically, a new model of random graphs. We nontrivially
extend the Gn,m,p model (‘‘random intersection graphs") introduced by Karoński, Sheinerman and Singer-Cohen [10] and
Singer-Cohen [20]. Also, Godehardt and Jaworski [9] considered similar models. In the Gn,m,p model, to each of the n vertices
of the graph, a random subset of a universal set of m elements is assigned, by independently choosing elements with the
same probability p. Two vertices u, v are then adjacent in the Gn,m,p graph if and only if their assigned sets of elements have
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at least one element in common. We extend this model (which we call hereafter ‘‘uniform", because of the same probability
of selecting elements) by proposing two new modelswhich we define below.

Definition 1 (General Random Intersection Graph). Let us consider a universe M = {1, 2, . . . ,m} of elements and a set of
vertices V = {v1, v2, . . . , vn}. If we assign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj of M by choosing
each element i ∈ M independently with probability pi, i = 1, 2, . . . ,m, and put an edge between two vertices vj1 , vj2 if
and only if Svj1

∩ Svj2
6= ∅, then the resulting graph is an instance of the general random intersection graph Gn,m,Ep, where

Ep = [p1, p2, . . . , pm].

Definition 2 (Regular Random Intersection Graph). Let us consider a universe M = {1, 2, . . . ,m} of elements and a set of
vertices V = {v1, v2, . . . , vn}. If we assign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj consisting of λ
different elements of M , randomly and uniformly chosen, and draw an edge between two vertices vj1 , vj2 if and only if
Svj1

∩ Svj2
6= ∅, then the resulting graph is an instance of the regular random intersection graph Gn,m,λ.

The lattermodelmay abstract λ-SAT random formulae, in the sense that vertices in ourmodel here correspond to clauses
and labels to literals. We note the following:

Note 1: When p1 = p2 = · · · = pm = p the general random intersection graph Gn,m,Ep reduces to the Gn,m,p as in [10] and
we call it the uniform random intersection graph.

Note 2: When in the uniform case mp ≥ α log n for some constant α > 1 then the model Gn,m,p and the model Gn,m,λ for
λ ∈ (1 ± ε)mp, ε ∈ (0, 1), are similar in the sense that, by using concentration arguments proved by Chernoff
bounds, we can show that with high probability, the number of labels hit by a vertex in each model is almost the
same. This may be used to translate properties from one space to the other. The investigation of exact equivalence
properties of the two models is an interesting problem.

Importance and Motivation. First of all, we note that (as proved in [11]) any graph is a random intersection graph. Thus,
the Gn,m,p model is very general. Furthermore, for some ranges of the parameters m, p (m = nα, α > 6) the spaces Gn,m,p
and Gn,p are equivalent (as proved by Fill, Sheinerman and Singer-Cohen [8], showing that in this range the total variation
distance between the graph random variables has limit 0).

Second, random intersection graphs (and in particular our new, non-uniform model) may model real-life applications
more accurately (compared to the Gn,p case). In fact there are practical situations where each communication agent (e.g. a
wireless node) gets access only to someports (statistically) out of a possible set of communication ports.When another agent
also selects a communication port, then a communication link is implicitly established and this gives rise to communication
graphs that look like random intersection graphs. Even epidemiological phenomena (like spread of disease) tend to be
more accurately captured by these ‘‘proximity-sensitive" random intersection graphmodels. Other applicationsmay include
oblivious resource sharing in a distributed setting, interactions of mobile agents traversing the web etc.

Other related work. The question of how close Gn,m,p and Gn,p are for various values of m, p has been studied by Fill,
Sheinerman and Singer-Cohen in [8]. In [14], the authors investigate expansion properties of Gn,m,p and give tight bounds
on the mixing and the cover time of random walks on instances of the random intersection graph models.

The independence number of regular random intersection graphs has been recently investigated in [15]. Moreover, the
authors in [16] evaluate the connectivity threshold for regular random intersection graphs and also prove hamiltonicity for
some interesting range of the parameters of the model. These graphs are motivated by local, limited selection of critical
resources in distributed networks (like sensor systems), as well as by social networks comprised of entities each one of
which is associated with a small number of characteristic features.

