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Abstract—In the recent work of Candes et al, the problem of
recovering low rank matrix corrupted by i.i.d. sparse outliers is
studied and a very elegant solution, principal component pursuit,
is proposed. It is motivated as a tool for video surveillance
applications with the background image sequence forming the
low rank part and the moving objects/persons/abnormalities
forming the sparse part. Each image frame is treated as a column
vector of the data matrix made up of a low rank matrix and a
sparse corruption matrix. Principal component pursuit solves
the problem under the assumptions that the singular vectorsof
the low rank matrix are spread out and the sparsity pattern of
the sparse matrix is uniformly random. However, in practice,
usually the sparsity pattern and the signal values of the sparse
part (moving persons/objects) change in a correlated fashion
over time, for e.g., the object moves slowly and/or with roughly
constant velocity. This will often result in a low rank sparse
matrix.

For video surveillance applications, it would be much more
useful to have a real-time solution. In this work, we study the
online version of the above problem and propose a solution
that automatically handles correlated sparse outliers. Infact we
also discuss how we can potentially use the correlation to our
advantage in future work. The key idea of this work is as follows.
Given an initial estimate of the principal directions of the low
rank part, we causally keep estimating the sparse part at each
time by solving a noisy compressive sensing type problem. The
principal directions of the low rank part are updated every-so-
often. In between two update times, if new Principal Components’
directions appear, the “noise” seen by the Compressive Sensing
step may increase. This problem is solved, in part, by utilizing the
time correlation model of the low rank part. We call the proposed
solution “Real-time Robust Principal Components’ Pursuit”. It
still requires the singular vectors of the low rank part to be
spread out, but it does not require i.i.d.-ness of either thesparse
part or the low rank part.

I. I NTRODUCTION

Principal Components’ Analysis (PCA) tries to find the
“principal components’ space” with the smallest dimension
that spans a given dataset. In practice, data is noisy and in
this case PCA finds the smallest subspace to represent the
dataset with a given mean squared error (MSE) tolerance.

Given a low rank data matrixM ∈ Rm×n (each column
of M is one data vector), PCA finds its principal components
(PCs) as the left singular vectors ofM that have nonzero
singular values. This is the same as first estimating the data
covariance as(1/n)MMT , computing its eigenvalue decom-
position (EVD) and retaining eigenvectors corresponding to
nonzero eigenvalues. When data is noisy, this is replaced by
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arranging the eigenvectors in decreasing order of eigenvalues,
and retaining the smallest number of eigenvectors so that
the sum of the remaining eigenvalues (which is equal to the
residual MSE) is less than the MSE tolerance.

When the noise is small, the above approach works well.
However, covariance matrix estimation, and hence the corre-
sponding EVD, are sensitive to even a few large outliers in
the data. Unfortunately, in practice these do occur, e.g. when
trying to compute the principal components’ subspace for a
video sequence, parts of it may get occluded by other moving
objects. There has been a large amount of work in literature on
“Robust PCA”, e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9], most
of which either assumes the locations of the missing/corruped
data points are known [3], which is not a practical assumption,
or (ii) first tries to detect the corrupted pixels and then either
fills in the corrupted location using some heuristics or (iii)
often just removes the entire outlier vector. In a series of
recent works [10], [11], [12], a very elegant solution to this
problem was provided that treats the outlier as a sparse vector.
In [10], the data matrixM consists of a low rank matrix that
is corrupted by sparse outliers, i.e.

M = L+ S

whereL is a low rank matrix having a singular value decom-
position (SVD)L

SVD
= UDV T andS is sparse and can have

arbitrary large magnitude. Let‖L‖∗ denotes the nuclear norm
of L, i.e., the sum of singular values ofL. It is shown in
[10] thatL andS can be recovered with high probability by
solving a convex optimization problem, named as Principal
Component Pursuit (PCP),

min
L,S

‖L‖∗ + λ‖S‖1 (1)

subject to L+ S = M

provided the singular vectors ofL are spread out (not sparse),
the support and signs ofS are uniformly random (thus not low
rank), the rank ofL and the fraction of corrupted entries inS
are both sufficient small. A more recent work, [12], extends the
result of [10] showing that, with a proper weighting parameter
λ, PCP can recoverL andS with high probability even if the
size of support set ofS is large, as long as the rank ofL is
small enough. But it requires thatS has random support and
random signs.

PCP [10] is motivated as a tool for surveillance applications,
with the background variations approximately lying in a low
dimension subspace, and the sparse part being the “moving
persons” or “abnormalities” to be detected. It is an offline
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method which treats each image frame as a column vector of
the data matrixM . While this is a very elegant and novel idea,
there are certain limitations.

1) In surveillance, it would be more useful to obtain the
estimates of the sparse part on-the-fly rather than offline.

2) The sparsity pattern (support and signs) of the sparse
part may change slowly or in a correlated fashion, which
may result in a low rank sparse matrix. In this case, PCP
assumption will not get satisfied and as a result it will
not work, e.g. see Fig.2.

