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Abstract Traffic data collection is essential for perfor-

mance assessment, safety improvement and road planning.

While automated traffic data collection for highways is

relatively mature, that for roundabouts is more challenging

due to more complex traffic scenes, data specifications and

vehicle behavior. In this paper, the authors propose an

automated traffic data collection system dedicated to

roundabout scenes. The proposed system has mainly four

steps of processing. First, camera calibration is performed

for roundabout traffic scenes with a novel circle-based

calibration algorithm. Second, the system uses enhanced

Mixture of Gaussian algorithm with shaking removal for

video segmentation, which can tolerate repeated camera

displacements and background movements. Then, Kalman

filtering, Kernel-based tracking and overlap-based opti-

mization are employed to track vehicles while they are

occluded and to derive the complete vehicle trajectories.

The resulting vehicle trajectory of each individual vehicle

gives the position, size, shape and speed of the vehicle at

each time moment. Finally, a data mining algorithm is used

to automatically extract the interested traffic data from the

vehicle trajectories. The overall traffic data collection

system has been implemented in software and runs on

regular PC. The total processing time for a 3-hour video is

currently 6 h. The automated traffic data collection system

can significantly reduce cost and improve efficiency com-

pared to manual data collection. The extracted traffic data

have been compared to accurate manual measurements for

29 videos recorded on 29 different days, and an accuracy of

more than 90% has been achieved.

Keywords Traffic data collection � Vehicle tracking �
Roundabout � Vision-based systems � Intelligent transport
systems

1 Introduction

Traffic data collection is very important in transportation

applications to assess performance, improve safety and

design roads [1]. Before modern powerful computing sys-

tems are economically available, traffic engineers or

human operators were traditionally deployed in the field for

manual traffic data collection. For example, hand-held

intersection counter [2] can be used to collect turning

traffic volumes at an intersection. However, clearly this

manual process is very challenging, time-consuming and

costly. For example, when traffic is relatively heavy at an

intersection, a traffic engineer may not be able to simul-

taneously count volume for all turning directions. In the

past two decades, image sensors associated with the ever-

increasing power of modern computing systems are

increasingly affordable, and hence there has been wide-

spread deployment of camera-based vision systems for

traffic monitoring, traffic management, traffic data collec-

tion, traffic accident warning, etc. [3–6]. Among many

versatile applications of these camera-based vision sys-

tems, one of them is automated traffic data collection,

which can significantly improve efficiency and reduce cost

compared to manual data collection.

In the literature, there has been a significant amount of

work on automated traffic data collection by processing the
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recorded videos from camera-based vision systems. Those

systems/tools (with underlying algorithms and method-

ologies) developed for highways or arterial roads are rel-

atively successful in terms of accuracy of automated traffic

data collection [7–10]. One important contributing factor to

the good accuracy of these systems is the relatively simple

vehicle behavior in highways or arterial roads and rela-

tively simple traffic data to be collected. For example, a

sample picture of highway traffic from [7] is shown in

Fig. 1 and in typical scenarios, highway vehicles move at

relatively constant speed in one straight direction with

relatively in-frequent acceleration/de-acceleration behavior

and they do not turn, yield or stop unless there is severe

congestion. Besides, associated with relatively simple

vehicle behavior, interested traffic data to be collected for

highways are usually vehicle speed, vehicle volume, lane

use/change and vehicle classification [7–10].

In contrast to highways or arterial roads, vehicles at

signalized/un-signalized intersections or roundabouts have

very different behavior and interested traffic data are also

very different and more complex to collect. The main

traffic scene of interest in this work is roundabouts. A

roundabout is a type of circular intersection or junction in

which vehicles always move in one circular direction and it

requires entering vehicles to give way to vehicles already

inside the circle. A sample picture of a roundabout is given

in Fig. 1 as well. It has been studied and shown that

roundabouts have many benefits compared to signalized

intersections such as improved traffic flow and safety

[11, 12]. However, traffic data collection for roundabouts is

more challenging compared to highways, due to funda-

mentally physical differences in traffic scenes [13, 14]. In

contrast to usually straight parallel traffic lanes in highways

as shown in Fig. 1, the circular shape of the roundabout

inherently causes more complex vehicle behavior. Besides,

roundabouts have always quite a few entrances and exits,

which significantly complicates the vehicle behavior due to

the need to yield (while highways have entrances and exits

as well, vehicle behavior is typically much simpler).

