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Abstract—In the recent work of Candes et al, the problem of
recovering low rank matrix corrupted by i.i.d. sparse outliers is
studied and a very elegant solution, principal component ptsuit,
is proposed. It is motivated as a tool for video surveillance
applications with the background image sequence forming ta
low rank part and the moving objects/persons/abnormalities
forming the sparse part. Each image frame is treated as a cotan
vector of the data matrix made up of a low rank matrix and a
sparse corruption matrix. Principal component pursuit solves
the problem under the assumptions that the singular vectorof
the low rank matrix are spread out and the sparsity pattern of
the sparse matrix is uniformly random. However, in practice
usually the sparsity pattern and the signal values of the spae
part (moving persons/objects) change in a correlated fasbn
over time, for e.g., the object moves slowly and/or with rougly
constant velocity. This will often result in a low rank sparse
matrix.

For video surveillance applications, it would be much more
useful to have a real-time solution. In this work, we study tle
online version of the above problem and propose a solution
that automatically handles correlated sparse outliers. Infact we
also discuss how we can potentially use the correlation to ou
advantage in future work. The key idea of this work is as follavs.
Given an initial estimate of the principal directions of the low
rank part, we causally keep estimating the sparse part at edc
time by solving a noisy compressive sensing type problem. €h
principal directions of the low rank part are updated every-so-
often. In between two update times, if new Principal Componets’
directions appear, the “noise” seen by the Compressive Seing
step may increase. This problem is solved, in part, by utilimg the
time correlation model of the low rank part. We call the proposed
solution “Real-time Robust Principal Components’ Pursuit’. It
still requires the singular vectors of the low rank part to be
spread out, but it does not require i.i.d.-ness of either thesparse
part or the low rank part.

I. INTRODUCTION

Principal Components’ Analysis (PCA) tries to find the
“principal components’ space” with the smallest dimension

that spans a given dataset. In practice, data is noisy an

this case PCA finds the smallest subspace to represent
dataset with a given mean squared error (MSE) tolerance.

Given a low rank data matrix/ € R™*™ (each column

of M is one data vector), PCA finds its principal componen
(PCs) as the left singular vectors @ff that have nonzero
singular values. This is the same as first estimating the d
covariance agl/n)MMT, computing its eigenvalue decom

position (EVD) and retaining eigenvectors corresponding

nonzero eigenvalues. When data is noisy, this is replacedvg
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arranging the eigenvectors in decreasing order of eigaasal
and retaining the smallest number of eigenvectors so that
the sum of the remaining eigenvalues (which is equal to the
residual MSE) is less than the MSE tolerance.

When the noise is small, the above approach works well.
However, covariance matrix estimation, and hence the €orre
sponding EVD, are sensitive to even a few large outliers in
the data. Unfortunately, in practice these do occur, e.genwh
trying to compute the principal components’ subspace for a
video sequence, parts of it may get occluded by other moving
objects. There has been a large amount of work in literatare o
“Robust PCA”, e.g.[[1],[[2],[[3],[4], [5], [6], [7], [8], [9] most
of which either assumes the locations of the missing/c@uup
data points are knowin][3], which is not a practical assunmptio
or (ii) first tries to detect the corrupted pixels and themeit
fills in the corrupted location using some heuristics or) (iii
often just removes the entire outlier vector. In a series of
recent works[[10],[[11],[T12], a very elegant solution tosthi
problem was provided that treats the outlier as a sparsewect
In [10], the data matrix\/ consists of a low rank matrix that
is corrupted by sparse outliers, i.e.

M=L+S

whereL is a low rank matrix having a singular value decom-
position (SVD) L SYP upvT andS is sparse and can have
arbitrary large magnitude. LdtZ||. denotes the nuclear norm
of L, i.e., the sum of singular values df. It is shown in
[1Q] that L and S can be recovered with high probability by
solving a convex optimization problem, named as Principal

Component Pursuit (PCP),
[0« + AllS ]
subjectto L+S=M

1)

min
L,S

provided the singular vectors @f are spread out (not sparse),
n : .

t{he support and signs ¢f are uniformly random (thus not low

rar?k), the rank ofl. and the fraction of corrupted entries th

are both sufficient small. A more recent work,[12], exterids t
esult of [10] showing that, with a proper weighting paraenet
, PCP can recovek and.S with high probability even if the

s%e of support set of is large, as long as the rank @éf is

2al enough. But it requires th&t has random support and

{andom signs.

