
Ann. Telecommun. (0000) 71:141–150
DOI 10.1007/s12243-015-0487-2

Model-driven interoperability: engineering heterogeneous
IoT systems

Paul Grace1 ·Brian Pickering1 ·Mike Surridge1

Received: 31 March 2015 / Accepted: 30 October 2015 / Published online: 25 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Interoperability remains a significant burden to
the developers of Internet of Things systems. This is because
resources and APIs are dynamically composed; they are
highly heterogeneous in terms of their underlying com-
munication technologies, protocols and data formats, and
interoperability tools remain limited to enforcing standards-
based approaches. In this paper, we propose model-based
engineering methods to reduce the development effort
towards ensuring that complex software systems interoper-
ate with one another. Lightweight interoperability models
can be specified in order to monitor and test the execution
of running software so that interoperability problems can be
quickly identified, and solutions put in place. A graphical
model editor and testing tool are also presented to highlight
how a visual model improves upon textual specifications.
We show using case-studies from the FIWARE Future
Internet Service domain that the software framework can
support non-expert developers to address interoperability
challenges.

Keywords Model driven engineering · Interoperability ·
Cloud computing · Internet of things

� Paul Grace
pjg@it-innovation.soton.ac.uk

1 IT Innovation Centre, University of Southampton,
Southampton, UK

1 Introduction

The Internet of Things (IoT) and Cloud Computing nat-
urally go hand-in-hand for developing large-scale, data-
oriented distributed systems. There is a growing need
to collect and analyse data (in significant quantities)
from an IoT world. However, this requirement brings a
common problem to the fore, namely Interoperabil-
ity. Things are highly heterogeneous networked devices
employing different protocols (e.g. HTTP, MQTT, DDS
and CoA) and different data formats (e.g. binary, XML,
JSON and GIOP). These can then be composed with
cloud-based infrastructure services (e.g. OpenStack and
Amazon Web Services) or Cloud Platform services (e.g.
Hadoop offerings) for further processing, analysis and stor-
age. Where there are significant differences in technolo-
gies, how can systems be guaranteed to understand each
other and interact? This is particularly true where there
is the need to migrate IoT applications between Cloud
providers.

This growing heterogeneity means that established meth-
ods to achieve interoperability are no longer appropriate.
Complying with common standards and leveraging com-
mon middleware platforms reduces interoperability prob-
lems, but aiming for global consensus is unrealistic. Instead,
interoperability is managed in an ad hoc manor: (i) speci-
fication compliance tests (of protocols and APIs), e.g. plug
tests for MQTT (MQ Telemetry Transport) implementa-
tions,1 (ii) published API documentation for developers to

1http://iot.eclipse.org/documents/2014-04-08-MQTT-Interop-test-
day-report.html

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12243-015-0487-2-x&domain=pdf
mailto:pjg@it-innovation.soton.ac.uk
http://iot.eclipse.org/documents/2014-04-08-MQTT-Interop-test-day-report.html
http://iot.eclipse.org/documents/2014-04-08-MQTT-Interop-test-day-report.html


142 Ann. Telecommun. (0000) 71:141–150

follow (e.g. the Hyper/Cat [14] catalogue of IoT services)
and (iii) development of mappings and adapters to broker
system differences on a case-by-case basis (e.g., mappings
between data [4] and mappings between middleware [20]).
These solutions help, but there remains a significant burden
on developers to understand and identify interoperability
problems and then implement and test solutions accord-
ingly. In this paper, we seek to reduce this burden using
model-driven development tools and techniques.

Model-driven software development offers a principled
approach to engineer interoperable solutions through: the
capture of shared domain knowledge between independent
developers and the automated generation and testing of
software. For example, model-driven testing [2] and model-
based interoperability testing [3] highlight the potential.
However, these solutions focus onWeb Services and require
detailed models of the system’s interface syntax (using
WSDL) and behavior (using BPEL) in order to generate
automated tests. We propose that model-driven approaches
are equally well-suited to addressing interoperability prob-
lems in the composition of IoT software, but they must
consider the heterogeneity of technologies and the need for
simpler quick-to-develop and highly re-usable models.