Compared to highways, vehicles entering or inside the

roundabout are more likely to encounter acceleration/de-

acceleration, stopping, waiting and turning. These behav-

iors may present significant challenges for accurate and

reliable vehicle tracking in a camera-based vision system to

derive vehicle trajectories. The more complex vehicle

behavior also translates to more complex traffic data to be

collected. Interested traffic data for roundabouts include

not only speed, volume, vehicle classification as in high-

ways, but also origin–destination pairs, waiting time and

gap size that are sort of unique to the roundabouts.

With more roundabouts being designed especially in

suburban or rural areas, traffic data collection for these

traffic scenes is in great need to assess capacity, perfor-

mance and safety [14]. Of particular, importance among all

types of interested traffic data is the gap size, which is

defined as the minimum headway in the circulating traffic

that is accepted by a driver desiring to enter the roundabout

[15]. Gap size may be further refined to accepted gap size

or rejected gap size. Figure 2 shows a picture of the same

roundabout in Fig. 1 with focus on two of the main

entrances/exits when the camera was panned with a dif-

ferent angle. Figure 2 illustrates one case of accepted gap

size as the vehicle A enters the roundabout (by passing line

2) while it needs to yield to the vehicle B. Clearly, gap size

is an important performance measure of a roundabout and a

smaller gap size would mean that the roundabout performs

better by carrying more traffic [15]. Compared to signal-

ized intersections, drivers desiring to enter the roundabout

have to make own subjective decisions on whether it is safe

to enter instead of relying on external timing signals.

Fig. 1 Picture of a sample highway traffic from Ref. [7] (a) and a sample roundabout (b)
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Therefore, gap size is also a very important measure of

safety in a roundabout [15–18]. As so, gap size is one of the

most wanted type of traffic data for roundabouts.

Among interested traffic data to be collected for the

roundabouts, it may be possible to manually collect

vehicle volume in the field by the deployment of human

traffic engineers. However, as in highway case, manual

collection is very time-consuming as mentioned before. In

fact, on one hand such a hand-held counter as the one used

in intersections [2] is not available yet so the traffic

engineer may have to manually record on paper, and on

the other hand it is very challenging to be able to track

multiple vehicles at the same time, because all entrances

are open and vehicles from all entrances may be entering

the roundabout at the same time (unlike signalized inter-

sections where usually only two turning directions are

open at the same time). Regarding gap size, it is very

difficult and very error-prone to collect them if manual

collection is at all possible [14]. For example, referring to

Fig. 2, a traffic engineer must first record when the

vehicle A enters the roundabout and then start to count

how long it takes for the vehicle B to reach line 2, in order

to collect just one sample of accepted gap size. It becomes

much harder to collect rejected gaps. Therefore, to collect

a large database of gap sizes for statistical measurement

purpose, the manual approach is not realistic. One alter-

native approach is to use camera-based vision system to

pre-record a video of the roundabout traffic at time of

interest, such as peak hours, and then traffic engineers

manual inspect the video to collect accepted/rejected gap

size [14]. While this approach is viable and saves some

effort compared to manual data collection in the field, it is

still extremely time-consuming and costly. In our expe-

rience, it takes on average at least a day to manual inspect

and collect a few hundred samples of gap sizes for a

3-hour video (the exact time needed depends on the

number of samples of accepted/rejected gap sizes in the

video).

