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A Backstepping Approach for an Active Suspension System

Halil Ibrahim Basturk

Abstract— In this paper, the control design problem for an ac-
tive suspension system to maintain the comfort and safety of the
vehicle body is considered. The road disturbance is modelled as
a finite sum of sinusoidal functions with unknown frequencies,
amplitudes and phases. The disturbance is parameterized and
an adaptive controller is designed by using the backstepping
technique. It is proven that the equilibrium of the closed loop
system is stable and the vertical acceleration of the vehicle body
tends to zero despite road disturbances. The effectiveness of the
controller is illustrated with a simulation of a road test.

I. INTRODUCTION

A suspension system is one of the most important com-
ponent of a vehicle to maintain the comfort and safety
by isolating the vehicle body from road induced vibration
and shocks [1]. Suspension systems can be categorized
into three main parts; passive suspensions [2], semi-active
suspensions [3], and active suspension systems [4]. Active
suspensions have been developed for achieving the vehicle
required performance by applying an external force between
the car body (sprung mass) and the wheel (unsprung). The
illustration of an active suspension of a quarter car body is
given in Figure 1. The effectiveness of the active suspension
system intensely depends on the success of the control
strategy that is employed for the applied force. Therefore,
the control design for an active suspension has been attracted
the attention of many researchers.

Various approaches have been employed for the control
design of an active suspension system such as sliding mode
[6] and well known LQR [5]. Fuzzy-logic control is also
used in [13]-[16]. In [7]-[12], the control strategies with
H.. approach are proposed to optimize the performance
requirements such as ride comfort (i.e., acceleration of
car body), and suspension deflection (i.e., the displacement
between the sprung mass and unsprung mass). In these
designs, the effect of the disturbance to the vehicle body
is not rejected completely but attenuated while maintaining
the other performance requirement.

The effective way of representing the road disturbance
is the sum of sinusoidal functions with different ampli-
tudes, frequencies and phases. This representation allows
to approach the problem as the cancellation of sinusoidal
disturbances. The common method to approach this problem
is the internal model principle for which a general solution
is given in [17] in the case of linear systems. The approaches
for nonlinear systems are proposed in [18]—[20]. Disturbance
cancelation designs also exist for LTI systems [21], [22].
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Fig. 1: The illustration of a quarter car model with an active
suspension system.

Furthermore, rejection algorithms are given by state deriva-
tive feedback for both known [23] and unknown [24], LTI
systems.

In this note, an adaptive controller is designed to cancel the
effect of the unknown road disturbance disturbances on the
vehicle body. The unknown road disturbance is modelled as
a finite sum of sinusoidal functions with unknown frequen-
cies, amplitudes and phases. Then, the road disturbance is
represented in a parameterized form by using the technique
given in [26]. This representation enables us to approach
the problem as an adaptive control design. The essence of
the approach is the backstepping procedure which has been
shown in [25] for handling the unmatched uncertainties.
Finally, it is proven that the equilibrium of the closed loop
system is stable and the vertical acceleration of the vehicle
body tends to zero despite road disturbances.

In Section II, the problem is introduced. The representation
of unknown sinusoidal disturbances is given in Section III.
In Section IV, the main design is presented and the stability
theorem with its proof are given. The results of the simulation
of a road test with various road disturbances is presented in
Section V.

II. PROBLEM STATEMENT

A quarter car model is widely used to design a control
law for an active suspension system [8]. The two degree
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of freedom quarter-car model is given in Figure 1. The
equations of motion is given by

myZs(t) = — ¢ (Z5(t) — 2u(t)) — ks (25(t) — zu(2)) + F (), (1)
My 2y (t) = — c5 (2u(t) = 25(t)) — ks (zu(t) — 25(2))
— ke (zu(t) = 2 (1)) — ¢ (2u(t) = 2:(2)) = F (1), (2)

where my and m, are masses of the car body (sprung mass)
and wheel (unsprung mass), respectively. The parameters kg
and ¢; are the coefficients for spring and damper of the
suspension, respectively. The tire is modelled as a spring and
damper where coefficients are given as k; for spring and c¢;
for damper. The displacement of the car body and the wheel
are given by z,; and z,, respectively. The road disturbance
and the control force are given by z, and F, respectively.

We make the following assumptions regarding the mea-
surement of states and the road disturbance:

Assumption I: The measurements of relative displace-
ments, (zs — z,), tire deflection (z, —z,) and the velocities;
Zs, Zy are available for control design.

Assumption 2: The road disturbance is represented as

Zg, sin(@jt + ¢;) where the amplitude, g;, the fre-

quency, a)ll and the phase, ¢;, are unknown. The number of
maximum distinct frequency, ¢, is known.

