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a b s t r a c t

The accurate diagnosis of heart failure in emergency room patients is quite important, but can also be
quite difficult due to our insufficient understanding of the characteristics of heart failure. The purpose
of this study is to design a decision-making model that provides critical factors and knowledge associated
with congestive heart failure (CHF) using an approach that makes use of rough sets (RSs) and decision
trees. Among 72 laboratory findings, it was determined that two subsets (RBC, EOS, Protein, O2SAT,
Pro BNP) in an RS-based model, and one subset (Gender, MCHC, Direct bilirubin, and Pro BNP) in a logistic
regression (LR)-based model were indispensable factors for differentiating CHF patients from those with
dyspnea, and the risk factor Pro BNP was particularly so. To demonstrate the usefulness of the proposed
model, we compared the discriminatory power of decision-making models that utilize RS- and LR-based
decision models by conducting 10-fold cross-validation. The experimental results showed that the RS-
based decision-making model (accuracy: 97.5%, sensitivity: 97.2%, specificity: 97.7%, positive predictive
value: 97.2%, negative predictive value: 97.7%, and area under ROC curve: 97.5%) consistently outper-
formed the LR-based decision-making model (accuracy: 88.7%, sensitivity: 90.1%, specificity: 87.5%, posi-
tive predictive value: 85.3%, negative predictive value: 91.7%, and area under ROC curve: 88.8%). In
addition, a pairwise comparison of the ROC curves of the two models showed a statistically significant
difference (p < 0.01; 95% CI: 2.63–14.6).

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The syndrome of heart failure is most commonly defined as a
state in which cardiac abnormalities cause cardiac dysfunction
such that the heart is unable to meet the circulatory demands of
the body, or does so with elevated filling pressures [1]. Given that
ll rights reserved.
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there is no definitive diagnostic test for heart failure, clinical diag-
nosis is largely based on a careful history and physical examination
that are supported by ancillary tests such as chest radiography,
electrocardiogram, and echocardiography. Despite advances re-
lated to the complex pathophysiology of heart failure, both its
diagnosis and the assessment of therapeutic approaches remain
difficult. A timely and accurate diagnosis by a physician is impor-
tant in order to avoid unnecessary diagnostic procedures and to
identify appropriate therapeutic measures and clinical manage-
ment strategies. However, the search for meaningful sets among
critical factors that can affect the early diagnosis of heart failure
is difficult, due to the numerous clinical features of routinely avail-
able tests, echocardiography, etc.

Data-mining techniques can be applied to overcome effectively
these limitations by using large data sets with many predictive fac-
tors in order to identify not just linear relationships, but non-linear
relationships as well. In particular, the rough set theory (RST) [2]
can be used as a tool to discover data dependencies [3–5] and to
reduce the number of attributes contained within a data set, using
the data alone, and no additional information. In RST, this attribute
reduction removes superfluous features and makes it possible to
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select a feature subset that has the same discernibility as the origi-
nal set of features. From the medical viewpoint, this approach aims
to identify subsets of the most informative attributes that would
influence the treatment of patients. Such rule induction methods
generate decision rules, which may potentially reveal profound
medical knowledge and provide new medical insight. These rules
are more useful for medical experts who seek to analyze and gain
understanding of the problem at hand [6]. Since this pioneering
study was introduced, various related studies have been per-
formed. Bazan [7] compared RST-based methods with statistical
methods, neural networks, decision trees, and decision rules using
medical data on several pathologies such as lymphography, breast
cancer, and primary tumors. He found that the error rates for RS
are not only completely comparable, but are also often significantly
lower than those obtained using other techniques. Tsumoto [8]
investigated the characteristics of such medical reasoning, and
showed that the RS representation of diagnostic models is a useful
approach for extracting insightful information from medical dat-
abases. Carlin et al. [9], who described the application of RS to diag-
nose suspected acute appendicitis, found that while the difference
between a logistic regression (LR) model and RS was quite small,
RS offered the advantage of more explicit decision rules. Komorow-
ski and Øhrn [10] discussed the use of an RS framework to identify
a patient group in need of a scintigraphic scan for subsequent mod-
eling. They showed that the identification of such patients has the
potential to lower the cost of medical care and to improve its qual-
ity because, virtually without any loss of information, fewer pa-
tients may be referred for this procedure.

These models offer a common advantage, in that their results
are directly interpretable, and the decisions obtained from uncer-
tain, incomplete, or approximate data become explainable for un-
known phenomena [11]. However, most of these studies have
focused on the issues, the discriminatory power of decision mod-
els, or the decision rules derived from different algorithms, but
without performing a comparison of the significance of their re-
sults. In this study, we describe the scheme of a decision-making
model based on rough set and decision tree approaches in order
to extract the most relevant factors and knowledge from high-
dimensional clinical data that typically incur great extra expense
and impose an increased workload on clinicians, and we then apply
it to the widespread problem of congestive heart failure (CHF).
2. Methods

2.1. Congestive heart failure data

We retrospectively collected the medical records of all patients
who went to the emergency medical center of Keimyung Univer-
sity Dongsan Hospital complaining mainly of dyspnea, between
July 2006 and June 2007. Only complete medical records with no
missing values were included, i.e., demographic characteristics
(age and gender), and clinical laboratory findings, such as urinaly-
sis, common blood cell and differential counts, serum electrolytes,
routine admission tests, and arterial blood gas analysis. Patients
diagnosed with complaints other than CHF were excluded, such
as those who presented evidence such as coronary heart disease,
including left ventricular (LV) asynergy or a history of previous cor-
onary bypass surgery, significant congenital or valvular disease, or
known cardiomyopathy. Eligibility for the study group (n = 71) was
defined according to the International Classification of Diseases –
10 codes, I50.0. Discharged patients (n = 88), i.e., non-cardiogenic
dyspnea (Non-CD) patients who were admitted to the emergency
medical center complaining mainly of dyspnea, were defined as
the control group. All data collected was reconfirmed by three car-
diovascular specialists.
2.2. Statistical analysis