3) The principal directions (set of eigenvectors correspond-
ing to nonzero eigenvalues) can change over time. So the
rank of the matrixL will keep increasing over time thus
making PCP impossible to do after sometime.

This last issue may get resolved by not using all frames of
M , but only the latest image frames. But the first two issues
still remain.

In this paper, we propose an online approach to solve this
problem. Our goal is to causally keep estimating the sparse
part St at each time, and to keep updating the principal
directions every-so-often. Thet-th column ofM , Mt, is the
data acquired at timet. It can be split as

Mt = Lt + St = [U I]

[

xt

St

]

(2)

wherext := UTLt and the matrixU is an unknownm ×
m orthonormal matrix. The support of the vectorSt changes
slowly over time. Given an initial estimate ofPt := (U)Nt

,
denotedP̂t, we solve for the sparse vectorSt by first finding
the orthogonal complement matrix̂Pt,⊥ and then using the
projection ofMt onto P̂t,⊥, denoted byyt,

yt := P̂T
t,⊥Mt = P̂T

t,⊥Lt + P̂T
t,⊥St.

to solve for St. Notice that if P̂t ≈ Pt the first term
will be close to zero and can be treated as “noise”. When
P̂t 6= Pt (new directions added), the “noise” can be reduced
by using the time correlation model onLt. Furthermore, recent
estimates ofLt := Mt−St are stored and used to periodically
updatePt as described in Sec. III-D. There are also some
limitations of our method.

1) We need an approximately accurate initial estimate of the
PCs’ basis,P̂0, which is easy to get using training data
without sparse corruptions.

2) The orthogonal complement̂Pt,⊥ needs to satisfy some
conditions for Compressive Sensing to succeed.

3) An appropriate choice of constraint parameterǫ is needed
for estimatingSt.

The above idea is somewhat related to that of [13] in that
both try to cancel the “message” signal and only solve for the
sparse “error” signal, but with the big difference that in [13],
Pt is known. Other related work which also usesPt known
is [14], [15]. However in our problemPt is unknownand
can change with time. Out method requires the columns of
P̂t,⊥ be spread out (not sparse), but it does not requireSt to
have independent nonzero entries. In fact, we can utilize the
correlated support change ofSt over time,t, to our advantage

in future work. Since we update the principal directions on-the-
fly, the dimension of the principal subspace remains bounded.

A model similar to (2) but for a static problem and withU
being aknownmatrix, was introduced in [16], [17]. A method,
termed as pursuit of justice (PJ), is introduced to solve forthe
sparse vectoru = [xt, St]

T which solving the followingℓ1
minimization problem

min
u

‖u‖1 (3)

subject to Mt = Au

whereA := [U I]. Notice that in our problemU is unknown,
and thus we cannot use sparse reconstruction techniques to
find xt. Given an estimatêPt, the above can be modified to
A = [P̂ P̂t,⊥ I]. However, this does not work as shown in
Fig. 3.

A. Notations

The set operations∪, ∩ and\ have the usual meanings. For
any setT ⊂ {1, · · ·m}, T c denotes the complement set ofT ,
i.e., T c := {1, · · ·m} \ T .

For a non diagonal matrixA, we let Ai denote theith
column of A and we letAT denote a matrix composed of
the columns ofA indexed byT . For two setT1 andT2, we
let AT1,T2

denote a submatrix ofA consisting of the rows
indexed byT1 and columns indexed byT2. For a diagonal
matrixQ, QT denotes a submatrix ofQ consisting of the rows
and columns indexed byT . In other words,QT is a diagonal
matrix with (QT )j,j = (Q)Tj ,Tj

.
For vectorv, vi denotes theith entry ofv andvT denotes

a vector consisting of the entries ofv indexed byT . ‖v‖k
denotes theℓk norm of v. The support ofv, supp(v), is the
set of indices at whichv has nonzero value, supp(v) := {i :
vi 6= 0}.

We use∅ to denote an empty set or an empty matrix.

II. PROBLEM DEFINITION AND SIGNAL MODEL

The tth column ofM , Mt ∈ Rm×1, is the data at timet
which can be split as

Mt = Lt + St

Lt = Uxt = Ptat

where xt := UTLt and St are sparse vectors with slowly
changing supportNt := supp(xt) and Tt := supp(St),
respectively.Nt is modeled as being piecewise constant with
time. The vectorat := (xt)Nt

is the none-zero part ofxt. The
principal components’ basis at each timet, Pt := UNt

, is a
submatrix ofU whose columns span the principal components’
subspace at timet. It is unknown and can change over time.