As manual traffic data collection is deemed infeasible as

discussed above, the need for automated traffic data col-

lection for roundabouts arises. Unlike relatively developed

systems/tools for automated data collection for highways,

those for automated traffic data collection for roundabouts

are relatively scarce in the literature. The most relevant

work to automated traffic data collection for roundabouts is

those for signalized/un-signalized intersections

[5, 6, 19, 20]. In [5, 6], wireless sensors were designed and

used for detection of individual vehicle passing similar to

how the loop inductor works for detection and counting of

highway traffic. A sensor is typically placed close to the

stopping line of each lane (but in the middle of the lane),

and a vehicle was detected and recorded when it drove past

it. When a vehicle makes a turn, ideally it is first detected

by the sensor from the source lane and then by the sensor

from the destination lane. In this way, vehicle turning

volumes, which are a very desirable type of traffic data for

intersections, can be automatically collected. However, the

sensor approach has a fundamental algorithm limitation in

that a cross-turning (for instance from North to East) may

not be distinguished from a right turn (for instance from

South to East), which results in inherent counting errors

[19]. Besides, the sensor approach may collect only turning

volumes, not other types of traffic data such as vehicle

speed, waiting time and accepted/rejected gap sizes. If

extending the sensor approach for intersections to round-

abouts, the situation would be similar that only vehicle

volume from entrances/exits may be collected. Therefore,

the senor approach for intersections is not considered

acceptable for traffic data collection of roundabouts.

Excluding the sensor approach, a very viable approach

is to adopt the camera-based vision systems for automated

traffic data collection for roundabouts like those for high-

ways [7–10] or those for intersections [5, 6]. It may appear

very straightforward to apply those developed vision sys-

tems/tools for highways or intersections to roundabouts.

While indeed the concept is the same that camera-based

vision systems can be applied to record videos which are

then video processed to automatically extract interested

traffic data for roundabouts, the systems must be dramati-

cally modified or extended in order to accommodate the

specifics of roundabouts, such as more complex vehicle

behavior and very different traffic data to be collected than

highways as discussed before. For example, in [5] the

traffic data collection system for intersections is limited to

vehicle volume, speed and waiting time, while accepted/

rejected gap sizes have not been tackled. Therefore,

motivated by the need to automatically collect gap size and

other traffic data for roundabouts, in this work the authors

Fig. 2 Illustration of computation of the gap size
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develop a system/tool dedicated to automated traffic data

collection for roundabouts. To the best of our knowledge,

this work may be one of the early efforts to allow auto-

mated accepted/rejected gap size collection for

roundabouts.

The rest of the paper is organized as follows. In Sect. 2,

an overview of the proposed system for automated data

collection for roundabouts is provided, and in Sect. 3 we

describe the detailed processing steps. In Sect. 4, we pre-

sent experimental results on a real-world roundabout and

finally conclusions are drawn in Sect. 5.

2 Overview of the proposed data collection system

The proposed system for automated traffic data collection

for roundabouts takes recorded videos of roundabout traffic

as inputs. It is assumed that a camera-based vision system

is installed nearby the roundabout to record videos. In our

work, the videos are pre-recorded and stored electronically

as.avi or.xvid files, then supplied into the traffic data col-

lection system as inputs. In other words, the developed

system is currently processing videos offline. However,

online processing of the videos is very approachable if the

computing systems, such as a regular PC, were integrated

into the camera-based vision systems, which is beyond the

scope of this paper.

The proposed traffic data collection system has mainly

two functional modules, namely the tracking module and

the data mining module. Once the pre-recorded videos are

supplied in, the tracking module is responsible for

processing the video to derive the raw data of vehicle

trajectories, and then the data mining module mines the

vehicle trajectories to extract interested traffic data. For

each module, the processing is mostly automated with

minimal requirements of manual setting or inputs from the

user. Note that we derive the raw data of vehicle trajec-

tories as they provide most comprehensive traffic infor-

mation. A vehicle trajectory gives the position of the

vehicle at each time moment indexed by the image frame,

and the positions allow to estimate vehicle speed and

acceleration/de-acceleration behavior and also allows to

determine whether the vehicle has entered the roundabout.

Further analysis of the vehicle trajectory would also allow

to derive waiting time and accepted/rejected gaps, which

will be detailed later in Sect. 3.

Fig. 4 Overlay of vehicle trajectories (one line represents one vehicle

trajectory)

Fig. 3 Segmentation results with MoG and shaking-removal in case of camera shaking
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To drive the vehicle trajectories, there are three major

processing steps in the tracking module that incorporate

powerful image/video processing techniques/algorithms.

