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Abstract Reliable estimation of long-range dependence
parameters is vital in time series. For example, in environ-
mental and climate science such estimation is often key to
understanding climate dynamics, variability and often pre-
diction. The challenge of data collection in such disciplines
means that, in practice, the sampling pattern is either irregular
or blighted by missing observations. Unfortunately, virtually
all existing Hurst parameter estimation methods assume reg-
ularly sampled time series and require modification to cope
with irregularity or missing data. However, such interven-
tions come at the price of inducing higher estimator bias and
variation, often worryingly ignored. This article proposes
a new Hurst exponent estimation method which naturally
copes with data sampling irregularity. The new method is
based on a multiscale lifting transform exploiting its ability
to produce wavelet-like coefficients on irregular data and,
simultaneously, to effect a necessary powerful decorrelation
of those coefficients. Simulations show that our method is
accurate and effective, performing well against competitors
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even in regular data settings. Armed with this evidence our
method sheds new light on long-memory intensity results in
environmental and climate science applications, sometimes
suggesting that different scientific conclusions may need to
be drawn.
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Long-range dependence · Wavelets

1 Introduction

Time series that arise in many fields, such as climatology
(e.g. ice core data, Fraedrich and Blender 2003, atmospheric
pollution, Toumi et al. 2001); finance, e.g. Jensen (1999) and
references therein; geophysical science, such as sea level data
analysis, Ventosa-Santaulària et al. (2014) and network traf-
fic (Willinger et al., 1997), to name just a few, often display
persistent (slow power-law decaying) autocorrelations even
over large lags. This phenomenon is known as long memory
or long-range dependence. Remarkably, the degree of per-
sistence can be quantified by means of a single parameter,
known in the literature as the Hurst parameter (Hurst 1951;
Mandelbrot andNess 1968). Estimation of theHurst parame-
ter leads, in turn, to the accurate assessment of the extent to
which such phenomena persist over long time scales. This
offers valuable insight into a multitude of modelling and
analysis tasks, such as model calibration, trend detection and
prediction (Beran et al. 2013; Vyushin et al. 2007; Rehman
and Siddiqi 2009).

Data in many areas, such as climate science, are often
difficult to acquire and hence will frequently suffer from
omissions or be irregularly sampled. On the other hand, even
data that is customarily recorded at regular intervals (such as
in finance or network monitoring) often exhibit missing val-
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ues which are due to a variety of reasons, such as equipment
malfunction.

We first describe two examples that are shown to bene-
fit from long-memory parameter estimation for irregularly
spaced time series or series subject to missing observations,
although our methods are, of course, more widely applica-
ble.

1.1 Long-memory phenomena in environmental and
climate science time series

In climatology, the Hurst parameter facilitates the under-
standing of historical and geographical climate patterns
or atmospheric pollution dynamics (Pelletier and Turcotte
1997; Fraedrich and Blender 2003), and consequent long-
term health implications, for example.

In the context of climate modelling and simulation, Varot-
sos and Kirk-Davidoff (2006) write

Models that hope to predict global temperature or total
ozone over long time scales should be able to duplicate
the long-range correlations of temperature and total
ozone …Successful simulation [of long range correla-
tions] would enhance confidence in model predictions
of climate and ozone levels.

In particular, more accurate Hurst parameter estimation can
also result in a better understanding of the origins of unex-
plained dependence behaviour from climate models (Tsonis
et al. 1999; Fraedrich andBlender 2003;Vyushin et al. 2007).

Isotopic cores Ice core series are characterized by uneven
time sampling due to variable geological pressure causing
depletion and warping of ice strata, see e.g. Witt and Schu-
mann (2005), Wolff (2005) or Vyushin et al. (2007) for
a discussion of long-range dependence in climate science.
We study an isotopic core series, where stable isotope lev-
els measured through the extent of a core, such as δ18O,
are used as proxies representing different climatic mech-
anisms, for example, the hydrological cycle (Petit et al.
1999). Such data can indicate atmospheric changes occur-
ring over the duration represented by the core (Meese et al.
1994). Here, long memory is indicative of internal ocean
dynamics, such as warming/cooling episodes (Fraedrich and
Blender 2003; Thomas et al. 2009). Such measures are
used in climate models to understand present day climate
variable predictability, including their possible response to
global climate change (Blender et al. 2006; Rogozhina et al.
2011). Figure 1 shows n = 1403 irregularly spaced oxy-
gen isotopic ratios from the Greenland Ice Sheet Project
2 (GISP2) core; the series also features missing observa-
tions, indicated on the plot. For more details on these data,
the reader is directed to e.g., Grootes et al. (1993); the data
were obtained from the World Data Center for Paleoclima-
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Fig. 1 The δ18O isotope record from the GISP2 ice core. Triangles
indicate missing data locations, about 1 % near to the end of the series

tology in Boulder, USA (http://www.ncdc.noaa.gov/paleo/
icecore/).

Atmospheric Pollutants Long-range dependence quantifica-
tion for air pollutants is widely considered in the literature,
due to its relationship to the global atmospheric circu-
lation and consequent climate system response, see e.g.
Toumi et al. (2001), Varotsos andKirk-Davidoff (2006), Kiss
et al. (2007). Long-range dependence is also investigated
for atmospheric measurements in e.g. Tsonis et al. (1999)
and Tomsett and Toumi (2001). For atmospheric series in
particular, such as ozone, underestimation of the long-range
behaviour results in an underestimation of the frequency of
weather anomalies, such as droughts (Pelletier and Turcotte
1997; Tsonis et al. 1999).

Our data consist of average daily ozone concentrations
measured over several years at six monitoring stations at
Bristol Centre, Edinburgh Centre, Leeds Centre, London
Bloomsbury, Lough Navar and Rochester. These sites corre-
spond to an analysis of similar series in Windsor and Toumi
(2001). Figure 2 shows the Bristol Centre series along with
the locations of the missing concentration values. The per-
centage of missingness for the ozone series was in the range
of 4–6 %. The data were acquired from the UK Depart-
ment for Environment, Food and Rural Affairs UK-AIRData
Archive (http://uk-air.defra.gov.uk/).

1.2 Aim and structure of the paper

A feature of many ice core series, such as that in Fig. 1, is
that their sampling structure is naturally irregular. On the
other hand, atmospheric series, such as the Ozone data in
Fig. 2, are often designed to be measured at regular intervals,
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Fig. 2 Ozone concentration (ppbv) at the Bristol Centre monitoring
site. Missing locations indicated by triangles

but can exhibit frequent dropout due to recording failures.
In practice, a common way of dealing with these complex
sampling structures is to aggregate (by temporal averaging)
the series prior to analysis so that the data become regularly
spaced (Clegg 2006). However, this has been shown to create
spurious correlation and thus methods will tend to overesti-
mate the memory persistence (Beran et al. 2013). Further
evidence for inaccuracies in traditional estimation methods
due to irregular or missing observations is given in Sect. 5.3.
Similar overestimation has been observed when imputation
or interpolation is used to mitigate for irregular or missing
observations, see e.g. Zhang et al. (2014). In the context of
climatic time series, this will consequently lead to misrep-
resenting feedback mechanisms in models of global climate
behaviour, hence induce significant inaccuracy in forecasting
weather variables or e.g. ozone depletion. Sections 6 and 7
discuss this in more detail.

Motivated by the lack of suitable long-memory estima-
tion methods that deal naturally with sampling irregularity
ormissingness,which often occur in climate science data col-
lection and by the grave scientific consequences induced by
misestimation, we propose a novel method for Hurst parame-
ter estimation suitable for time serieswith regular or irregular
observations. Although the problems that spurred this work
pertained to the environmental and climate science fields,
our new method is general and flexible, and may be used
for long-memory estimation in a variety of fields where the
sampling data structure is complex, such as network traffic
modelling (Willinger et al. 1997).