Since the matrixU does not change with time (in this work),
the only wayPt changes is when the setNt changes. This
happens everyd frames. We assume thatxt and henceLt =
Uxt follows a piecewise stationary model with nonstationary
transients when switching pieces. For everyd frames, there
are some supporting indices get added or deleted fromNt.
Specifically when an elementi gets added into the support, it
gets added with an initial small varianceθσ2

i (with 0 < θ < 1)
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and then at future times follows a first order autoregressive
(AR-1) model with AR parameterf and stable varianceσ2

i .
Recall that an AR-1 model is asymptotically stationary. Thus,
after the initial transient period,xt is stationary until the next
support change time. Before an elementi gets deleted, it starts
decaying as(xt)i = fd(xt−1)i, with 0 < fd < f < 1, and
soon decays to zero.

A. Mathematical description of signal model forxt (and hence
for Lt)

The support set ofxt, Nt, is a union of three disjoint sets
∆t, Dt, andEt, i.e., Nt = ∆t ∪ Dt ∪ Et. The addition set
∆t := Nt \ Nt−1 is the set of indices for the new appearing
eigenvectors(U)∆t

. The setDt ⊂ (Nt ∩Nt−1) is the set of
indices of those eigenvectors whose eigenvalues are decreasing
at time t. The setEt := Nt ∩Nt−1 \Dt is the set of indices
for existing eigenvectors with non-decreasing eigenvalues. The
setsDt and∆t can be empty. For any timeτ with “decreasing”
setDτ , we assume thatDτ will not get added toNt for any
t > τ .

Let Σ = diag(σ2
i ), i = 1, · · · ,m, be a diagonal matrix with

non-increasing positive diagonal elements, i.e.σ2
i satisfying

σ2
i ≥ σ2

i+1. We modelxt as

x0 = 0, N0 = ∅

xt = Ftxt−1 + νt, νt
i.i.d.
∼ N (0, Qt) (4)

whereFt andQt are two diagonal matrices defined as below

(Ft)∆t
= 0, (Qt)∆t

= θ(Σ)∆t
,

(Ft)Et
= fI, (Qt)Et

= (1− f2)(Σ)Et
,

(Ft)Dt
= fdI, (Qt)Dt

= 0,

(Ft)Nc
t
= 0, (Qt)Nc

t
= 0.

wheref , fd, andθ are scalars satisfying0 < fd < f < 1 and
0 < θ < 1.

From the model onxt, we notice the following:
a) At time t = τ , (xτ )∆τ

starts with

(xτ )∆τ
∼ N (0, θ(Σ)∆τ

).

Smallθ ensures that new directions gets added at a small
value and increase slowly.(xτ )Dτ

decays as

(xτ )Dτ
= fd(xτ−1)Dτ

(xτ )Eτ
follows an AR-1 model with parameterf :

(xτ )Eτ
= f(xτ−1)Eτ

+ (vτ )Eτ

b) At time t > τ , if ∆τ is not removed from the support
set, the variance of(xt)∆τ

gradually increases as

(xt)i ∼ N (0, (1− (1− θ)f2(t−τ))Σi,i), i ∈ ∆τ

Eventually, the variance of(xt)∆τ
converges to(Σ)∆τ

.
For example, withf = 0.9 andθ = 0.4, the variance of
(xt)∆τ

gets to0.9(Σ)∆τ
in 18 frames.

c) At time t > τ , the variance of(xt)Dτ
decays as

(xt)Dτ
∼ N (0, f

2(t−τ)
d (Σ)Dτ

)

Eventually, (xt)Dτ
decays to zero. For example, with

fd = 0.1, the variance of (xt)Dτ
decrease to

0.0001(Σ)Dτ
in 2 frames.

B. Model forSt

Recall that in video surveillance applications, the data
matrix M is obtained by stacking each image frame as a
column vector, whose low rank componentL corresponds to
background variation lying in a low rank subspace and sparse
componentS captures the moving objects in the foreground. In
this work, we use a simple model for the sparse component
S modeling the activity of the moving objects as described
below.

We assume that, in each image frame, there arek (k ≥ 1)
objects in the foreground. Each object occupies a3× 3 pixel
block which has nonzero pixel values. All other pixels in the
foreground have zero values. LetCGi

t denote the coordinate of
the center of gravity of theith object at timet, i = 1, · · · , k.
For the next image frame, eachCGi

t can either be static with
probabilityp or move one step to the left/right/top/bottom with
probability (1− p)/4 each, i.e., fori = 1, · · · , k,

CGi
t =























CGi
t−1 with probabilityp

CGi
t−1 + (1, 0), with probabilty(1− p)/4

CGi
t−1 + (−1, 0), with probability (1− p)/4

CGi
t−1 + (0, 1), with probability (1− p)/4

CGi
t−1 + (0,−1), with probability (1− p)/4

with p = 0.8. The pixels in each block move accordingly.
Except if the objects move very fast or if they are very small,
there will be overlap between their regions from frame to
frame. We then stack the resulting foreground image frame
as columns ofS. Clearly, the support ofSt, tth column ofS,
is time correlated and the signs of these nonzero entries are
fixed. This is quite different from [10] and [12] where random
support and random signs are assumed on the sparse partS.