Also, geometric proximity between randomly placed objects is nicely captured by themodel of random geometric graphs
(see e.g. [4,7,18]) and important variations (like random scaled sector graphs, [6]). Other extensions of randomgraphmodels
(such as random regular graphs) and several important combinatorial properties (connectivity, expansion, existence of a
giant connected component) are performed in [12,17].

Our contribution.

(1) We first introduce two new models, as explained above: the Gn,m,Ep model and the Gn,m,λ model. We feel that our models
are important, in the sense that Gn,m,Ep is a very general model and Gn,m,λ is very focused (so it is particularly precise in
abstracting several phenomena).

(2) Under these models we study the well known and fundamental problem of finding a maximum independent set of
vertices. In particular, in the most general Gn,m,Ep model we estimate exactly the mean and the variance of the number
of independent sets of size k. To obtain exact formulae for the variance, we introduce and use a ‘‘vertex contraction
technique" to evaluate the covariance of random indicator variables of non-disjoint sets of vertices. This technique, we
believe, has its own combinatorial interest and may be used in investigating other combinatorial problems as well.

(3) Finally, we provide and analyse three efficient algorithms for finding large independent sets:
- Algorithm I is the classic greedy algorithm (for example see [2]) for maximum independent set approximation.
- Algorithm II is a variation of the above where a random new vertex is tried each time instead of that of current
minimum degree.

- Algorithm III is a totally new algorithm (that we propose) pertinent to the model Gn,m,Ep.
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For clarity, all our algorithms are analysed for the uniform random intersection graph models.
Our algorithms are analysed for the interesting case where mp ≥ α log n, (for some constant α > 1), in which no

isolated vertices exist in Gn,m,p and also the results translate to Gn,m,λ (see Note 2).
To our knowledge, this is the first time that algorithms for random intersection graphs are proposed and analysed.

Our analyses show that in many interesting ranges of p,m, the sizes of the independent sets obtained by the algorithms
are quite large. A preliminary version of this research has appeared in [13].

2. The size of independent sets — exact formulae

In this section we compute the mean and variance of the number of independent sets of size k. To this end, we provide
several interesting techniques some of which we later use in the algorithms.

The following theorem gives an exact formula for the mean number of independent sets of size k in a general random
intersection graph. In order to prove it, we view the graph from the point of view of its labels.

Theorem 3. Let X (k) denote the number of independent sets of size k in a random intersection graph G(n,m, Ep), where Ep =

[p1, p2, . . . , pm]. Then

E
[
X (k)]

=

(
n
k

) m∏
i=1

(
(1 − pi)k + kpi(1 − pi)k−1) .

Proof. Let V ′ be any set of k vertices and let

XV ′ =

{
1 if V ′ is an independent set
0 otherwise.

Clearly,

X (k)
=

∑
V ′,|V ′|=k

XV ′

and by the linearity of expectation

E
[
X (k)]

=

(
n
k

)
E [XV ′ ] =

(
n
k

)
P{V ′ is an independent set}.

In order to determine E [XV ′ ], let us look at the G(n,m, Ep) graph from the point of view of the elements of M =

{1, 2, . . . ,m}. The set V ′ will be an independent set if and only if every element of M is chosen by at most one of the k
vertices in V ′. Since the elements ofM are chosen independently, it follows that

E [XV ′ ] =

m∏
i=1

P{element i is chosen at most once by the vertices in V ′
}.

However, it is obvious that when a specific element i of M is chosen at most once by the vertices in V ′, then it is either
chosen by exactly one vertex in V ′ or it is not chosen by any of them. Hence,

E [XV ′ ] =

m∏
i=1

(P{no vertex in V ′ chooses i} + P{exactly one vertex chooses i}).

The probability that no vertex in V ′ chooses element i is exactly (1 − pi)k, which follows from the observation that each
of the k vertices of V ′ chooses iwith probability pi and independently of the choices of other vertices.

