
ar
X

iv
:c

s/
02

01
01

6v
1

 [c
s.

G
T

]
18

 J
an

 2
00

2

A Computer Scientist Looks at Game Theory

Joseph Y. Halpern∗

Cornell University
Computer Science Department

Ithaca, NY 14853

halpern@cs.cornell.edu
http://www.cs.cornell.edu/home/halpern

February 1, 2008

Abstract

I consider issues in distributed computation that should be of relevance to game
theory. In particular, I focus on (a) representing knowledge and uncertainty, (b)
dealing with failures, and (c) specification of mechanisms. Journal of Economic

Literature Classification Numbers: D80, D83.

1 Introduction

There are many areas of overlap between computer science and game theory. The influ-
ence of computer science has been felt perhaps most strongly through complexity theory.
Complexity theory has been viewed as a tool to help capture bounded rationality, go-
ing back to the work of Neyman [1985] and Rubinstein [1986]. In addition, it is well
understood that complexity-theoretic notions like NP-completeness help categorize the
intrinsic difficulty of a problem. Thus, for example, a result showing that, even in simple
settings, the problem of optimizing social welfare is NP-hard [Kfir-Dahav, Monderer, and
Tennenholtz 2000] shows that the standard procedure of applying Clarke’s mechanism,
despite its many benefits, is not going to work in large systems.

Perhaps less obvious is the interplay between game theory and work in distributed
computing. At the surface, both areas are interested in much the same problems: deal-
ing with systems where there are many agents, facing uncertainty, and having possibly

∗This paper is based on an invited talk I gave at Games 2000 in Bilbao, Spain. Supported in part by
NSF under grants IRI-96-25901 and IIS-0090145 and by ONR under grants N00014-00-1-03-41, N00014-
01-10-511, and N00014-01-1-0795.

1

http://arXiv.org/abs/cs/0201016v1
http://www.cs.cornell.edu/home/halpern

different goals. In practice, however, there has been significant difference in emphasis in
the two areas. In distributed computing, the focus has been on problems such as fault
tolerance, scalability, and proving correctness of algorithms; in game theory, the focus
has been on strategic concerns (that is, playing so as to optimize returns, in light of the
preferences of other agents). In this paper, I hope to make the case that each area has
much to learn from the other. I focus on three particular topics:

• the representation of games (and, in particular, the knowledge and uncertainty of
players in a game),

• strategic concerns vs. fault tolerance, and

• specification of mechanisms.

The following sections deal with each of these topics in turn.

2 Representing Games as Systems

In order to analyze a game, we must first represent it. The two most common repre-
sentations in the literature are the normal-form representation and the extensive-form
representation. As is well known, the extensive-form representation brings out the tempo-
ral aspects of the game better, as well as explicitly representing (at least some aspects)
of the players’ knowledge. Consider the game that is represented in Figure 1 in both
normal form and extensive form. The extensive-form representation brings out clearly
that the game takes place over time, with the first player’s second move, for example,
occurring after the second player’s first move. Moreover, when the first player makes that
second move, he does not know what the second player’s move is. However, as is also well
known, the information sets used in the extensive-form representation do not capture all
aspects of a player’s information. For example, they cannot be used to capture beliefs
one player has about what strategy the other player is using, or notions like rationality
and common knowledge of rationality. The state-space representation does better in this
regard.

2.1 The state-space representation

The state-space representation, first used in the economics literature by Aumann [1976],
is actually a variant of the standard possible-worlds model for knowledge in the philo-
sophical literature that goes back to Hintikka [1962]; see [Fagin, Halpern, Moses, and
Vardi 1995, Section 2.5] for discussion. In this representation, each state in a state space
Ω is a complete description of the world, which includes what happened in the past and
what will happen in the future, the agents’ beliefs and knowledge, and so on.

2

A D
aa (3,3) (4,2)
ad (3,2) (4,2)
da (1,2) (1,3)
dd (1,2) (1,3)

d

a a

d

(3,3)

D

A

(1,2) (4,2) (3,2)

1 2 1

Figure 1: Representing a game in normal form and in extensive form.

One representation of the game in Figure 1 using a state space is given in Figure 2.
Let Ω = {w1, . . . , w5}. With each state w ∈ Ω is associated the strategy profile s(w)
played at w. In this example,

• s(w1) = s(w5) = (aa, A)

• s(w2) = (aa, D)

• s(w3) = (ad, A)

• s(w4) = (ad, D)

In addition, there are two partitions associated with this state space, one for player 1
(denoted by ellipses in Figure 2) and one for player 2 (denoted by rectangles). The fact
that w3 and w4 are both in the same cell of player 1’s partition means that player 1 can’t
tell, in state w3, if the actual state is w3 or w4. Note that in every cell for player 1, player
1 is following the same strategy; similarly for player 2. This is meant to capture the
intuition that the players know their strategy. Further note that not all strategy profiles
are associated with a state (for example, (dd, A) is not associated with any state) and
some profiles (such as (aa, A) in this case) can be associated with more than one state.
There is more to a state than the strategy profile used there. For example, in w5, player
2 knows that the strategy profile is (aa, A), while in w1, player 2 considers it possible
that (ad, A) is played.

The state-space representation suffers from some of the same problems as the normal-
form representation. While it does a reasonably good job of capturing an agent’s knowl-
edge, it does not do such a good job of describing the play of the game—who moves

3

w w

w w

1 2

3 4

w5

Figure 2: Representing the game of Figure 1 using a state space.

when, and what the possible moves are. Moreover, because time is not explicit in this
representation, it becomes difficult to model statements such as “I know now that af-
ter I move my opponent will not know . . . ”. More seriously, I would claim, neither the
state-space representation nor the extensive-form representation makes it clear where the
knowledge is coming from. Exactly what does it mean put two nodes or two states in
the same information set?

This issue becomes particularly relevant when considering games with imperfect recall.
Considering the single-agent game described in Figure 3, introduced by Piccione and
Rubinstein [1997]. It is a game of imperfect recall since at the information set {x3, x4},
the agent has forgotten nature’s initial move (i.e., whether it was earlier at x1 or x2).