We present a model-driven engineering tool to sim-
plify the engineering of interoperable systems. This paper
highlights three key contributions of this work:

– Interoperability models are reusable, visual software
artifacts that model the behavior of services in a
lightweight and technology independent manner. These
models are used to help developers create and test sys-
tems that correctly interoperate. These models are a
combination of architecture specification (i.e. services
and interface dependencies) and behaviour specifica-
tion (using state machines and rule-based transitions to
evaluate protocol events). These models are based upon
Finite State Machines (FSM); there are a number of
active testing solutions based upon FSM [9]. Impor-
tantly, our models focus only on what is required to
interoperate, simplifying the complexity of the model in
comparison to approaches that fully model a system’s
behavior.

– A Graphical development tool to allow the developer
to create and edit interoperability models and to also
execute tests to report interoperability issues. This tool
aims to further reduce the development process by mak-
ing it easier to understand and develop the models
themselves; this is in contrast to textual, heavyweight
and disjoint distributed systems models such as BPEL
and WSDL.

– The Interoperability monitoring and testing framework
captures systems events (REST operations, middleware
messages, data transfers, etc.) and transforms them into
a model specific format that can be used to evaluate and
reason against required interoperability behavior. The
framework tests monitored systems against interoper-
ability models to evaluate compliance, reporting where
interoperability issues occur, such that the developer
can pinpoint and resolve concerns.

Hence, the tool allows the developer to create, use and
re-use “models of interoperability” to reduce development
complexity in line with the following requirements to ensure
interoperability is correctly achieved:

– Specification compliance; to check that systems comply
with particular specifications, e.g. an IoT sensor pro-
duces event data according to the NSGI specification,2

or streamed data content complies with a data format
specification uploaded to the HyperCAT catalogue.

– Interoperability testing; monitors the interaction
between multiple systems to test whether they interop-
erate with one another, identifying the specific issues
to be resolved where there is failure.

To evaluate the tool, we utilize a case-study based
approach. FIWARE3 provides a marketplace of indepen-
dently developed Future Internet Services (approximately
30) that can be composed to build IoT and cloud appli-
cations; these are loosely coupled REST services without
formal interface or behavioral specifications, and hence
achieving interoperability remains a significant task for
developers. In the first case, we show how lightweight inter-
operability models can quickly be created for this domain,
and also how the interoperability framework lowers the bur-
den of performing interoperability tests and identifying the
causes of interoperability errors. In the second case, we
illustrate how multiple implementations of a specification
across a federation can be tested for compliance to support
application migration.

In Section 2, we present the model-driven engineering
methodology; then in Section 3, we introduce the developer
tool for model-driven engineering. Subsequently, we eval-
uate the framework in Section 4. In Section 5, we analyse
the work in comparison to the state of the art, and finally, in
Section 6, we draw conclusions and highlight future areas
of application for the solution.

2http://technical.openmobilealliance.org/Technical/
technical-information/release-program/current-releases/ngsi-v1-0
3http://www.fiware.org/

http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/ngsi-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/ngsi-v1-0
http://www.fiware.org/


Ann. Telecommun. (0000) 71:141–150 143

2 Model-driven interoperability

2.1 Interoperability engineering methodology

Figure 1 provides an overview of the engineering method-
ology; here different stakeholders use the interoperabil-
ity modeling and testing tools to achieve interoperability
between independently developed services and applications.
These developers utilise the tool described in Section 3 to
perform the model, compose, edit, reuse and test functions
seen in the figure.

– Interoperability testers create new IoT applications and
services to be composed with one another. Hence,
they wish to engineer interoperable solutions; test-
ing that their software interoperates with other ser-
vices, and pinpoint the reasons for any interoperability
errors that occur. Therefore, reducing the overall effort
required to deliver, test and maintain correctly func-
tioning distributed applications. The framework will
identify application behavior and data errors, e.g. data
is not received by system A because system B has not
correctly published information.