III. R EAL-TIME ROBUST PCP

An overview of our method, real-time robust PCP (RR-
PCP), is shown in Fig.1. We first discuss the approach to
recursively reconstruct the sparse componentSt. Next, we
discussed the way we track the changes of the principal
directions. Finally, a complete algorithm is given in Algorithm
2.

A. RR-PCP: recursively reconstruction of the sparse partSt

Using P̂t, which is an estimate of principal componentsPt

at time t, we can rewriteLt andMt as

Lt = P̂tαt + P̂t,⊥βt

Mt = P̂tαt + P̂t,⊥βt + St

whereP̂t,⊥ is an orthogonal complement of̂Pt; αt := P̂T
t Lt

is the projection ofLt onto the subspace spanned byP̂t; and
βt := P̂T

t,⊥Lt is the projection ofLt onto the subspace spanned
by P̂t,⊥. Notice thatP̂t is an estimate ofPt. It is either just a
slight rotation ofPt with span(Pt) = span(P̂t) or there may
be some missing and extra principal directions. The column
vectors ofP̂t,⊥ are the eigenvectors spanning the null space
of P̂T

t . The orthogonal complement̂Pt,⊥ is not unique.
Let

yt := P̂T
t,⊥Mt = P̂T

t,⊥St + βt (5)
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If there is no missing principal direction, i.e., span(Pt) ⊆
span(P̂t), βt = 0. If there are missing principal directions,
span(Pt) " span(P̂t) andβt 6= 0. In this case,βt in (5) is the
“noise” resulting from the estimation error of current principal
directions. This now becomes a noisy sparse reconstruction
problem, with “noise”βt. When‖βt‖

2
2 is not very large, we

can causally recoverSt by solving

min
s
‖s‖1 s.t. ‖P̂T

t,⊥(Mt − s)‖22 ≤ ǫ (6)

and hence estimateLt as

L̂t = Mt − Ŝt

whereǫ is a parameter with some small positive value.
For the case of missing principal directions, span(Pt) "

span(P̂t). Let St,miss := span(Pt) \ span(P̂t) denote the
“missing” subspace and letPt,miss be its orthonormal basis
matrix. Thus span(Pt,miss) = St,miss and

span(Pt) = span(P̂t)⊕ span(Pt,miss) (7)

span(P̂t,⊥) = span(Pt,⊥)⊕ span(Pt,miss) (8)

Therefore,

βt = P̂T
t,⊥Lt = P̂T

t,⊥Pt,missP
T
t,missLt (9)

with PT
t,missLt being the projection ofLt onto the subspace

St,miss. If PT
t,missLt starts with small values,‖βt‖22 shall be

small and it can increase over time. When‖βt‖22 is getting
too large, (6) may give incorrect estimatêSt. Thus, we need
to updateP̂t and get those missing directions detected.

B. Canceling the “noise” using the time correlation ofxt

It is expensive to updatêPt and P̂t,⊥ very frequently,
especially for some real-time applications. But notice that we
can cancel out some ofβt by using the model onxt from
Sec.II-A. We modify (6) as

min
s
‖s‖1 s.t. ‖P̂T

t,⊥(Mt − s− fL̂t−1)‖
2
2 ≤ ǫ (10)

Let β̂t−1 := P̂T
t,⊥L̂t−1. Note that in (10), the “noise” isβt −

fβ̂t−1 while in (6), the “noise” isβt.
Next, we discuss an example showing that the “noise”βt−

fβ̂t−1 in (10) is smaller than the “noise”βt in (6).
Suppose at timet = τ − 1, we have an exact estimate

of all principal directions,P̂τ−1 = Pτ−1. At time t = τ , a
support change occurs withNτ = Nτ−1 ∪ ∆τ andDτ = ∅.
The principal directions at timet = τ arePτ = [Pτ−1, P∆τ

]
whereP∆τ

= U∆τ
are the new added principal directions.

However, this change is unknown to us and we just useP̂τ =
P̂τ−1 = Pτ−1. Therefore,

span(Pτ ) = span(Pτ−1)⊕ span(P∆τ
)

Thus, at timet ≥ τ ,

βt = P̂T
τ,⊥Lt = P̂T

τ,⊥(Pτ−1P
T
τ−1Lt + Pt,∆τ

PT
t,∆τ

Lt)

= P̂T
τ,⊥Pt,∆τ

PT
t,∆τ

Uxt (11)

AssumingLt−1 is correctly recovered, i.e.,̂Lt−1 = Lt−1, so
β̂t−1 = βt−1, then

βt − fβ̂t−1 = P̂T
τ,⊥Pt,∆τP

T
t,∆τ

U





(νt)∆τ

(νt)Eτ

0





= P̂T
τ,⊥Pt,∆τ (νt)∆τ

Let B = (P̂T
τ,⊥Pt,∆τ )

T (P̂T
τ,⊥Pt,∆τ ), then at timet ≥ τ ,

E(‖βt‖
2
2) = Σ

i∈∆τ

Bi,i(1− (1− θ)f2(t−τ))σ2
i

E(‖βt − fβ̂t−1‖
2
2) = Σ

i∈∆τ

Bi,i(1− f2)σ2
i (12)