S

BB

S

B

x

x x zz

x x

z z z

0

0 1 2

3 4

z

2

3 4

2

.5 .5

L R L R

5

1

2 3 4
−6 −2

X

Figure 3: A game with imperfect recall.

It is not hard to show that the strategy that maximizes expected utility in this game
chooses action S at node x1, action B at node x2, and action R at the information set X
consisting of x3 and x4. Call this strategy f . Let f ′ be the strategy of choosing action
B at x1, action S at x2, and L at X. Piccione and Rubinstein argue that if node x1

is reached, the agent should reconsider, and decide to switch from f to f ′. If the agent

4

is able to remember that he switched strategies, then this is correct; the agent is indeed
better off (under any reasonable notion of “better off”) if he switches.

The reason for the time inconsistency here is that an agent’s strategy must dictate the
same action at nodes x3 and x4, since they are in the same information set. Intuitively,
since the agent cannot distinguish the nodes, he must do the same thing at both. If
the agent had perfect recall, he could distinguish the nodes. The optimal strategy with
perfect recall amounts to switching from f to f ′ at x1: the agent plays L at x3 (as he
would with f ′) and R at x4 (as he would with f). However, by having the ability to
remember that he has switched strategies, the agent is able to simulate perfect recall. If
he is using f ′ at the information set, he knows he must have been at x1 (and thus is at
x3); similarly, if he is using f at the information set, then he must be at x4. What does
it mean, then, to put x3 and x4 in the same information set? What entitles a modeler to
put an ellipse around x3 and x4?

In the computer science literature a different approach is used to represent knowledge
in multi-agent systems. This approach goes back to [Halpern and Fagin 1989; Halpern
and Moses 1990], and has been used quite successfully to model distributed systems
applications [Fagin, Halpern, Moses, and Vardi 1995, Chapters 4–7]. The approach can be
viewed as combining features of both game trees and the state-space representation. Not
surprisingly, it can also be used to model games. The idea is that a game is represented
as a multi-agent system. In the description of the system, the actual play of the game
is distinguished from what goes on in the agent’s mind. I claim that doing so can clear
up the type of problems encountered in the game in Figure 3. In the remainder of this
section, I describe the approach and sketch how it can be used to deal with this game. I
describe some further advantages of the approach in the next section.

2.2 The multi-agent systems approach

The basic framework is easy to describe although, unfortunately, the description requires
a number of definitions. I review the relevant definitions in this section.1 To describe
the agent’s state of mind, we assume that, at every point in time, the agent is in some
state. Occasionally this is called a local state, to distinguish it from a global state, which
is defined below. The local state is essentially what is called an agent’s type in the game
theory literature. Intuitively, it encapsulates all the information to which the agent has
access. Deciding how to model the state can be quite a nontrivial issue. In a poker game,
a player’s state might consist of the cards he currently holds, the bets made by the other
players, other cards he has seen, and whatever information he has about the strategies of
the other players. A forgetful player may not remember all the details of the bets made
by the other players; his state would reflect this.

To describe the external world, we use an environment, which is also in some state

1The following description is taken almost verbatim from [Halpern 1997]. See [Fagin, Halpern, Moses,
and Vardi 1995, Chapter 4] for more details.

5

at every point in time. Roughly speaking, the environment’s state describes everything
relevant to the system that is not part of the agents’ states. For example, when describing
a game, we can take the environment’s state at a given point to consist of the sequence
of actions that have been performed up to that point; in addition, at points representing
the end of play, the environment’s state can include the payoffs. If we do this, we can
essentially identify the possible environment states with the nodes in the game tree.

The configuration of the system as a whole can be described by a global state, a tuple
of the form (ℓe, ℓ1, . . . , ℓn), where ℓe is the environment’s state, and ℓi is agent i’s state,
i = 1, . . . , n. A global state describes the system at a given point in time. We are
typically interested in dynamic systems that change over time. A run is a function from
time (which is taken for simplicity to range over the natural numbers) to global states.
Intuitively, a run is a complete description of how the system’s global state evolves over
time. For example, when analyzing a game, a run could be a particular play of the game.
Thus, if r is a run, r(0) describes the initial global state of the system, r(1) describes the
next global state, and so on. A point is a pair (r, m) consisting of a run r and time m.
If r(m) = (ℓe, ℓ1, . . . , ℓn), let ri(m) = ℓi. Thus, ri(m) is agent i’s local state at the point
(r, m).

Finally, a system is formally defined to be a set of runs. Intuitively, a system is being
identified with its set of possible behaviors. Thus, for example, the game of bridge can be
identified with all the possible games of bridge that can be played (where a run describes
a particular play of the game, by describing the deal of the cards, the bidding, and the
play of the hand).

Notice that information sets are conspicuously absent from this definition. Informa-
tion sets in fact do not have to be specified exogenously; they can be reconstructed from
the local states. Given a system, that is, a set R of runs, we can define an equivalence
relation on the points in R. The point (r, m) is indistinguishable from (r′, m′) by agent
i, denoted (r, m) ∼i (r′, m′), if ri(m) = r′i(m). Thus, two points are indistinguishable
by agent i if agent i has the same local state at both points. Clearly ∼i is an equiva-
lence relation. The ∼i relations can be viewed as defining information sets. However,
note that even a point where agent i does not move is in an information set for agent
i. We can now define what it means for agent i to know an event E: agent i knows E
at a point (r, m) if the set of points indistinguishable from (r, m) by agent i (that is,
{(r′, m′) : (r, m) ∼i (r′, m′)}) is a subset of E.

A protocol for an agent in this setting is a function from that agent’s local states to
actions (or to a distribution over actions, if we want to consider randomized protocols).
Essentially, a protocol is just a strategy; a randomized protocol is essentially a behavior
strategy. The definition captures the intuition that what an agent does can depend only
on her information (i.e., her local state). At two points where the agent has the same
information, the agent must do the same thing. The agent’s local state in this setting cor-
responds to the agent’s information set in the extensive-form representation of the game.
However, thinking in terms of local states seems more natural for protocol designers than

6

thinking in terms of information states in a game tree. It is much more natural to write
a program that says “if you have received a message then send an acknowledgment” than
to describe the whole interaction (i.e., the game tree), put an ellipse around those nodes
in the game tree in which the agent has received the message (this would be the infor-
mation set corresponding to the local state where the agent has received the message),
and describe the strategy that performs the action of acknowledging the message at that
information set. Most importantly, by using local states, it becomes clear exactly what
an agent’s information is at any point and, thus, what the agent’s information set should
be.