– Application developers (these may be the same as inter-
operability tester) model the interoperability require-
ments of service compositions; that is, they create
interoperability models to specify how IoT applications
should behave when composed: what the sequence of
messages exchanged between should be (in terms of
order and syntax), and what data types and content
should form the exchanged information. Importantly,
these models are re-usable abstractions that can be
edited, shared and composed.

– Service or API developers model the compliance
requirements of their new service API, that is, they cre-
ate compliance models to specify how applications must
interact with their services, such that tests can be gen-
erated to ensure that an implementation of this model is
compliant.

– Specification compliance testers test compliance of
their specification implementation against the model of
a service API in order to guarantee future interoperabil-
ity with other parties conforming with this standard.

2.2 Interoperability and compliance models

Distributed services are typically modeled using interface
description languages, e.g. WSDL, WADL and IDL, to both
describe the operations available and how to execute them
(e.g. using a SOAP or IIOP message). These can then be
complemented with workflow (e.g. BPEL) and choreogra-
phy languages to explain the correct sequence of events
to achieve particular behaviour. With these models it is
then possible to automate the interoperability testing pro-
cesses [3] and better support service composition. However,
these approaches are often tied to a specific technology
type, e.g. Web Services and CORBA being clear technology
silos, and hence the approach is not well suited to loosely-
coupled IoT and cloud services that employ a wide range
of technologies and communication protocols. Furthermore,
the models themselves are typically complex to write, use
and maintain which in turn means they are not widely
deployed; this can already be seen in the Internet Services
domain where RESTful APIs (e.g. Twitter, Facebook and
others) provide documentation and SDKs to help develop-
ers interoperate without the need for separately maintained
IDLs.

Our approach explores models that focus solely on
interoperability; that is, the specification of the exchanges
between IoT services with rules defining the required
behavior for interoperability to be guaranteed. There are
two types of model: (i) the interoperability model used by
application developers and interoperability testers and (ii)
specification models and compliance testers.

An interoperability model is specified as a finite state
machine; the general format is illustrated in Fig. 2. A
state represents a state of a distributed application (not an

Fig. 1 Model-driven
interoperability engineering



144 Ann. Telecommun. (0000) 71:141–150

Fig. 2 Simple interoperability
model

individual service) waiting to observe an event. A transi-
tion represents a change in state based upon an observed
event matching a set of rules regarding the required behav-
ior. Hence, the model represents the series of states that a
distributed application proceeds through in reaction to dis-
crete events (e.g. a message exchange, a user input, etc.).
If the state machine proceeds such that there is a complete
trace from a start state to an end state then we can conclude
that software within the distributed system interoperate
correctly.

If an event occurs and no transition can be made (because
the event does not fulfill the rules), then the interoperability
model identifies a failing condition. Aligned with knowl-
edge regarding why this rule failed, the tool can provide
preliminary information for either correcting the error or
deploying a broker solution to mediate. Discrete events are
captured messages (e.g. a HTTP message in Fig. 2), which
are evaluated against the model, i.e., transition rules can be
evaluated. Where all rules evaluate to true, the state machine
transitions to the corresponding labeled state (e.g. from state
A1 to A2 in the diagram).

In Fig. 2, we present a very simple example to illustrate
how a model is used in practice. Here, we have a client
requesting the temperature of a room sensor, and a context
service providing the sensor data. They interact with each
other to complete a single request-response type operation.
There are three states: (i) the start state, (ii) the state when
the first request message is received by the sensor service
and (iii) the final state where the client received a response
message from the service. The interaction is a REST HTTP
post operation which can contain either XML or JSON (two
alternative transition paths). A number of rules are pre-
sented to illustrate how rules are attached to transitions; each

transition can specify one or more rules concerning different
characteristics of events. These fall into protocol specific or
data specific rules:

– Protocol-specific rules. Evaluate events according to
the structure and content of an observed protocol mes-
sage (not the application/data content). For example,
check the IP address of sender of the message to verify
which services are interacting with each other. Fur-
ther, evaluating the protocol type (HTTP, IIOP, AMQP,
etc.) and the protocol message type (HTTP GET, HTTP
POST or an IIOP request) to ensure that the correct
protocol specification is followed. Finally, checking
protocol fields (e.g. a HTTP header field exists or
contains a required value) to ensure that the message
contains the valid protocol content required to inter-
operate. Currently, the tool evaluates HTTP protocol
rules.