Clearly, E(‖βt‖22) shall be much larger thanE(‖βt −
fβ̂t−1‖22). For example, withf = 0.9, θ = 0.4, at t = τ + 1,
E(‖βt‖22) is 0.514 Σ

i∈∆τ

Bi,iσ
2
i while E(‖βt − fβ̂t−1‖22) is

0.19 Σ
i∈∆τ

Bi,iσ
2
i ; and the ratio ofE(‖βt‖

2
2) and E(‖βt −

fβ̂t−1‖22) keeps increasing over time. Recall thatβt and
βt−fβ̂t−1 are the “noise” in (6) and (10), therefore, assuming
we have an accurate estimate of principal basis at timeτ − 1,
(10) shall give more accurate estimate ofŜt than (6). We show
a plot of the expectations of‖βt‖22 and‖βt− fβ̂t−1‖22 in Fig.
4.

In (6) and (10), we need an appropriate parameterǫ which
should be proportional to the “noise” term‖βt‖22 in (6) or
‖βt− fβ̂t−1‖22 in (10). The “noise”‖βt‖22 and‖βt− fβ̂t−1‖22
also changes over time. Thus, we shall set theǫ adaptively. In
our work, we useǫ proportionally to2‖β̂t−1‖22 for (6) andǫ
proportional to2‖β̂t−1 − fβ̂t−2‖22 for (10).

If the constraint is too tight (ǫ is too small), (6) or (10) may
give solutions with some small nonzero values outside the true
support setTt (also verified by our numerical experiments).
As first done in [18], we can also do support thresholding
followed by least square estimation to reduce these errors,i.e.,
we can solve

T̂t = {i : (Ŝt)i ≥ γ} (13)

(Ŝt)T̂t
= ((P̂T

t,⊥)T̂t
)†(yt − fP̂T

t,⊥L̂t−1) (14)

(Ŝt)T̂ c
t

= 0

L̂t = Mt − Ŝt (15)

C. Using model onSt

Currently, we do not use the model onSt. A simple way
to use it is to do modified-CS [19] as

min
s
‖sT c

pred
‖1 s.t. ‖P̂T

t,⊥(Mt − s− fL̂t−1)‖
2
2 ≤ ǫ (16)

with Tpred being an estimate of the support ofSt. As [19]
shows, if Tpred is an approximately correct estimate of cur-
rently support, (16) should improve the performance of (10).

In previous work [20], [21], we used the previous support
estimate,T̂t−1, as Tpred. This is sufficient for the problems
considered in [20], where support changes very slowly over
time, e.g. in case of wavelet coefficients of a medical image
sequences. But for our current problem, even with one or
two pixel motion between frames, the support change will be
significant andT̂t−1 will have large error w.r.t.Tt. A better
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Fig. 1: Real-time Robust PCP

solution, is to use the motion model to predict the object(s)’
location in the next frame and use this prediction to obtain
Tpred at time t. The details of how to do this, especially for
multiple objects, will be worked out in future work.

D. RR-PCP: Recursively estimating the low rank part

When some new principal directions appear, we need to
detect these directions timely before the “noise” gets large.
Now,E(‖βt−fβ̂‖22) in (12) seems not increase with time. But
this assumeŝLt−1 = Lt−1 which is not true. When some ex-
isting directions vanish, they also need to be removed fromP̂t.
Otherwise, the number of estimated principal directions keeps
increasing and thus the number of columns inP̂t,⊥, which is
the number of measurements for (10), keeps decreasing.

At initial time, we have the training dataL0 :=
[L1, · · · , Lt0 ], which contains no sparse component. Ac-
cording to our signal model (4), the data sequenceLt is
time correlated. Thus, we need a long sequence’s data to
get an accurate estimate of it’s covariance. But notice in our
model, the sequenceLt − fLt−1 is time independent and
has same eigenvectors asLt. Thus, we estimate principal
directions ofL0 by estimating the covariance ofLt − fLt−1

and computing its EVD. LetP0 and G0 be the eigenvec-
tors and (non-zero) eigenvalues of the covariance matrix of
Lt−fLt−1, t = 2, · · · t0, i.e.P0G0P

T
0 = L0(L0)T . Let P̂stable

be an orthonormal matrix whose columns are the correctly es-
timated eigenvectors and let̂Gstablebe a diagonal matrix whose
diagonal elements are the correspondingly correctly estimated
eigenvalues. Let̂Pt = P̂stable= P0 and letĜt = Ĝstable= G0.

Our PCs update procedure is designed to estimate the
current principal directions for data generated accordingto
the piecewise stationary model onxt (and hence onLt) that
was described in Sec. II-A1. Assume that everyd frames,
k new directions get added or removed or both from the
PCs’ subspace. The newly added directions’ variance starts
at a small value and slowly stabilizes to the stable value.
For deleted directions, we set(νt)i = 0 immediately and we
replacef by fd < f (ensures quicker decay).