PCP [10] is motivated as a tool for surveillance applicagion

¥h the background variations approximately lying in a low
dimension subspace, and the sparse part being the “moving
persons” or “abnormalities” to be detected. It is an offline
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method which treats each image frame as a column vectoriofuture work. Since we update the principal directionge-
the data matrixd/. While this is a very elegant and novel ideafly, the dimension of the principal subspace remains bounded
there are certain limitations. A model similar to [2) but for a static problem and with

1) In surveillance, it would be more useful to obtain th&€ing aknownmatrix, was introduced in [16]. [17]. A method,
estimates of the sparse part on-the-fly rather than offlirf€rmed as pursuit of justice (PJ), is introduced to solvetier
2) The sparsity pattern (support and signs) of the spar@arse vector = [z, S;]" which solving the following,
part may change slowly or in a correlated fashion, whidhinimization problem
may result in a low rank sparse matrix. In this case, PCP
assumption will not get satisfied and as a result it will ]
not work, e.g. see Fig.2. subject to M; = Au

3) The principal directions (set of eigenvectors correspon hare 4 .— [U I]. Notice that in our problent/ is unknown

ing to nonzero eigenvalues) can change over time. So they thys we cannot use sparse reconstruction techniques to
rank of the matrix/, will keep increasing over time thusfing , Given an estimaté’;, the above can be modified to
making PCP impossible to do after sometime. A = [P P, I]. However, this does not work as shown in
This last issue may get resolved by not using all frames bfg.[3.
M, but only the latest image frames. But the first two issues
still remain. . A. Notations
In this paper, we propose an online approach to solve this h . d\ h h | .
problem. Our goal is to causally keep estimating the sparse! N€ S€t operations, ran \ have the usual meanings. For
part S, at each time, and to keep updating the princip&™Y setl’ C {1,---m}, T* denotes the complement set'bf

directions every-so-often. Theeth column of M, M, is the Le, T¢:= {1, mi\T. . ,
data acquired at time It can be split as For a non diagonal matrix4, we let A; denote theith

column of A and we letAr denote a matrix composed of
Ty ] @) the columns ofA indexed byT'. For two set7; and7s, we
Sy let A7, 7, denote a submatrix oft consisting of the rows
o indexed byT; and columns indexed b¥,. For a diagonal
wherez; := U”L; and the matrixU is anunknownm x  matrix Q, Q; denotes a submatrix & consisting of the rows
m orthonormal matrix. The support of the vect8y changes 5nq columns indexed by. In other wordsQ is a diagonal
slowly over time. Given an initial estimate d% := (U)n,, matrix with Q1) = Q)1 1,
denoted?;, we solve for the sparse vectsf by first finding  For vectors, v; denotes theth entry ofv and vy denotes
the orthogonal complement matri;, ; and then using the 4 yector consisting of the entries of indexed byT. ||v|

min ©)

Mt:LtJrSt:[UI][

projection of M; onto P; , , denoted byy;, denotes the/,, norm of v. The support ofv, supgv), is the
- - - set of indices at whiclv has nonzero value, sufp := {i :
ye =Pl My = P L+ P S v; # 0}. bR =

to solve for S,. Notice that if P, ~ P, the first term Ve usef to denote an empty set or an empty matrix.

will be close to zero and can be treated as “noise”. When

P, #+ P, (new directions added), the “noise” can be reduced  |l. PROBLEM DEFINITION AND SIGNAL MODEL

by using the time correlation model dn. Furthermore, recent  The ¢tth column of M, M, € R™*!, is the data at time
estimates ofl; := M; — S; are stored and used to periodicallywhich can be split as

update P, as described in Se€_1lID. There are also some

limitations of our method. My = Li+5

1) We need an approximately accurate initial estimate of the Ly = Uz = Pa

PCs’ basis,F, which is easy to get using training datayhere », := UTL, and S, are sparse vectors with slowly
without sparse corruptions. _ changing supportV, := supfz;) and T, := supgS:),
2) The orthogonal complemettt, | needs to satisfy some regpectively.V, is modeled as being piecewise constant with
conditions for Compressive Sensing to succeed. time. The vector, := (), is the none-zero part of,. The
3) An appropriate choice of constraint parametey needed principal components’ basis at each timeP, := Uy,, is a
for estimatings;. submatrix of whose columns span the principal components’
The above idea is somewhat related to that of [13] in thatbspace at time It is unknown and can change over time.
both try to cancel the “message” signal and only solve for the Since the matriXV does not change with time (in this work),
sparse “error” signal, but with the big difference that[if8[,L the only way P, changes is when the séf; changes. This
P; is known Other related work which also usé% known happens every frames. We assume that and hencel; =
is [14], [15]. However in our problenP; is unknownand Uz follows a piecewise stationary model with nonstationary
can change with time. Out method requires the columns wénsients when switching pieceBor everyd frames, there
If’tyL be spread out (not sparse), but it does not regijreo  are some supporting indices get added or deleted fAgm
have independent nonzero entries. In fact, we can utiliee tBpecifically when an elemeitgets added into the support, it
correlated support change 6f over time,t, to our advantage gets added with an initial small variange? (with 0 < 6 < 1)