Wavelet-based approaches have proved to be very success-
ful in the context of regularly sampled long-memory time
series (for details see Sect. 2) and are the ‘right domain’,
Flandrin (1998), in which to analyze them. For irregularly

sampled processes, or those featuring missingness, we pro-
pose the use of the lifting paradigm (Sweldens 1995) as the
version of the classical wavelet transform for such data. In
particular, we select the nondecimated lifting transform pro-
posed by Knight and Nason (2009) which has been recently
shown to perform well for other time series tasks, such as
spectral analysis, in Knight et al. (2012). Whilst dealing nat-
urally with the irregularity in the time domain, our method is
shown to also yield competitive results for regularly spaced
data, thus extending its applicability.

Section 2, next, reviews long-memory processes and pro-
vides an overview of lifting and the nondecimated wavelet
lifting transform. Section 3 explains how lifting decorre-
lates long-memory series and Sect. 4 shows how this can be
exploited to provide our new lifting-based Hurst exponent
estimation procedure. Section 5 provides a comprehensive
performance assessment of our new method via simulation.
Section 6 demonstrates our technique on the previously intro-
duced data sets and discusses the implication of its results for
each set. Section 7 concludes this work with discussion and
some ideas for future exploration.

2 Review of long-range dependence, its estimation,
wavelets and lifting

Long-range behaviour is often characterized by a parameter,
such as the Hurst exponent, H , introduced to the literature by
Hurst (1951) in hydrology. Similar concepts were discussed
by the pioneering work of Mandelbrot and Ness (1968) that
introduced self-similar and related processes with longmem-
ory, including statistical inference for long-range dependent
processes. A large body of statistical literature has since
grown dedicated to the estimation of H . Reviews of long
memory can be found in Palma (2007) or Beran et al. (2013).

Time domain H estimation methods include the R/S
statistic (Mandelbrot and Taqqu 1979; Bhattacharya et al.
1983); aggregate series variance estimators (Taqqu et al.
1995; Teverovsky and Taqqu 1997; Giraitis et al. 1999); least
squares regression using subsampling in Higuchi (1990);
variance of residuals estimators in Peng et al. (1994).

Frequency domain estimators of H include Whittle
estimators, see Fox and Taqqu (1986), Dahlhaus (1989),
and connections to Fourier spectrum decay are made in
e.g. Lobato and Robinson (1996). Long-memory time series
havewavelet periodograms exhibiting similar log-linear rela-
tionships to the Hurst exponent, see for example McCoy and
Walden (1996).Wavelet-based regression approaches such as
Percival and Guttorp (1994), Abry et al. (1995), Abry et al.
(2000) and Jensen (1999) have been shown to be successful.
Stoev et al. (2004) and Faÿ et al. (2009) provide complete
investigations of frequency-based estimators. Extensions of
wavelet estimators to other settings, for example the presence
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of observational noise, can be found in Stoev et al. (2006),
Gloter and Hoffmann (2007). Other recent works concerning
long-memory estimation including multiscale approaches
areVidakovic et al. (2000), Shi et al. (2005),Hsu (2006), Jung
et al. (2010), Coeurjolly et al. (2014) and Jeon et al. (2014).
Reviews comparing several techniques for Hurst exponent
estimation can be found in e.g. Taqqu et al. (1995).

A shortcoming of the approaches above is that they
are inappropriate, and usually not robust, in the irregularly
spaced/missing observation situation. Treating such data
with the usual practical ‘preprocessing’ approach of imputa-
tion, interpolation and/or aggregation induces high estimator
bias and errors, as highlighted by Clegg (2006), Beran et al.
(2013) and Zhang et al. (2014), for example. The implicit
danger is that such preprocessing may inadvertently change
the conclusions of subsequent scientific modelling and pre-
diction, e.g. see Varotsos and Kirk-Davidoff (2006).

A possible solutionmight be to estimate theHurst parame-
ter directly from a spectrum estimated on irregular data. For
example, theLomb-Scargle periodogram, (Lomb1976; Scar-
gle 1982), estimates the spectrum from irregularly spaced
data. In the context of stationary processes, theLomb-Scargle
periodogram has been shown to correctly identify peaks but
to overestimate the spectrum at high frequencies (Broersen
2007), while Rehfeld et al. (2011) and Nilsen et al. (2016)
argue that irregularly sampled data cause various prob-
lems for all spectral techniques. In particular, they report
that severe bias arises in the Lomb-Scargle periodogram if
there are no periodic components underlying the true spectra
[e.g. turbulence data, Broersen et al. (2000)]. The weighted
wavelet Z -transform construction of Foster (1996) also rein-
forces this point, and is subsequently successfully used for
describing fractal scaling behaviour by Kirchner and Neal
(2013). A theoretical and detailed empirical study of Hurst
estimation via this route would be an interesting avenue for
further study, but not pursued further here.

2.1 Long-range dependence (LRD)

Long-memory processes X = {X (t), t ∈ R} are station-
ary finite variance processes whose spectral density satisfies
fX (ω) ∼ c f |ω|−α for frequencies ω → 0 and α ∈ (0, 1),
or, equivalently, whose autocovariance γX (τ ) ∼ cγ τ−β as
τ → ∞ and β = 1 − α ∈ (0, 1), where ∼ means asymp-
totic equality. The parameter α controls the intensity of the
long-range behaviour.

The Hurst exponent, H , naturally arises in the context
of self-similar processes with self-similarity parameter H ,

which satisfy X (at)
d= aH X (t) for a > 0, H ∈ (0, 1) and

where
d= means equal in distribution. Self-similar processes,

while obviously non-stationary, can have stationary incre-
ments and the variance of such processes is proportional to

|t |2H , with H ∈ (0, 1). The stationary increment process of
a self-similar process with parameter H has been shown to
have long memory when 0.5 < H < 1, and the two parame-
ters α and H are related through α = 2H − 1. In general, if
0.5 < H < 1 the process exhibits long memory, with higher
H values indicating longer memory, whilst if 0 < H < 0.5
the process has short memory. The case of H = 0.5 repre-
sents white noise.

Examples of such processes are fractional Brownian
motion, its (stationary) increment process, fractional
Gaussian noise, and fractionally integrated processes. Frac-
tionally integrated processes I (d), (Granger and Joyeux
1980), are characterized by a parameter d ∈ (−1/2, 1/2)
which dictates the order of decay in the process covariance
and has long memory when d > 0, with the relationship to
the Hurst exponent H given by H = d + 1/2. Abry et al.
(2000) and Jensen (1999) showed that H , d and the spectral
power decay parameter, α are linearly related.

2.2 Existing wavelet-based estimation of long memory

Much contemporary research on long-memory parameter
estimation relies on wavelet methods and produce robust,
reliable, computationally fast and practical estimators—
see, for example, McCoy and Walden (1996), Whitcher
and Jensen (2000) and Ramírez-Cobo et al. (2011). Long-
memory wavelet estimators (of H , d or α) base estimation
on thewavelet spectrum, thewavelet equivalent of theFourier
spectral density, see Vidakovic (1999) or Abry et al. (2013)
for more details.

Specifically, suppose a discrete series {Xt }N−1
t=0 has long-

memory parameter α. Assuming regular time sampling, a
wavelet estimate of α can be obtained by:

1. Perform thediscretewavelet transform (DWT)of {Xt }N−1
t=0

to obtain wavelet coefficients, {d j,k} j,k , where j =
1, . . . , J is the coefficient scale and k = 1, . . . , n j = 2 j

its time location. It can be shown that, e.g. Stoev et al.
(2004), the wavelet energy

E(d2
j,k) ∼ const × 2 jα, ∀ k as j −→ ∞. (1)

2. Estimate the wavelet energy within each scale j by e j =
n−1

j

∑n j
k=1 d2

j,k .
3. The slope of the linear regression fitted to a subset of

{( j, log2e j )}J
j=1 estimates α, see Beran et al. (2013) for

details.