The main aim of an active suspension is to keep the
vertical acceleration of the car body almost zero despite bad
road conditions in order to maintain the safety and comfort
of passengers and loads in the car. To this end, we design
a control law for F(z) to satisfy the convergence of Z(¢) to
zero despite the road disturbance as given in Assumption 2
and maintain the stability of the equilibrium.

III. ROAD DISTURBANCE REPRESENTATION

Since the tire deflection, (z,(r) —z(t)), is assumed to be
measured, the main disturbance that affects the system is
q
. C;
;—;zr(t) = z m—ta)igi cos(@;t + ¢;) that can be represented as

i=1 "M
the output of a linear exosystem,

W(t) = SW(I), Z.r(t) = hTW(t)v (3)

where w(t) € R?, The matrix S depends on the unknown
frequencies of the road disturbance z.(¢), while the uncer-
tainty of amplitude and phase is related to the unknown initial
condition of (3).

The road disturbance is parameterized by following [26].
Let G € R**%4 be a Hurwitz matrix with distinct eigen-
values and let (G,l) be a controllable pair. Since (h!,S) is
observable and the spectra of S and G are disjoint the unique
solution M € R?7*24 of the Sylvester equation

MS—GM =Ih". 4)

is invertible [27]. The change of coordinates & = Mw trans-
form the exosystem (3) into the form

£ =GE+1Ls, )
my
Ct

—2,=0"¢, (6)
m

u

where 87 =n"M~1.

The unknown road disturbance —z'r(t) are represented as
the product of an unknown constant and the vector E(r)
in (6). However, &(¢) can not be used in a control design,
since it can not be measured. To overcome this problem,
a conceptual observer is designed. The following lemma
establishes the properties of the observer.

Lemma 1: The inaccessible disturbance r%’uz'r can be rep-
resented in the form

G —eTE 4075, %
my
where
€ =n+ 1z, (8)

. . 1 .
Tl :G(n +lZLl) _lm_<_ (CS+C[)Z”
+ cs2s — ks (Zu _Zs) —ky (Zu _Zr) —F), ©)

with the estimation error § € R?? obeys the equation

5=GS.

Proof: Define an estimation error
s§=¢-E&. an

The equation (10) is obtained by differentiating & with
respect to time and using (2) and (5). Substitution of (11)
into (6) yields (7). [ |

(10)

IV. CONTROL DESIGN AND STABILITY

In order to design a control law that achieves the main
aim, we employ a backstepping method. Firstly, we consider
only the car body dynamics and propose a control strategy
for F. Secondly, we represent the system with an error term
and substitute the road disturbance representation, given in
(7) in order to approach the problem as an adaptive control
problem. Eventually, a final control law is designed and the
overall closed loop stability is stated.

A. Backstepping Design

Considering the dynamics of the car body given in (1),
we propose a desired value for F, as —c;2, + kg (23 — z4) to
achieve the convergence of Z; to zero. The error term between
the desired F and the actual F is given by

—))-

By taking the time derivative of e and using (7) for the
representation of —z',, we obtain,

e=F — (—cs2y + ks (z5 (12)

e':H(t)—i—csGTé—i-@TS—;—ZF—i—F, (13)
where
H(t) =— :1—; (Cs (zu—2s)+ks(zu—2z5) + ke (zu—z) + c,z'u)
— ks (25— 2u) - (14)
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B. Main Controller and Stability Statement

By considering F — —YF as a control input in (13) and us-
ing the certainty equlvalence principle for unknown constant
0, the adaptive controller is given by

F_<i—b>F
ny

é :’)/Csée,

where b > == 41 and y > 0.

In order {o state the stability theorem, we define the
following states and signals.

By differentiating (11) with respect to time and using (5)
and (10), we obtain

—H(t) —c;0 T& b(cszy —ks (25— zu)) — Zs,
(15)
(16)

E=GE+i1Ls, 17)
and we define
§=£-¢, (18)
where
_ t
[ / S 5z (). (19)
0 T
Taking derivative of (18) and using (17) yield
& GE. (20)

The closed loop wheel (unsprung mass) dynamics is repre-
sented in state-space form as follows,

Xy =Auxy+ By (Csz.s_e)'i‘Br [ r I ]T 21
where
0 1
Au = _ Ak ct ] ) (22)
L my my
- 1 T
Bo=[0 &1, 23)
[0 O
Br=| & o | (24)
L my ny
Xu —[ W Zu } (25)
We define
Xu =Xy — Xu, (26)
where
t
T, = /eAW*’)B o(t) () Tdr. @D
0
Taking derivative of (26) and using (21) yield
)'A{u =AuXxy+ By (Cszs - e) . (28)