The first processing step is camera calibration (as is always

the case with any camera-based vision system) that allows

to establish the relation between image dimension (or

distance) in pixels to real-world dimension (or distance) in

meters/feet. Clearly, this relation is required to estimate

real-world vehicle speed and vehicle length/width. After

camera calibration, the next major processing step in the

tracking module is vehicle segmentation, which is to

detect/identify the vehicles from image frames. There are

many established algorithms for vehicle segmentation and

the Mixture of Gaussian (MoG) algorithm was adopted in

our work together with a proposed camera shaking-removal

algorithm. Once segmented vehicles are obtained, the last

major processing step is vehicle tracking, which is to

associate or link detected vehicles across all image frames.

Like vehicle segmentation, there are quite some vehicle

tracking algorithms reported in the literature and the pro-

posed one in our work is a combined region-based tracking

with kernel-based tracking algorithm. We will detail the

above three processing steps in Sect. 3.

The outputs from the tracking module are raw data of

vehicle trajectories. Each vehicle trajectory contains the

position information of that vehicle across image frames.

The data mining module is then invoked to process all

vehicle trajectories to extract interested traffic data,

including speed, volume, waiting time and accepted/re-

jected gaps. While speed and volume data may seem trivial

to extract from simple manipulation of the position data per

individual trajectory, waiting time and especially accepted/

rejected gaps require further analysis of the position data

across multiple vehicle trajectories, which will be detailed

in Sect. 3 as well.

For the proposed system for automated traffic data col-

lection for roundabouts to be practically useful, accuracy of

the collected traffic data is of most priority while processing

time (or in general demands of computing power or resour-

ces) is considered secondary. In our work, the traffic data

from the proposed system were compared to ground truth

measurements to evaluate the accuracy. It should be noted

that between the two modules, the tracking module has sig-

nificant impact on the accuracy of traffic data than the data

mining module. In fact, the data mining module can faith-

fully extract the traffic data given inputs of vehicle

Fig. 5 Tracking with vehicle occlusions
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trajectories and the main target for data mining is efficiency

(or the processing time). However, the tracking module

derives the vehicle trajectories, whose accuracy will funda-

mentally determine the accuracy of collected traffic data. It is

well known that camera calibration, vehicle segmentation

and vehicle tracking all introduce errorwhen using a camera-

based vision system, especially the later two steps [5, 6].

3 The proposed system for automated traffic data
collection

As discussed in Sect. 2, the proposed system for automated

traffic data collection for roundabouts consists of the

tracking module and the data mining module. Each module

is presented in detail below.
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Fig. 6 Number of vehicles entering/exiting the ramp and waiting time in each minute for two videos collected on 17th 2009. a During

2:30–3:55 pm. b During 4:00–6:00 pm
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3.1 The tracking module

The tracking modules have mainly three processing steps:

camera calibration, vehicle segmentation and vehicle

tracking, which will be discussed below sequentially.

3.1.1 Camera calibration

While camera calibration methods are well studied for

highways [21–23], they do not apply to roundabouts due to

different features available in the scene. Previous work on

camera calibration of highways mostly takes advantage of

parallel traffic lanes [21–23]. However, in general, parallel

traffic lanes are not available at roundabouts and instead

circular lanes exist (for instance the circles in Fig. 1).

Therefore, we proposed to use the available landmark

features of circles for camera calibration of roundabouts in

[24]. The idea is briefly discussed below.

Using a camera geometry setup in [24], the image

coordinates (ix, iy) is projected to the world coordinates (wx,

wy) by the following equations

wx ¼ � hix

f sinuþ iy cosu
; ð1Þ

wy ¼
hiy

sinu f sinuþ iy cosu
� � ; ð2Þ

where h is the camera height, f the focal length and u the

tilt angle. The equation for a circle in the real-world

coordinate is

wx � að Þ2 þ wy � b
� �2¼ R2; ð3Þ

where (a, b) denotes the center of the circle and R the

radius, which is usually available from geometric design of

the roundabout (for instance, R = 50 feet for the

roundabout in Fig. 1). On the other hand, the equation

for an ellipse in the image coordinate is

i2x þ 2Hixiy þ Bi2y þ 2Gix þ 2Fiy þ C ¼ 0; ð4Þ

where H, B, G, F, and C are coefficients. With perspective

transformation characterized by Eqs. (1) and (2), a real-

world circle characterized by Eq. (3) becomes an ellipse in

the image characterized by Eq. (4) [11]. Therefore, sub-

stituting Eqs. (1) and (2) into Eq. (3), the resulting equa-

tion should match exactly Eq. (4). By coefficient matching

of the resulting equation from (3) against (4), camera

parameters h, f and u can be solved. Note that Eq. (4) can

be derived from ellipse-fitting a number of manually

selected (or automatically detected) pixels in the image that

belong to the ellipse [24].