and then at future times follows a first order autoregressiBe Model for S,

(AR-1) model with AR parametef and stable variance;.  Recall that in video surveillance applications, the data
Recall that an AR-1 model is asymptotically stationary. §humatrix A7 is obtained by stacking each image frame as a
after the initial transient period;; is stationary until the next ¢4jymn vector, whose low rank componentcorresponds to
support change time. Before an elemegets deleted, it starts packground variation lying in a low rank subspace and sparse
decaying ag(z:)i = fa(zi—1)i With 0 < fo < f <1, and  componens captures the moving objects in the foreground. In

soon decays to zero. this work, we use a simple model for the sparse component
A. Mathematical description of signal model for (and hence E’elrg\(,)vdellng the activity of the moving objects as described

for L) ] ] o We assume that, in each image frame, therekafe > 1)
The support set of;, N, is a union of three disjoint sets

; > objects in the foreground. Each object occupieks>a3 pixel
Ay, Dy, and By, ie., Ny = A; U Dy U E;. The addition set pjqck which has nonzero pixel values. All other pixels in the

A= Ni \ Ny is the set of indices for the new appearingyreground have zero values. L@ denote the coordinate of
eigenvectorU)a,. The setD; C (N, N N;—1) is the set of e center of gravity of theéth object at timet, i = 1,-- - , k.

indi.ces of those eigenvectors whose eigenvalues are @ugea,:or the next image frame, eact’; can either be static with
attimet. The setk; := Ny N Ny \ Dy is the set of indices - 5papility)) or move one step to the left/right/top/bottom with

for existing eigenvectors with non—deereasipg eigen\tal_mhe probability (1 — p)/4 each, i.e., foi =1,--- , k,
setsD, andA, can be empty. For any timewith “decreasing” . _ N
setD,, we assume thab, will not get added taV, for any CGi, with probability p
t>T. . CGy_y +(1,0),  with probabilty (1 — p)/4
LetY = diago?), i = 1,--- ,m, be a diagonal matrix with CG; = § CG;_; +(=1,0), with probability (1 —p)/4
non-increasing positive diagonal elements, ir. satisfying CGy-1+(0,1),  with probability (1 —p)/4
o? > o?,,. We modelz; as CGi_1 +(0,—1), with probability (1 — p)/4
290=0, Ng=10 with p = 0.8. The pixels in each block move accordingly.
iid. Except if the objects move very fast or if they are very small,
v = Firg o+ v, 1y & N(0,Q¢) (4) P ] Y Y y

_ _ _ there will be overlap between their regions from frame to
where F; and @, are two diagonal matrices defined as belowame. We then stack the resulting foreground image frame

(F))a, =0, (Q)a, = 0(2)a,, as eolumns ofS. Clearly, the _support of}, tth column ofS,
I ' _ 47 ' _(1— 9 > is time correlated and the signs of these nonzero entries are
F)e = f1, (Q)e, = 1= ), fixed. This is quite different froni [10] an@ [12] where random
(Ft)p, = fal, (Qi)p, =0, support and random signs are assumed on the sparsé.part
(Fr)ng =0, (Qt)ng = 0.
wheref, f4, andf are scalars satisfying < f; < f < 1 and 1. REAL-TIME RoBUSTPCP
0<d<1. An overview of our method, real-time robust PCP (RR-
From the model on;, we notice the following: PCP), is shown in Figll. We first discuss the approach to
a) Attimet =, (z,)a, Starts with recursively reconstruct the sparse compongnt Next, we
(@)a. ~N(0,0(Z)a.). discussed the way we track the changes of the principal

directions. Finally, a complete algorithm is given in Algbhm
Smalld ensures that new directions gets added at a snpgll

value and increase slowlyz,)p_ decays as
(z7)p. = fa(zr-1)D. A. RR-PCP: recursively reconstruction of the sparse ffart