Furthermore, the probability that exactly one vertex in V ′ chooses element i is exactly kpi(1 − pi)k−1, since there are
k different vertices in V ′ and the probability that only one particular vertex chooses i is pi(1 − pi)k−1. We have therefore
proven that

E
[
X (k)]

=

(
n
k

) m∏
i=1

(
(1 − pi)k + kpi(1 − pi)k−1) . �

We now prove a theorem that gives an exact formula for the variance of the number of independent sets of size k in
a general random intersection graph. The proof uses a somewhat algorithmic technique that merges several independent
vertices into a single supervertex.
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Theorem 4. Let X (k) denote the number of independent sets of size k in a random intersection graph G(n,m, Ep), where Ep =

[p1, p2, . . . , pm]. Then

Var
(
X (k))

=

k∑
s=1

(
n

2k − s

)(
2k − s

s

)(
γ (k, s)

E
[
X (k)

](n
k

) −
E2
[
X (k)

](n
k

)2
)

where E
[
X (k)

]
is the mean number of independent sets of size k and

γ (k, s) =

m∏
i=1

(
(1 − pi)k−s

+ (k − s)pi(1 − pi)k−s−1
(
1 −

spi
1 + (k − 1)pi

))
.

Proof. Let V ′ be any set of k vertices and let

XV ′ =

{
1 if V ′ is an independent set
0 otherwise.

Clearly, X (k)
=
∑

V ′,|V ′|=k XV ′ and for V ′

1, V
′

2 any sets of k vertices,

Var
(
X (k))

=

∑
V ′
1,V

′
2,|V

′
1|=|V ′

2|=k

Cov(XV ′
1
, XV ′

2
)

=

k∑
s=1

∑
V ′
1,V

′
2,|V

′
1|=|V ′

2|=k,|V ′
1∩V ′

2|=s

P{XV ′
1
XV ′

2
= 1} −

E2
[
X (k)

](n
k

)2 . (1)

Since

P{XV ′
1
XV ′

2
= 1} = P{XV ′

1
= 1|XV ′

2
= 1}

E
[
X (k)

](n
k

) (2)

the problem of computing the variance of X (k) is reduced to computing the conditional probability P{XV ′
1

= 1|XV ′
2

= 1}, i.e.
the probability that V ′

1 is an independent set given that V ′

2 is an independent set, where V ′

1, V
′

2 are any two sets of k vertices
that have s vertices in common. In order to compute P{XV ′

1
= 1|XV ′

2
= 1}, we will try to merge several vertices into one

supervertex and study its probabilistic behaviour.
Towards this goal, let us fix an element i of M = {1, 2, . . . ,m} and let us consider two (super)vertices v1, v2 of the

G(n,m, Ep) graph that choose element i independently with probability p(1)
i and p(2)

i respectively. Let also Sv1 , Sv2 denote the
sets of elements ofM assigned to v1 and v2 respectively. Then,

P{i ∈ Sv1 |@(v1, v2)} = P{i ∈ Sv1 , i /∈ Sv2 |@(v1, v2)}

=
P{i ∈ Sv1 , i /∈ Sv2 , @(v1, v2)}

P{@(v1, v2)}
=

p(1)
i (1 − p(2)

i )

1 − p(1)
i p(2)

i

(3)

where (v1, v2) is an edge between v1 and v2. From this we get:

• Conditional on the fact that (v1, v2) does not exist, the probabilistic behaviour of vertex v1 is identical to that of a single

vertex that chooses element i ofM independently with probability p(1)
i (1−p(2)

i )

1−p(1)
i p(2)

i
.

• Conditional on the fact that (v1, v2) does not exist, the probabilistic behaviour of v1 and v2 considered as a unit is identical
to that of a single vertex that chooses element i ofM independently with probability

P{i ∈ Sv1 ∪ Sv2 |@(v1, v2)} = P{i ∈ Sv1 |@(v1, v2)} + P{i ∈ Sv2 |@(v1, v2)}

=
p(1)
i + p(2)

i − 2p(1)
i p(2)

i

1 − p(1)
i p(2)

i

(4)

where i is a fixed element of M . The first of the above equations follows from the observation that if there is no edge
between v1 and v2 then the sets Sv1 and Sv2 are disjoint, meaning that element i cannot belong to both of them. The
second equation follows from symmetry.