1In future work, we will analyze real data and study existing literature
to come up with more realistic models and the corresponding PCs update
algorithms. For example, in practiceU may not be fixed, but may also rotate
gradually over time.

Consider a change time,t = τ . LetPnew := (U)Nτ\Nτ−1
be

the matrix containing thek newly added directions. Our PCs
update algorithm assumes the following,

1) The previous additions are detected and correctly esti-
mated before a new set gets added.

2) Let the data matrixD containτd frames ofL̂t−fL̂t−1 af-
ter the new directions have been added. Then span(Pnew)
is contained in the span of the data, span(D).

Assumption 1) holds approximately ifd is large enough.
Assumption 2) holds with high probability ifτd >> k.

We split the estimate of PCs’ basis,̂Pt, into two parts,
P̂t = [P̂stable, P̂new] where P̂stable is the “stable” (correctly
estimated) set of principal directions and̂Pnew are the new
ones which are still being rotated and corrected. We would
like to compute an initial estimate ofPnew as soon as possible
(using only a few frames after‖β̂t‖2 exceeds a threshold). Say
we useτd frames and let the matrixD containsL̂t−1−fL̂t−1

for these frames. We can compute an initial estimate of the
new directions,P̂new, by computing the principal directions of
the sample covariance matrix of(I − P̂stableP̂stable)

TD. This
is done by step 1.b) of Algorithm 1. By assumption 2), if
τd > k, then we would have found the correct span, i.e.
span(P̂new) k span(Pnew). But notice that without enough
data, even though span(P̂new) contains span(Pnew), it will
typically contain many extra directions. As more data comes
in, we keep rotatinĝPnew every-so-often until variances along
some directions become approximately zero and these get
thresholded out. Once this has happened, the estimated rotation
matrix P along the existing directions becomes close to
identity and remains this way. This is the time we can add
P̂new into P̂stable. This is done by step 1.c) of Algorithm 1.

When the variances along some directions inP̂stable begin
to decrease and eventually decay to zero, we compute the
variance of lastτdel frames alongP̂stable and then remove
directions with small variance from̂Pstable. This is done by
step 2) of Algorithm 1.

The above PCs update procedure is summarized in Algo-
rithm 1. In Algorithm 1,D andDdel are data matrix to store
the data differencêLt − fL̂t−1. The parameters,τd, τr, and
τdel, are the length of each data piece we use to detect new
directions, to rotate and correct newly added directions, and
to remove decayed directions, respectively. We use two small
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Algorithm 1 UpdatingP̂t

1) Detect new appearing directions
a) If status= stable, compute‖β̂t−1‖22 := ‖P̂T

t−1,⊥Lt−1‖22.
If ‖β̂t−1‖22 > δ, set status← detection and store data in
D, i.e., D ← [D, L̂t−1 − fL̂t−2]. If not, keep status=
stable. go to step 2).

b) If status= detection,

– If there are less thanτd frames inD, keep storing
data difference inD, i.e.,D = [D, L̂t−1 − fL̂t−2].

– If there areτd data frames inD, computeK = (I−
P̂stableP̂

T
stable)D.

∗ EstimateP̂new by computing the EVD ofKKT ,
i.e,

1

τd
KKT EV D

= PGPT

Td = {i, Gi,i > ξd}

P̂new = PTd
, Ĝnew = GTd

whereG is a square matrix andGTd
is a submatrix

of G consisting the rows and columns indexed by
Td.

∗ Let D = ∅.
∗ If P̂new = ∅, set status← stable and setl = 0. If

P̂new 6= ∅, set status← rotation and setl = τd.

– Go to step 2)

c) If status= rotation,

– If there are less thanτr frames inD, keep storing
data difference inD, i.e.,D = [D, L̂t−1 − fL̂t−2].

– If there areτr data frames inD, let K = P̂T
newD.

∗ RotateP̂new and Ĝnew using K, i.e.,

1

l + τr
(lĜnew+KKT )

EV D
= PGPT

Tr = {i : Gi,i > ξr}

P̂new = (P̂newP )Tr
, Ĝnew = (G)Tr

If P is approximately an identity matrix,
let P̂stable ←− [P̂stable, P̂new], Ĝstable ←−
[Ĝstable, Ĝnew]. Set status← stable, and let̂Pnew =
∅, Ĝnew = ∅, l = 0. If not keep status←− rotation
and letl = l + τd.

∗ D = ∅.

– Go to step 2).

2) Remove decayed directions fromP̂stable.
• If there are less thanτdel data inDdel, keep store data

difference inDdel, i.e.,Ddel = [Ddel, L̂t−1 − fL̂t−2].
• If there τdel data in Ddel, detect decayed directions as

follows

– Find Tdel := {i : 1
τdel

(P̂stable)
T
i DdelD

T
del(P̂stable)i <

0.05(Ĝstable)i,i}.
– Remove (P̂stable)Tdel from P̂stable and remove

(Ĝstable)Tdel from Ĝstable.
– SetDdel = ∅.