Univariate correlations between clinical features were evalu-
ated using the Chi-square test or Fisher’s exact test, which are
appropriate for categorical variables, and using the Student t-test
or Mann-Whitney U-test with continuous variables, after first
checking for normality using the Kolmogorov-Smirnov test. The
collected data was expressed as a percentage or mean ± standard
deviation. A two-tailed p < 0.05 was selected as the level of statis-
tical significance. Following a univariate analysis, a logistic regres-
sion (LR) model with Wald’s forward feature selection was used for
multivariate analysis to identify the independent predictors of
CHF, with entry and removal criteria of 0.05 and 0.10 as the default
settings. The results are shown as odds ratios (OR) with 95% confi-
dence intervals (95% CI). All statistical analyses were performed
using SPSS 12.0 for Windows (SPSS Inc., Chicago, IL, USA).

2.3. Selection of reference intervals

Most of the clinical findings, such as laboratory tests and electro-
cardiogram results are numerical. For a more accurate discrimina-
tive diagnosis, evaluation of therapeutic effects, and prognosis, it
is necessary to provide an appropriate reference. In laboratory med-
icine, even though there has been no definition of normal subjects, a
normal value is considered to be observed in subjects under normal
conditions. Since clinicians evaluate laboratory data or disease
conditions in terms of normal values or ranges, normal values are
necessary for the interpretation of numerical laboratory data. Most
of the normal values or ranges that are commonly used have been
statistically calculated from data obtained from a sample popula-
tion consisting of individuals who are considered normal, or not
abnormal, based upon certain criteria [12]. Generally, the standard
limits of normal values are between 2.5 and 97.5 centiles, thus
defining a 95% reference interval. Normal ranges are used instead
of the reference interval, based upon the logic that values outside
the range are abnormal. One flaw in this rationale, however, is that
by definition, 5% of normal individuals will have values outside the
normal range. There is also possible confusion within the normal
distribution; modeling the data under the assumption of normality
is a common approach but is not always appropriate for the estima-
tion of reference limits [13]. To address these issues, we describe a
method for extracting appropriate reference intervals from clinical
laboratory data, using the maximum entropy principle (MEP).

The MEP [14] is an unsupervised learning method for determin-
ing the classification boundaries, i.e., cut-off points, in various
application areas such as pattern classification [15,16] and image
processing [17,18]. If we suppose that X is a discrete random vari-
able and the range R = {x1,x2, . . .,xn} is finite or countable and
pi = P[X = xi], i = 1,2, . . .,n, then the Shannon entropy of X is defined
as

HðXÞ ffi
Xn

i¼1

piloga
1
pi
¼ �

Xn

i¼1

pilogapi ð1Þ

Eq. (1) defines the entropy H(X) of the random variable X so that it
represents the amount of information contained in X, and includes
as a measure of uncertainty the stochastic field of X. H(X) represents
its function of probability distribution p1,p2, . . .,pn, and is defined as

HðXÞ ¼ Hðp1;p2; . . . ; pnÞ ffi �
Xn

i¼1

pi log pi ð2Þ

If K is a set of the data point values of a random variable, pi is the
probability of the ith histogram level, N is the number of partitions
or subspaces of K. Each subspace is denoted as Kj (j = 1,2, . . .,N), and
p(Kj) is denoted as the probability from the cumulative probabilityP

j2Kj
pj of Kj. A thresholding function is then defined as follows.
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HðK;NÞ ¼
XN

j¼1

kpðKjÞ � 1=Nk ð3Þ

Here ||�|| is a norm. As described in [19], if p(Kj) = 1/N, then H(K,N)
reaches the minimum of 0, and the entropy H(A) of Eq. (2) will reach
its maximum. Thus, the MEP-based discretization method is similar
to that of equal frequency binning, which operates by fixing a num-
ber of intervals N and examining the histogram of each attribute,
and N � 1 cut-off points are determined so that approximately the
same number of samples fail into each of the N intervals [11].

In this study, we extracted two threshold values, T1 and T2, which
satisfy the criteria

PT1�1
i¼1 pðxiÞ ffi

PT2�1
T1

pðxiÞ ffi
Pn

T2
pðxiÞ, in order to

extract the reference intervals [T1,T2) of clinical factors, and define
the normal range of normal human subjects, i.e., a control group.
The data point values in each subspace were converted into three
discrete values, which are referred to as low, medium, and high.

2.4. Rough set attribute reduction

RST [2] provides mathematical techniques for creating approx-
imate descriptions of objects or cases, and it has been employed to
remove superfluous condition attributes from discrete-valued
datasets. Successful examples of this are the rough set attribute
reduction methods that use a discernibility matrix and functions
[5,20], and dependency or significance measures [3,4,7,21,22].
Among these attribute reduction methods, this study utilizes the
concept of a decision-relative discernibility matrix and functions
in order to find the subset of the clinical factors associated with
CHF predictors. For more details regarding RST, including the con-
cepts of indiscernibility and set approximation, the dependency or
significance of attributes, etc., the reader is referred to the litera-
ture (See [2,5,23,24]).