The signal %, (1), (¢) represent the dynamics of the unsprung
mass and the observer for the case where z,(f) = 2,(t) = 0,
respectively. In other words, the case where the car is moving

on a flat surface. Finally, the estimation error for unknown
constant parameter is given by

0(1)=06(1)—0(r). (29)

Theorem 1: Consider the closed-loop system consisting of
the plant (1),(2) forced by the unknown road disturbance (3),
the disturbance observer (8), (9), and the adaptive controller
(15), (16). Under Assumptions 1 and 2, the followings hold;
(a) The equilibrium z, = e = 0,%, = 0,6 =8 =& = 0 is
stable and the signals z(r),Z(t),e(r),0,&,X, converge
to zero as t — oo,

(b) The signals x,(t),F(t) — kszs are bounded for all initial
conditions and F (s) — kszs(s) converges to zero as t — oo
in the absence of disturbance.

C. Stability Proof

In this section, the proof Theorem 1 is given.
Proof of Theorem I: Substituting (12) into (1) and (15)
into (13) and using (29), we obtain the following system,

1

Gi=— it —e, (30)
myg myg

é=—be+c;0TE +¢,078 —z,. (31)

The stability of the equilibrium of the closed loop system is
established with the use of the following Lyapunov function,

1 . ~r~ g
=3 (s;u (mszi +e2+y6T6+855TPG5) +& é+x,fxu)

(32)
where
GTP;+ PG = 2, (33)
ATPy 4Py A, = =21, (34)
&, = BL Py, Py, By, (35)
€5 = 2 Amax (0607). (36)

Taking time derivative of V(¢), in view of (10), (16), (20),
(28), (30) and (31), we obtain

V =—ci& zf £, be® + &, CSOTSe — & 855T6
~T~
—& E—F%,+3TPB, (csis—e). (37)
Using Young’s inequality for the cross term, we get
. & T~
Vﬁ—x“Tsz—sxu(b—l)e _8xu2 é é——xTxu
(38)
Using the fact that b > ;L_Su + 1, from (38), we conclude
V(t) <V(0). (39)
Defining
T
2(0) = [4(0),e0).07,67.8 7| | (40)
and using (32) and (39), we get
B <M [2(0)]7, 1)
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for some M; > 0. For all E, the right hand side of (10),
(16), (18), (26), (30) and (31) are continuous in = and 7,
which implies that the right hand side of (38) is continuous
in E and ¢. Furthermore, the right hand side of (38) is zero
at = = 0. By the LaSalle-Yoshizawa theorem, (38) ensures

that z,(),e(t),&,%, and & converge to zero as t — co. From
the boundedness of Z(r) and the convergence of zs(r),e(t),
it follows from (30) that Zs(¢) is bounded and converges to
zero t — oo. This proves part (a) of Theorem 1.

From (21), (25), (26), (40), (41) and noting that A,
is Hurwitz and the road disturbance z,(¢),z-(¢) given in
Assumption 2 is bounded, we conclude that z,(¢) and z,(7)
are bounded. Recalling that it has already been established
that x, converges to zero, from (25) and (26), we conclude
that z,(t),z,(¢) converge to zero as t — o in the absence of
the road disturbance (i.e. z-(t) = z,(t) = 0).

From (7), (15), (18), (29), the dynamics of F — kz; is
written as

d(F—ksZs) o CS
AP k) _ <m_ _b) (F—kzy)+d(t),  (42)

d(t) =—

ny

(Cs (Zu ) + kg (Zu + ki (Zu Zr) + ¢ (Zu - Zr) )

+kszu+cs (é"’é) +Cs9T5_b(CsZ.u+ksZu)_2s
(43)

From the boundedness of E(¢),z,,2,(t),z-(¢) and z,(¢), and
noting that G is Hurwitz it follows from (19), (43) that d(z)

is bounded. Recalling Z(t),e(t),,%,, 8 converge to zero as
t — o and G, A, are Hurwitz matrices, from (18), (25), (26) it
implies that d(¢) converges to zero as t — o in the absence of
the road disturbance. Noting that b > ‘S , it follows from (42)
and (43) that (F — k,z,) is bounded. Furthermore recalling
d(t) converges to zero as f — oo in the absence of the road
disturbance, it is concluded that (F — k,z;) converges to zero
as t — oo in the same case. u

V. SIMULATIONS

We perform a simulation to test the performance
of the designed controller on a road that contains
various road disturbance. The system parameters are
given by m; = 320kg,m, = 40kg,c; = 1000Ns/m ks =
18000N /m,kt = 200000N /m,ct = 60Ns/m. The control
parameter, b = 525 and the update gain, y = 8. It is
assumed that the road disturbance has at most three

distinct frequencies. Therefore, the controllable pair
(G,I) for the observer is chosen as [ = [0} 1]
with 0, = [0,...,0]" € R* and G = Os L5 )

ol 0

l[—127.5 —342.0 -381.7 -227.0 -758 —13.5}.