Later, we show that methods designed for regularly spaced
data often fail to deliver a robust estimate if the time series is
subject to missing observations or has been sampled irregu-
larly. Much literature is silent on the issue of how to estimate
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Hurst when faced with irregular or missing data. One pos-
sible, and often quoted, solution is to aggregate data into
regularly spaced bins, but no warnings are usually provided
for its pitfalls, see Sect. 5.3 for further information. Our
solution to this problem is to build an estimator out of coef-
ficients obtained from a (lifting) wavelet transform designed
for irregularly sampled observations, as described next.

2.3 Wavelet lifting transforms for irregular data

The lifting algorithm was introduced by Sweldens (1995) to
provide ‘second-generation’ wavelets adapted for intervals,
domains, surfaces, weights and irregular samples. Lifting
has been used successfully for nonparametric regression
problems and spectral estimation with irregularly sampled
observations, see e.g., Trappe and Liu (2000), Nunes et al.
(2006), Knight and Nason (2009) and Knight et al. (2012).
Jansen and Oonincx (2005) give a recent review of lifting.

Our Hurst exponent estimation method makes use of a
recently developed lifting transform called the lifting one
coefficient at a time (LOCAAT) transform proposed by
Jansen et al. (2001, 2009) which works as follows.

Suppose a function f (·) is observed at a set of n, possi-
bly irregular, locations or time points, x = (x1, . . . , xn) and
represented by {(xi , f (xi ) = fi )}n

i=1. LOCAAT starts with
the f = ( f1, . . . , fn) values which, in wavelet nomencla-
ture, are the initial so-called scaling function values. Further,
each location, xi , is associated with an interval which it intu-
itively ‘spans’. For our problem, the interval associated with
xi encompasses all continuous time locations that are closer
to xi than any other location—the Dirichlet cell. Areas of
densely sampled time locations are thus associated with sets
of shorter intervals. The LOCAAT algorithm, as designed
in Jansen et al. (2009), has both the initial and dual scal-
ing basis functions given by suitably scaled characteristic
functions over these intervals, but, in general, this is not a
requirement.

The aim of LOCAAT is to transform the initial f into a set
of, say, L coarser scaling coefficients and (n − L) wavelet-
like coefficients, where L is a desired ‘primary resolution’
scale.

Lifting works by repeating three steps: split, predict and
update. In LOCAAT, the split step consists in choosing a
point to be lifted. Once a point, jn , has been selected for
removal, denoted (x jn , f jn ), we identify its set of neighbour-
ing observations,In . The predict step estimates f jn by using
regression over the neighbouring locations In . The predic-
tion error (the difference between the true and predicted
function values), d jn or detail coefficient, is then computed
by

d jn = f jn −
∑

i∈In

an
i fi , (2)

where (an
i )i∈In are the weights resulting from the regres-

sion procedure over In . For example, in the simplest single
neighbour case this reduces to d jn = f jn − fi .

In the update step, the f -values of the neighbours of jn are
updated by using a weighted proportion of the detail coeffi-
cient:

f (updated)

i := fi + bn
i d jn , i ∈ In, (3)

where the weights (bn
i )i∈In are obtained from the require-

ment that the algorithm preserves the signal mean value
(Jansen et al. 2001, 2009). The interval lengths associated
with the neighbouring points are also updated to account for
the decreasing number of unlifted coefficients that remain.
This redistributes the interval associated to the removed point
to its neighbours. The three steps are then repeated on the
updated signal, and after each repetition a new wavelet coef-
ficient is produced. Hence, after say (n − L) removals, the
original data is transformed into L scaling and (n − L)

wavelet coefficients. LOCAAT is similar in spirit to the clas-
sical DWT step which takes a signal vector of length 2� and
through separate local averaging and differencing-like oper-
ations produces 2�−1 scaling and 2�−1 wavelet coefficients.

As LOCAAT progresses, scaling and wavelet functions
decomposing the frequency content of the signal are built
recursively according to the predict and update Eqs. (2)
and (3). Also, the (dual) scaling functions are defined recur-
sively as linear combinations of (dual) scaling functions at
the previous stage. To aid description of our Hurst exponent
estimation method in Sects. 3 and 4, we recall the recursion
formulas for the (dual) scaling and wavelet functions at lift-
ing stage r :

ϕ̃r−1,i (x) = ϕ̃r,i (x) + br
i ψ̃ jr (x), i ∈ Ir (4)

ϕ̃r−1,i (x) = ϕ̃r,i (x), i /∈ Ir (5)

ψ̃ jr (x) = ϕ̃r, jr (x) −
∑

i∈Ir

ar
i ϕ̃r,i (x). (6)

After (n − L) lifting steps, the signal f can be expressed as
the linear combination

f (x) =
n∑

r=L+1

d jr ψ jr (x) +
∑

i∈{1,...,n}\
{ jn , jn−1,..., jL+1}

cL ,iϕL ,i (x), (7)

where ψ jr (x) is a wavelet function representing high fre-
quency components and ϕL ,i (x) is a scaling function rep-
resenting the low frequency content. Just as in the classical
wavelet case, the detail coefficients can be synthesized by
means of the (dual) wavelet basis, e.g. d jr = 〈 f, ψ̃ jr 〉, where
〈·, ·〉 denotes the L2-inner product.
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A feature of lifting, hence also of LOCAAT, is that the
forward transform can be inverted easily by reversing the
split, predict and update steps.

Artificial wavelet levels The notion of scale for second gen-
eration wavelets is continuous, which indirectly stems from
the fact that second generation wavelets are not dyadically
scaled versions of a single mother wavelet. To mimic the
dyadic levels of classical wavelets, Jansen et al. (2009)
group wavelet functions of similar (continuous) scales into
‘artificial’ levels. Similar results are also obtained by group-
ing the coefficients via their interval lengths into ranges
(2 j−1α0, 2 jα0], where j ≥ 1 and α0 is the minimum scale.
This construction is more evocative of the classical wavelet
dyadic scales.

Choice of removal order In the DWT the finest scale coef-
ficients are produced first and followed by progressively
coarser scales. Jansen et al. (2009) mimic this behaviour by
removing points in order from the finest continuous scale
to the coarsest. However, the LOCAAT scheme can accom-
modate any coefficient removal order. In particular, we can
choose to remove points following a predefined path (or
trajectory) T = (xo1 , . . . , xon ), where (o1, o2, . . . , on)

is a permutation of the set {1, . . . , n}. Knight and Nason
(2009) introduced the nondecimated lifting transform which
explores the space of n! possible trajectories via boot-
strapping. The nondecimated lifting transform resembles
the nondecimated wavelet transform (Coifman and Donoho
1995; Nason and Silverman 1995) in that both are designed
to mitigate the effect of poor performance caused by the rel-
ative location of signal features and wavelet position. Our
technique in Sect. 4 below also exploits the trajectory space
via bootstrapping, in order to improve the accuracy of our
Hurst exponent estimator.

3 Decorrelation properties of the LOCAAT
algorithm

Wavelet transforms are known to possess good compression
and decorrelation properties. For long-memory processes
this has been shown for the discrete wavelet transform by,
e.g., Vergassola and Frisch (1991) and Flandrin (1992) for
fractional Brownian motion, Abry et al. (2000) for fractional
Gaussian noise, Jensen (1999) for fractionally integrated
processes, Craigmile et al. (2001) for fractionally differ-
enced processes or, for a more general discussion, see e.g.
Vidakovic (1999, Chap. 9) or Craigmile and Percival (2005).
Whilst lifting has repeatedly shown good performance in
nonparametric regression and spectral estimation problems,
a rigorous theoretical treatment is often difficult due to the
irregularity and lack of the Fourier transform in this situa-

tion.Some lifting transforms have been shown to have good
decorrelation properties, see Trappe and Liu (2000) or Clay-
poole et al. (1998) for further details on their compression
abilities.