(z;) g, follows an AR-1 model with parametgf. Using P,, which is an estimate of principal componetits
(@)p. = f(@r—1) 5. + ()5 at timet¢, we can rewriteL; and M; as

b) Attimet > 7, if A; is not removed from the support Ly = P+ P 1f
set, the variance ofz:)a. gradually increases as M, = P+ PM@ + 5y
()i ~ N0, (1= (1= 0)f27N%, ), i€, whereP; | is an orthogonal complement @; o, := PT L,

Eventually, the variance ofr;)A, converges toqX),,. IS the projection ofZ, onto the subspace spanned By and
For example, withf = 0.9 and§ = 0.4, the variance of [; := PtﬂLt is the projection of_; onto the subspace spanned

(x¢)a, gets t00.9(X)a. in 18 frames. by P, ;. Notice thatP, is an estimate of,. Itis either just a
c) Attimet > 7, the variance ofx;)p_ decays as slight rotation of P, with spar{P,) = spar{?;) or there may
(@)D, NN(OJ;(FT)(E)DT) be some missing and extra principal directions. The column

vectors ofﬁu are the eigenvectors spanning the null space

Eventually, (z;)p, decays to zero. For example, withof PT_ The orthogonal complemer, | is not unique.
fa = 0.1, the variance of (z;)p, decrease to gt

-

0.0001(X)p, in 2 frames. yp 1= PELMt - pELSt + B, (5)



If the[e is no missing principal direction, i.e., spah) C Assuminth,l is correctly recovered, iel; 1 =1L, 1, SO
spariP,), B = 0. If there are missing principal directions,5;_1 = 5;—1, then
spariP;) g spar{P;) andg; # 0. In this casep; in (B) is the

. . . . .. Vt)A
“noise” resulting from the estimation error of current pijpal 5 AT T T
. . . ) . — 1 = P PaP AU
directions. This now becomes a noisy sparse reconstruction Be = [P TLTHAT LA, (Vt())ET
problem, with “noise”3;. When||3;||3 is not very large, we -
can causally recove$,; by solving = PoiBar(n)a,
. _(pT T(PT ;
min |[s|; s.t. |‘Pt1:J_(Mt _ 5)”% <e (6) Let B = (PT_’LPt,AT) (PT_’LPt,A.,-), then at timet > T,
2 _ o _ _ 2(t—7) 2
and hence estimatg, as E([15]12) ieEATBM(l (1-0)f o

[ E(I8 = fBiall2) = B Bii(l—f)o? (12)

wheree is a parameter with some small positive value. ACleagly* E(|5:3) shall be much larger thar(||s, —

For the case of missing principal directions, span ¢ fﬂt*1”22)' For example, withy = 0.9, 6 = 0.4, att =7+ 1,

sparfP;). Let S;miss := spartP;) \ spariP;) denote the E(18:12) s 0'514i€EATBi,iUi while E([|5; — fBi-1ll2) 1s

“missing” subspace and leP, miss be its orthonormal basis 0.19 > B;,;c?; and the ratio ofE(||3:||3) and E(||3; —
matrix. Thus spafP; miss) = St.miss and .

fﬂ}flug) keeps increasing over time. Recall that and
spariP,) = spanpP,) & span Py miss) (7) Bi—[fBi-1 are the “noise” in[(B) and (10), therefore, assuming
Spaﬂif% ) = spafP; 1) @ SparPymss ®) we have an accurate estimate of principal basis at timel,
’ ' ' (@0) shall give more accurate estimateShfthan [6). We show
Therefore, 5 plot of the expectations df3:||3 and ||3; — f3:—1|3 in Fig.
By =Pl Ly = PF| Py missP missLt (9)  In () and [@D), we need an appropriate parametshich

_ ) o should be proportional to the “noise” terii3;||3 in (@) or
with P L. being the projection ofl, onto the subspace 18 — fBe—1||2 in @T). The “noise”| |12 and | B: — f B2
Stmiss It Plissle starts with small values||3,||3 shall be g5 changes over time. Thus, we shall setctlaglaptively. In
small and it can increase over time. Whgh[|3 is getting oyur work, we use proportionally t02]|3;_1||2 for @) ande
too large, [(6) may give incorrect estimate. Thus, we need pronortional t02|| Bi_1 — fB—o|2 for ({@D).
to updateP, and get those missing directions detected. If the constraint is too tighte(is too small), [(6) or[{10) may
give solutions with some small nonzero values outside the tr
support setl; (also verified by our numerical experiments).
As first done in [[18], we can also do support thresholding