It is worth noting that the above method does not

require a complete visible circle and a partial circle works

too. For example, in Fig. 2, one can see that only a partial

landmark of a circle is visible in the image and this allows

camera calibration using the proposed method in [24].

However, one should note that a complete visible circle

(if available) may have better accuracy for camera cali-

bration [24].

3.1.2 Vehicle segmentation

Vehicle segmentation is one of the most important steps of

any video-based data collection system in that it is

responsible for detecting/identifying vehicles and its

accuracy has a significant impact on the vehicle tracking

accuracy and eventually the overall traffic data collection

accuracy. In our work, we adopted the MoG algorithm for

vehicle segmentation that was originally proposed in [25],

among many possible other options [26–32].

The MoG algorithm considers the values of a pixel at a

particular position (ix, iy) of an image over time t as a pixel

process, and the recent history of the pixel is modeled by a

mixture of K Gaussian distributions. The probability of

observing a value of Xt is [25, 33]:
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Fig. 7 Histogram of accepted gap sizes for two videos collected on July 17th 2009. a During 2:30–3:55 pm. b During 4:00–6:00 pm
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P Xtð Þ ¼
XK

i¼1

wi;t � g Xi;t; li;t;Ri;t

� �
; ð5Þ

where Xt stands for the incoming pixel at time t (or image

frame t), wi;t the weights factor, g a Gaussian probability

density function, li;t the mean value and Ri;t the covariance

matrix of the ith Gaussian distribution at time t (Ri;t ¼ d2i;tI;

where d2i;t denotes the variance of the ith Gaussian

distribution at time t and I the identity matrix). The sum

of weights of the K Gaussian distributions at any time t is

normalized to 1.0. At any time t; the portion of the

Gaussian distributions (B out of K) that accounts for the

background is defined to be

B ¼ argminb

Xb

i¼1

wi;tT

 !

; ð6Þ

where T , the threshold, is a measure of the minimum

portion of the data that is used to account for the back-

ground. The rest of Gaussian distributions is used for

foreground model.

At each image frame t, for each pixel, the new obser-

vation of the pixel is matched against each Gaussian dis-

tribution of that pixel. A match to the ith Gaussian

distribution is defined as the new observation Xt of the

pixel within the interval of J times the standard deviation

off the mean, i.e.,

pi;t ¼ Xt � li;t
�� ��=di;t � J; ð7Þ

If the new observation Xt of the pixel does not match any

of the K Gaussian distributions, Xt will be declared as a

foreground for the current pixel, and the MoG model is

updated by simply replacing the mean of distribution with

the lowest weight by Xt and initializing the variance with

a typical value (for instance 25 pixel square) while

keeping the same weight. The other (K-1) distributions

would have their mean, variance and weight kept the

same.

If on the other hand the new observation of Xt of the

pixel matches at least one of the K Gaussian distributions,

the best-matched distribution (i.e., the one with the mini-

mum pi;t), is used for foreground/background declaration.

If the best-matched distribution, say r, belongs to the

portion of Gaussian distributions that account for back-

ground, then Xt is declared background. Otherwise, it is

declared foreground. In either case, the best-matched dis-

tribution is updated by increasing its weight and ‘‘learning’’

its mean and variance for the next image frame t þ 1 as

follows [25]:

wr;tþ1 ¼ 1� að Þwr;t þ a

lr;tþ1 ¼ 1� bð Þlr;t þ bXt

d2r;tþ1 ¼ 1� bð Þd2r;t þ b Xt � lr;t
� �2

9
>=

>;
; ð8Þ

where a and b are the learning rates to update weight, mean

and variance. For the rest of Gaussian distributions, they

will have their weights decreased and mean/variance kept

the same, as follows [25] (where i 6¼ rÞ:

wi;tþ1 ¼ 1� að Þwi;t

li;tþ1 ¼ li;t

d2i;tþ1 ¼ d2i;t

9
>=

>;
: ð9Þ

After update of each Gaussian distribution, the value of B

in Eq. (5) is re-calculated as well. Finally, the K distribu-

tions are sorted in weights for matching operations in the

next image frame t þ 1.