– Application and data-specific rules. Evaluate the data
content of protocol messages to ensure that services
interoperate in terms of their application usage. For
example, the data content is of a particular type (e.g.
XML or JSON), corresponds to a particular format
or schema, contains a particular field unit (e.g. tem-
perature), etc. Furthermore, rules can make constraints
on the application message, e.g., ensuring the opera-
tions required are performed in order (e.g. A sends
a subscribe message to B, before C sends a publish
message to B). Data rules are evaluated using data-
specific expression languages, for example, we leverage
XPATH4 and JSONPATH5 tools to extract data fields

4http://www.w3.org/TR/xpath20/
5https://code.google.com/p/json-path/

http://www.w3.org/TR/xpath20/
https://code.google.com/p/json-path/


Ann. Telecommun. (0000) 71:141–150 145

Fig. 3 Simple compliance model

and evaluate whether a given expression is true (e.g. a
rule in the XPATH format: Data[name(/*)] = queryCon-
text).

A compliance model is specified as a finite state machine
using the same elements as the interoperability model
above. However, two extra elements are now added in order
to allow the framework executing the model to inject mes-
sages into the system in order to evaluate specification
compliance:

– Trigger state (B1 in Fig. 3). This is an active state as
opposed to an observing state, i.e., it does not monitor
for events, rather it triggers the sending of a new event
described in the out transition. A trigger state can only
have one outgoing transition.

– Trigger transition (Transition from B1 to B2 in Fig. 3).
This is a transition from one state of the distributed
system caused by the sending of a new message. This
message is a HTTP message that is described in the
attributes of the transition.

A simple compliance model is illustrated in Fig. 3.
Note, a trigger state has an arrow in the circle to dis-
tinguish it from a normal observing state. This is a sim-
ple model of part of the Cloud Data Management Inter-
face6 (CDMI api) specification for cloud storage. Here,
we are testing if the service correctly implements the
discoverCapabilities operations to view the tech-
nical capabilities and installed features of a CDMI deploy-
ment. The first state is a trigger state, this means that
the tool creates and sends a HTTP GET message to the
cdmi capabilities URL. The system being tested for
compliance should understand this message and send back a
response. Hence, the second state transition evaluates a rule
set against this received response to ensure that the data in
the HTTP response matches the required data format of the
api. Again, we see rules to test the structure of the HTTP

6http://www.snia.org/cdmi

message and that the data has fields equal to specific values
and contains required fields.

3 Interoperability modeling and testing tool

The Modeling tool illustrated by the screen-shot in Fig. 4
has two core elements. First, the graphical editor providing
drag and drop functionality to create the models described
in the previous section. Second, the monitoring and testing
framework that evaluates running distributed applications
against the model visualised in the editor and evaluates
them for correct interoperability. When the test command
is selected in the editor—the models are converted to XML
(this also allows them to be permanently stored) and they
are input to theModel Evaluation Engine.

Without going into implementation details beyond the
scope of the paper (more detailed information is found
in [12]), we can explain the operation of the model evalua-
tion engine in terms of two functions:

– Monitoring deployment; the framework takes an inter-
operability model as input and generates a set of proxy
elements that capture REST events (these relate to
all interface points in the application). Hence, if we
observe that a service receives events at a particular
URL; we generate a proxy to capture those events–the
proxy simply reads the information before redirecting
the request to the actual service. The implementation is
built upon the RESTLET framework.7

– Model evaluator receives events and evaluates them
against the rules specified in the transitions. The eval-
uator is protocol independent (per protocol plug-ins
map concrete messages to the format of the model
rules); hence, at present the framework parses HTTP
messages, but is extensible to other data protocols.
The evaluator creates a report to identify success or

7http://restlet.com

http://www.snia.org/cdmi
http://restlet.com


146 Ann. Telecommun. (0000) 71:141–150

Fig. 4 Interoperability modeling and testing tool

failure to the developer, and where a failure occurs, the
framework performs simple reasoning to pinpoint the
source of the error. In future work, we plan to explore
knowledge-based reasoners to provide richer feedback.