It is expensive to update’, and P, very frequently, followed by least square estimation to reduce these eiirers,
especially for some real-time applications. But notice tha e can solve

can cancel out some of; by using the model onx; from

B. Canceling the “noise” using the time correlation of

SedI-A. We modify [6) as T, = {i: (S)i =7} (13)
. . Ss = (PL)) (ye — FBY Ly 14
win sl s B0~ s— fLlB<e (10) won = (sl = ate) 60
s ’ (St)th = 0
Let 34— := PT, Ly_1. Note that in[[ID), the “noise” i}, — L, = M, -5, (15)

fB;—1 while in @), the “noise” isg,.
Next, we discuss an example showing that the “noj$e™ C. Using model ors,

fBe—1in @0) is _smaller than the “noise’; in (@) _ Currently, we do not use the model ¢f. A simple way
Suppose at time¢ = 7 — 1, we have an exact estimate,, ,se it is to do modified-CST19] as

of all principal directions,P,_; = P,_;. Attimet =1, a - R )

support change occurs wWitN, = N._; U A, and D, = 0. min [sze Ml st [P (My —s— fLia)ll; < e (16)

The principal directions at time= 7 are P, = [P;_1, Pa,] . . . 5
where Ps. — U are the new added principal dirgctions‘.’v'th Thred being an estimate of the support 6f. As [19]

. . . shows, if Tyreq IS @an approximately correct estimate of cur-
However, this change is unknown to us and we just Bse- ' opre .
P _p Thergfore J rently support,[(16) should improve the performanceof (10)
7—1 — 4L 7—-1- 3

In previous work [[2D], [[21L], we used the previous support

spar{P,) = spaifP,_1) & sparfPa_) estimate,T;_;, as Tpreq This is sufficient for the problems
considered in[[20], where support changes very slowly over
Thus, at timet > 7, time, e.g. in case of wavelet coefficients of a medical image
- - T T sequences. But for our current problem, even with one or
Be = PriLi=Pr (PP Lo+ Boa, Pra L) two pixel motion between frames, the support change will be

= PELPt,ATPfATUxt (11) significant andZ},_; will have large error w.r.t7;. A better
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Fig. 1: Real-time Robust PCP

solution, is to use the motion model to predict the objett(s) Consider a change timeé= 7. Let Prew := (U)n,\n,_, b€
location in the next frame and use this prediction to obtathe matrix containing thé newly added directions. Our PCs
Tored at time ¢t. The details of how to do this, especially forupdate algorithm assumes the following,

multiple objects, will be worked out in future work. 1) The previous additions are detected and correctly esti-

mated before a new set gets added. X
D. RR-PCP: Recursively estimating the low rank part 2) Letthe data matrixD containr, frames ofL,— f L, af-
ter the new directions have been added. Then (SpaR)

When some new principal directions appear, we need to is contained in the span of the data, sfan

detect these directions timely before the “noise” getsdarg

Now, E(|| 3, — f3|3) in (I2) seems not increase with time. Buf\ssumption 1) holds approximately i is large enough.

this assumeg.;_; = L;_; which is not true. When some ex-Assumption 2) holds with high probability if; >> k.

isting directions vanish, they also need to be removed flom ~ We split the estimate of PCs’ basig}, into two parts,

Otherwise, the number of estimated principal directioneplee Py = [Pstaple Prenw] Where Pyapie is the “stable” (correctly

increasing and thus the number of columnﬂm, which is estimated) set of principal directions arftley are the new

the number of measurements fbr](10), keeps decreasing. ones which are still being rotated and corrected. We would
At initial time, we have the training datal.’ := like to compute an initial estimate d,, as soon as possible

[Ly, ---, L], which contains no sparse component. Adusing only a few frames aftﬂrﬁﬂ\2 exceeds a threshold). Say

cording to our signal mode[¥4), the data sequetdgeis We user; frames and let the matrik containsL;—1 — fL;—

time correlated. Thus, we need a long sequence’s datafes these frames. We can compute an initial estimate of the

get an accurate estimate of it's covariance. But notice in obew directions Prew, by computing the principal directions of

model, the sequencé, — fL,_, is time independent andthe sample covariance matrix ¢of — PstablePstabid T D. This

has same eigenvectors ds. Thus, we estimate principalis done by step 1.b) of Algorithr] 1. By assumption 2),

directions of L° by estimating the covariance @f; — fL;—1 74 > k, then we would have found the correct span, i.e.