We adopted theMoG algorithm for video segmentation for

a few considerations. First, compared to other alternatives, the

MoG algorithm may achieve a better tradeoff between

demands of computing power/resources and segmentation

accuracy, as discussed in [34]. Second, repeated camera

shaking (for instance due to constant wind) is a very practical

issue in camera-based vision systems (as the authors had

experienced in recorded videos) in that it causes noisy seg-

mentation (to be illustrated in Sect. 4) and can affect the

accuracy of the following step of vehicle tracking. The MoG

handles repeated camera shaking very well as repeated

observation changes of a pixel due to camera shaking are very

likely to be modeled in background due to its inherent multi-

modal modeling capability [25]. However, in case of sudden

camera shaking (for instance due to gust),MoGper semaynot

help as it has not had enough observations to build up the

multi-modal background distributions. In that case, the

authors employ a shaking-removal step that was proposed in

[35]. The idea is to compare the observations of pixels of the

detection region against the background distributions of both

current detection region and a small neighborhood region (of

the detection region). If the pixel of the detection region

matches with the background distributions of the neighbor-

hood region, it is highly likely that the current observation of

the pixel is a background from the neighborhood region as

opposed to a foreground in the current detection region. In our

work, we empirically chose a square 5 9 5 window for the

neighborhood region among choices of 4 9 4, 5 9 5, and

6 9 6, which experimentally all gave similar results. In gen-

eral, from our experience working with various videos, we

recommend choose a window size that is between 1/100 and

1/25 of the segmented vehicle size in the image.
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3.1.3 Vehicle tracking

After vehicle segmentation, the next step is to track vehicle

to derive the complete vehicle trajectory, which are the

desired raw data that are later used to extract interested

traffic data. In this sub-section, a description of how to

track vehicles from the outputs of vehicle segmentation is

given.

Among some reported methods for vehicle tracking

[36–38], we propose to combine region-based tracking [8]

with kernel-based tracking [39, 40]. After vehicle seg-

mentation, results are binary blobs in the image and these

blobs are extracted and classified as vehicles if they meet at

least the threshold size. A state vector is associated with

each valid vehicle and it records the position of vehicle at

each image frame. In addition to the positions, other

information of the vehicle, such as size and vehicle

shape/contour, can be recorded and be used to classify

vehicles if needed. Given the current state of a vehicle at

image frame t, we use Kalman filtering to predict the state

of a vehicle in the next image frame t þ 1 [41]. To asso-

ciate vehicles between frame t and frame t þ 1, the algo-

rithm compares the segmented vehicles in frame t þ 1 (i.e.,

the target) against the vehicles from frame t (i.e., the

model) in joint feature-spatial spaces using the Kernel-

based tracking algorithm [39, 40]. The feature-spatial

model of a vehicle is characterized in image frame t and

predicted for comparison against the target in frame t þ 1.

Finally, note that the state vector, which contains the

vehicle position at each image frame, gives the complete

trajectory of a vehicle once a vehicle is tracked.

Compared to the traditional region-based tracking [8]

alone, the combined algorithm gives more accuracy in

vehicle tracking at the expense of computational time,

especially in the case of vehicle occlusion thanks to the

joint feature-spatial model of a vehicle that provides more

evidence for vehicle association in addition to the regions.

3.1.4 Data mining

The results from three previous processing steps are raw

data of vehicle trajectories, from which a comprehensive

data mining algorithm can then be used to extract inter-

ested traffic data, such as vehicle speed, volume, waiting

time and accepted/rejected gap size. From these trajecto-

ries, vehicle volume and speed could be readily computed.

As for waiting time, it can be derived by subtracting free-

flow time from travel time, while travel time again is easily

obtained by counting how many image frames it takes for a

vehicle from entering the ramp to entering the roundabout.