Let us now consider merging one by one the vertices of the G(n,m, Ep) graph into one supervertex. Let wj denote a super-
vertex of j simple vertices that form an independent set. It is obvious that the probabilistic behaviour of wj is irrelevant to
how partial mergings aremade. Moreover, ifwj1 , wj2 are two supervertices representing two disjoint sets of simple vertices,
we say that an edge (wj1 , wj2) exists iff any edge connecting a simple vertex in wj1 and a simple vertex in wj2 exists. Thus,
the event {@(wj1 , wj2)} is equivalent to the event {the vertices in wj1 together with those in wj2 form an independent set}.
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Using Eq. (4) one can show that P{i ∈ Sw2} =
2pi
1+pi

, P{i ∈ Sw3} =
3pi

1+2pi
and by induction

P{i ∈ Swj} =
jpi

1 + (j − 1)pi
(5)

where i is a fixed element of M and Swj is the union of all the sets of elements of M assigned to each simple vertex in wj.
More formally,

Swj =

⋃
v∈wj

Sv

where v is a simple vertex and Sv is the set of elements ofM assigned to v. Because of the definition of wj, the subsets Sv in
the above union are disjoint.

Thus, let V ′

1 be any set of k (simple) vertices and let V ′

2 be an independent set of k vertices that has s vertices in common
with V ′

1. Since there is no edge between any vertices in V ′

2, we can treat the k − s vertices of V ′

2 not belonging to V ′

1 and the
s vertices belonging to both V ′

1 and V ′

2 as two separate supervertices wk−s and ws respectively that do not communicate by
an edge. Hence, by Eqs. (3)–(5), the probabilistic behaviour of ws is identical to that of a single vertex w′

s that chooses the

elements ofM independently with probabilities {p(w′
s)

i , i = 1, . . . ,m} respectively, where

p(w′
s)

i =
p(ws)
i (1 − p(wk−s)

i )

1 − p(ws)
i p(wk−s)

i

=
spi

1 + (k − 1)pi
. (6)

Let now V ′′ be a set of k − s simple vertices and a vertex identical to w′
s. Then, for a fixed element i of M , each of the

k − s simple vertices chooses i independently with probability pi, while the supervertex w′
s chooses i independently with

probability p(w′
s)

i . Similarly to Theorem 3 we get

P{XV ′
1

= 1|XV ′
2

= 1} = P{V ′′ is an independent set} def
= γ (k, s).

Hence, by Eqs. (1) and (2), we obtain the result. �

Using the second moment method and the results of this section, one may prove thresholds for the existence (with high
probability) of independent sets of size k.

3. Finding large independent sets in Gn,m,p

We start from the classic greedy approach, i.e. starting from the empty set we introduce (into the independent set under
construction) each time theminimumdegree vertex in the current graph and then delete it and its neighbours from the graph
(Algorithm I).
Algorithm I:
Input: An instance G(V , e(G)) of Gn,m,p.
Output: An independent set V ′ of G.

(1) set V ′
:= ∅;

(2) set U := V ;
(3) while U 6= ∅ do
(4) begin
(5) let x := vertex ofminimum degree in the graph induced by U;
(6) set V ′

:= V ′
∪ {x};

(7) eliminate x and all its neighbours from U;
(8) end
(9) output V ′;

3.0.1. The expected size of the independent set constructed.
As can be seen in e.g. [2], if r = |V ′

| eventually, and δ =
|e(G)|

n , i.e. δ is the density of G,

r(2δ + 1) ≥ n. (7)

This holds for any input graph G. Taking expectations we obtain E [r(2δ + 1)] ≥ n, where the expectation is taken over
all instances of the distribution Gn,m,p (notice that both r, δ are random variables).

The property ‘‘∃ independent set of size r ’’ is monotone decreasing on the number of edges, while the property ‘‘the
density of G is δ’’ is monotone increasing. A special case of the FKG inequality states that if A is a monotone increasing
property and B is a monotone decreasing property, then P(A ∩ B) ≤ P(A)P(B) (see also [1]). From this we obtain
E [rδ] ≤ E [r] E [δ] or equivalently E [r(2δ + 1)] = 2E [rδ] + E [r] ≤ 2E [r] E [δ] + E [r] = E [r] (2E [δ] + 1).
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Using the fact that E [r(2δ + 1)] ≥ n, we conclude that

E [r] ≥
n

2E [δ] + 1
=

n

2 E(|e(G)|)

n + 1
. (8)

In order to compute the mean number of edges E(|e(G)|), let us define the indicator random variables

Xu,v =

{
1 if there is an edge (u, v) in G
0 otherwise.

Clearly,

|e(G)| =

∑
u,v∈V ,u 6=v

Xu,v

and by the linearity of expectation

E(|e(G)|) =

(
n
2

)
E
[
Xu,v

]
=

(
n
2

)
P{Xu,v = 1}.