and computing its EVD. LetP, and G, be the eigenvec- sparFrew) 2 SpariPrew). But notice that without enough

tors and (non-zero) eigenvalues of the covariance matrix @#ta, even though sp@hhe,) contains spaifhew), it will

Li—fLi1, t =2,---ty,i.e. BoGoP] = L°(L°)T. Let Pyapie typically contain many extra directions. As more data comes

be an orthonormal matrix whose columns are the correctly é8; we keep rotating?new every-so-often until variances along

timated eigenvectors and Iétstab,ebeadiagonal matrix whose some directions become approximately zero and these get

diagonal elements are the correspondingly correctly eséch thresholded out. Once this has happened, the estimatdibnota

eigenvalues. Lef’, = Psape= Py and letG;, = Gsmpe= Go. Matrix P along the existing directions becomes close to
Our PCs update procedure is designed to estimate iHentity and remains this way. This is the time we can add

current principal directions for data generated according Prew into Pyapie This is done by step 1.c) of Algorithd 1.

the piecewise stationary model an (and hence orl.;) that When the variances along some directionsHpie begin

was described in Se€_TflA Assume that everyl frames, to decrease and eventually decay to zero, we compute the

k new directions get added or removed or both from thariance of lastrye frames anngP§tab|e and then remove

PCs’ subspace. The newly added directions’ variance statlisections with small variance fron®sipie This is done by

at a small value and slowly stabilizes to the stable valustep 2) of AlgorithnlL.

For deleted directions, we sét;); = 0 immediately and we  The above PCs update procedure is summarized in Algo-

replacef by f; < f (ensures quicker decay). rithm[. In Algorithm[d, D and Dge are data matrix to store

the data differencd.,, — fL,_,. The parametersy, 7., and
o At e TS 123 s S wistirties e, are the length of each data piece we use fo detect new
directions, to rotate and correct newly added directionsl, a

algorithms. For example, in practidé may not be fixed, but may also rotate ; - ]
gradually over time. to remove decayed directions, respectively. We use twolsmal



thresholds¢, andé, ., to detect new directionBhey in step 1b)

Algorithm 1 Updating P, and to threshold extra directions out froRyey in Step 1c).
1) Detect new appearing directions They are proportional to the total variance along all emisti
a) If status= stable, computé{3, |3 := || PL,  L,_[|3. stable directions.

If ||B;_1]|2 > 0, set status— detection and store data in
D, i.e.,D « [D, Li_y — fLi_s]. If not, keep status= E. A complete algorithm
stable. go to step 2). The complete algorithm of real-time robust PCP is given in
b) If status= detection, Algorithm [2.
— If there are less tham, frames inD, keep storing  In Algorithm[3, we compute?; ; , orthogonal complement
data difference inD, i.e., D = [D, Liq— fﬁt_g]_ of P, or equivalently the null space bamst using the QR
— If there arer, data frames inD, computeK = (1 — decomposition of?; [22]. Suppose?; is m x r matrix with

Prtablel 10 D- m >> r. We find anm x m orthonormal matrix such that
. ~ . T R
* iEj‘umatePneW by computing the EVD ofK K7, bW gy (H, )] [{)1]
iKKT EVD pepT where J; is anr x r upper triangular matrix; consists of
Td the firstr columns of H and H is made up of the Ia;m- r
Tg={i, Gii > &} columns. The columns off> span the null space a?! and
Pnew: PTda CA:new: GTd we let Pt’J' = HQ'

where( is a square matrix andr, is a submatrix - Algorithm 2 Real-time Robust PCP (noise canceled)
of G consisting the rows and columns indexed bh‘raining: Given training datdg = [L1,--- , Ly, estimate

Ta. principal components of.,y by computing the eigen-pairs of
* Let D = 0. the sample covariance ﬁ/ft_th—lA- Let P, andgo denote the
* If Prhew = 0, set status— stable and set = 0. If eigenvectors and eigenvalues. $8tpie= Po, Gstable= Go-
Phew # 0, set status— rotation and set = 7. At time ¢ = t,

- GO to Step 2) [ Set StéltU& Stable Letpt - Pstame GA’t - Gstamg Pnew -
c) If status= rotation, 0, Grew = 0.

— If there are less tham, frames inD, keep storing o Let D=0,1=0, Dger = 0.
data difference inD, i.e., D = [D, L;_; — th 2].  FORt > tg, do the following:
— If there arer, data frames inD, let K = Fg,D. 1) Estimate PCs’ subspace of low rank part using Algorithm

+ Rotate Prew and Gnew Using K, i.e., @ and compute’, | .
. 2) Estimate sparse parf§;, by solving [10) withe =
T\ EVD T by f\
I+ 7, (IGnew+ KKT) =" PGP 2(|Bs-1 — fBi—2l3
T, ={i: Giy>6&) 3) Support thresholding and least square estimatior_do (13
@3, and [(I6).