As automated collection of gap size has not been

reported before in the literature, we detail on this type of

data collection. To facilitate the collection of accepted and

rejected gaps, we first manually drew a few lines from road

markers as shown in Fig. 2. We consider that a vehicle A

from the ramp entrance entered the roundabout when it

crossed line 2. If this happened while there were other

vehicles B in the other entrance (which has right-of-way)

or inside the roundabout itself, we would collect one

sample of accepted gap size, which is the travel time from

when vehicle A crossed line 2 to when the other vehicle B

crossed line 4. Similarly, to collect rejected gaps, we

consider that vehicles A from the ramp entrance waited to

enter the roundabout when they crossed line 3 but not line 2

yet. If there were vehicles B in the other entrance or inside

the roundabout while vehicle A were in the waiting mode,

we would collect one sample of rejected gap size, which is

the travel time from when vehicle A crossed line 3 to when

the vehicles B crossed line 4. If there are multiple vehicles

B involved in accepted/rejected gap, the one with the

shortest travel time is taken.

This proposed approach to compute accepted/rejected

gap size involves manual setup of a few lines for compu-

tation purpose, which is a slightly bit of extra work,

however, this approach is very reliable and gives very

accurate data. Future works will look into how to remove

manual setup of the lines.

4 Experimental testing results

In this section, we present experiment results from practical

testing of the proposed system for automated traffic data

collection for roundabouts. The system has been imple-

mented in C and Matlab and runs on a regular PC. We

tested the system using 29 videos of a roundabout recorded

on 29 different days. The roundabout is located in Cottage

Grove, Washington County of Minnesota USA as shown in

Fig. 2, and the video was recorded from typical surveil-

lance cameras installed by Minnesota Department of

Transportation [42]. The videos were recorded at 7 frames

per second with a resolution of 640 9 480, and the average

video length was 3 h. The total processing time for a

3-hour video was on average 6 h. To make the proposed

system run in real-time, image resolution could be lowered

to 352 9 288 or 320 9 240 as used by many traditional

systems. Another option is to simplify the MoG algorithm

for video segmentation and especially the complex vehicle

tracking algorithm.

Table 1 Average accuracy in vehicle count, waiting time and gap

size in comparison to manual measurements

(%)

Vehicle count Waiting time Gap size

Average accuracy 95.50 92.00 100.00
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First, the camera calibration results are discussed briefly.

The measured camera height (51 feet) is very close to the

calibrated result (52.3 feet) with 2.5% error. With the

calibrated camera parameters, vehicle speeds were com-

puted and the results agreed well with the measured speeds

with an error less than 10%.

Next, results from vehicle segmentation are shown

below. As shown in Fig. 3, the left column shows two

consecutive image frames that have encountered significant

camera shaking, and the middle column shows segmenta-

tion results with low and high thresholds in traditional

background subtraction methods [26], and finally the right

column segmentation results from the proposed method. It

can be recognized the combined MoG algorithm with

camera shaking-removal are very effective to reduce noisy

segmentation regions, which would help improve tracking

accuracy.

In most cases, vehicles are well tracked and the com-

plete trajectory of a vehicle is obtained. Figure 4 shows the

overlay of all vehicle trajectories derived from a 4-hour

video. A valid or a correct vehicle trajectory in our work is

considered to be one that corresponds to a real-world

vehicle in the video. The correct vehicle trajectories are

93% of the total tracked ones. The main factors that affect

this accuracy are occasionally very large camera shaking,

significant light changes, and long and significant vehicle

occlusions at times. Light to moderate vehicle occlusions

are handled well by the combined region-based and kernel-

based tracking algorithm used in our work. Figure 5 gives

an example of tracking under occlusions. Vehicle 2 merges

with vehicle 3 first and they together merges with vehicle

4, but each was individually tracked under occlusions. Also

notice vehicles 5 and 6 had significant occlusions (while

they were waiting to enter the roundabout), due to an

existing vehicle 7 inside the roundabout and vehicle 8 from

the other ramp entrance (which actually gave a case of

rejected gap).

Next, the results from the data mining module that

further processes the raw data of tracked vehicle trajecto-

ries are shown below. Figure 6 shows the vehicle volume

that entered and exited the ramp 1 (in red in Fig. 4) in

every minute for two videos. The average waiting time to

enter the roundabout from ramp 1 in every minute was

shown in Fig. 6 as well. One can clearly notice the longer

waiting time at about 5:30 pm, which corresponded to the

rush hour. Another longer waiting time was observed at

about 2:55 pm, when it was found that roundabout had

more vehicles inside. Figure 7 shows the histogram of

accepted gap sizes for the same videos. Clearly, accepted

gap size peaks at about 4 to 5 s, which is the headway that

most drivers are comfortable with when deciding to enter

the roundabout. This gap size is very consistent to the

findings reported in other works [15, 43, 44].