We often think of systems as generated by agents running a joint protocol, that is, a
tuple consisting of a protocol for each agent. Intuitively, starting in some initial global
state(s), we run the joint protocol and see what happens step by step. But what exactly
happens when a joint protocol P is run? That depends on the setting, or context , in which
P is being run. The context determines, among other things, what the environment does.
The environment is viewed as running a protocol just like the agents; its protocol is used
to capture features of the setting such as “all messages are delivered within 5 rounds” or
“messages may be lost”. Roughly speaking, the environment’s protocol corresponds to
“nature’s strategy”—the way nature plays the game. The context also determines how
the actions performed by the protocol change the global state. Formally, a context γ
is a tuple (Pe,G0, τ), where Pe is a protocol for the environment, G0 is a set of initial
global states (intuitively, the set of states in which it is possible to start a run), and τ is
a transition function.2 The transition function τ captures the effect of actions; formally,
it describes how the actions performed by the agents and the environment change the
global state by associating with each joint action (a tuple consisting of an action for the
environment and one for each of the agents) a global state transformer, that is, a mapping
from global states to global states.

For ease of exposition, suppose that P is a deterministic joint protocol. A run r is
consistent with P in context γ = (Pe,G0, τ) if the initial global state r(0) is one of the
global states in G0, and for all m, the transition from global state r(m) to r(m + 1) is
the result of performing the joint action specified by P and the environment protocol
Pe in the global state r(m). A system R represents a joint protocol P in a context γ
if it consists of all runs in Ψ consistent with P in γ. (If P is a randomized protocol,
essentially the same construction gives the set of runs consistent with P together with a
probability distribution on them; I omit the formal details here.)

The role of the context should become clearer in the examples in Section 3.

2Often it is also convenient to include in the tuple a component describing which runs are admissible.
This is done in [Fagin, Halpern, Moses, and Vardi 1995] to capture notions such as fairness: if a message
is sent infinitely often, it is eventually received. (Thus, runs where a message is sent infinitely often but
not received are considered inadmissible.) Since admissible runs play no role in the discussion here, I
omit this component from the context.

7

2.3 From game trees to systems

There is a great deal of flexibility in representing a game using a system. It depends
on what the local states are. One possibility essentially directly emulates the extensive-
form representation. In this approach, each run in the system correspond to a play of
the game—i.e., a branch in the game tree. Thus, there is essentially one run for each
terminal node in the game tree. Under this representation, the environment state at a
certain point is the node in the game tree (or, equivalently, the sequence of actions taken
to reach that node); the environment state at points that correspond to terminal nodes
would also include the payoff. An agent’s local state could then simply be his information
set. A more natural representation of an agent’s local state might be the sequence of
actions she recalls seeing.3

Note that if we represent a game this way, there is no information about strategies,
just as there is no information about strategies in the extensive-form representation. This
is not due to a lack of expressive power in the systems framework; rather, it is due to the
choice of local states.

Another choice is closer to the state-space representation. Each state in a state space
corresponds to a run in the system. The play of the game in the run is the play generated
by the strategy profile associated with the state. Again, the environment state could be
the node reached (and the payoff, if it is a terminal node). But now an agent’s local
states would include a representation of the strategy she is using, what she recalls having
seen thus far, and some representation of her beliefs about other agents’ strategies. If
it is common knowledge that agents do not switch strategies in the course of the game,
this common knowledge can be represented by considering systems that consist only of
runs where the players strategy does not change over time.

What happens if agents can switch strategies? Again, there is no difficulty modeling
this in the framework. (But note that, strictly speaking, switching strategies should then
be considered one of the actions in the game.) An agent’s local state would then include
her current strategy (or perhaps the sequence of strategies she has used up the current
time.) If we model the game in Figure 3 using such a system, if the player knows that he
will switch from f to f ′ at x1, then at points in the system corresponding x3, he will know
that he is at x3 (because, according to his local state, he is using strategy f ′), while at
x4, he will know that he is at x4. If falls right out of the representation that agents that
are allowed to switch strategies and know their current strategy will be able to simulate
perfect recall.

The key point is that the use of local states in the runs and systems framework forces
a modeler to be explicit about what an agent knows and does not know in a way that
drawing ellipses in the extensive-form representation or the state-space representation
does not. This, in turn, can force some important discipline on the modeler of the

3Some decision also has to be made as to the agent’s local state at nodes where the agent does not
move. There are a number of reasonable choices; the one made does not affect the main points.

8

game. In the game in Figure 3, for example, the modeler is forced to to say whether
the player allowed to switch strategies and, if so, whether he keeps track of his current
strategy. The answer to this question is modeled in the player’s state. Whatever the
answer to the question, there will be no time inconsistency. (See [Halpern 1997] for a
more detailed discussion of this example and the notion of modeling games using the
systems framework.)

3 Coping with Failures and Asynchrony

There is a great deal of work in the distributed systems literature on designing protocols
to deal with certain paradigmatic problems. There is a lot of overlap in spirit between
this work and much of the work in the game theory literature on mechanism design.
There are, however, also significant differences. Game theory focuses on autonomous
agents and their strategic interests. In the distributed systems literature, the “agents”
are processes, which are given a protocol to run by a systems designer. The distributed
systems literature focuses on what can go wrong and what makes running the protocols
difficult—communication failures, process failures, asynchrony, and the complexity issues
involved in dealing with large systems. All of these issues are, by and large, not discussed
in the game theory literature. In this section, I give examples of problems in which issues
of failures and asynchrony arise. These examples also illustrate some other advantages
of using the systems representation.