The framework is currently made available as software
usable within the XIFI project8 facilities. The source code
is available at.9 XIFI establishes a pan-European, open fed-
eration comprised of 17 data-center nodes to cope with
large trial deployments and can serve the various needs of a
broad set of FI users and experimenters. The interoperability
framework is one of a number of tools to support the devel-
opment of software using the FIWARE collection of open,
restful services. Developers within this software domain can
use the tool to view and edit models and then directly evalu-
ate their application by executing the framework against this
model.

4 Evaluation

We use a case-study approach to evaluate the usage of
the interoperability model and associated tool to achieve

8http://wiki.fi-xifi.eu/Public:Interoperability Tool
9https://github.com/pjgrace/connect-iot

its primary contribution, i.e. to reduce the effort required
to develop and test the interoperability of software com-
posed with independently developed IoT and cloud-based
services. We hypothesize that the framework can monitor
running services and identify where they do and do not
interoperate; we also propose that the lightweight models
offer an abstraction to capture interoperability information
that can be reused across multiple applications, e.g. a model
describing how to interoperate with a context broker being
utilised across multiple different applications.

We utilise FIWARE software as the domain of our case
study. FIWARE is a catalogue of approximately 30 REST-
Ful services implementing open specifications documented
using free text (there are no WADL, WSDL specifications
on which automated tool support can be based). These
services include: identity management, context brokering,
big data, complex event processing and media streaming
and have already been leveraged to build commercial IoT
applications.10

We hypothesize that the interoperability framework helps
the developers of IoT applications and services during soft-
ware development and testing phases; discovering problems

10http://www.fiware.org/2013/09/19/santander-smart-city-event/

http://wiki.fi-xifi.eu/Public:Interoperability_Tool
https://github.com/pjgrace/connect-iot
http://www.fiware.org/2013/09/19/santander-smart-city-event/


Ann. Telecommun. (0000) 71:141–150 147

earlier, reducing the costs and improving the overall devel-
opment of the application.

4.1 Case one: developing an application to interoperate
with cloud and IoT services

We developed an application to monitor and gather data
about traffic and transportation vehicles across multiple
countries to support logistic reporting and analysis. The
need to integrate new devices (e.g. vehicles) and services
(e.g. reporting applications) into this application domain
presents interoperability challenges. This is highlighted in
Table 1 which list a subset of the services and open
interfaces to interoperate with. For example, vehicles inter-
operating with the NGSI publish-subscribe interface; the
composition of complex event processing prior to event pub-
lications; and choreographing post-processing of data using
big data services. Here, there are a number of complex
specifications with different behavior (streaming, publish-
subscribe and request response) and data to understand and
develop towards.

A model of interoperability was created for this appli-
cation domain; a subset of the model is highlighted Fig. 5.
Example transitions are vehicle to broker: HTTP POST
message with JSON content to register new context, where
the data must have at least attributes speed and fuel lev-
els. Transport management application to broker: HTTP
POST message to subscribe with URL for notifications, and
then corresponding publication from broker to this endpoint.
Interaction between broker and big data services to persist
events, and then subsequent transport reporting application
to create big data jobs to analyse the data. The full model
consists of six interacting components, modeled by 38 states
and 45 transitions.

Analysis The software components of the application were
developed and tested in-line with the model (injecting typ-
ical interoperability errors into the software). In each case,
the tool identified the failure and which state and transition
in the application the fault occurred. Hence, with this initial
evaluation, we believe that the tool has significant value to

quickly identify interoperability errors in large-scale com-
plex environments and hence reduce development costs. As
the system grows in size, the visualisation ability allows the
system to be tested without having to understand 1000s of
lines of code. Additionally, the model itself contains a num-
ber of sub-elements that are highly reusable, i.e. common
composition model for utilising the FIWARE services (e.g.
context broker, big data and CEP). Hence, we also quickly
created simple environmental monitoring application types
(with different data and behavior) atop these sub-models.
We saw that the models could be quickly composed and
edited (with minimal effort), demonstrating the benefits of
modelling both IoT services and applications to transfer
knowledge between developers.