In general, a dataset is represented as a table, in which each row
represents an object or a case. Every column represents an attri-
bute that can be measured for each object. Such a table is called
an information system or table. More formally, it is a pair
A = (U, A), where U is a non-empty set of finite objects, i.e., the uni-
verse of discourse, and A is a non-empty finite set of attributes such
that a: U ? Va for every a e A. Va is the set of values that attribute a
may take, and is called the domain of a. In most medical applica-
tions, an outcome is known. This a posteriori knowledge is ex-
pressed as a single distinct attribute, which is called the decision
attribute. Information systems of this kind are called decision sys-
tems [23,24]. A decision system is any information system of the
form A⁄ = (U, A, D), where A is the set of condition attributes and
D is the set of decision attribute(s) (See Table 1). In the table, there
is a universe of six objects, U = {x1, . . .,x6}, each of which is de-
scribed by means of four condition attributes: Total bilirubin, Di-
rect bilirubin, Pro BNP, and Troponin I, and one decision
attribute, namely Diagnosis.

A decision-relative discernibility matrix of A⁄ is a symmetric
n � n matrix, whose entries are defined by

c�ij ¼
£; if and only if dðxiÞ ¼ dðxjÞ;
cij; otherwise:

�

where cij ¼ fa 2 A : aðxiÞ–aðxjÞg; for i; j ¼ 1; . . . ; n ð4Þ
Table 1
Example of a decision system.

U Total bilirubin Direct bilirubin Pro BNP Troponin I Diagnosis

1 Medium Low High High CHF
2 Low Medium Medium Medium Non-CD
3 High Low Low Medium CHF
4 Low Medium Low High Non-CD
5 Low Low High Low CHF
6 Low Low Medium Low Non-CD
This only considers those object discernibilities that occur when
the corresponding decision values differ. From the example data in
Table 1, the decision-relative discernibility matrix in Table 2 was
produced. For example, it can be seen from the table that objects
1 and 2 differ in regard to each attribute. Although some attributes
in objects 2 and 4 differ (e.g., Pro BNP and Troponin I), their corre-
sponding decisions are the same, so no entry appears in the deci-
sion-relative matrix.

A discernibility function fA� is a Boolean function of m Boolean
variables a�1; . . . ; a�m that correspond to the attributes a1, . . .,am,
which are defined as below:

fA� ða�1; . . . ; a�mÞ ¼ ^f_c�ij 1 6 j 6 ij 6 n; cij–£g ð5Þ

where c�ij ¼ fa� a 2 cij

�� g. By finding the set of all prime implicants of
the discernibility function, all the minimal reducts of a system may
be determined. From Table 2, the decision-relative discernibility
function is defined as:

fA� ða�; b�; c�;d�Þ ¼ ða _ b _ c _ dÞ ^ ða _ b _ cÞ ^ ða _ c _ dÞ
^ ðb _ c _ dÞ ^ ða _ b _ dÞ ^ ða _ c _ dÞ ^ c

Further simplification can be obtained by removing those
clauses that are subsumed by others:

fA� ða�; b�; c�;d�Þ ¼ ða _ b _ dÞ ^ c

The set of all prime implicants of fA� ða�; b�; c�; d�Þ is {a,c}, {b,c}, or
{c,d}. Therefore, there are three decision-relative reducts, namely
{Total bilirubin, Pro BNP}, {Direct bilirubin, Pro BNP}, and {Pro
BNP, Troponin I} that can be used to distinguish between a diagno-
sis of CHF and Non-CD, with {Pro BNP} as a core, i.e., an indispens-
able predictor, in the decision system. In a high-dimensional
dataset, the finding of all possible decision-relative reducts is a
non-deterministic polynomial-time hard (NP-hard) problem. Obvi-
ously then, the calculation of all reducts is very complex, but in
many practical applications all the reducts do not need to be calcu-
lated, but only some of them.

To address this issue, we used Johnson’s reduction algorithm in
order to find a single reduct without exhaustively generating all
possible reducts, which offer no guarantee of minimality but are
generally of a size close to the minimal. The algorithm begins by
setting the current reduct candidate to the empty set. Each condi-
tion attribute appearing in the discernibility function is then eval-
uated according to a heuristic measure. For the standard Johnson
reduction algorithm, this is typically a count of the number of
appearances of an attribute within clauses. The attribute that has
the highest heuristic value is added to the candidate reduct, and
all clauses in the discernibility function that contain this attribute
are removed. As soon as all clauses have been removed, the algo-
rithm terminates and returns the reduct [5]. For more details, the
reader is referred to the literature (See [25,26]).

In this way, we investigated decision-relative reducts that were
extracted from each training dataset during k-fold cross-validation
(in our study, k = 10), and we then utilized these to construct a
scheme for a decision-making model (Fig. 1) using the C5.0
Table 2
Decision-relative discernibility matrix of Table 1.

c�ij 1 2 3 4 5 6

1 Ø {a,b,c, d} Ø {a,b,c} Ø {a,c,d}
2 {a,b,c,d} Ø {a,b,c} Ø {b,c,d} Ø
3 Ø {a,b,c} Ø {a,b,d} Ø {a,c,d}
4 {a,b,c} Ø {a,b,d} Ø {b,c,d} Ø
5 Ø {b,c,d} Ø {b,c,d} Ø {c}
6 {a,c,d} Ø {a,c,d} Ø {c} Ø

a: Total bilirubin; b: Direct bilirubin; c: Pro BNP; d: Troponin I.



Fig. 1. Scheme of decision-making model.
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decision tree algorithm in Clementine version 12.0 (SPSS Inc., Chi-
cago, IL, USA). Here, the MEP and RSAR components were imple-
mented on MATLAB version 2010b.