3.1 Coordinated Attack

The coordinated attack problem is a well-known problem from the distributed systems
folklore [Gray 1978]. The following description of the problem is taken from [Halpern
and Moses 1990]; the discussion of it is taken from [Halpern 1995].

Two divisions of an army are camped on two hilltops overlooking a common
valley. In the valley awaits the enemy. It is clear that if both divisions
attack the enemy simultaneously they will win the battle, whereas if only one
division attacks it will be defeated. The generals do not initially have plans
for launching an attack on the enemy, and the commanding general of the
first division wishes to coordinate a simultaneous attack (at some time the
next day). Neither general will decide to attack unless he is sure that the
other will attack with him. The generals can only communicate by means
of a messenger. Normally, it takes the messenger one hour to get from one
encampment to the other. However, it is possible that he will get lost in the
dark or, worse yet, be captured by the enemy. Fortunately, on this particular
night, everything goes smoothly. How long will it take them to coordinate an
attack?

9

In the language of game theory, the problem here is to design a mechanism that
guarantees that the generals coordinate, despite the possibility of messages being lost.
As is typically the case in distributed systems problems, there is no discussion of what the
payoff is for general A and B if both attack, neither does, or one does and the other does
not. Nor is there is any mention of probabilities (in particular, the probability that the
messenger will arrive). While interesting issues certainly arise if strategic concerns and
probability are added (see, for example, Rubinstein’s [1989] lovely results), there are good
reasons why these issues are being ignored here. The coordinated attack problem is an
attempt to understand the effect of possible communication failures on coordination. The
generals are viewed as being on the same “team”, with identical utilities, playing against
“nature” or the “environment”, which controls communication. We could capture the
intuition behind the problem by giving each general payoff L if they do not coordinate,
utility M if neither attacks, and utility H if both attack, with L < M < H , but no new
issues would arise if we did so. The real interest here is not in the strategic behavior of
the generals, but whether they can achieve coordination when playing against nature.

We could also add a probability that a message arrives. The problem is that, for
the situations which the coordinated attack problem was intended to abstract, it is often
quite difficult to characterize this probability. For example, one reason that messages
fail to arrive in real systems is message congestion, often caused by “hotspots”. The
probability of message congestion is extremely difficult to characterize.

Turning to the analysis of the problem, suppose that the messenger sent by General
A makes it to General B with a message saying “Let’s attack at dawn.” Will General B
attack? Of course not, since A does not know that B got the message, and thus may not
attack. So B sends the messenger back with an acknowledgment. Suppose the messenger
makes it. Will A attack? No, because now B does not know that A got the message, so B
thinks A may think that he (B) didn’t get the original message, and thus not attack. So
A sends the messenger back with an acknowledgment. But of course, this is not enough
either.

In terms of knowledge, each time the messenger makes a transit, the depth of the
generals’ knowledge increases by one. More precisely, let E be the event “a message
saying ‘Attack at dawn’ was sent by General A”. When General B gets the message,
B knows E. When A gets B’s acknowledgment, A knows that B knows E. Every pair
of subsequent acknowledgment leads to one more level of “A knows that B knows.”
However, although more acknowledgments keep increasing the depth of knowledge, it
is not hard to show that by following this protocol, the generals never attain common
knowledge that the attack is to be held at dawn, where common knowledge describes the
event that A knows that B knows that A knows that B knows ad infinitum.

What happens if the generals use a different protocol? That does not help either. As
long as there is a possibility that the messenger may get captured or lost, then common
knowledge is not attained, even if the messenger in fact does deliver his messages. It would
take us too far afield here to completely formalize these results (see [Fagin, Halpern,

10

Moses, and Vardi 1995, Section 6.1] for details), but it is not hard to give a rough
description. A context γ displays unbounded message delays (umd) if, roughly speaking,
for all systems R that represent a protocol P run in context γ, runs r ∈ R, and agents
i, if i receives a message at time m in r, then for all m′ > m, there is another run r′ ∈ R
that is identical to r up to time m except that agent i receives no messages in r′ between
times m and m′ inclusive, and no agent other than possible i can distinguish r and r′ up
to time m′ (i.e., rj(m

′′) = r′j(m
′′) for m′′ ≤ m′ and j 6= i). That is, r′ looks the same

as r up to time m′ to each agent except possibly i, and all messages that i receives in r
between times m and m′ are delayed until after time m′ in r′. We can think of umd as
characterizing a property of the environment’s protocol in context γ. Intuitively, it is the
environment that decides whether or not a message is delivered; in a context with umd,
the environment is able to hold up messages for an arbitrary amount of time.

Theorem 3.1: [Halpern and Moses 1990] If context γ displays umd and R is a system
that represents some protocol P in context γ, then at no point in R can it be common
knowledge that a message has been delivered.

This says that, in a context that displays umd, no matter how many messages arrive,
the generals cannot attain common knowledge that any message whatsoever has been
delivered. Since it can never become common knowledge that a message has been de-
livered, and message delivery is a prerequisite for attack, it is not hard to show that it
can never become common knowledge among the generals that they are attacking. More
precisely, let attack be the event that consists of the points where both generals attack.

Corollary 3.2: If context γ displays umd and R is a system that represents some protocol
P in context γ, then at no point in R can attack be common knowledge among the
generals.

Why is it relevant that the generals can never get common knowledge of the fact that
they are attacking? Our interest here is not common knowledge, but coordinated attack.
What does common knowledge have to do with coordinated attack? As the next result
shows, a great deal. Common knowledge is a prerequisite for coordination. Let a system
for coordinated attack be one that represents a protocol for coordinated attack.

Theorem 3.3: [Halpern and Moses 1990] In a system for coordinated attack, when the
generals attack, attack must be common knowledge among the generals.

The statement of the coordinated attack problem assumes that the generals have no
initial plans for attack. This can be formalized by assuming that, in the absence of
messages, they will not attack. With this assumption, Corollary 3.2 and Theorem 3.3
together give the following result.

11

Corollary 3.4: If context γ displays umd and R is a system that represents some protocol
for coordinated attack in context γ, then at no point in R do the generals attack.

