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Abstract 

This paper focuses on semi-supervised dimensionality reduction. In this scenario, we present a general model for 
semi-supervised dimensionality reduction with pairwise constraints (SSPC). Through defining a discriminant 
adjacent matrix, SSPC learns a projection embedding the data from the original space to the low-dimensional space 
such that intra-cluster instances become even more nearby while extra-cluster instances become as far away from 
each other as possible. Experimental results on a collection of benchmark data sets show that SSPC is superior to 
many established dimensionality reduction methods. 
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1. Introduction 

Semi-supervised dimensionality reduction, aiming to obtain a low-dimensional faithful representation 
of high-dimensional data with side information, has been applied to computer vision, statistical learning 
and pattern recognition [1-4]. In fact, Utilizing side information has been an important issue in many data 
mining tasks [5-7]. Generally, in semi-supervised scenarios, side information may show diverse forms, 
such as class labels, pairwise constraints, prior membership degree or other prior information. According 
to given side information, semi-supervised dimensionality reduction methods can generally fall into two 
approaches. The first kind of approaches adopts pairwise constraints to guide the dimensionality reduction 
process. Other semi-supervised DR methods based on pairwise constraints are related to semi-supervised 
clustering [8-10]. The second kind of approaches applies available class labels to steer the DR process. In 
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[11], a semi-supervised DR framework is proposed, which adds a regularized term to the objective 
function of SDA and MMC [12]. Another general semi-supervised DR framework applies pairwise 
distances of embedded points to find projective direction [13]. 

In this paper, we focus on side information in the form of pairwise constraints, and present a general 
model for semi-supervised dimensionality reduction with pairwise constraints (SSPC). Concretely, we 
define a discriminant adjacent matrix in support of clustering and then learn a projection mapping the 
input data into a embedding space such that instances involved by must-link constraints become even 
more close while instances involved by cannot-link constraints are as far away from each other as 
possible. Moreover, SSPC can perform linear and non-linear mappings. 

2. The algorithm 

2.1. Model formulation 

Given a set of data set X = [x1,…, xi,…, xn] (xi ∈RD) together with some must-link constraints (M) and 
cannot-link constraints (C), we aim at finding a group of projective vectors A = [a1, a2,…,ad] such that 
instances in the same cluster should be close while ones in different clusters should be far in the 
transformed low-dimensional space. To this end, we learn a transformation f (.) from the input space to 
convert all the instances to the transformed space. Thus, we minimize the following loss function: 
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where S is the discriminant adjacent matrix and is given its value later. 
In order to clearly express Eq. (1), we split it into two parts: 
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An edge is put between nodes i and j if xi and xj are close, i.e. xi and xj are among k nearest neighbors. 
S is the corresponding weight matrix, which is defined as follows: 
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where Nk (xi) denotes the set of k nearest neighbors of xi. α and β are the trade-off parameters. 
According to Eqs. (3) and (4), S can be expressed as follows: 
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2.2. Optimization of the objective function 

We use f(xi) = [f1(xi), …, fd(xi)]
T to project each instance xi from RD to the new space Rd. We assume 

that each component fj (.) is a linear combination of r basis functions and get the following equation: 
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where φl(.)s are the linear or non-linear basis functions and P = [Plj]D×d contains the weights. For ease 

of calculation, we constrain that 2
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We use Eq. (8) to display Eq. (1) and obtain as follows: 
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where P = [P1,…,Pd], X = [X1,…,Xn] and φ(X) = [φ1(x1), …, φr(xn)]. D∈Rn×n is a diagonal matrix; its 

entries are column (or row) sum of S, ii ijj
D S=∑ .

We can obtain the optimal matrix P as follows: 
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By introducing the Lagrangian, we have 
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with the multiplier λl. This Lagrangian is minimized with respect to λl and Pl. By taking the derivatives of 
L and setting it to zero, we find that the solution is 
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l l lX D S X P Pϕ ϕ λ− =                                                                                                               (11) 

According to Eq. (11), we get 

( )l lP X wϕ=                                                                                                                                             (12) 

where 
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We substitute the expression of Pl into Eq. (11) and get 
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Further, if both sides of Eq. (14) are left multiplied with φT(X), we have 
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where K =φT(X) φ (X) is a kernel matrix. 
Zhang et al. [14] proved that Eq (15) has the same eigenvalues as the following equation: 

( ) l l lD S Kw wλ− =                                                                                                                                 (16) 

Thus, wl can be solved by Eq (16). 

2.3. Basis function φ 

We assume that the transformed low-dimensional representations Y = [f(x1), …, f(xn)] can preserve the 
structure of the original data set as well as instances in the same cluster should be close while ones in 
different clusters should be far. Concretely, 

Y =  [ 1( )TP xϕ , …, ( )T
nP xϕ ]
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where K =φT(X) φ (X). 
Since we only need operate the dot product φT(X) φ (X), Gaussian kernel is used to get kernel functions. 
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Thus, Based on the analysis above, we can obtain the transformed low-dimensional representations Y.

3. Experiments 

Table 1. Clustering performance on four data sets (%) 
Data set SSDR LMDM SCREEN SSPC 

Segment 78.37 75.24 74.13 81.55 
Letter 66.34 61.25 62.28 70.44 
USPS 75.99 70.83 71.22 79.58 

YaleFaceB 89.10 86.25 86.16 93.73 

In this section, we present an empirical study to evaluate the SSPC algorithm in comparison with 
several other representative semi-supervised learning algorithms, such as SSDR [2], LMDM [10], 
SCREEN [9]. We compared all these algorithms on four benchmark data sets, including Segment, Letter 
(a-d), USPS and YaleFaceB. Segment contains 7classes with 2309 instances and 19 dimensions. Letter 
has 4 classes with 3096 instances and 16 dimensions. USPS contains 10 classes with 6000 instances and 
256 dimensions. YaleFaceB contains 10 classes with 5850 instances and 1200 dimensions. We use K-
means to all the data in the low-dimensional space. The clustering result is evaluated by NMI [1,8,9]. The 
experimental results are shown in Table 1. We observe that our algorithm can relatively outperform the 
other methods on almost all the experiments. 

4. Conclusion 

In this paper, we propose a general model for semi-supervised dimensionality reduction called SSPC, 
which exploits both cannot-link and must-link constraints together with unlabeled data. SSPC can 
preserve the intrinsic local structure of the data set as well as the pairwise constraints specified by users in 
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the transformed low-dimensional space. In addition, our method is non-iterative and immune to small 
sample size (SSS) problem. Experimental results on four benchmark data sets demonstrated the 
effectiveness of the proposed algorithm. 
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