4.2 Case two: migrating between service providers

The XIFI federation consists of 17 geographically dis-
tributed nodes (where each node provides interfaces to
utilise cloud and IoT resources at that location). Hence,
the federation contains multiple deployments of service
functionality useful to the application in case 1, e.g. publish-
subscribe brokers (NGSI apis) and data storage services
(CDMI apis). We hypothesize that the interoperability tool
can model application compliance to evaluate if an applica-
tion can be migrated between service providers, i.e. we can
test that different service interfaces provide the functional-
ity required by an application, identifying where compliance
fails such that the application can then be edited to interop-
erate.

A compliance model was created for the NGSI publish-
subscribe interface and CDMI data storage interface (as
used in the transport application). This was then tested
against the API deployments across each of the 17 XIFI
nodes, reporting success in each case (as expected where
standard specifications are deployed). The application code
was then executed using the different nodes to verify that
compliance testing success was equivalent to interoperabil-
ity once the application was migrated. We finally created a
mismatching api by changing the implementation of a test
NGSI service; the compliance tool identified all points of

Table 1 Heterogeneous
interface specifications Service Interface Protocol

Context broker Open Mobile Alliance’s NGSI9a HTTP Rest/JSON

Complex Event Processor FIWARE CEP specification HTTP Rest/XML

Big Data Adaptor Apache Flume connectorb Binary

Big Data Service FIWARE Big Data specification Rest/XML

Object Storage CDMI API specification

aFIWARE open specifications
bflume.apache.org

flume.apache.org


148 Ann. Telecommun. (0000) 71:141–150

Fig. 5 Model of a transport application

mismatch correctly, and the application code was adapted to
work with this new version of the API.

Analysis The use of lightweight compliance models can be
used to establish how easy it is to migrate a given applica-
tion to a new service. This can reduce the migration effort,
reducing the need to analyse the new apis in detail, and then
reimplementing code or writing brokers or adaptors.

5 Related work

Middleware is typically put forward as an ideal solu-
tion to the interoperability problem. Where software is
developed on a common middleware, with communication
protocols that handle many of the complex heterogeneity
issues, e.g. Operating System, Hardware platform and data
types differences, certain interoperability guarantees can be
made. CORBA, Web Services, REST and others highlight
such ability. However, differences in the way developers
use middleware (e.g. data semantics, application behaviour
usage such a operation sequences) still result in interop-
erability issues to address; this is particularly true of the
IoT domain with lightweight middleware (to operate on
resource constrained devices), transporting highly heteroge-
neous data; there are a number of IoT middleware solutions,
e.g. UbiSOAP [8], Hydra [18], DDS middleware [17] and
MQTT [13]. Hence, our interoperability framework pro-
vides added value above middleware solutions, allowing

multiple technologies to be deployed and then support-
ing developers address further application and middleware
interoperability problems.

Testing languages are an alternative solution to the prob-
lem; most notably TTCN [19] used for testing of commu-
nication protocols and Web services, and RESTAssured11

for REST services. However, these offer programming solu-
tions rather than a higher-level abstraction; this makes it
difficult to quickly perform interoperability testing across a
composition of services.

The domain of model-driven engineering has also consid-
ered similar solutions albeit often targeting different prob-
lems. The Motorola case study [1] demonstrated the cost
reduction from model-driven practices, largely focusing on
code generation and automated testing; it also advocates the
need for decoupled models; for example, treating interoper-
ability as a distinct concern. Fleurey et al. [10] also presents
an approach to model adaptive software development for
code deployed on heterogeneous software (e.g. sensors),
leveraging the use of models to reduce effort and cost. Mod-
els have also been leveraged for the development of IoT
software [11]; here state machine models are used to support
the coding of web service composition, as opposed to the
testing of interoperability between independently developed
software; however, there is a clear indication of the benefits
of models in the domain of IoT and cloud computing.