Note that this result can be expressed in game theoretic terms: it is impossible to design
a mechanism that guarantees coordinated attack. These results show not only that
coordinated attack is impossible (a fact that was well known [Yemini and Cohen 1979]),
but why it is impossible. The problem is due to a combination of (1) the unattainability
of common knowledge in certain contexts and (2) the need for common knowledge to
perform coordination.

It is worth stressing the role of systems and contexts in stating these results. The
notion of “communication not being guaranteed” was formulated in terms of a condition
on contexts (umd). Theorem 3.1 show that common knowledge in any system that can
be generated in a context satisfying umd. The need for common knowledge to coordinate
is also formulated in terms of systems. The framework of runs and systems is well suited
to formulating these conditions.

3.2 Byzantine Agreement

The coordinated attack problem focused on communication problems. Byzantine agree-
ment is another paradigmatic problem in the distributed systems literature; it brings out
issues of process failures as well as asynchrony. In this problem, there are assumed to be
n soldiers, up to t of which may be faulty (the t stands for traitor); n and t are assumed
to be common knowledge. Each soldier starts with an initial preference, to either attack
or retreat. (More precisely, there are two types of nonfaulty agents—those that prefer to
attack, and those that prefer to retreat.) We want a protocol (i.e., a mechanism) with
the following properties:

• All nonfaulty soldiers reach the same decision.

• If all the soldiers are nonfaulty and their initial preferences are identical, then the
final decision agrees with their initial preferences.4

This problem has been studied in detail. There have been literally hundreds of papers
on Byzantine agreement and closely related topics. The problem was introduced by
Pease, Shostak, and Lamport [1980]; Fischer [1983] gives an overview of the state of the
art in the early 1980’s; Linial [1994] gives a more recent discussion; Chor and Dwork
[1989] survey randomized algorithms for Byzantine agreement. Whether the Byzantine
agreement problem is solvable depends in part on what types of failures are considered, on
whether the system is synchronous or asynchronous, and on the ratio of n to t. Roughly

4This condition simply prevents the obvious trivial solutions, where the soldiers attack no matter
what, or retreat no matter what. Similarly, the statement “The generals do not initially have plans to
attack” in the description of the coordinated attack problem is implicitly meant to prevent a similar
trivial solution in the case of coordinated attack.

12

speaking, a system is synchronous if there is a global clock and agents move in lockstep; a
“step” in the system corresponds to a tick of the clock. In an asynchronous system, there
is no global clock. The agents in the system can run at arbitrary rates relative to each
other. One step for agent 1 can correspond to an arbitrary number of steps for agent 2
and vice versa. Synchrony is an implicit assumption in essentially all games. Although it
is certainly possible to model games where player 2 has no idea how many moves player 1
has taken when player 2 is called upon to move, it is certainly not typical to focus on the
effects of synchrony (and its lack) in games. On the other hand, in distributed systems,
it is typically a major focus.

Byzantine agreement is achievable in certain cases. Suppose that the only types of
failures are crash failures—a faulty agent behaves according to the protocol, except that
it might crash at some point, after which it sends no messages. In the round in which
an agent fails, the agent sends only a subset of the messages that it is supposed to send
according to its protocol. Further suppose that the system is synchronous. (These two
assumptions can be captured by considering the appropriate context; see [Fagin, Halpern,
Moses, and Vardi 1995, p. 203].) In this case, the following rather simple protocol achieves
Byzantine agreement:

• In the first round, each agent tells every other agent its initial preference.

• For rounds 2 to t + 1, each agent tells every other agent everything it has heard in
the previous round. (Thus, for example, in round 3, agent 1 may tell agent 2 that
it heard from agent 3 that its initial preference was to attack, and that it (agent 3)
heard from agent 2 that its initial preference is to attack, and it heard from agent
4 that its initial preferences is to retreat, and so on. This means that messages get
exponentially long, but it is not difficult to represent this information in a compact
way so that the total communication is polynomial in n, the number of agents.)

• At the end of round t + 1, if an agent has heard from any other agent (including
itself) that its initial preference was to attack, it decides to attack; otherwise, it
decides to retreat.

Why is this correct? Clearly, if all agents are correct and want to retreat, then the
final decision will be to retreat, since that is the only preference that other agents hear
about (recall that for now we are considering only crash failures). Similarly, if all agents
prefer to attack, the final decision will clearly be to attack. It remains to show that if
some agents prefer to attack and others to retreat, then all the nonfaulty agents reach
the same final decision. So suppose that i and j are nonfaulty and i decides to attack.
That means that i heard that some agent’s initial preference was to attack. If it heard
this first at some round t′ < t + 1, then i will forward this message to j, who will receive
it and thus also attack. On the other hand, suppose that i heard it first at round t + 1
in a message from it+1. Thus, this message must be of the form “it said at round t
that . . . that i2 said at round 2 that i1 said at round 1 that its initial preference was

13

to attack.” Moreover, the agents i1, . . . , it+1 must all be distinct. Indeed, it is easy to
see that ik must crash in round k before sending its message to i (but after sending its
message to ik+1), for k = 1, . . . , t, for otherwise i must have gotten the message from ik,
contradicting the assumption that i first heard at round t + 1 that some agent’s initial
preference was to attack. Since at most t agents can crash, it follows that it+1, the agent
that sent the message to i, is not faulty, and thus sends the message to j. Thus, j also
decides to attack. A symmetric argument shows that if j decides to attack, then so does
i.

It should be clear that the correctness of this protocol depends on both the assump-
tions made: crash failures and synchrony. Suppose instead that Byzantine failures are
allowed, so that faulty agents can deviate in arbitrary ways from the protocol; they may
“lie”, send deceiving messages, and collude to fool the nonfaulty agents in the most ma-
licious ways. In this case, the protocol will not work at all. In fact, it is known that
agreement can be reached in the presence of Byzantine failures iff t < n/3, that is, iff
fewer than a third of the agents can be faulty [Pease, Shostak, and Lamport 1980]. The
effect of asynchrony is even more devastating: in an asynchronous system, it is impossible
to reach agreement using a deterministic protocol even if t = 1 (so that there is at most
one failure) and only crash failures are allowed [Fischer, Lynch, and Paterson 1985]. The
problem in the asynchronous setting is that if none of the agents have heard from, say,
agent 1, they have no way of knowing whether agent 1 is faulty or just slow. Interestingly,
there are randomized algorithms (i.e., behavior strategies) that achieve agreement with
arbitrarily high probability in an asynchronous setting [Ben-Or 1983; Rabin 1983].