2.5. Evaluation of decision-making models

We used 10-fold cross-validation (CV) experiments to provide
an unbiased estimate of the generalization error. The full dataset
was randomly divided into 10 subsets:9 subsets were used for
training (90%), and the remaining subset was used for testing
(10%). The process was then repeated 10 times. The performance
of the models was evaluated using six standard measures, accuracy
(ACC), sensitivity (SENS), specificity (SPEC), positive predictive va-
lue (PPV), negative predictive value (NPV), and the area under the
ROC curve (AUC). A confusion matrix contains information, i.e., dif-
ference, about actual and predicted outcomes done by a classifica-
tion system. Table 3 shows the confusion matrix for a binary
classification problem. Then the five measures can be defined by
using the elements of the confusion matrix as

ACC ¼ TP þ TN
TP þ FN þ TN þ FP

� 100 ð6Þ

SENS ¼ TP
TP þ FN

� 100 ð7Þ

SPEC ¼ TN
TN þ FP

� 100 ð8Þ

PPV ¼ TP
TP þ FP

� 100 ð9Þ

NPV ¼ TN
TN þ FN

� 100 ð10Þ
Table 3
Confusion matrix.

Predicted outcome

Positive (e.g., CHF) Negative (e.g., Non-CD)

Actual outcome
Positive (e.g., CHF) True positive (TP) False Negative (FN)
Negative (e.g., Non-CD) False Positive (FP) True Negative (TN)
where TP and TN are the correctly classified positives and negatives,
FP and FN are the incorrectly classified positives and negatives.
Next, the AUC was used to measure how well a decision model
performed, i.e., a trade-off between sensitivity and specificity [27].
We also made a pairwise comparison [28] between the ROC
curves of the models in order to test for statistically significant
differences.
3. Experimental results

3.1. Univariate and multivariate analysis

There were significant differences between patients with CHF
(mean age, 73.4 ± 9.9 years) and those with Non-CD (mean age,
65.2 ± 15.1 years), in terms of age (p < 0.001); gender (p < 0.05);
and the urinalysis results for OB (p < 0.05) and RBC (p < 0.01), as
listed in Table 4. The clinical findings for the common blood cell
and differential count, serum electrolytes, routine admission, arte-
rial blood gas analysis, etc. showed that the following were signif-
icantly or slightly higher in patients with CHF: MCV (p < 0.05), MPV
(p < 0.001), APTT (p < 0.05), PT (p < 0.001), K (p < 0.01), LDH
(p < 0.01), CK-MB (p < 0.001), Inorganic Phosphorus (p < 0.001),
BUN (p < 0.001), Creatinine (p < 0.001), Total bilirubin (p < 0.01),
Direct bilirubin (p < 0.01), ALP (p < 0.05), AST (p < 0.01), Mg
(p < 0.01), Pro BNP (p < 0.001), and Troponin I (p < 0.001). In con-
trast, the following were slightly higher in patients with Non-CD:
RBC (p < 0.05), HGB (p < 0.05), MCHC (p < 0.001), O2CT (p < 0.05),
O2SAT (p < 0.05), and HB (p < 0.05). The remaining variables could
not be used to differentiate CHF from Non-CD, as can be inferred
from Table 5.

In the multivariate analysis, independent risk factors were iden-
tified using Wald forward LR to define entry and removal criteria of
0.05 and 0.10. We included four variables in the final LR model that
were independently related to CHF (See Table 6): Gender
(p = 0.011; OR, 3.287; 95% CI, 1.309–8.257), MCHC (p = 0.052; OR,
0.696; 95% CI, 0.483–1.003), Direct bilirubin (p = 0.006;
OR, 25.151; 95% CI, 2.581–245.095), and Pro BNP (p = 0.000; OR,
2.156; 95% CI, 1.664–2.793). These variables were tested by linear



Table 4
Comparison of patient characteristics (age, gender, and urinalysis) for patients with
congestive heart failure versus non-cardiogenic dyspnea.

Variable CHF (n = 71) Control (n = 88) p Value

Age, yrs 73.39 ± 9.86 65.23 ± 15.14 <0.000a

Gender <0.025
Male 26 (36.6%) 49 (55.7%)
Female 45 (63.4%) 39 (44.3%)

Urinalysis
Color 0.788

Amber 3 (4.2%) 3 (3.4%)
Straw 68 (95.8%) 85 (96.6%)

SG 1.02 ± 0.01 1.02 ± 0.01 0.812
pH 6.08 ± 0.94 6.34 ± 0.87 0.075
Albumin 0.055

Negative 45 (63.4%) 68 (77.3%)
Positive 26 (36.6%) 20 (22.7%)

Glucose 0.494
Negative 55 (77.5%) 64 (72.7%)
Positive 16 (22.5%) 24 (27.3%)

Ketone 0.703
Negative 65 (91.5%) 79 (89.8%)
Positive 6 (8.5%) 9 (10.2%)

OB <0.043
Negative 33 (46.5%) 55 (62.5%)
Positive 38 (53.5%) 33 (37.5%)

Urobilinogen, EU/dL 0.30 ± 0.80 0.40 ± 1.16 0.863
Bilirubin 0.956

Negative 66 (93.0%) 82 (93.2%)
Positive 5 (7.0%) 6 (6.8%)

Nitrite 0.497
Negative 67 (94.4%) 85 (96.6%)
Positive 4 (5.6%) 3 (3.4%)

WBC1 0.135
Negative 51 (71.8%) 72 (81.8%)
Positive 20 (28.2%) 16 (18.2%)

RBC <0.005
Negative 13 (18.3%) 34 (38.6%)
Positive 58 (81.7%) 54 (61.4%)

WBC2 0.154
Negative 3 (4.2%) 9 (10.2%)
Positive 68 (95.8%) 79 (89.8%)

Ep.Cell 0.725
Negative 17 (23.9%) 19 (21.6%)
Positive 54 (76.1%) 69 (78.4%)

Cast –
Negative 71 (100.0%) 88 (100.0%)
Positive – –

Other 0.755
Negative 67 (94.4%) 84 (95.5%)
Positive 4 (5.6%) 4 (4.5%)

Crystal 0.368
Negative 71 (100.0%) 87 (98.9%)
Positive – 1 (1.1%)

a Mann-Whitney U-test.