Decorrelation is important for long-memory parameter
estimation as taking the wavelet transform produces coef-
ficients that are “quasidecorrelated,” see Flandrin (1992) and
Veitch and Abry (1999), Property P2, page 880. The decor-
relation, and consequent removal of the long memory, then
permits the use of established methods for long-memory
parameter estimation using the lifting coefficients. Next, we
provide analogous mathematical evidence for the LOCAAT
decorrelation properties which benefit our Hurst parame-
ter estimation procedure presented later in Sect. 4. It is
important to realize that although the statement of Propo-
sition 1 is visually similar to earlier ones concerning regular
wavelets, such as Abry et al. (2000, p.51) for fractional
Gaussian noise, Jensen (1999, Theorem 2) for fraction-
ally integrated processes or Theorem 5.1 of Craigmile and
Percival (2005) for fractionally differenced processes, our
proposition establishes the result for the lifting transform,
which is considerably more challenging than for regular
wavelets involving new mathematics.

3.1 Theoretical decorrelation due to lifting for
stationary long-memory series

Proposition 1 Let X = {Xti }N−1
i=0 denote a (zero-mean) sta-

tionary long-memory time series with Lipschitz continuous
spectral density fX . Assume the process is
observed at irregularly spaced times {ti }N−1

i=0 and let

{{cL ,i }i∈{0,...,N−1}\{ jN−1,..., jL−1}, {d jr }N−1
r=L−1}be the LOCAAT

transform of X. Then the detail coefficients {d jr }r have auto-
correlation with rate of decay faster than any process with
long memory with autocorrelation decay τ−β for β ∈ (0, 1).

The proof can be found in Appendix A. Proposition 1
assumes no specific lifting wavelet. We conjecture that if
smoother lifting wavelets were employed, it might be pos-
sible to obtain even better rates of decay for the lifting
coefficients’ autocorrelations along similar lines to the equiv-
alent result for classicalwavelets shownbyAbry et al. (2000).
To complement our mathematical result we next investigate
decorrelation of a nonstationary self-similar process with
long-memory increments via simulation.

3.2 Empirical decorrelation due to lifting for
nonstationary self-similar processes

We simulated K = 100 regularly sampled fractional Brown-
ian motion (FBM) series {Xt }(l) (l = 1, . . . , K ) of length
n = 2 j for six j ranging from 8 to 13 with true Hurst para-
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Fig. 3 Decorrelation properties of LOCAAT. Left simulated fractional Brownian motion autocorrelation with H = 0.9. Right the autocorrelation
after LOCAAT transformation

Table 1 Mean relative absolute autocorrelation (%) for simulated frac-
tional Brownian motion

H Series length, n

256 512 1024 2048 4096 8192

0.6 4.5 2.3 1.4 0.8 0.5 0.2

0.7 3.6 2.1 1.2 0.5 0.3 0.2

0.8 3.0 1.5 0.9 0.4 0.2 0.1

0.9 2.4 1.3 0.7 0.3 0.2 0.1

meters H ranging from 0.6 to 0.9. The series were generated
using the fArma R add-on package (Wuertz et al. 2013).

Figure 3 illustrates the powerful decorrelation effect of
LOCAAT when applied to a single fractional Brownian
motion realization of length n = 1024 with Hurst parameter
H = 0.9. The left-hand plot clearly shows the characteris-
tic slow decay of long memory whereas the right-hand plot
shows only small short termcorrelation after LOCAATappli-
cation in the first six or seven lags. To assess the overall
decorrelation ability we compute the mean relative absolute
autocorrelation

RELac = 100K −1
K∑

l=1

∑
r 
=k |Cov(d(l)

jr
, d(l)

jk
)|

∑
i 
= j |Cov(X (l)

ti , X (l)
t j

)|
, (8)

where d(l) is the LOCAAT-transformed {Xt }(l); hence a
small percentage RELac value means that LOCAAT per-
formed highly effective decorrelation. Table 1 shows the
efficacious decorrelation results for the various fractional
Brownian processes. The mean relative absolute autocorre-
lation has been reduced by at least 95 % on the average for
all situations and by 99 % for n ≥ 2048.

4 Long-memory parameter estimation using
wavelet lifting (LoMPE)

Wenow show that the log2-variance of the lifting coefficients
is linearly related to the artificial scale level which parallels
the classical wavelet result in (1). This new result enables
direct construction of a simple Hurst parameter estimator for
irregularly sampled time series data. As with Proposition 1,
the statement of Proposition 2 is visually similar to that for
established results in the literature corresponding to regular
wavelets. However, again, the proof of our proposition relies
on newmathematics for the more difficult situation of lifting.

Proposition 2 Let X = {Xti }N−1
i=0 denote a (zero-mean)

long-memory stationary time series with finite variance and
spectral density fX (ω) ∼ c f |ω|−α as ω → 0, for some
α ∈ (0, 1). Assume the series is observed at irregularly
spaced times {ti }N−1

i=0 and transform the observed data X
into a collection of lifting coefficients, {d jr }r , via application
of LOCAAT from Sect. 2.3.

Let r denote the stage of LOCAAT at which we obtain the
wavelet coefficient d jr , and let its corresponding artificial
level be j�, then for some constant K

σ 2
j� = Var(d jr ) ∼ 2 j�(α−1) × K . (9)

The proof can be found inAppendixA.Wenowuse this result
to suggest a long-memory parameter estimationmethod from
an irregularly sampled time series.

Long- Memory Parameter Estimation Algorithm
(LoMPE)

Assume that {Xti }N−1
i=0 is as in Proposition 2. We estimate

α as follows.
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Fig. 4 Log2 of estimatedwavelet coefficient variances σ̂ 2
j versus scale,

computed on fractional Gaussian noise series of length N = 1024 with
Hurst parameter of α = 0.8 and 10%missingness at random. Estimated
Hurst parameter from weighted regression slope is α̂ = 0.84

A-1 Apply LOCAAT to the observed process {Xti }N−1
i=0

using a particular lifting trajectory to obtain lifting coef-
ficients {d jr }r . Then group the coefficients into a set of
artificial scales as described in Sect. 2.3.

A-2 Normalize the detail coefficients by dividing through
by the square root of the corresponding diagonal entry
of W̃ W̃ T , where W̃ is the lifting transform matrix. To
avoid notational clutter we continue to use d jr to denote

the normalized details, d jr (W̃ W̃ T )
−1/2
jr , jr

.
A-3 Estimate the wavelet coefficients’ variance within each

artificial level j� by

σ̂ 2
j� := (n j� − 1)−1

n j�∑

r=1

d2
jr , (10)

where n j� is the number of observations in artificial
level j�.

A-4 Fit a weighted linear regression to the points log2(σ̂
2
j� )

versus j�; use its slope to estimate α.
A-5 Repeat stepsA-1 toA-4 for P bootstrapped trajectories,

obtaining an estimate α̂p for each trajectory p ∈ 1, P .
The final estimator is α̂ = P−1 ∑P

p=1 α̂p.

As an example, Fig. 4 plots the log2-wavelet variances ver-
sus artificial scale resulting from the above algorithm being
applied to a simulated fractional Gaussian noise series. It is
clear from the plot that the log2-variances are well modelled
by a straight line even in this case where the noise series
suffers from dropout of 10 % missing-at-random.

Remark 1 The normalization in stepA-2 corrects for the lack
of orthonormality inherent in the lifting transform (W̃ ).

Remark 2 Weuse the simple additive formula (10) in stepA-
3 as the detail coefficients have zero mean and small
correlation due to the effective decorrelation properties of
the LOCAAT transform observed in Sect. 3.

Remark 3 As E{log(·)} 
= log{E(·)}, we correct for the bias
introduced by regressing log2 quantities in step A-4 using
the same weighting as proposed by Veitch and Abry (1999),
hence accounting for the different variability across artifi-
cial levels. The weights are obtained under the Gaussianity
assumption, though Veitch and Abry (1999) report insensi-
tivity to departures from this assumption.