Finally, note that the protocol above uses t + 1 rounds. This bound is achievable
even with Byzantine failures, provided that that t < n/3 [Pease, Shostak, and Lamport
1980]. Can we do better? In one sense, the answer is no. Even if only crash failures
are considered, t + 1 rounds of communication are required in runs where there are in
fact no failures at all [Dolev and Strong 1982]. To understand why, consider a simple
situation where t = 1, there are only crash failures, all agents start with the same initial
preference, say to attack, and there are in fact no failures. In this case, all the agents
can tell each other in the first round of communication that they want to attack. Since
there are no failures, at the end of the first round, all the agents will know that all the
other agents want to attack. Thus, they will know that the ultimate decision must be to
attack, since all the agents have the same initial preference. Nevertheless, if they want
to be sure to attack simultaneously, they must wait until the end of the second round to
do so (since t + 1 = 2 in this case).

Why is this the case? Results of Dwork and Moses [1990] give some insight here. They
show that common knowledge among the nonfaulty agents is necessary and sufficient to
attain simultaneous Byzantine agreement (even though a nonfaulty agent may not know
which of the other agents are faulty). The nonfaulty agents are what is called an indexical
set in the philosophy literature; a set whose membership depends on context. The reason
it takes two rounds to reach agreement even if there are no failures is that, although each
agent knows that all the other agents had an initial preference to attack, this fact is not

14

yet common knowledge. For example, agent 1 might consider it possible that agent 2 was
faulty and crashed before sending a message to agent 3. In this case, agent 3 would not
know that everyone started with an initial preference to attack. Moreover, in this case,
agent 3 might consider it possible that agent 2’s initial preference was to retreat, and
that agent 2 communicated this preference to agent 1. This argument can be extended
to show that agent 1 considers it possible that agent 3 considers it possible that agent 1
considers it possible . . . that everyone’s initial preference was to retreat.

It might seem that if it takes t+1 rounds to reach simultaneous agreement in the case
that there are no failures, then things can only get worse if there are failures. However,
Dwork and Moses show that this intuition is misleading. They use their characterization
of agreement to provide algorithms for simultaneous Byzantine agreement that reach
agreement as early as possible, as a function of the pattern of failures. Roughly speaking,
we can imagine an adversary with t “chips”, one for each possible failure. The adversary
plays a chip by corrupting an agent. Dwork and Moses’ analysis shows that if the
adversary’s goal is to make the agreement happen as late as possible, then the adversary’s
optimal strategy is, roughly speaking, to play no more than one chip per round. If the
adversary plays optimally, agreement cannot be attained before round t + 1. Since not
corrupting any agent is an instance of optimal play, it follows that it requires t + 1
rounds to reach agreement in runs where there are no failures. On the other hand, if
the adversary plays all t chips in the first round and none of the faulty agents sends a
message, then the correct agents will know at the end of the first round exactly which
agents are faulty, and be able to reach agreement in one more round. The adversary is
best off by keeping the agents as uncertain as possible as to which agents are faulty.

Byzantine agreement can be viewed as a game where, at each step, an agent can
either send a message or decide to attack or retreat. It is essentially a game between two
teams, the nonfaulty agents and the faulty agents, whose composition is unknown (at
least by the correct agents). To model it as a game in the more traditional sense, we could
imagine that the nonfaulty agents are playing against a new player, the “adversary”. One
of adversary’s moves is that of “corrupting” an agent: changing its type from “nonfaulty”
to “faulty”. Once an agent is corrupted, what the adversary can do depends on the failure
type being considered. In the case of crash failures, the adversary can decide which of a
corrupted agent’s messages will be delivered in the round in which the agent is corrupted;
however, it cannot modify the messages themselves. In the case of Byzantine failures,
the adversary essentially gets to make the moves for agents that have been corrupted; in
particular, it can send arbitrary messages.

In practice, crash failures occur quite regularly, as a result of hardware and software
failures. Another failure type considered is omission failures. An agent suffering from
an omission failure behaves according to its protocol, except that it may omit to send an
arbitrary set of messages in any given round. Omission failures are meant to model local
communications problems (for example, a congested message buffer). Finally, Byzantine
failures represent the worst possible failures, where we can make no assumption on the
behavior of faulty agents. Byzantine failures are used to capture random behavior on the

15

part of a system (for example, messages getting garbled in transit), software errors, and
malicious adversaries (for example, hackers).

In the case of crash failures and omission failures (and for Byzantine failures that are
meant to represent random behavior), it does not make sense to view the adversary’s
behavior as strategic, since in these cases the adversary is not really viewed as having
strategic interests. However, it would certainly make sense, at least in principle, to con-
sider the probability of failure (i.e., the probability that the adversary corrupts an agent).
But this approach has by and large been avoided in the literature. It is very difficult
to characterize the probability distribution of failures over time. Computer components
can perhaps be characterized as failing according to an exponential distribution (as is
done by Babaoglu [1987], in one of the few papers that I am aware of that actually does
try to analyze the situation probabilistically), but crash failures can be caused by things
other than component failures (faulty software, for example). Omission failures are often
caused by traffic congestion; as I mentioned before, this is extremely difficult to charac-
terize probabilistically. The problems are even worse when it comes to modeling random
Byzantine behavior.

With malicious Byzantine behavior, it may well be reasonable to impute strategic
behavior to agents (or to an adversary controlling them). However, it is typically very
difficult to characterize the payoffs of a malicious agent (and, indeed, there is often a
great deal of uncertainty about what a malicious agent’s payoffs are). The goals of
the agents may vary from that of simply trying to delay a decision to that of causing
disagreement. It is not clear what the appropriate payoffs should be for attaining these
goals. Thus, the distributed systems literature has chosen to focus instead on algorithms
that are guaranteed to satisfy the specification without making assumptions about the
adversary’s payoffs (or nature’s probabilities, in the case of omission failures and crash
failures).