Table 5
Comparison of patient characteristics (CBC and differential count, serum electrolytes,
routine admission, etc.) for patients with congestive heart failure versus non-
cardiogenic dyspnea.

Variable CHF (n = 71) Control (n = 88) p Value

CBC and differential count
WBC, �103/lL 9.12 ± 3.62 9.42 ± 4.12 0.846
RBC, �103/lL 3.98 ± 0.63 4.21 ± 0.63 <0.025b

HGB, g/dL 12.16 ± 2.19 12.87 ± 2.01 <0.034b

HCT, % 36.31 ± 6.41 37.53 ± 5.58 0.203
MCV, fl 91.23 ± 5.88 89.34 ± 5.50 <0.039b

MCH, pg 30.67 ± 2.42 30.79 ± 2.12 0.742
MCHC, g/dL 33.73 ± 1.31 34.52 ± 1.18 <0.000b

PLT, �103/lL 255.39 ± 109.83 281.06 ± 103.03 0.132
NEUT, % 73.08 ± 11.77 71.96 ± 14.48 0.592
LYMP, % 20.00 ± 11.10 19.38 ± 12.93 0.749
MONO, % 5.14 ± 2.33 5.32 ± 2.27 0.626
EOS, % 2.80 ± 3.57 2.91 ± 3.52 0.213
BASO, % 0.57 ± 0.33 0.54 ± 0.38 0.299
LUC, % 1.85 ± 0.89 1.67 ± 0.76 0.368
MPV, fl 8.43 ± 1.05 7.89 ± 0.80 <0.000a

APTT, s 32.05 ± 8.66 29.25 ± 5.28 <0.025a

PT, s 1.19 ± 0.35 1.05 ± 0.22 <0.000a

Fibrinogen, mg/dL 348.25 ± 90.68 379.71 ± 111.72 0.052

Serum electrolytes
Na, mmol/L 142.61 ± 6.02 142.72 ± 4.88 0.333
K, mmol/L 4.75 ± 0.93 4.36 ± 0.57 <0.009a

Cl, mmol/L 105.62 ± 7.48 105.30 ± 5.18 0.177
LDH, U/L 740.87 ± 466.11 571.55 ± 172.63 <0.002a

Lipase, U/L 31.97 ± 17.47 30.52 ± 16.53 0.752
CK, U/L 163.55 ± 150.15 201.83 ± 283.56 0.581
CK-MB, ng/mL 3.67 ± 4.78 2.43 ± 3.53 <0.000a

Amylase, U/L 50.10 ± 27.52 47.98 ± 21.36 0.770

Routine admission
Total calcium, mg/dL 8.74 ± 0.60 8.90 ± 0.67 0.118
Inorganic phosphorus, mg/
dL

4.08 ± 1.19 3.34 ± 0.82 <0.000b

Glucose, mg/dL 174.38 ± 78.27 156.08 ± 60.56 0.129
BUN, mg/dL 30.83 ± 21.37 19.60 ± 13.53 <0.000a

Creatinine, mg/dL 1.62 ± 1.07 1.14 ± 0.72 <0.000a

Cholesterol, mg/dL 172.61 ± 48.65 168.66 ± 43.71 0.591
Total protein, g/dL 6.85 ± 0.69 6.91 ± 0.72 0.632
Albumin, g/dL 3.82 ± 0.36 3.89 ± 0.44 0.316
Total bilirubin, mg/dL 1.04 ± 0.71 0.73 ± 0.39 <0.002a

Direct bilirubin, mg/dL 0.37 ± 0.25 0.26 ± 0.17 <0.001a

ALP, U/L 100.24 ± 31.94 94.74 ± 47.48 <0.038a

AST, U/L 106.80 ± 231.56 41.33 ± 67.67 <0.008a

ALT, U/L 71.58 ± 152.29 30.52 ± 30.66 0.348
Ca, mEq/L 2.25 ± 0.15 2.29 ± 0.16 0.061
Mg, mg/dL 2.33 ± 0.35 2.16 ± 0.30 <0.003a

ABGA
pH 7.46 ± 0.06 7.46 ± 0.07 0.977
pCo2, mmHg 38.47 ± 13.29 38.56 ± 10.68 0.176
pO2, mmHg 77.64 ± 14.69 83.11 ± 19.77 0.054
HCo3, mmol/L 29.96 ± 5.20 25.16 ± 4.08 0.105
BE, mmol/L -0.26 ± 5.67 1.47 ± 3.35 0.060
O2CT, Vol% 14.74 ± 3.58 16.36 ± 3.26 <0.010a

O2SAT, mmHg 95.88 ± 2.85 96.75 ± 2.03 <0.031b

TCo2, mmol/L 25.06 ± 5.46 26.33 ± 4.36 0.106
HB, g/dL 11.62 ± 2.48 12.43 ± 2.27 <0.033b