3) Let P̂t = [P̂stable, P̂new].

thresholds,ξd andξr, to detect new directionŝPnew in step 1b)
and to threshold extra directions out from̂Pnew in step 1c).
They are proportional to the total variance along all existing
stable directions.

E. A complete algorithm

The complete algorithm of real-time robust PCP is given in
Algorithm 2.

In Algorithm 2, we computêPt,⊥, orthogonal complement
of P̂t or equivalently the null space basis ofP̂T

t , using the QR
decomposition ofP̂t [22]. SupposeP̂t is m × r matrix with
m >> r. We find anm×m orthonormal matrixH such that

P̂t
QR
= HJ =

[

H1 H2

]

[

J1
0

]

whereJ1 is anr × r upper triangular matrix.H1 consists of
the firstr columns ofH andH2 is made up of the lastm− r
columns. The columns ofH2 span the null space of̂PT

t and
we let P̂t,⊥ = H2.

Algorithm 2 Real-time Robust PCP (noise canceled)
Training: Given training dataL0 = [L1, · · · , Lt0 ], estimate
principal components ofL0 by computing the eigen-pairs of
the sample covariance ofLt−fLt−1. LetP0 andG0 denote the
eigenvectors and eigenvalues. SetP̂stable= P0, Ĝstable= G0.
At time t = t0,

• Set status= stable. LetP̂t = P̂stable, Ĝt = Ĝstable, P̂new =
∅, Ĝnew = ∅.

• Let D = ∅, l = 0, Ddel = ∅.

FOR t > t0, do the following:

1) Estimate PCs’ subspace of low rank part using Algorithm
1 and computêPt,⊥.

2) Estimate sparse part,St, by solving (10) with ǫ =
2‖β̂t−1 − fβ̂t−2‖

2
2.

3) Support thresholding and least square estimation: do (13),
(14), and (15).

4) Incrementt by 1 and go to step 1).

IV. EXPERIMENT RESULTS

We simulatedLt ∈ R128×1 using the model described in
Sec.II-A. The firstt0 = 5 × 103 frames contains no sparse
part and we use it as training data. The sparse vector,xt,
follows a AR-1 model with parameterf = 0.9. There are
32 principal directions with variances ranging from1 × 104

to 9. Recall that in our model,Lt is time correlated and the
sequenceLt − fLt−1 has same eigenvectors asLt, we get
initial estimate of PCs’ subspace by estimating the covariance
of Lt − fLt−1 and computing its EVD.

The sparse componentSt ∈ R128×1 first arises at time
t = t0+1. The nonzero entries ofSt has positive magnitude5,
which is usually much smaller than magnitude of the nonzero
entries ofxt. For t > t0 + 1, the support ofSt changes
following the model described in Sec.II-B, resulting in a low
rank matrixS.

At time t = t0 + 5, we add one new directionPnew with
variance50 to PCs’ basis and let it starts at a small value
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Fig. 2: Comparison of RR-PCP (noise canceled), RR-PCP (basic), PJ and PCP
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Fig. 3: Monte Carlo averaging for three on-line methods, RR-PCP (noise canceled), RR-PCP (basic), and PJ

with θ = 0.4. It slowly stabilizes to the variance50. At time
t = t0+100, one existing direction (notPnew) begins to decay
with fd = 0.1.

We do RR-PCP (noise canceled), RR-PCP (basic), PJ and
PCP using the data generated as described above and plot the
percentage error in Fig. 2. The percentage error is defined as

percentage error:=
‖St − Ŝt‖2
‖St‖2

In Fig. 2, S1:t is 1024× t dimensional at timet, but its rank
ranges from0 to 51.

For RR-PCP (noise canceled), we do algorithm 2 withτd =
τr = τdel = 20. At t = t0 + 6, it detects the appearance of
new directions and set status= detection. Att = t0 + 26,
a new piece of data containingτd frames are available, RR-
PCP do step 1b) of Algorithm 1 and get̂Pnew, an estimate of
the new directionPnew. There are7 new directions inP̂new,
and the coherence between these new estimated directions and
the true onePnew ranges from0.9393 to 0.0051. So, with τd
frames of data, it approximately finds a subspace containing
Pnew and some extra directions. Fort > t0 + 26, we do step
1c) of Algorithm 1 to rotateP̂new closer to the true one and
threshold out those extra directions for everyτr = 20 new
frames of data. For example, att = t0+47 when a new piece
of data is available, we do step 1c) which rotatesP̂new closer
to the truePnew and get 2 directions thresholded out. The
maximum coherence of̂Pnew andPnew goes up to0.9505. At
time t = t0+68, another two directions are thresholded out and
the maximum coherence of̂Pnew andPnew goes up to0.9526;
at time t = t0 + 110, the rotation matrixP is close to an
identity matrix (on-diagonal elements larger than0.9999 and

off-diagonal elements smaller than0.01). Only one direction
is left in P̂new, with coherence0.9553 to Pnew. It sets status=
stable and addŝPnew to the stable set of principal directions.
At time t = t0 + 126, it removes the deleted direction from
the estimated PCs’ basis successfully.