I believe that some interesting work can be done trying to combine failures, asyn-
chrony, and strategic incentives. Some preliminary work has already been done—for
example, Monderer and Tennenholtz [1999a, 1999b] have considered timing issues in
asynchronous systems, as well as the structure of the network, and Eliaz [2000] has con-
sidered solution concepts that take failures into account. However, I believe that there
is much more that can be done.

4 Specification and Mechanism Design

Game theory has typically focused on “small” games: games that are easy to describe,
such as Prisoner’s Dilemma, Battle of the Sexes, and the Centipede game. The focus has
been on subtleties regarding basic issues such as rationality and coordination. To the
extent that game theory is used to tackle larger, more practical problems, and especially
to the extent that it is computers, or software agents, playing games, rather than people,
a whole host of new issues arise. In many cases, the major difficulty may no longer be

16

conceptual problem of explicating what ought to be considered “rational”. It may be
quite obvious what the “rational” and optimal strategy is once we analyze the game.
Rather, the difficulty is analyzing the game due to its size. Indeed, part of the difficulty
might even be describing the game. By way of analogy, 2n − 1 numbers are needed to
describe a probability distribution on a space characterized by n binary random variables.
For n = 100 (not an unreasonable number in practical situations), it is impossible to write
down the probability distribution in the obvious way, let alone do computations with it.
The same issues will surely arise in large games. Computer scientists have developed
techniques like Bayesian networks for manipulating probability measures on large spaces
[Pearl 1988]; similar techniques seem applicable to games. Since these techniques are
discussed in detail by Koller and Milch [2001] and La Mura [2000], I do not go into them
here.

A related but different problem is involved with dealing with “large” mechanisms.
This, I expect, will be somewhat akin to writing large programs. It will be extremely
important to specify carefully exactly what the mechanism must accomplish, and to find
techniques for doing mechanism design in a modular way, so that mechanisms for solving
different problems can be combined in a seamless way.

The design and specification of software is well known to be a critical and often difficult
problem in computer science. The concern with specification has led to the development
of numerous specification languages, that is, formal languages for expressing carefully the
requirements that a protocol must satisfy (see, for example, [Harel, Kozen, and Tiuryn
2000; Milner 1980; Manna and Pnueli 1992]).5

It may seem that specification is not so hard. How hard is it, for example, to specify
a division algorithm? It gets two inputs x and y and is supposed to return x/y. Even
in this simple case, there are difficulties. Are we talking about integer division (so that
the inputs are integers and the output is an integer, with the remainder ignored)? If we
are talking about real division, how should the the answer be represented? For example,
if it is a decimal, what should the answer be if x and y are 1 and 3, respectively? How
is the infinite sequence .333 . . . to be represented? If answers can only be, say, 32 bits
long, what happens if x = 1031 and y = 10−31? What should happen if y = 0? And what
happens if the inputs are not of the right type (i.e., they are letters instead of numbers)?
The key point is that a good specification will need to describe what should happen in
all the “unexpected” cases.

This can get particularly difficult once we try to take into account failures and asyn-
chrony. Imagine trying to specify a good mechanism for a distributed auction. The
specification will need to take into account the standard distributed concerns of asyn-
chronous communication, failures, garbled communication, economic issues like failure
to pay, and strategic issues (including strategic uses of computing difficulties, such as
pretending not to have received messages or to have received them late). Thus, its speci-

5Historically, the original work that my colleagues and I did on knowledge and common knowledge
was in part motivated by the desire to find good tools for designing and specifying distributed protocols.

17

fication must address what should happen if a process fails in the middle of transmitting
a bid, how to deal with agents bidding on slow lines, and so on.

Things get significantly more complicated if we try to specify notions like security.
What exactly does it mean that a mechanism is secure? What types of attacks can be
tolerated? For example, how should the mechanism behave if there is a denial-of-service
attack? I suspect that questions regarding security and fault-tolerance will turn out to
be closely intertwined with strategic issues. Thus, finding appropriate techniques for
specifying mechanisms will not simply be a matter of lifting standard techniques from
software specification.

5 Conclusions

I have focused on one set of issues at the interface of computer science and game theory
here, which arise from work in distributed computing. As I hope this discussion has made
clear, I think that game theorists need to take more seriously issues like fault tolerance,
asynchrony, the representation of knowledge and uncertainty, the difficult in the design
and analysis of large mechanisms and games, and problems of specification. On the
other hand, I think computer scientists need to take strategic concerns more seriously in
the design and analysis of distributed protocols. These issues are not just of theoretical
interest. They arise, for example, when we consider the design of Internet agents. We
will certainly need to take into account failures, and no company would want to claim to
support software for agents that bid in auctions that has not been carefully specified.6

The specification of the agents will, in turn, depend on a careful specification of the
mechanism in which they will be participating.

These issues represent only part of the commonality in interests that I see between
computer science and game theory. I have already hinted at another important area
of commonality: that of finding compact representations of games. Other issues of
common interest include learning, mental-level modeling of beliefs [Brafman and Ten-
nenholtz 1997], qualitative decision theory (see the bibliography of over 290 papers at
http://www.medg.lcs.mit.edu/qdt/bib/unsorted.bib). With the growing awareness
of the commonality between computer science and game theory, I look forward to a great
deal of fruitful interaction between the fields in the coming years.

Acknowledgments

I would like to thank Ron Fagin, Yoram Moses, Ariel Rubinstein, Moshe Tennenholtz,
and Moshe Vardi for useful comments on an earlier draft of this paper.

6The correctness of the agents will also have to be verified somehow. Verification is yet another
issue of great concern in computer science that may prove relevant to game theory. Much work has
gone into finding (preferably automatic or semi-automatic) techniques to check that a protocol satisfies
a specification (see, for example, [Apt and Olderog 1991; Clarke, Grumberg, and Peled 1999]).