Remark 4 The approach in step A-5 is similar to model aver-
aging over different possible wavelet bases (cycle-spinning)
as proposed by Coifman and Donoho (1995) and adapted
to the lifting context by Knight and Nason (2009). Averag-
ing over the different wavelet bases improves the variance
estimation and mitigates for ‘abnormal trajectories’. If an
estimate α̂ is obtained by means of regression without vari-
ance weighting, our approach yields a reasonable confidence
interval without relying on the Gaussianity assumption, as in
Abry et al. (2000). Trajectories are randomly drawn, where
each removal order is generated by sampling (N − L) loca-
tions without replacement from {ti }N−1

i=0 .

5 Simulated performance of LoMPE

Our simulation study is intended to reflect many real-world
data scenarios. The simulated time series should be long
enough to be able to reasonably estimate what is, after all,
a low-frequency asymptotic quantity. For example, Clegg
(2006) uses 100000 observations, which is maybe somewhat
excessive,whereas Jensen (1999) examines the range 27–210.
We investigated processes of lengths of 256, 512 and 1024.
Although our method does not require a dyadic number of
observations, dyadic process lengths have been chosen to
ensure comparability with classical wavelet methods in reg-
ular settings.

To investigate the effect of missing observations on the
performance of our method, we simulated datasets with
an increasing level of random missingness (5–20 %). This
reflects real data scenarios, as documented by current litera-
ture that deals with time series analysis under the presence of
missingness, e.g. paleoclimatic data (Broersen 2007), such
as the isotopic cores, and air pollutant data (Junger and Ponce
de Leon 2015).

We compared results across the usual range of Hurst para-
meters H = 0.6, . . . , 0.9 for fractional Brownian motion,
fractional Gaussian noise and fractionally integrated series.
The processes were simulated via the fArma add-on pack-
age (Wuertz et al. 2013) for the R statistical programming
language (Core Team 2013). Each set of results is taken
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Table 2 Mean squared error
(×103) for regularly spaced
fractional Brownian motion
series for a range of Hurst
parameters for the estimation
procedures described in the text

H n = 256 n = 512 n = 1024

Peng Wavelet LoMPE Peng Wavelet LoMPE Peng Wavelet LoMPE

0.6 19 (30) 29 (48) 12 (21) 13 (22) 20 (37) 9 (15) 10 (14) 13 (20) 10 (11)

0.7 25 (35) 34 (57) 12 (15) 14 (16) 21 (34) 8 (11) 9 (12) 15 (24) 8 (9)

0.8 19 (23) 24 (45) 11 (13) 13 (18) 17 (28) 7 (10) 12 (16) 15 (22) 8 (10)

0.9 23 (39) 34 (69) 28 (39) 15 (23) 17 (31) 13 (20) 12 (16) 16 (26) 7 (9)

Numbers in brackets represent the standard deviation of estimation errors. Boxed numbers indicate best
result

Table 3 Mean squared error
(×103) for regularly spaced
fractional Gaussian noise for a
range of Hurst parameters for
the estimation procedures
described in the text

H n = 256 n = 512 n = 1024

Peng Wavelet LoMPE Peng Wavelet LoMPE Peng Wavelet LoMPE

0.6 8 (11) 31 (50) 2 (2) 4 (6) 11 (19) 1 (1) 2 (3) 8 (13) 1 (1)

0.7 7 (8) 27 (49) 2 (3) 3 (5) 12 (19) 1 (1) 3 (3) 9 (15) 1 (1)

0.8 7 (11) 29 (70) 2 (3) 5 (6) 16 (26) 2 (3) 4 (6) 10 (16) 3 (2)

0.9 10 (13) 28 (64) 3 (4) 4 (5) 11 (15) 2 (3) 3 (5) 10 (17) 4 (2)

Numbers in brackets represent the standard deviation of estimation errors. Boxed numbers indicate best
result

Table 4 Mean squared error
(×103) for regularly spaced
fractionally integrated series for
a range of Hurst parameters,
H = d + 1/2, for the estimation
procedures described in the text

H n = 256 n = 512 n = 1024

Peng Wavelet LoMPE Peng Wavelet LoMPE Peng Wavelet LoMPE

0.6 8 (9) 25 (39) 3 (4) 4 (6) 16 (39) 1 (2) 2 (2) 8 (13) 1 (1)

0.7 8 (11) 29 (39) 4 (5) 4 (5) 9 (15) 4 (4) 3 (3) 6 (10) 4 (3)

0.8 11 (16) 28 (39) 6 (8) 7 (8) 18 (34) 6 (5) 4 (5) 6 (11) 6 (4)

0.9 12 (15) 30 (53) 7 (8) 7 (10) 11 (18) 8 (7) 4 (6) 8 (14) 9 (5)

Numbers in brackets represent the standard deviation of estimation errors. Boxed numbers indicate best
result

over K = 100 realizations and P = 50 lifting trajectories
(denoted “LoMPE”), usingmodifications to the code from the
adlift package (Nunes and Knight 2012) and the nlt package
(Knight and Nunes 2012). The simulations were repeated
for two competitor methods: the wavelet-based regression
technique ofMcCoy andWalden (1996), Jensen (1999), opti-
mized for the choice of wavelet (denoted “wavelet”), as well
as the residual variance method (Peng et al. 1994), which
we denote “Peng”. Both methods are available in the fArma
package and were chosen as our empirical results indicated
that these techniques performed the best amongst traditional
methods over a range of simulation settings.

5.1 Performance for regularly sampled series

For the simulations described above, Tables 2, 3 and 4 report
the mean squared error (MSE) defined by

MSE = K −1
K∑

k=1

(H − Ĥ k)2. (11)

Overall, our LoMPE method performs well when com-
pared tomethods thatwere specifically designed for regularly
sampled series. LoMPE outperforms its competitors in over
75 % of cases and for three-quarters of those the improve-
ment is greater than 40 %. Our method is slightly worse
than Peng’s method for fractionally integrated series shown
in Table 4, but mostly still better than the wavelet method for
larger sample sizes.

These results are particularly pleasing since even though
our method is designed for irregularly spaced data, it per-
forms extremely well for regularly spaced time series.

5.2 Performance for irregularly sampled data

Tables 5, 6 and 7 report the mean squared error for our
LoMPE estimator on irregularly sampled time series for dif-
ferent degrees of missingness (up to 20 %). The tables show
that higher degrees of missingness result in a slightly worse
performance of the estimator; however, this decrease is small
considering the irregular nature of the series, and the results
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Table 5 Mean squared error
(×103) for irregularly spaced
fractional Brownian motion
series featuring different degrees
of missing observations for a
range of Hurst parameters for
the LoMPE estimation
procedure

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 13 (22) 14 (23) 16 (25) 11 (16) 12 (17) 13 (19) 12 (12) 13 (13) 14 (13)

0.7 14 (17) 13 (17) 15 (20) 9 (12) 10 (13) 11 (14) 9 (11) 10 (11) 10 (12)

0.8 11 (13) 11 (12) 12 (14) 8 (11) 8 (12) 9 (13) 9 (12) 9 (12) 10 (13)

0.9 24 (35) 21 (34) 20 (30) 12 (19) 11 (16) 11 (17) 8 (10) 8 (11) 9 (12)

Numbers in brackets are the estimation errors’ standard deviation

Table 6 Mean squared error
(×103) for irregularly spaced
fractional Gaussian noise
featuring different degrees of
missing observations for a range
of Hurst parameters for the
LoMPE estimation procedure

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 2 (2) 2 (2) 3 (4) 1 (1) 1 (1) 1 (2) 1 (1) 1 (1) 1 (1)

0.7 3 (3) 3 (3) 3 (4) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 3 (3)

0.8 3 (4) 3 (4) 4 (6) 3 (3) 3 (3) 4 (4) 3 (2) 4 (3) 5 (3)