For RR-PCP (basic), we do same thing as RR-PCP (noise
cancelled) but replace (10) with (6) and replace (14) by
doing LS on yt. We see that error of RR-PCP (basic) is
larger than RR-PCP (noise cancelled) because it does not use
the information contained in̂Lt−1, i.e. ‖βt‖2 is larger than
‖βt − fβ̂t−1‖

2(see Fig.4).
For PJ, we solve (3) withA = [P̂t, P̂t,⊥, I]. PJ recoversxt

andSt while RR-PCP (noise cancelled) and RR-PCP (basic)
cancel the termxt by P̂T

t,⊥. Recall thatxt has variance ranging
from 1×104 to 9, the magnitude ofxt is much larger thanSt.
PJ recovers the significant partxt and cannot getSt recovered
correctly.

For the off-line method PCP, at each timet, we solve (1)
using all available data frames2, [M1, · · · , Mt], and plot the
error for current frameSt. The error of PCP is large because
the support ofSt is time correlated andSt does not has random
signs. To implement PCP in a causal fashion, it requires about
200 - 300 seconds at every timet, while RR-PCP takes about
1.7 seconds at every timet.

We do 50 times Monte Carlo simulation for three on-line
methods, average the percentage error and plot them in Fig.
3. As can be seen from Fig.3, our method RR-PCP (noise
canceled), gives the smallest error. In Fig.4, we plot the

2We use Accelerated Proximal Gradient method with code available at
http://perception.csl.illinois.edu/matrix-rank/sample code.html.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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Fig. 4: E‖βt‖22 v.s.E‖βt − fβ̂t−1‖22

expectation of‖βt‖22 := ‖P̂T
t,⊥Lt‖22 and ‖βt − fβ̂t−1‖22 :=

‖P̂T
t,⊥(Lt − fL̂t−1)‖22 for RR-PCP (noise canceled). It shows

that, for t < t0 + 26 when there are some missing principal
directions,‖βt − fβ̂t−1‖22 is much smaller than‖βt‖22. For
t > t0 + 26, RR-PCP (noise canceled) gets an estimateP̂new

and adds it to the estimate of current PCs’ basis, thus, both
‖βt‖22 and‖βt− fβ̂t−1‖22 decreases. However,‖βt− fβ̂t−1‖22
is still slightly less than‖βt‖

2
2 due to the time correlated model

onLt. Recall that‖βt‖22 is the noise in (6) and‖βt−fβ̂t−1‖22
is the noise in (10), that is the reason why RR-PCP (noise
canceled) is better than RR-PCP (basic).

V. D ISCUSSION AND FUTURE WORK

In this work, we used a simple motion model on the sparse
vector St as explained in Sec. II-B. Under this model, the
support ofSt changes slowly over time, resulting in a low
rank matrixS. Because of this, PCP is unable to distinguish
S from the low rankL. But our method, RR-PCP, works
because it does not require the sparse matrixS to to be
uniformly random. In this work, we have not utilized the
correlated support change ofSt to our advantage. But, in
fact, RR-PCP can be improved significantly by using this
knowledge and by adapting the modified-CS idea of [19], [20]
to incorporate motion prediction. We can use the knowledge of
the object’s motion model and the previous support estimate
to obtain the current support predictionTpred of the sparse
part. If this prediction is accurate and is used in (16), withan
appropriately chosenǫ, the reconstruction error should reduce
significantly, especially when the support size ofSt is large.
In future work, we will develop realistic motion models and
corresponding motion prediction algorithms to get reliable
support predictions of the sparse part. We will also analyze
their performance, first assumingPt is perfectly known and
later for the practical case ofPt unknown.

Our PCs updating procedure is designed for the data gener-
ated according to the piecewise stationary model onxt while
U is a constant but unknown orthonormal matrix. In future
work, we will analyze real data and study existing literature
to come up with more realistic models and the corresponding
PC update algorithms.

For very-large scale data, it is computationally and memory
intensive to computêPt,⊥. In future work, we will develop
computational efficient alternatives. For example we can use
the fact that‖P̂T

t,⊥z‖2 = ‖P̂t,⊥P̂
T
t,⊥z‖2 = ‖(I − P̂tP̂

T
t )z‖2.

A somewhat related work is Jin-Rao’s approach [14] which
solves

min
α,s
||s||1 s.t. ||Mt − Ptα− s||22 ≤ ǫ (17)

In [14], the matrix Pt is a known and fixed regression
coefficients’ matrix, which is no longer true in our problem.
We can use the time correlated model onxt (and hence on
αt) and the motiom model onSt to modify (17) following a
similar way of RR-PCP.
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