HCT 35.84 ± 7.12 37.75 ± 6.53 0.080
CRP, mg/dL 1.77 ± 2.12 4.15 ± 6.08 0.184
Pro BNPc, pg/mL 8.65 ± 1.45 5.77 ± 2.08 <0.000a

Troponin I, ng/mL 0.42 ± 1.20 0.11 ± 0.20 <0.000a

a Mann-Whitney U-test.
b Student t-test.
c Log-transformed.
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regression analysis in order to evaluate the possible problem of
multicollinearity, which occurs when two or more predictors in a
model are correlated. The data did not violate the assumption of
multicollinearity, as the tolerance of each independent variable
was greater than 0.883. The variance inflation factor (VIF) values
of the variables ranged from 1.096 to 1.132. The performance of
five standard measures, ACC, SENS, SPEC, PPV, and NPV was
79.9%, 78.9%, 80.7%, 76.7%, and 82.6%, respectively. The AUC of
the LR model was 79.8% (95% CI, 0.727–0.857), which indicates a
fair degree of discriminatory power.
3.2. LR-based decision-making model versus RS-based decision-
making model

Based upon the independent predictors in Table 6, we con-
structed a decision-making model using the C5.0 decision tree
model. The LR-based decision model is shown in Fig. 2, and eight
decision rules were generated from the full dataset. Cases were
categorized based upon the criteria of the decision rules. After
applying Fisher’s exact tests, the following four rules associated
with CHF in the LR-based decision model were found to be statis-
tically significant:



Table 6
Multivariate analysis of predictors of CHF.

Variable Coefficient (b) Standard error OR 95% CI p Value

Gender 1.190 0.470 3.287 1.309–8.257 0.011
MCHC �0.363 0.186 0.696 0.483–1.003 0.052
Direct bilirubin 3.225 1.162 25.151 2.581–245.095 0.006
Pro BNPa 0.768 0.132 2.156 1.664–2.793 0.000
Intercept 3.673 6.475 39.361 – 0.571

OR: odd ratios; R2 = 0.434; n = 159.
a Log-transformed.

Fig. 2. LR-based decision-making model.
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(1) IF Pro BNP > 7.94 pg/mL AND Direct bilirubin > 0.3 mg/dL,
THEN the Diagnosis is CHF (p < 0.01).
(2) IF Pro BNP 6 7.94 pg/mL AND Female AND Pro BNP > 5.83
pg/mL, THEN the Diagnosis is CHF (p < 0.001).



Fig. 3. RS-based decision-making model.
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(3) IF Pro BNP > 7.94 pg/mL AND Direct bilirubin 6 0.3 mg/dL
AND Male AND Pro BNP 6 8.73 pg/mL, THEN the Diagnosis
is CHF (p < 0.01).

(4) IF Pro BNP > 7.94 pg/mL AND Direct bilirubin 6 0.3 mg/dL
AND Female AND MCHC 6 34.7 g/dL, THEN the Diagnosis is
CHF (p < 0.05).

In the proposed model, a decision-relative reduct was selected
using the RSAR component: {RBC, HCT, EOS, MPV, Protein,
O2SAT, Pro BNP}. Then the differences in the references as calcu-
lated using the MEP component were as follows:
� Non-CD (control group)

RBC: [3.83, 4.65); HCT: [33.1, 41.2); EOS: [1.0, 3.0); MPV: [7.3,
8.2); Protein: [6.3, 7.2); O2SAT: [95.7, 98.2); Pro BNP: [4.12,
7.47)

� CHF

RBC: [3.62, 4.36); HCT: [31.5, 41.1); EOS: [0.5, 3.4); MPV: [7.8,
8.6); Protein: [6.3, 7.2); O2SAT: [94.4, 98.1); Pro BNP: [8.08,
9.77)



Table 7
Decision-relative reducts selected from RSAR component during 10-fold cross validation.

Variable F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Frequency

Age � � � 3

Urinalysis SG � � 2
Glucose � 1
WBC1 � 1

CBC and differential count RBC � 1
HGB � 1
HCT � � � � � � 6
MCV � � 2
MCHC � � � � � � � 7
PLT � 1
MONO � 1
EOS � � � � 4
MPV � 1
APTT � � 2
Fibrinogen � 1

Serum electrolytes Na � 1
Cl � 1
LDH � 1
Lipase � 1
Amylase � 1

Routine admission Inorganic phosphorus � � � 3
Cholesterol � 1
Albumin � 1
ALP � 1
AST � � 2
Ca � � � � � 5
Mg � 1

ABGA pH � 1
O2SAT � � 2
Pro BNP � � � � � � � � � � 10
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From these results, we confirmed that the reference of Pro BNP
was remarkably different in the lower and upper limits, and the
clinical factor EOS was different in the lower limit. Based upon
the reduct, we constructed a decision-making model using the
same method as was used in the previous experiment. After the
application of a C5.0 decision tree approach, five clinical factors
{RBC, EOS, Protein, O2SAT, Pro BNP} of the decision-relative reduct
were determined in order to generate the decision rules associated
with CHF. The RS-based decision model is shown in Fig. 3, and the
following four rules were found to be statistically significant:

(1) IF Pro BNP > 7.937 pg/mL AND Pro BNP > 10.354 pg/mL,
THEN the Diagnosis is CHF (p < 0.05).

(2) IF Pro BNP > 7.937 pg/mL AND Pro BNP 6 10.354 pg/mL
AND RBC > 3.55 103/lL, THEN the Diagnosis is CHF
(p < 0.001).

(3) IF Pro BNP 6 7.937 pg/mL AND Pro BNP > 5.941 pg/mL
AND O2SAT 6 97.7 mmHg AND Protein > 7.1 g/dL, THEN
the Diagnosis is CHF (p < 0.05).