0.9 3 (5) 4 (6) 4 (7) 3 (3) 4 (3) 4 (4) 4 (3) 5 (3) 6 (4)

Numbers in brackets are the estimation errors’ standard deviation

Table 7 Mean squared error
(×103) for irregularly spaced
fractionally integrated processes
featuring different degrees of
missing observations for a range
of Hurst parameters,
H = d + 1/2, for the LoMPE
estimation procedure

H n = 256 n = 512 n = 1024

Proportion of missingness, p Proportion of missingness, p Proportion of missingness, p

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 2 (3) 3 (4) 3 (5) 2 (2) 2 (2) 2 (2) 2 (1) 2 (1) 2 (1)

0.7 4 (5) 5 (6) 5 (5) 5 (4) 5 (4) 6 (4) 4 (3) 5 (3) 5 (4)

0.8 8 (9) 8 (9) 9 (9) 7 (6) 8 (6) 9 (7) 8 (5) 8 (5) 9 (6)

0.9 8 (8) 9 (10) 10 (10) 9 (7) 10 (8) 11 (10) 10 (6) 10 (6) 12 (7)

Numbers in brackets are the estimation errors’ standard deviation

are for the most part comparable with the results for the
regular series. The supplementary material exhibits similar
simulation results when we changed the missingness pattern
from ‘missing at random’ to contiguous missing stretches
in the manner of Junger and Ponce de Leon (2015). This
shows a degree of robustness to different patterns of miss-
ingness.

We also studied the empirical bias of our estimator.
For reasons of brevity we do not report these bias results
here, but the simulations can be found in Appendix C
in the supplementary material. The results show that our
method is competitive, achieving better results in over 65 %
of cases and only slightly worse in the rest. As for the
mean squared error results above, performance degrades for
increasing missingness but still the results are remarkably
good even when 20 % of observations are missing, and
our proposed method is robust even at a significant loss of
40 % missing information (as detailed in the supplemen-
tary material). Indeed, in some cases the results are still
competitive with those for the regular case in the previous
section.

5.3 Aggregation effects

Wementioned earlier that temporal aggregation is often used
to mitigate the lack of regularly spaced samples. Several
authors such as Granger and Joyeux (1980) and Beran et al.
(2013) point out that aggregation over multiple time series
can in itself induce long memory in the newly obtained
process, even when the original process only had short-
memory.

Motivated by this, we investigated the effect of tem-
poral aggregation on long-memory processes via simula-
tion. Specifically, we took regularly sampled long-memory
processes (again fractional Brownian motion, fractional
Gaussian noise and fractionally integrated classes) and
induced an irregular sampling structure by randomly remov-
ing a percentage of the observations. We then aggregated
(averaged) the observations in consecutivewindowsof length
δ to mimic aggregation of irregularly observed time series,
as usually done in practice. The long-memory intensity was
estimated using our LoMPE method on the irregular data
(no processing involved) and the Peng and wavelet methods
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Table 8 Empirical estimator bias (×100) after aggregating fractional Brownian motion series (n = 512) for a range of Hurst parameters featuring
different degrees of missing observations to sampling intervals of size δ = 2 for three estimation methods

H LoMPE Peng Wavelet

5 % 10 % 20 % 5 % 10 % 20 % 5 % 10 % 20 %

0.6 −8 (7) −8 (8) −8 (8) −10 (13) −19 (14) −37 (15) −11 (19) −26 (20) −39 (16)

0.7 −6 (7) −7 (7) −7 (7) −13 (13) −25 (15) −47 (17) −12 (22) −29 (25) −45 (19)

0.8 −3 (9) −3 (8) −4 (9) −17 (15) −32 (18) −61 (20) −21 (27) −41 (25) −50 (21)

0.9 2 (11) 1 (11) 1 (11) −18 (18) −42 (20) −75 (20) −22 (28) −52 (26) −58 (18)

Numbers in brackets are the estimation errors’ standard deviation
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Fig. 5 Left autocorrelation for the isotope series from Fig. 1 (treated as regularly spaced). Right autocorrelation for the LOCAAT-lifted
isotope series

on the aggregated sets. Table 8 shows the empirical bias for
each procedure for a range of generating Hurst exponents
and degree of missingness.

The results show that our direct LoMPE method pro-
duces dramatically better empirical bias results across most
combinations of experimental conditions. For example, even
for 5 % missingness, which shows the most conservative
improvements, the median reduction in bias is four times that
exhibited by the Peng and wavelet methods. The supplemen-
tary material shows similar results using fractional Gaussian
noise and fractionally integrated processes with different
degrees of aggregation, and also shows that the estimator
variability increases markedly with increased aggregation
span δ.

Estimation in the presence of a trend Just as for classical
wavelet methods, simulation experience has shown that our
lifting-based method is not adversely affected by smooth
trends, provided we use appropriately sized neighbourhoods
to tune the number of wavelet vanishing moments. This is in
contrast with other estimation methods, e.g. the localWhittle
estimator, which are heavily affected by trends, to the point
of becoming unusable (Abry et al. 2000).

6 LoMPE analysis of environmental and climate
science data

6.1 Isotope ice core data

The sample autocorrelation of the isotope time series
introduced in Sect. 1 is shown in the left panel of Fig. 5
and the autocorrelation of the LOCAAT-lifted series in the
right panel, in both cases treating them as regularly spaced.
The powerful decorrelation ability of lifting is clear.

Our LoMPE method estimates the Hurst parameter to be
Ĥ = 0.76 which indicates long memory, with an approx-
imate bootstrap confidence interval of [0.7, 0.82]. Blender
et al. (2006) reported a Hurst exponent of Ĥ = 0.84. In
view of the demonstrated accuracy of our methods above,
we would suggest that the literature is currently overestimat-
ing this parameter and hence the persistence of the isotope
over long periods of time. This in turn leads to model miscal-
ibration and inaccurate past reconstruction, e.g. greenhouse
gases, and overestimation of their long-term effect in coupled
ocean-atmosphere climate models (Fraedrich and Blender
2003; Wolff 2005; Blender et al. 2006).

Although the focus here has been Hurst estimation on ice-
volume stratigraphy, many of these series’ characteristics—
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Fig. 6 Left autocorrelation of the BristolOzone concentration series from Fig. 2 treatedwithout missingness.Right autocorrelation after LOCAAT
transformation

Table 9 Hurst parameter estimates for Ozone irregularly spaced time series for six British locations for the Windsor and Toumi (2001) method
(W&T) and our proposed method (LoMPE)

Bristol Edinburgh Leeds London Lough Navar Rochester

W&T 0.700 0.760 0.755 0.780 0.755 0.778

LoMPE 0.847 0.804 0.827 0.832 0.837 0.851

such as irregular time sampling—are common to many other
paleoclimatic series. We have also applied our methodology
to electrical conductance ice core series and argue that our
estimation of the long-memory parameter for these series
is more reliable than that in the literature. For reasons of
brevity we do not include results here, but refer the reader to
Appendix D in the supplementary material.

Our technique could be naturally applied to other series
that might exhibit sampling irregularity and/or missingness.

6.2 Atmospheric pollutants data

Theautocorrelationbefore and afterLOCAAT-transformation
for the Bristol Ozone series is shown in Fig. 6 and again
the powerful decorrelation effect is clear. We were unable
to discern the precise method for Hurst parameters estima-
tion from irregular series in Windsor and Toumi (2001).
However, we report the values from their Fig. 8 and our esti-
mates in Table 9. On the basis of our LoMPE estimates, we
concur with the conclusion in Windsor and Toumi (2001)
that estimates are consistent across the six sites, indicat-
ing that pollution persistence is similar across rural and
urban geographical locations. However, our H estimates are,
in general, higher than those reported. This observation is
significant as it suggests that ozone is a secondary pollu-
tant which possesses a greater degree of persistence in the
atmosphere than previously recognized.Also note that in par-
ticular for ozone measurements, more persistent behaviour

results in more predictable series (Turcotte 1997; Rehman
and Siddiqi 2009) and easier detection of trends (Vyushin
et al. 2007).