11https://code.google.com/p/rest-assured/

https://code.google.com/p/rest-assured/


Ann. Telecommun. (0000) 71:141–150 149

Finally, model-driven approaches have been put forward
to broker between heterogeneous middleware solutions,
essentially automating their interoperability [6, 7]. The ben-
efits of modelling interoperability software shows how such
abstraction can hide many of the technical challenges from
software developers; Starlink’s [6] use of state transition
automata directly inspired the framework methodology in
this paper. However, these solutions focus on brokering
between heterogeneous software as opposed to supporting
the developers of new software requiring interoperability.
Beyond this, Emergent Middleware solutions [5, 15, 16]
have been proposed that dynamically broker interoperabil-
ity between systems using semantics; these solutions rely on
machine-readable software artefacts, e.g. interface descrip-
tions and ontologies, being available for run-time analysis.
Yet, the reality is that systems do not typically publish
such information and interoperability remains a significant
software development challenge put back in the hands of
software developers.

6 Conclusions and future work

In this paper, we have presented the challenges that are faced
by the developers of IoT applications and cloud services in
terms of achieving interoperable software solutions in the
face of highly heterogeneous communication protocols and
data exchanged between IoT elements. We have advocated
and described a lightweight, protocol independent, model-
driven development approach to ensure interoperability. Our
key contributions here are (i) interoperability-specific mod-
els that are lightweight to create and are re-usable and
composable to support a broad range of applications; (ii)
a graphical tool to support visual development and testing
and (iii) an evaluation framework to monitor application
behaviour (specifically RESTful interactions in this paper)
and evaluate how this software interoperates in accordance
with the models.

We utilised a case-study approach to perform a pre-
liminary evaluation of the value added to software devel-
opers in terms of helping them address the challenges
interoperability poses when integrating and migrating sys-
tems. The FIWARE and XIFI domain offers a number of
potential users composing open software elements, and we
have shown the potential benefits of the tool, i.e. reduc-
ing costs through simplifying interoperability, and captur-
ing and reusing expertise surrounding the interoperability
concern.

We see future work in two key areas. Firstly, the exten-
sion of the framework to move beyond REST and web
services and also include such technologies and MQTT and
XMPP (to increase the applicability of the tools to wider IoT
devices). Secondly, to investigate reasoning technologies

to infer in greater detail why interoperability has failed.
At present, the framework reports where a rule has failed,
and hence a developer can correct accordingly. However,
in larger-scale systems involving complex models, the fail-
ure may be much more subtle requiring domain expertise to
pinpoint exactly what has gone wrong.

Acknowledgments This work was carried out as part of the XIFI
project (https://fi-xifi.eu). This project received funding from the EU
under grant agreement No. 604590. We also acknowledge Justan
Barbosa’s contribution to the case study applications.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Baker P, Loh S, Weil F (2005) Model-driven engineering in a large
industrial context; motorola case study. In: Proceedings of the 8th
international conference on model driven engineering languages
and systems, MoDELS’05, pp 476–491

2. Bertolino A (2007) Software testing research: achievements,
challenges, dreams. In: Briand LC, Wolf AL (eds) FOSE,
pp 85–103

3. Bertolino A, Polini A (2005) The audition framework for test-
ing web services interoperability. In: EUROMICRO-SEAA. IEEE
Computer Society, pp 134–142

4. Bishr YA, Pundt H, Rüther C (1999) Proceeding on the road of
semantic interoperability—Design of a semantic mapper based on
a case study from transportation. In: Proceedings of the second
international conference on interoperating geographic information
systems, pp 203–215

5. Blair GS, Bennaceur A, Georgantas N, Grace P, Issarny V,
Nundloll V, Paolucci M (2011) The role of ontologies in emergent
middleware: supporting interoperability in complex distributed
systems. In: Kon F, Kermarrec A-M (eds) Middleware 2011 -
ACM/IFIP/USENIX 12th international middleware conference,
Lisbon, Portugal, December 12-16, 2011. Proceedings, volume
7049 of lecture notes in computer science. Springer, pp 410–430