(4) IF Pro BNP > 7.937 pg/mL AND Pro BNP 6 10.354 pg/mL
AND RBC 6 3.55 103/lL AND EOS > 9.3%, THEN the Diagno-
sis is CHF (p < 0.01).

Table 7 shows the decision-relative reducts that were extracted
from 10 training datasets during the 10-fold CV. The leftmost col-
umn consists of clinical laboratory tests; the 2nd column lists test
names; the 3rd–12th columns denote folds, where the symbol �
represents the reducts selected using the RSAR component for each
training dataset; and the rightmost column denotes the occurrence
frequency of corresponding clinical factors. The references, which
were defined as the minimum and maximum values of the lower
and upper limits of the clinical factors, were determined as
follows:
� Non-CD (control group)

Age: [55, 76); Urine SG: [1.005, 1.015); RBC: [3.77,
4.71); HGB: [11.3, 14.6); HCT: [33.0, 41.8); MCV: [85.6,
93.3); MCHC: [33.5, 35.5); PLT: [203, 347); MONO:
[3.5, 6.9)
EOS: [0.9, 3.4); MPV: [7.3, 8.2); Na: [139, 144); Cl: [102, 108)
Inorganic phosphorus: [2.8, 3.8); Cholesterol: [138, 205);
Albumin: [3.5, 4.1); ALP: [69, 103); AST: [20, 41); pH:
[7.427, 7.488); O2SAT: [95.5, 98.3); APTT: [25.4, 31.9);
Fibrinogen: [289.6, 477.2); LDH: [442, 669); Lipase: [19,
36); Amylase: [32, 58)
Ca: [2.19, 2.35); Mg: [1.9, 2.2); Pro BNP: [4.10, 7.91)

� CHF

Age: [66, 80); Urine SG: [1.005, 1.015); RBC: [3.59,
4.42); HGB: [10.1, 14.0); HCT: [31.4, 41.4); MCV: [87.0,
94.7); MCHC: [32.6, 34.6); PLT: [176, 325); MONO:
[3.2, 6.5)
EOS: [0.5, 3.6); MPV: [7.7, 8.9); Na: [139, 145); Cl: [100,
110); Inorganic phosphorus: [3.1, 4.8)
Cholesterol: [128, 211); Albumin: [3.5, 4.0); ALP: [72, 121);
AST: [24, 86); pH: [7.421, 7.508)
O2SAT: [94.3, 98.2); APTT: [26.5, 34.5); Fibrinogen: [285.6,
416.3); LDH: [493, 824)
Lipase: [19, 38); Amylase: [27, 62); Ca: [2.14, 2.34); Mg: [2.0,
2.4); Pro BNP: [8.01, 9.93)

Table 8 shows the results of a comparison of the six performance
measures used in the LR-based and RS based decision-making mod-
els, in which the RS-based decision model was constructed from
clinical factors that were selected while the criteria of the occur-
rence frequency were adjusted between 1 and 10. When the criteria
were defined as 2 or 3, 4 or 5, and 7–10, the performance of the
models was the same, regardless of the number of features, prior
to the application of the C5.0 decision tree component. These



Table 8
Comparisons of performance of decision support models during 10-fold cross validation.

Model ACC SENS SPEC PPV NPV AUC No. rules

LR-based decision tree model 88.7 (SD 3.2) 90.1 (SD 2.8) 87.5 (SD 5.7) 85.3 (SD 5.9) 91.7 (SD 2.5) 88.8 (SD 3.1) 8
RS-based decision tree model (over 1) 97.5 (SD 1.1) 97.2 (SD 1.7) 97.7 (SD 1.6) 97.2 (SD 2.1) 97.7 (SD 1.4) 97.5 (SD 1.1) 18
RS-based decision tree model (over 2 or 3) 83.0 (SD 3.0) 90.1 (SD 4.2) 77.3 (SD 4.3) 76.2 (SD 3.8) 90.7 (SD 3.8) 83.7 (SD 3.0) 4
RS-based decision tree model (over 4 or 5) 87.4 (SD 3.1) 90.1 (SD 4.1) 85.2 (SD 3.8) 83.1 (SD 5.1) 91.5 (SD 3.9) 87.7 (SD 3.2) 8
RS-based decision tree model (over 6) 83.0 (SD 3.1) 81.7 (SD 3.8) 84.1 (SD 4.3) 80.6 (SD 6.6) 85.1 (SD 2.6) 82.9 (SD 3.0) 5
RS-based decision tree model (over 7–10) 80.5 (SD 3.0) 81.7 (SD 3.8) 79.5 (SD 4.5) 76.3 (SD 3.0) 84.3 (SD 3.8) 80.6 (SD 3.0) 2

Six measures, ACC, SENS, SPEC, PPV, NPV, and AUC (mean and SD) show test performance from 10 trials, where 90% of the dataset were used for training and 10% for testing.

Table 9
Pairwise comparison between the ROC curves of different decision support models.