7 Discussion and further work

Hurst exponent estimation is a recurrent topic in many
scientific applications, with significant implications formod-
elling and data analysis. One important aspect of real-world
datasets is that their collection and monitoring are often not
straightforward, leading tomissingness, or to the use of prox-
ies with naturally irregular sampling structures.

This article has (i) identified that naive adaption of exist-
ing long-memory parameter estimation methods gives rise
to inaccurate estimators and (ii) created a new estimator,
LoMPE, that works naturally in the irregular/missing domain
giving excellent and accurate results on a comprehensive
range of persistent processes as well as showing unexpected
excellent performance in the regularly spaced setting.

Backed up by the evidence of LoMPE’s performance,
our ice core analyses point towards an overestimation of the
isotope persistence over long periods of time and unrealis-
tically low reported errors for Hurst exponent estimates in
the literature. Our analysis of the atmospheric time series
underlines that long memory is present independent of geo-
graphic monitoring site. The results also indicate that ozone,
as a secondary pollutant, has a higher degree of persistence
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than has been previously recognized, and thus has potentially
greater long-term implications on population-level respira-
tory health. However, LoMPE is not just restricted to the
climate data applications that stimulated it, but can also be
used in other contexts where irregular sampling or missing
data are common.

For the estimator proposed in this paper, we restricted our
attention to LOCAAT algorithms using a small number of
neighbours and linear predict lifting steps. Futureworkmight
investigate higher order prediction schemes and larger neigh-
bourhoods; also, the use of adaptive lifting schemes, such
as Nunes et al. (2006), might provide benefits arising from
improved decorrelation. They would also have the advan-
tage of removing the a priori choice of a wavelet basis for
our estimator. Finally, the estimation methods introduced in
this article could be naturally extended to higher dimensions
using the Voronoi polygon or tree-based lifting transforms
introduced in Jansen et al. (2009). In the climate science
context, a novel spatial Hurst dependence estimation would
allow for inclusion of the geographical location and be con-
ducive to dynamic spatial modelling.

An interesting avenue for future research would be to
consider the use of compressed sensing methods and the
non-uniform Fourier transform, (Marvasti 2001) or the
Lomb-Scargle method to estimate the spectrum and thence
the Hurst parameter.
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Proofs and theoretical results

This appendix gives the theoretical justification of the results
from Sects. 3.1 and 4, following the notation outlined in the
text.

Proof of Proposition 1

Let {Xt } be a zero-mean stationary long-memory series with
autocovariance γX (τ ) ∼ cγ τ−β with β ∈ (0, 1).

The autocovarianceof {Xt } canbewritten asCov(Xti , Xt j )

= γX (ti − t j ) = E(Xti Xt j ), assuming E(Xt ) = 0. Hence,

E(d j ) = 0 and

Cov(d jr , d jk ) = E(d jr d jk )

=
∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jk (s)γX (t − s) ds

}

dt, (12)

where d jr =< X, ψ̃ jr > for distinct times jr and jk . Denote
the interval length (i.e. continuous scale) of detail d jr by Ir, jr .

Since from (6), the (dual) wavelet functions are linear
combinations of scaling functions, Eq. (12) can be re-written
as

E(d jr d jk ) =
∫

R

⎧
⎨

⎩
ϕ̃r, jr (t) −

∑

i∈Ir

ar
i ϕ̃r,i (t)

⎫
⎬

⎭

×
∫

R

⎧
⎨

⎩
ϕ̃k, jk (s) −

∑

j∈Ik

ak
j ϕ̃k, j (s)

⎫
⎬

⎭
γX (t − s) ds dt.

(13)

As LOCAAT progresses, the (dual) scaling functions are
defined recursively as linear combinations of (dual) scaling
functions at the previous stage, from Eqs. (4) and (5).

By recursion the scaling functions in the above equation
can be written as linear combinations of scaling functions at
the first stage (i.e. r = n). Due to the linearity of the integral
operator, (13) can be written as a linear combination of terms
like

Bn,i, j :=
∫

R

ϕ̃n,i (t)

{∫

R

ϕ̃n, j (s)γX (t − s) ds

}

dt

=
∫

R

ϕ̃n,i (t)
(
ϕ̃n, j � γX

)
(t) dt, (14)

where � is the convolution operator, and i and j refer to time
locations that were involved in obtaining d jr and d jk . Recall
from Sect. 2.3 that the (dual) scaling functions are initially
defined (at stage r = n) as scaled characteristic functions of
the intervals associatedwith the observed times, i.e. ϕ̃n,i (t) =
I −1
n,i χIn,i (t) (Jansen et al. 2009). Using Parseval’s theorem in
Eq. (14) gives

Bn,i, j = (2π)−1
∫

R

ˆ̃ϕn,i (ω)

(
̂ϕ̃n, j � γX

)

(ω) dω

= (2π)−1
∫

R

ˆ̃ϕn,i (ω) ˆ̃ϕn, j (ω) fX (ω) dω, (15)

where f̂ is the Fourier transform of f . As the Fourier trans-
formof an initial (dual) scaling function (scaled characteristic
function on an interval, (b − a)−1χ[a,b]) is

̂
{
(b − a)−1χ[a,b]

}
(ω)

= sinc {ω(b − a)/2} exp {−iω(b + a)/2} ,
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where sinc(x) = x−1 sin(x) for x 
= 0 and sinc(0) = 1 is
the (unnormalized) sinc function, we can write (15) as

∫

R

sinc
(
ωIn,i/2

)
sinc

(
ωIn, j/2

)
exp

{−iωδ(In,i , In, j )
}

fX (ω)dω, (16)

where δ(In,i , In, j ) is the distance between the midpoints of
intervals In,i and In, j at the initial stage n. Equation (16)
can be interpreted as the Fourier transform of u(x) =
fX (x) sinc

(
x In,i/2

)
sinc

(
x In, j/2

)
evaluated at δ(In,i , In, j ).

Since the sinc function is infinitely differentiable and
the spectrum is Lipschitz continuous, results on the decay
properties of Fourier transforms (Shibata and Shimizu 2001,
Theorem 2.2) imply that, for i 
= j , terms of the form Bn,i, j

decay as O
{
δ(In,i , In, j )

−1
}
. Hence the further away the time

points are, the less autocorrelation is present in the wavelet
domain and the rate of autocorrelation decay for the wavelet
coefficients is of reciprocal order, thus faster than that of the
original process.

Proof of Proposition 2

As Cov(Xti , Xt j ) = γX (ti − t j ) and d jr =< X, ψ̃ jr >, it
follows that d jr has mean zero (as the original process is
zero-mean) and in a similar manner to (12) we have

Var(d jr )=E(d2
jr )=

∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jr (s)γX (t−s) ds

}

dt.

(17)

As before, we denote the associated interval length of the
detail d jr by Ir, jr .

Using the recursiveness in the dual wavelet construction
(Eq. 6), it follows that the (dual) wavelet functions are linear
combinations of scaling functions and Eq. (17) can be re-
written as

Var(d jr ) =
∫

R

⎧
⎨

⎩
ϕ̃r, jr (t) −

∑

i∈Ir

ar
i ϕ̃r,i (t)

⎫
⎬

⎭

×
∫

R

⎧
⎨

⎩
ϕ̃r, jr (s) −

∑

j∈Ir

ar
j ϕ̃r, j (s)

⎫
⎬

⎭
γX (t − s) ds dt.

(18)

As in Proposition 1, using Parseval’s theorem we obtain

Br,i, j =
∫

R

ϕ̃r,i (t)

{∫

R

ϕ̃r, j (s)γX (t − s)ds

}

dt

=
∫

R

sinc(ωIr,i/2) sinc(ωIr, j/2)e
−iωδ(Ir,i ,Ir, j ) fX (ω)dω,

(19)

where recall that the hat notation denotes the Fourier trans-
form of a function and δ(Ir,i , Ir, j ) denotes the distance
between the midpoints of intervals Ir,i and Ir, j .