In order to simulate the road with various disturbances, the

20 T T T T T T T T T
= = +Z4(t) Open Loop
15 Z5(t) Closed Loop|

I

10 II
[ 1 f Mg
5F 1 . :: ||'|.| ‘

’ |I|”‘ h |I|" an 'l:ll r LU‘.."FL

Acceleration (m =s?)

20 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Time (sec)
Fig. 2: The simulation results of the vertical acceleration of
the body vehicle for the closed loop (solid) and the open
loop case (dashed).

4
15210 . . . . . . . .

15 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

Fig. 3: The amount of force applied when the active suspen-
sion system is on.

road disturbance z,(¢) is chosen as follows

0 0<rL2

zr1 (1) 2<t<8
Z(t) = 0 8§<r<12 (44)

72(t) 12<t< 14

0 14 <t <20

where
zr1(t) =0.04s8in(27t) +0.05sin(4w + 7 /8), (45)
22 (t) =0.01sin(307t) +0.02in(207t + 7/2)

+0.03sin(47), (46)

The function, z,1 (¢), represents the low frequency road distur-
bances whereas z,,(¢) represents the road condition which is
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(a) The displacement of the vehicle body (sprung mass) for
the closed loop (solid) and the open loop case (dashed).
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(b) The displacement of the wheel (unsprung mass) for the
closed loop (solid) and the open loop case (dashed).

Fig. 4: The simulation results of displacement of the sprung mass (4a), the displacement of the unsprung mass (4b).
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Time (sec)
(a) The displacement of the wheel (unsprung mass) for the
closed loop (solid) and the open loop case (dashed) when the
road disturbance has high frequency signals.

0.25 T T T
‘ = = z(t) — z,(t) Open Loop

0.2F z5(t) — z,(t) Closed Loop| |

0.15 1

0.1 ]

voz : H |

m)

Displacement (
=}
o
o
T

-0.15 b

-02 b

095 ‘ ‘ ‘ ‘ ‘ ‘ ‘
11 115 12 125 13 135 14 145 15

Time (sec)
(b) The relative displacement (change of suspension deflection)
of the wheel (unsprung mass) and the vehicle body (sprung
mass) for the closed loop (solid) and the open loop case
(dashed) when the road disturbance has high frequency signals.

Fig. 5: The zoomed portion of the simulation for the unsprung mass position (5a) and the suspension deflection (5b) when

the high frequency road disturbance is applied.

more rough and contains high frequency disturbances. A 20-
second simulation is performed for two cases where the only
passive suspension is available (open loop) and the active
suspension system is on (closed loop). The results for two
cases are given together in the figures. Since it is not easy to
see the details of the high frequency responses, the results
of the displacement of unsprung mass and the change in the
suspension deflection (relative displacement of sprung and
unsprung masses) are given in Figure 5.

As it is seen from Figure 2, the controller achieves to
isolate the effect of the road conditions from the vehicle body
and maintain the comfort of the passenger by keeping the
vertical acceleration around zero. The amount of force that is
applied to the system during the simulation is given in Figure

3. The displacements of the sprung and unsprung masses
with their relative displacements are given in Figure 4. The
displacement of vehicle body oscillates with a very low
amplitude for all conditions when the active suspension is on.
On the other hand, the displacement of the body oscillates
with a high amplitude for low frequency disturbances when
only passive suspension is available. As it is seen from Fig-
ures 4b, the displacement of the unsprung mass for the closed
loop case is similar to the open loop case for low frequency
disturbances. For the case where the frequency of the road
disturbance is high, the controller makes the unsprung mass
oscillate around a larger amplitude than the open loop case.
This situation can be seen more clearly in Figure 5a. The
displacement of the unsprung mass converges to zero when
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the road disturbance disappears and the boundedness of all
signals are maintained as Theorem 1 stated.

VI. CONCLUSIONS

The problem of maintaining the comfort and safety of the
vehicle body despite bad road condition is considered. An
adaptive backstepping controller is designed for an active
suspension system. A finite sum of sinusoidal functions with
unknown frequencies, amplitudes and phases is employed as
the model of a road disturbance. The disturbance is param-
eterized and an observer is developed by using the available
state measurements. The observer allows to approach the
problem as an adaptive control design. Finally, an adaptive
controller is designed by using the backstepping technique.
it is proven that the equilibrium of the closed loop system
is stable and the vertical acceleration of the vehicle body
tends to zero despite road disturbances. A road test that
contains high and low frequency disturbances, is planned
and the effectiveness of the controller is illustrated with a
numerical simulation.
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