But

P{Xu,v = 1} = P{∃i ∈ M : i ∈ Su ∩ Sv} = 1 − (1 − p2)m

where Su, Sv are the sets of elements ofM = {1, 2, . . . ,m} assigned to u, v respectively.
Hence,

E(|e(G)|) =

(
n
2

) (
1 − (1 − p2)m

)
.

Applying the above result to inequality (8), we conclude the following

Lemma 5. The expected cardinality of the independent set constructed by Algorithm I is at least

n2

2
(n
2

) (
1 − (1 − p2)m

)
+ n

=
n2

2E(|e(G)|) + n
.

The next result is easily derived from Lemma 5.

Corollary 6 (Sparse Gn,m,p Theorem). For p such that E(|e(G)|) = Θ(n), the expected size of the independent set provided by
Algorithm I is Θ(n).

For example, if p =
α

√
nm , where 0 < α < 1, then E [r] ≥

n
α
.

Remark. The above analysis carries out in an almost similar way to the general random intersection graphs model.

3.0.2. A concentration result for sparse graphs
We are interested in intersection graphs Gn,m,p for p satisfying

ω(n)
n
√
m

≤ p ≤

√
2 log n − ω(n)

m

for the smallest possible function ω(n) → ∞, as n → ∞. This is the range for nontrivial graphs (see [8]).

We consider the case p <

√
1

8nm which is in the range of nontrivial graphs. In what follows, we assume that p(n) =
c(n)
m

where c(n) → ∞, as n → ∞. For example, since c(n) = mp, if we take p in the range of nontrivial graphs, then
√
m
n

ω(n) ≤ c(n) ≤

√
2m log n − ω(n)m. (9)

A choice of c(n) satisfying this is c(n) = α log n, where α > 1, since, from (9), ω(n) must be less than 2 log n.

Notice that our assumption p <

√
1

8nm implies c(n) = mp <
√

m
8n which is satisfied by c(n) = α log n, i.e. for

m > 8α2n log2 n.
Consider a vertex v and let Sv be the set of elements assigned to it. Using Chernoff bounds (see e.g. [5]) and Boole’s

inequality, formp = α log n and ε ∈ (0, 1), we get

P{∃v : ||Sv| − mp| ≥ εmp} ≤

∑
v∈V

P{||Sv| − mp| ≥ εmp} ≤ n−
αε2
2 +1.
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If we choose the parameter α so that αε2

2 − 1 > 2, then all vertices have each a number of chosen elements ‘‘around’’mp
with probability at least 1 −

1
n2
.

Let us condition Gn,m,p on this event. Because of symmetry, the elements chosen by each vertex are otherwise uniform
in {1, 2, . . . ,m}.

Consider a variation of Algorithm I (Algorithm II) where we select greedily each time a random vertex to insert from the
random graph.
Algorithm II:
Input: An instance G(V , e(G)) of Gn,m,p.
Output: An independent set V ′ of G.

(1) set V ′
:= ∅;

(2) set U := V ;
(3) while U 6= ∅ do
(4) begin
(5) let u := a random vertex of U;
(6) U := U − {u};
(7) let S(V ′) := ∪u∈V ′Su;
(8) if (u intersects with any vertex in V ′) then reject u
(9) else V ′

:= V ′
∪ {u};

(10) end

The difference between Algorithm I and Algorithm II is that in the latter we do not use the (useful) heuristic, urging us
to choose at each iteration the vertex with the current minimum degree. We will denote the size of the independent sets
constructed by Algorithm I and Algorithm II by r1 and r2 respectively.

We now concentrate on estimation of r2 with high probability. Clearly, after i successful node insertions into V ′ the
following are true:

• |S(V ′)| ∈ (1 ± ε)imp = (1 ± ε)ic(n).
• The next tried node u is rejected with probability

Prej = 1 −

(
1 −

|S(V ′)|

m

)|Su|

since each element l ∈ Su belongs also in S(V ′) with probability |S(V ′)|

m , which in turn follows from independence and
uniformity.

Combining these two observationswe conclude that the probability that a vertex u is rejected after i successful insertions
is

Prej ≤
|S(V ′)||Su|

m

which is at most (1+ε)2 ic2(n)
m , for any ε ∈ (0, 1), provided that ic2(n)

m → 0, i.e. provided that i = o
(

m
c2(n)

)
. (Note also that, by

the Bernoulli inequality, we have

Pacc = 1 − Prej =

(
1 −

|S(V ′)|

m

)|Su|

≥ 1 −
|S(V ′)||Su|

m

and when |S(V ′)||Su|
m → 0, then Pacc → 1.)