Due to the artificial level construction, the sequence of lift-
ing integrals is approximately log-linear in the artificial level,
i.e. for those points jr in the j�th artificial level, we have
log2

(
Ir, jr

) = j� +�where� ∈ {−1+ log2(α0), log2(α0)}.
Hence Ir, jr = R2 j� for some constant R > 0. This follows
from the fact that the artificial levels are defined as a dyadic
rescaling of the time range of the type (2 j�−1α0, 2 j�α0],
and the result follows as on a log2 scale, the artificial
scale intervals become ( j� − 1 + log2(α0), j� + log2(α0)].
For an alternative justification when using a quantile-based
approach for the artificial scale construction, the reader is
directed to Appendix B in the supplementary material. Now
suppose i = j and both points belong to the j�th artificial
level. In Eq. (19) we make a change of variable η = ωR2 j�

to obtain

Br,i,i =
∫

R

sinc2(η/2) fX (η/R2 j� )
(

R2 j�
)−1

dη

∼
∫

R

sinc2(η/2)c f |η|−α
(

R2 j�
)α−1

dη, ( j� →∞)

= 2 j�(α−1)
∫

R

c f Rα−1 sinc2(η/2)|η|−αdη

= 2 j�(α−1) Rα−14c f �(−1 − α) sin(πα/2), (20)

where α ∈ (0, 1) and � is the Gamma function. If i 
= j are
points from the same neighbourhood Ir and both belong to
the same artificial level j�, then their artificial scale measure
will be the same. Performing the same change of variable as
above, we obtain

Br,i, j ∼
∫

R

sinc2(η/2)e−i η
(

R2 j�
)−1

c f |η|−α
(

R2 j�
)α

dη,

( j� → ∞)

= 2 j�(α−1)c f Rα−1
∫

R

sinc2(η/2)e−i η|η|−αdη

= 2 j�(α−1) Rα−14c f (2
α − 1) sin(πα/2)�(1 − α).

(21)

All terms in (18) involve points from the sameneighbourhood
Ir , and thus using (20) and (21) together with the linearity
of the integral operator, we have that

Var(d jr ) ∼ C 2 j�(α−1),

where C is a constant depending on c f , R and α. ��

123



Stat Comput

log integrals

F
re

qu
en

cy

log integrals

F
re

qu
en

cy

log integrals

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
50

10
0

15
0

20
0

−2 0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

−6 −4 −2 0 2 4 6 8

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Fig. 7 Three different interpoint distance samples (time sampling configurations) from Exp(1), χ2
3 and U[0,1] distributions, with associated log2

integrals. The (log2) integrals are approximately normally distributed

Establishing approximate log-linearity of the lifting
integral

This appendix demonstrates the log-linearity of the lifting
integral Ir, jr as a function of the artificial scale ( j� in the
notation of Sect. 4), when the construction we follow is, by
defining the artificial levels as inter-quantile intervals of the
lifting integrals, segmenting at e.g. median, the 75 % per-
centile, the 87.5 % percentile and so on.

Inwhat follows, we assume that the time locations (ti )
N−1
i=0

corresponding to the long-range dependent (LRD) process
{Xti }N−1

i=0 are generated from a random sampling process.
Recall that initially, the lifting algorithmworks by construct-
ing an initial set of ‘integrals’ associated to each observation
(ti , Xi ). Onewayof doing this is to construct intervals having
the endpoints as the midpoints between the initial grid points
(ti )

N−1
i=0 , see Nunes et al. (2006) and Jansen et al. (2009)

for more details. We assume that log2
(
Ir, jr

)
follow a nor-

mal distribution with some mean μ and variance σ 2. This
assumption is realistic considering the additive nature of the
update stage for integrals, and is also backed up by numerical
simulations.

Lemma 1 For simplicity of notation, let I := Ir, jr be the ran-
dom variable defined by the integral associated to the rth
lifted observation, and assume that this was classified in the
j th artificial level based on its size. Then

E(log2(I ) | I ∈ j th artificial level) ≈ j ∗ a + k, (22)

i.e. the lifting integral associated with detail dr, jr is approx-
imately a log-linear function of its artificial level j .

Proof We start by noting that as the cumulative distribution
function of a standard normal distribution, �(·) and log2(·)
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Fig. 8 Three different interpoint distance samples (time sampling configurations) from an Exp(1), χ2
3 and U[0,1] distributions, with associated

log2 integrals, split into artificial levels, j�. There is a clear linear relationship between the log2 integrals and the artificial levels

are both non-decreasing functions, the integral classification
using quantiles is equivalent to a classification of log2(I )
using the quantiles of the normal distribution (or, in practice,
the sample quantiles).

Therefore, our problem is to compute the expectation of
a normal random variable, say Z = log2(I ), conditional on
it taking values on an inter-quantile interval of the N (μ, σ 2)

distribution, which we shall denote by (z j−1, z j ]. Here z j =
μ+σ�−1

(
1 − 2− j

)
, reflecting our construction of artificial

levels.Hence this randomvariable follows a truncatednormal
distribution, whose mean is given by

E(Z | Z ∈ (z j−1, z j ])

= μ + σ

{

�

(
z j − μ

σ

)

− �

(
z j−1 − μ

σ

)}−1

×
{

φ

(
z j−1 − μ

σ

)

− φ

(
z j − μ

σ

)}

≈ μ + σ 2

z j − z j−1

{

1 − φ

(
z j−1 − μ

σ

)−1

φ

(
z j − μ

σ

)}

using a Taylor expansion of � and �′ = φ

≈ μ + σ 2

z j − z j−1

(z j − z j−1)(z j + z j−1 − 2μ)

2σ 2

using the expression of φ and ex ≈ 1 + x

≈ 1
2 (z j + z j−1),

where φ(x) denotes, as usual, the standard normal density.
Using a simple interpolation argument along the cumu-

lative distribution function � and the definition z j = μ +
σ�−1

(
1 − 2− j

)
, we further express the above as

E(Z | Z ∈ (z j−1, z j ]) ≈ μ + σ�−1
{
1 − 3 · 2−( j+1)

}

= μ + σ�−1 { f ( j)} , where f ( j) = 1 − 3 · 2−( j+1),
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and we want to show that �−1 ◦ f (·) is a linear function (in
j). This is equivalent to showing that f −1 ◦ �(·) is a linear
function (in zα), where f −1(α) = − log2(3/2−α) for some
α ∈ (0, 1). Using a log(1 + x) ≈ x approximation, together
with the linearity of �(zα) (in zα) over most of its domain,
our result follows. ��

We conjecture that a = 1 and back this claim by sim-
ulations, as shown in the following section. This is also in
agreement with the other way of constructing the artificial
levels, as explained under Sect. A.2 in Appendix A.

Empirical demonstration of the log-linearity of Ir, jr

In this section we demonstrate empirical evidence to demon-
strate the log-linearity of the lifting integral. To show breadth
of applicability, we simulate random vectors of length n =
1000 from a number of distributions to represent instances
of sampling interval processes (ti )

N−1
i=0 , for a fixed trajectory

and process {Xti }N−1
i=1 . More specifically, we simulate a sam-

pling regime from each of (a) a Exp(1); (b) a χ2
3 and (c) a

U[0,1] distribution. We then perform the lifting algorithm
and examine the lifting integrals produced, on a log2 scale.
Figure 7 shows histograms of the LOCAAT integrals log2(I )
for the three different distributions; there is evidence of the
approximate normality of the log-transformed integrals.

Figure 8 shows the relationship between log2(I ) and its
corresponding artificial level j� for the three different dis-
tributions. In all cases, the relationship is strikingly linear
as a function of the artificial level, j�; moreover, the rela-
tionships have approximate unit slopes, with the intercepts
varying across the initial distributions.
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