6. Bromberg Y, Grace P, Réveillère L, Blair GS (2011) Bridg-
ing the interoperability gap: overcoming combined application
and middleware heterogeneity. In: Kon F, Kermarrec A-M (eds)
Middleware 2011 - ACM/IFIP/USENIX 12th international mid-
dleware conference, Lisbon, Portugal, December 12-16, 2011.
Pro- ceedings, volume 7049 of lecture notes in computer science.
Springer, pp 390–409

7. Bromberg Y, Réveillère L, Lawall JL, Muller G (2009) Automatic
generation of network protocol gateways. In: ACM/IFIP/USENIX
10th international middleware conference. Urbana, pp 21–41

8. Caporuscio M, Raverdy P, Issarny V (2012) ubisoap: a service-
oriented middleware for ubiquitous networking. IEEE T Serv
Comput 5(1):86–98

9. Cavalli A, Higashino T, Nez M (2015) A survey on formal
active and passive testing with applications to the cloud. Ann
Telecommun 70(3-4):85–93

https://fi-xifi.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


150 Ann. Telecommun. (0000) 71:141–150

10. Fleurey F, Morin B, Solberg A (2011) A model-driven approach to
develop adaptive firmwares. In: 6th intl. symposium on software
engineering for adaptive and self-managing systems. ACM, New
York, pp 168–177

11. Glombitza N, Pfisterer D, Fischer S (2010) Using state machines
for a model driven development of web service-based sensor net-
work applications. In: ICSE workshop on software engineering for
sensor network applications. ACM, New York, pp 2–7

12. Grace P, Barbosa J, Pickering B, Surridge M (2014) Taming
the interoperability challenges of complex iot systems. In: Pro-
ceedings of the 1st ACM workshop on middleware for context-
aware applications in the IoT, M4IOT ’14. ACM, New York, pp
1–6

13. Hunkeler U, Truong HL, Stanford-Clark A (2008) Mqtt-s; a
publish/subscribe protocol for wireless sensor networks. In: COM-
SWARE 2008, pp 791–798

14. Hyper/Cat (2013) Iot ecosystem demonstrator interoperability
action plan. Technical Report Version 1.1

15. Inverardi P, Spalazzese R, Tivoli M (2011) Application-layer con-
nector synthesis. in: 11th international school on formal methods

for the design of computer, communication and software systems,
pp 148–190

16. Issarny V, Bennaceur A (2012) Composing distributed systems:
overcoming the interoperability challenge. In: 11th international
symposium, FMCO 2012, pp 168–196

17. Pardo-Castellote G (2003) Omg data-distribution service: archi-
tectural overview. In: Proceedings of the 2003 IEEE conference
on military communications - volume I, MILCOM’03. IEEE
Computer Society, Washington, pp 242–247DC

18. Reiners R, Zimmermann A, Jentsch M, Zhang Y (2009)
Automizing home environments and supervising patients at
home with the hydra middleware: application scenarios using
the hydra middleware for embedded systems. In: 1st work-
shop on context-aware software technology and applications,
pp 9–12

19. Schieferdecker I (2010) Test automation with ttcn-3 - state of the
art and a future perspective. In: Proceedings of the 22Nd IFIP
WG 6.1 international conference on testing software and systems,
ICTSS’10. Springer-Verlag, Berlin, pp 1–14

20. Vinoski S (2003) It’s just a mapping problem. IEEE Int Comput
7(3):88–90


	Model-driven interoperability: engineering heterogeneous IoT systems
	Abstract
	Introduction
	Model-driven interoperability
	Interoperability engineering methodology
	Interoperability and compliance models

	Interoperability modeling and testing tool
	Evaluation
	Case one: developing an application to interoperate with cloud and IoT services
	Analysis

	Case two: migrating between service providers
	Analysis


	Related work
	Conclusions and future work
	Acknowledgments
	Open Access
	References