Model LR-based decision
tree model

RS-based decision
tree model (over 1)

RS-based decision tree
model (over 2 or 3)

RS-based decision
tree model
(over 4 or 5)

RS-based decision
tree model (over 6)

RS-based decision
tree model
(over 7–10)

LR-based decision
tree model

– p = 0.005a p = 0.120 p = 0.716 p = 0.097 p = 0.030a

(95% CI: 2.63–14.6) (95% CI: �1.33–11.6) (95% CI: �4.99–7.26) (95% CI: �1.07–12.9) (95% CI: 0.81–15.6)

RS-based decision tree
model (over 1)

p = 0.005a – p < 0.000a p = 0.001a p < 0.000a p < 0.000a

(95% CI: 2.63–14.6) (95% CI: 7.08–20.4) (95% CI: 3.78–15.8) (95% CI: 7.91–21.2) (95% CI: 9.86–23.8)

RS-based decision tree
model (over 2 or 3)

p = 0.120 p < 0.000a – p = 0.027a p = 0.759 p = 0.189

(95% CI: �1.33–11.6) (95% CI: 7.08–20.4) (95% CI: 0.45–7.51) (95% CI: �4.40–6.03) (95% CI: �1.52–7.70)

RS-based decision tree
model (over 4 or 5)

p = 0.716 p = 0.001a p = 0.027a – p = 0.069 p = 0.017a

(95% CI: �4.99–7.26) (95% CI: 3.78–15.8) (95% CI: 0.45–7.51) (95% CI: �0.38–9.97) (95% CI: 1.28–12.9)

RS-based decision tree
model (over 6)

p = 0.097 p < 0.000a p = 0.759 p = 0.069 – p = 0.140

(95% CI: �1.07–12.9) (95% CI: 7.91–21.2) (95% CI: �4.40–6.03) (95% CI: �0.38–9.97) (95% CI: �0.75–5.29)

RS-based decision tree
model (over 7–10)

p = 0.030a p < 0.000a p = 0.189 p = 0.017a p = 0.140 –

(95% CI: 0.81–15.6) (95% CI: 9.86–23.8) (95% CI: �1.52–7.70) (95% CI: 1.28–12.9) (95% CI: �0.75–5.29)

a Pairwise comparison between ROC curves indicated statistically significant difference.
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results indicate that the features selected by the RS-based decision
model (over 1) are able to produce a classifier with a larger AUC
than that selected by the LR-based decision model using Gender,
MCHC, Direct bilirubin, and Pro BNP, while the RS-based decision
model results (over 4 or 5) for AUC were similar.

To describe the pairwise comparison between the ROC curves of
the models, we also investigated the discriminatory capabilities of
six models; the results are presented in Table 9. From these results,
we can see that as a feature pre-selection approach, the RS-based
decision model (over 1) had significantly better discriminatory
power than the decision model with LR.
4. Discussion and conclusion

One of the most difficult problems faced in medical practice is
distinguishing patients experiencing heart failure from those with
dyspnea. To address this issue, this study presented a scheme for a
decision-making model based on RST and decision tree ap-
proaches. The scheme’s goal is to extract the most relevant factors
and their references, and to identify decision rules for early diagno-
sis in patients with suspected CHF, since they are expensive to pro-
cess and impose a greater workload upon clinicians. From a full
dataset, we extracted features from the RSAR component (RBC,
HCT, EOS, MPV, Protein, O2SAT, and Pro BNP as a decision-relative
reduct) and from the LR (Gender, MCHC, Direct bilirubin, and Pro
BNP as an independent risk factor) that are indispensable to
obtaining early diagnostic knowledge of CHF patients. In particular,
we identified the risk factor Pro BNP, which was consistent with
findings described in previous research articles. Pro BNP is an
incremental and independent predictor of increased long-term car-
diovascular mortality risk, in addition to clinical risk factors [29]. A
change in the level of Pro BNP was the strongest predictor of car-
diac outcome, indicating a threefold increase in the risk of a
long-term cardiac event [30]. The Pro BNP level may also serve
as a useful clinical biomarker when its value is obtained at admis-
sion from an unselected patient population following hospitaliza-
tion for chest pain and potential acute coronary syndrome (ACS).
It may also provide complementary prognostic information that
can help to establish risk determinants during long-term follow-
up [31].

To demonstrate the usefulness of the proposed model, we com-
pared the discriminatory power of decision-making models that uti-
lize RS- and LR-based decision models during 10-fold CV. The
experimental results showed that the RS-based decision model
(over 1) with all decision-relative reducts (See Table 7) was more
effective at distinguishing patients with CHF from those with dysp-
nea, whereas the LR-based decision model with several independent
predictors was less accurate for the test data. In the results, the
range of AUC for the RS-based model was approximately
97.5 ± 1.1%, as compared with a range of 88.8 ± 3.1% for the LR-based
decision model. There are several explanations for the better results
that were obtained, which can be summarized as follows. In the
LR-based decision model, the LR analysis can easily scale up to
high-dimensional data and are computationally fast and indepen-
dent of the learning algorithm. The dependence among features,
however, is ignored. In the proposed method, on the other hand,
the RSAR method, as a feature pre-selection approach, provides a
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high probability of producing a model with better classification per-
formance than the LR analysis, by considering the feature dependen-
cies and their collective contribution [27].

This study has the following limitations. The assessment of clin-
ical factors was based on a data set that contained no information
regarding clinical histories, symptoms, or electrocardiogram re-
sults. The number of patients with CHF and with Non-CD was rel-
atively small, a fact that produced variations when determining the
risk factors and decision rules. While it proved to be valid in our
cross-validation experiments and was statistically significant, the
evidence of the derived rules was verified using an external valida-
tion study or prospective study. In addition, the data discretization
method (i.e., MEP) that was used as a step in the construction of
reference intervals in the proposed model is not specific to the
RS approach. However, real-value attributes had to be discretized
for the RSAR component, which may have resulted in some loss
of information. An alternative solution could be a fuzzy-rough fea-
ture selection method [5,21] that reduces dimensions with mini-
mal loss of information. These considerations provide directions
that could be fruitful for further research.
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