Since i ≤ n and 1 + ε < 2, for any ε ∈ (0, 1), we have that Prej < 4nc2(n)
m . Moreover, since mp <

√
m
8n by assumption,

we obtain Prej < 1
2 . Thus, the number r2 of nodes that are successfully inserted into V ′ is at least the number of successes

of the Bernoulli B(n, 1
2 ). From Chernoff bounds then, for any β > 0 we have r2 ≥ (1 − β) n

2 with probability at least

1 − exp {−
β2

2
n
2 }.

We eventually have (set β =
1
2 ), by combining events, the following

Theorem 7. Consider a random intersection graph Gn,m,p with p <

√
1

8nm andmp = α log n, (α > 1 a constant). Then Algorithm

II constructs an independent set of size at least n
4 with probability at least 1 −

1
2n2

.

Comment: Intuitively, r1 stochastically dominates r2 and so Theorem 7 may also apply to Algorithm I.
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3.1. Algorithm III

Consider now the following algorithm that looks at the random intersection graph from the point of view of its labels.

Algorithm III:
Input: A random intersection graph Gn,m,p.
Output: An independent set of vertices Am.

(1) set A0 := V ; set L := M;
(2) for i = 1 tom do
(3) begin
(4) select a random label li ∈ L; set L := L − {li};
(5) set Di := {v ∈ Ai−1 : li ∈ Sv};
(6) if (|Di| ≥ 1) then select a random vertex u ∈ Di and set Di := Di − {u};
(7) set Ai := Ai−1 − Di;
(8) end
(9) output Am;

Theorem 8 (Correctness). Algorithm III correctly finds an independent set of vertices.

Proof. In order to prove the correctness of Algorithm III let us consider any two vertices v1 and v2 that are connected via
an edge, i.e. there is at least one element i ∈ M that belongs to both Sv1 and Sv2 . It is easy to verify that at most one of these
vertices can belong to Am, since after the examination of element i of M , the algorithm will choose at most one of v1 and v2
(another possible scenario is that by the time the algorithm starts the examination of i one of the vertices v1 and v2 or both
have been excluded from the independent set in previous steps). �

Theorem 9 (Efficiency). For the case mp = α log n for some constant α > 1 and m ≥ n with high probability we have for some
constant β > 0:

(1) If np → ∞ then |Am| ≥ (1 − β) n
log n .

(2) If np → b where b > 0 is a constant then |Am| ≥ (1 − β)n(1 − e−b).
(3) If np → 0 then |Am| ≥ (1 − β)n.

Proof. Let us define the indicator random variables

X (i)
v =

{
1 if vertex v of Ai−1 does not contain li
0 otherwise

and

IDi =

{
1 if |Di| ≥ 1
0 otherwise.

Clearly, |Ai| =
∑

v∈Ai−1
X (i)

v + IDi , for i = 1, 2, . . . ,m.
Since the elements ofM are chosen independently, the variables X (i)

v are independent of the set Ai−1. ButWald’s equation
states that if Y1, Y2, . . . are independent and identically distributed random variables having finite expectations, and if N is
a stopping time for Y1, Y2, . . . such that E[N] < ∞, then

E

[
N∑
j=1

Yi

]
= E[N]E[Y ].

Since the variables X (i)
v and the set Ai−1 satisfy the conditions ofWald’s equation (for the expectation of the sum of a random

number of independent variables, see [19]), by the linearity of expectation we get

E(|Ai|) = E(|Ai−1|)(1 − p) + P{|Di| ≥ 1}, for i = 1, 2, . . . ,m.