Prew = (FrewP)1,.; Ghew = (G, 4) Increment: by 1 and go to step 1).

If P is approximately an identity matrix,

let Pstable — [Pstable Pnew] Gistable o
[Gslable Gnew]. Set status— stable, and lefew = IV. EXPERIMENT RESULTS

0, Gnew = 0, 1 = 0. If not keep status— rotation We simulatedL; € R'?8%! using the model described in
and letl = [ + 7. SedIl-A. The firstty, = 5 x 10 frames contains no sparse

* D=0 part and we use it as training data. The sparse veaior,
— Go to step 2). follows a AR-1 model with parametef = 0.9. There are
2) Remove decayed directions fromPsapie. 32 principal directions with variances ranging fromx 104
« If there are less thamge data in Dge, keep store data 0 9- Recall that in our modell; is time correlated and the
difference inDgel, i.€., Dgel = [Del, Ly 41— fﬁtd]_ sequencel; — fL; 1 has same eigenvectors &g, we get
« If there 7o data in Dge, detect decayed directions adnitial estimate of PCs’ subspace by estimating the conasa
follows of L, — fL:—1 and computing its EVD.
— Find Taer i= {i © - (Paand” DeetD s Prabids The sparse componer; € R!28x! first arises at time

Tdel

t = to+1. The nonzero entries &, has positive magnitudg
which is usually much smaller than magnitude of the nonzero
entries ofx;. Fort > ¢y, + 1, the support ofS; changes
(Gstable) 7,0 from Grstable following the model described in SECII-B, resulting in avlo
~ SetDge = 0. rank matrixs.
3) Let P, = [Prtavle; Prew]- At time ¢ = ¢y, + 5, we add one new directioffye, With
variance50 to PCs’ basis and let it starts at a small value

0.05(Gstavie)i.i }- .
— RAemOVE (Pstab|e>Tdel from  Pyape and remove
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Fig. 2: Comparison of RR-PCP (noise canceled), RR-PCPdhd3l and PCP
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Fig. 3: Monte Carlo averaging for three on-line methods, RR? (noise canceled), RR-PCP (basic), and PJ

with 6 = 0.4. It slowly stabilizes to the variance). At time off-diagonal elements smaller th&n01). Only one direction
t = to+ 100, one existing direction (nabey) begins to decay is left in Prew, With coherence.9553 to Prew. It sets status=
with f; = 0.1. stable and add#hey to the stable set of principal directions.
We do RR-PCP (noise canceled), RR-PCP (basic), PJ akidtime ¢ = ¢, + 126, it removes the deleted direction from
PCP using the data generated as described above and plottieeestimated PCs’ basis successfully.
percentage error in Fig] 2. The percentage error is defined agor RR-PCP (basic), we do same thing as RR-PCP (noise
15, — S| cancelled) but replace_(fL0) witi](6) and repla€e] (14) by
ot — o2 doing LS ony,. We see that error of RR-PCP (basic) is
15¢ 12 larger than RR-PCP (noise cancelled) because it does not use
In Fig.[2, S1.; is 1024 x ¢ dimensional at time, but its rank the information contained i, ;, i.e. || 3| is larger than
ranges fromd to 51. 18 — fBi—1]|*(see Fidh).
For RR-PCP (noise canceled), we do algorifim 2 with= For PJ, we solve{3) withl = [P, P, ., I]. PJ recovers;
7 = Tdgel = 20. At t = to + 6, it detects the appearance ofnd S, while RR-PCP (noise cancelled) and RR-PCP (basic)
new directions and set status detection. Att = ¢y + 26, cancel the term:; by P . Recall that:; has variance ranging
a new piece of data containing frames are available, RR-from 1 x 104 to 9, the magnitude of; is much larger thais,.