18

References

Apt, K. R. and E.-R. Olderog (1991). Verification of sequential and concurrent pro-
grams. New York: Springer-Verlag.

Aumann, R. J. (1976). Agreeing to disagree. Annals of Statistics 4 (6), 1236–1239.

Babaoglu, O. (1987). On the reliability of consensus-based fault-tolerant distributed
computing systems. ACM Transactions on Computer Systems 5, 394–416.

Ben-Or, M. (1983). Another advantage of free choice: completely asynchronous agree-
ment protocols. In Proc. 2nd ACM Symp. on Principles of Distributed Computing,
pp. 27–30.

Brafman, R. I. and M. Tennenholtz (1997). Modeling agents as qualitative decision-
makers. Artificial Intelligence 94, 217–268.

Chor, B. and C. Dwork (1989). Randomization in Byzantine agreement. In Advances
in Computing Research 5: Randomness and Computation, pp. 443–497. JAI Press.

Clarke, E. M., O. Grumberg, and D. A. Peled (1999). Model Checking. Cambridge,
Mass.: MIT Press.

Dolev, D. and H. R. Strong (1982). Requirements for agreement in a distributed system.
In H. J. Schneider (Ed.), Distributed Data Bases, pp. 115–129. Amsterdam: North-
Holland.

Dwork, C. and Y. Moses (1990). Knowledge and common knowledge in a Byzantine
environment: crash failures. Information and Computation 88 (2), 156–186.

Eliaz, K. (2000). Fault-tolerant implementation. Unpublished manuscript.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning about Knowl-
edge. Cambridge, Mass.: MIT Press.

Fischer, M. J. (1983). The consensus problem in unreliable distributed systems. Tech-
nical Report RR-273, Yale University. Also appears in Foundations of Computation
Theory, ed. M. Karpinski, Lecture Notes in Computer Science, Vol. 185, Springer
Verlag, 1983, pp. 127–140.

Fischer, M. J., N. A. Lynch, and M. S. Paterson (1985). Impossibility of distributed
consensus with one faulty processor. Journal of the ACM 32 (2), 374–382.

Gray, J. (1978). Notes on database operating systems. In R. Bayer, R. M. Graham,
and G. Seegmuller (Eds.), Operating Systems: An Advanced Course, Lecture Notes
in Computer Science, Vol. 66. Berlin/New York: Springer-Verlag. Also appears as
IBM Research Report RJ 2188, 1978.

Halpern, J. Y. (1995). Reasoning about knowledge: a survey. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson (Eds.), Temporal and Epistemic Reasoning, Volume 4
of Handbook of of Logic in Artificial Intelligence and Logic Programming, pp. 1–34.
Oxford, U.K.: Oxford University Press.

19

Halpern, J. Y. (1997). On ambiguities in the interpretation of game trees. Games and
Economic Behavior 20, 66–96.

Halpern, J. Y. and R. Fagin (1989). Modelling knowledge and action in distributed
systems. Distributed Computing 3 (4), 159–179. A preliminary version appeared in
Proc. 4th ACM Symposium on Principles of Distributed Computing, 1985, with
the title “A formal model of knowledge, action, and communication in distributed
systems: preliminary report”.

Halpern, J. Y. and Y. Moses (1990). Knowledge and common knowledge in a dis-
tributed environment. Journal of the ACM 37 (3), 549–587. A preliminary version
appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

Harel, D., D. C. Kozen, and J. Tiuryn (2000). Dynamic Logic (Foundations of Com-
puting). Cambridge, Mass.: MIT Press.

Hintikka, J. (1962). Knowledge and Belief. Ithaca, N.Y.: Cornell University Press.

Kfir-Dahav, N. E., D. Monderer, and M. Tennenholtz (2000). Mechanism design for
resource bounded agents. Unpublished manuscript.

Koller, D. and B. Milch (2001). Structured models for multiagent interactions.
In Theoretical Aspects of Rationality and Knowledge: Proc. Eighth Conference
(TARK2001), pp. 233–248. San Francisco, Calif.: Morgan Kaufmann.

La Mura, P. (2000). Game networks. In Proc. Sixteenth Conference on Uncertainty in
Artificial Intelligence (UAI 2000).

Linial, N. (1994). Games computers play: game-theoretic aspects of computing. In
R. J. Aumann and S. Hart (Eds.), Handbook of Game Theory with Economic Ap-
plications, Volume II, pp. 1340–1395. Amsterdam: North-Holland.

Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent
Systems, Volume 1. Berlin/New York: Springer-Verlag.

Milner, R. (1980). A Calculus of Communicating Systems. Lecture Notes in Computer
Science, Vol. 92. Berlin/New York: Springer-Verlag.

Monderer, D. and M. Tennenholtz (1999a). Distributed games. Games and Economic
Behavior 28, 55–72.

Monderer, D. and M. Tennenholtz (1999b). Distributed Games: From Mechanisms to
Protocols. In AAAI-99, pp. 32–37.

Neyman, A. (1985). Bounded complexity justifies cooperation in finitely repated pris-
oner’s dilemma. Economic Letters 19, 227–229.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco, Calif.:
Morgan Kaufmann.

Pease, M., R. Shostak, and L. Lamport (1980). Reaching agreement in the presence of
faults. Journal of the ACM 27 (2), 228–234.

20

Piccione, M. and A. Rubinstein (1997). On the interpretation of decision problems
with imperfect recall. Games and Economic Behavior 20 (1), 3–24.

Rabin, M. O. (1983). Randomized Byzantine generals. In Proc. 24th IEEE Symp. on
Foundations of Computer Science, pp. 403–409.

Rubinstein, A. (1986). Finite automata play the repeated prisoner’s dilemma. Journal
of Economic Theory 39, 83–96.

Rubinstein, A. (1989). The electronic mail game: strategic behavior under “almost
common knowledge”. American Economic Review 79, 385–391.

Yemini, Y. and D. Cohen (1979). Some issues in distributed processes communication.
In Proc. of the 1st International Conf. on Distributed Computing Systems, pp.
199–203.

21