Using the above equation we can prove inductively that

E(|Am|) = n(1 − p)m +

m∑
i=1

(1 − p)m−iP{|Di| ≥ 1}. (10)

(Note: By a similar proof one can verify that the term n(1 − p)m is the mean number of isolated vertices in the graph. By
choosingmp ≥ α log n for some constant α > 1 the mean number of isolated vertices tends to 0.)
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Table 1
Performance of Algorithms I–II, formp = α log n, p → 0

np TI TII , TIII rI rII rIII

np < 1
8α log n O(

n log n
p ) O(

n log n
p ) (≥) 8

9 n
n
4 (1 − β)n

np → 0 O(
n log n

p ) O(
n log n

p ) (1 − β)n
np → b O(

n log n
p ) O(

n log n
p ) (∼) n

αb log n (1 − β)n(1 − e−b)

np → ∞ O(
n log n

p ) O(
n log n

p ) (∼) 1
αp log n (1 − β) n

log n
np > 1

p O(n2p log n) O(
n log n

p ) (∼) 1
αp log n (1 − β) n

log n

Now let Li = {v ∈ V : li ∈ Sv}, i.e. Li is the set of vertices having li (before examining them for other elements of M).
Then

P{|Di| ≥ 1} = 1 − P{|Di| = 0} = 1 − (P{v /∈ Di})
n (11)

where v is any specific vertex. The second equality follows from symmetry. But

P{v /∈ Di} = P{v /∈ Li ∩ v /∈ Di} + P{v ∈ Li ∩ v /∈ Di}

≤ 1 − p + P{v ∈ Li ∩ {v ∈ L1 ∪ L2 ∪ · · · ∪ Li−1}}.

Since the choices of the elements of M are independent, the events {v ∈ Li} and {v ∈ L1 ∪ L2 ∪ · · · ∪ Li−1} are also
independent. Hence

P{v /∈ Di} ≤ 1 − p + P{v ∈ Li}P{v ∈ L1 ∪ L2 ∪ · · · ∪ Li−1}

≤ 1 − p + p
(
1 − (1 − p)i−1)

= 1 − p(1 − p)i−1.

By (11), P{|Di| ≥ 1} ≥ 1 −
(
1 − p(1 − p)i−1

)n. By (10),

E(|Am|) ≥ n(1 − p)m +
1
p

(
1 − (1 − p)m

)
−

m∑
i=1

(1 − p)m−i (1 − p(1 − p)i−1)n .

In the interesting case wheremp ≥ α log n for some constant α > 1 andm ≥ n (implying that p → 0) we get

E(|Am|) ∼ n(1 − p)m +
1
p

(
1 − (1 − p)m

)
−

m∑
i=1

(1 − p)m−i (1 − p)n

∼
1
p

(
1 − (1 − p)n

)
.

We now distinguish three cases, covering all possible values of np.

(1) If np → ∞ then E(|Am|) ∼
1
p . The largest p to have np → ∞,mp ≥ α log n andm ≥ n is p =

log n
n . So, we conclude that

E(|Am|) = Ω( n
log n ).

(2) If np → bwhere b > 0 is a constant then E(|Am|) ∼
n
b (1 − e−b) = Θ(n).

(3) If np → 0 then E(|Am|) ∼
1
p (1 − 1 + np) = Θ(n).

The proof ends with the observation that since E(|Am|) → ∞ in all tree cases, then one can use Chernoff bounds to prove
that |Am| ≥ (1 − β)E(|Am|) for any constant β > 0 with very high probability. �

Table 1 summarizes the performance of Algorithms I–III, in the case mp = α log n and p → 0. In the table, TI , TII and TIII
denote the running times of Algorithms I, II and III respectively. Also, rI , rII and rIII denote lower bounds on the sizes of the
independent sets constructed (with high probability) by Algorithms I, II and III respectively. The constants α > 1, β > 0
and b > 0 are the same constants used in Theorems 7 and 9. Note that the running times of Algorithms I, II and III are easily
seen to be O(mn+ n+ e(G)),O(nm) and O(mn) respectively, but can be much smaller than these values (which correspond
to the worst case running times), because they depend on the density of the graph. Also, due to lack of space in the table, we
do not show the probabilities of success of each algorithm. It is worth mentioning that while the last two algorithms have a
small probability of failure (that goes to 0 with n), algorithm I finds an independent set whose size is at least as much as the
value given in the table, with probability 1.

4. Conclusions and further work

We proposed a very general, yet tractable, model for random intersection graphs. We believe that it can be useful in
many technological applications. We also did the first step in analysing algorithms for such graphs, and for the problem of
construction of large independent sets of vertices. The finding of efficient algorithms for other interesting graph objects (e.g.
long paths, giant components, dominating sets etc) is a subject of our future work.
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