PCP do step 1b) of Algorithil 1 and g&ew, an estimate of pJ recovers the significant part and cannot ges; recovered
the new directionfhew. There are? new directions inFrew,  correctly.

and the coherence between these new estimated directidns arror the off-line method PCP, at each timewe solve [[1)

the true onePhey ranges fromn.9393 to 0.0051. So, with7y  ysing all available data fran«BﬁMl’ .-~ , M), and plot the
frames of data, it approximately finds a subspace containiggor for current frames;. The error of PCP is large because
Phew and some extra directions. For> ¢, + 26, we do step the support o, is time correlated and; does not has random
1c) of Algorithm[1 to rotatelhew closer to the true one andsjgns. To implement PCP in a causal fashion, it requirestabou
threshold out those extra directions for evety = 20 new 90 - 300 seconds at every time while RR-PCP takes about
frames of data. For example, @t= to 447 when a new piece | 7 seconds at every time

of data is available, we do step 1c) which rotatés closer e do 50 times Monte Carlo simulation for three on-line

to the true Fhew and get 2 directions thresholded out. Theethods, average the percentage error and plot them in Fig.
maximum coherence dfew and Frew goes up 10.9505. At 3 As can be seen from Fig.3, our method RR-PCP (noise

timet = ty+68, another twqdirections are thresholded out ar@anceled) gives the smallest error. In Eig.4, we plot the
the maximum coherence @hew and Phew goes up td).9526;

?t timet = 1?0 + 110_- the rotation matrixP is close to an 2We use Accelerated Proximal Gradient method with code aieil at
identity matrix (on-diagonal elements larger th&@8999 and |hitp://perception.csl.illinois.edu/matrix-rank/saepode. hril.

percentage errae=


http://perception.csl.illinois.edu/matrix-rank/sample_code.html

50 : : : : : ‘ ‘ A somewhat related work is Jin-Rao’s approachl [14] which
A 1 solves

ol F‘i\i } Iangl”s”l st ||M; — P —s||3 < ¢ a7)

s In [14], the matrix P, is a known and fixed regression

j: %,Q%W@% coefficients’ matm;, which is no longer true in our problem.
w 18 “’@f We can use the time correlated model sn(and hence on

st ! %, o) and the motiom model o1S; to modify (I7) following a

0 b L L L L .
5000 5020 5040 5060 5080 5100

time -

Fig. 4:E[|8]3 v.s. E[|B; — fBe-1l3
(1]
. A . (2]
expectation off|3i[|3 := | 27, Li[3 and 6 — fBi1[3 =
|PT (L — fL;1)||3 for RR-PCP (noise canceled). It shows
that, fort < to + 26 when there are some missing principal[3]
directions, ||3; — f3;_1]|? is much smaller than|5, 3. For
t > to + 26, RR-PCP (noise canceled) gets an estimaig, o
and adds it to the estimate of current PCs’ basis, thus, both
18:l[5 and||B; — fBi—1]5 decreases. Howevep; — f5; 1[5 [
is still slightly less thanj| 3;(|3 due to the time correlated model 6]
on L,. Recall thatl|3;||3 is the noise in[(6) and3; — fB:—1]3
is the noise in[(10), that is the reason why RR-PCP (noise
canceled) is better than RR-PCP (basic). 7]

V. DISCUSSION AND FUTURE WORK [8]

In this work, we used a simple motion model on the sparsp]
vector S; as explained in Se¢._I[IB. Under this model, the
support of S; changes slowly over time, resulting in a lo
rank matrixS. Because of this, PCP is unable to distinguishzi]
S from the low rank . But our method, RR-PCP, works
because it does not require the sparse mafito to be 12]
uniformly random. In this work, we have not utilized the
correlated support change ¢f to our advantage. But, in
fact, RR-PCP can be improved significantly by using thid®!
knowledge and by adapting the modified-CS ided of [19], [20]4]
to incorporate motion prediction. We can use the knowledge o
the object's motion model and the previous support estima[ig]
to obtain the current support predictidiyeq Of the sparse
part. If this prediction is accurate and is used[in] (16), veith
appropriately chosesn the reconstruction error should reduce, ¢
significantly, especially when the support sizeSfis large.

In future work, we will develop realistic motion models and7]
corresponding motion prediction algorithms to get rekabl

support predictions of the sparse part. We will also analyze
their performance, first assuming is perfectly known and [18]
later for the practical case df, unknown. [

Our PCs updating procedure is designed for the data gener-
ated according to the piecewise stationary modek:pwhile
U is a constant but unknown orthonormal matrix. In futurgo]
work, we will analyze real data and study existing literatur
to come up with more realistic models and the correspondifd!
PC update algorithms.

For very-large scale data, it is computationally and memoi3g]
intensive to computef?tyl. In future work, we will develop
computational efficient alternatives. For example we cam us
the fact that|| P z||o = [|P, L P zl|2 = ||(I — P.PT)z]|o.

19] Wei Lu and Namrata Vaswani,

similar way of RR-PCP.
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