To quantitatively measure the accuracy of the proposed

traffic data collection system, we inspected the videos and

manually counted and recorded the number of vehicles

entering and exiting the ramp, which gives most accurate

ground truth data. Then, the collected data from the pro-

posed system were compared against the manually col-

lected data for accuracy estimation. Table 1 summarizes

the average accuracy. The vehicle count accuracy was over

95%, and the accuracy on average waiting time was about

92%. The gap size accuracy is almost 100%. As previously

mentioned in Sect. 3.1.3, given raw data of vehicle tra-

jectories from the tracking module, the data mining module

does not incur any accuracy loss when extracting traffic

data. The error of the collected traffic data is strictly from

some erroneous vehicle trajectories from the tracking

module. The main source of error in the tracking module

was occasional poor detection/segmentation and significant

vehicle occlusions between vehicles. For example, in

Fig. 5, vehicle 5 and 6 had significant occlusions while

waiting to enter the roundabout from the ramp. Consider

the case that vehicle 5 in fact did not enter the roundabout

but was mistakenly tracked so (regardless of what hap-

pened to vehicle 6) due to occlusion and poor detection/

segmentation (especially after long wait), and this would

cause under-estimated waiting time and a false accepted

gap size for vehicle 5. On the other hand, if vehicle 5 in

fact entered the roundabout but was not tracked so, it

would result in over-estimated waiting time or a miss of

accepted gap size for vehicle 5. Examples of more difficult

cases were that if only vehicle 5 entered the roundabout but

the tracking module mistakenly tracked both so, or instead

only vehicle 6 so. However, it is worth noting that in spite

of possible false gap sizes or misses of gap sizes in the

above cases, their effect on the accepted/rejected gap sizes

is statistically minimal, as the number of false ones plus

misses was less than 5% of the total number of sample gap

sizes collected (about 11,000 from 29 videos).

5 Conclusion

In this paper, the authors proposed a system for automated

traffic data collection for roundabouts. The developed

system consists of a tracking module and a data mining

module. The tracking module has three major processing

steps of camera calibration, vehicle segmentation and

vehicle tracking. Landmark features of circles typically

available at roundabouts were used for camera calibration,

and MoG algorithm together with shaking-removal were

adopted for vehicle segmentation, and finally a combined

region-based tracking with kernel-based tracking algorithm

was proposed to derive vehicle trajectories. The data

mining module then processes the raw data of vehicle
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trajectories to automatically collect traffic data, such as

vehicle volume, waiting time and accepted/rejected gaps.

Extensive experiments on a real-world roundabout have

verified the correct operation of the system, and the accu-

racy of automated data collection was over 90% accuracy

compared to ground truth measurements.

Such a developed system is very valuable to traffic

engineers as it allows automated traffic data collection so

that they do not have to manually collect traffic data using

either hand-held devices in the field or pre-recorded traffic

videos, which significantly improves efficiency and redu-

ces cost. It also helps address the increasing need of traffic

data collection for roundabouts, especially the gap size.

In future work, the authors plan to target traffic data

collection for the complete roundabout. However, this

requires a complete and good coverage of the roundabout,

which is difficult using a single camera. Especially when

the camera is not mounted very high above the ground,

significant vehicle occlusions from those ramps that are

furthest away from the camera will pose a challenge for

accurate vehicle tracking. One viable option is to use

multiple cameras for better coverage of the complete

roundabout and surrounding ramps. As with any other

camera-based vision system, the developed system shares a

few common limitations, which are briefly noted below.

First, adverse weather conditions (such as heavy rain, snow

or fog) may cause noisy detection/segmentation, which

further affects the tracking accuracy and eventually traffic

data accuracy. In our work, the videos were mostly

recorded on overcast days. Second, vehicle shadow may

cause noisy detection/segmentation as well and is always a

challenge in vehicle tracking.
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