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Abstract
We propose a 2D model-based approach for tracking hu-

man body parts during articulated motion. A human is mod-
eled as a stick figure with thirteen landmarks, and an action
is a sequence of these stick figures. Given the locations of
these joints in a model video and only the first frame of a
test video, the joint locations are automatically estimated
throughout the test video using two geometric constraints.
The first constraint is based on the invariance of the ratio
of areas under an affine transformation, and provides ini-
tial estimates. The second one is based on the fundamen-
tal matrix, defined by the corresponding landmarks of the
two actors, and refines the initial estimates. Using these
estimated locations, the tracking algorithm determines the
exact location of each joint in the test video. The novelty
of our approach lies in the geometric formulation of human
actions and the use of geometric constraints for body joints
estimation. The approach is able to handle variations in an-
thropometry of individuals, viewpoints, execution rate, and
style of action execution. Experimental results provide en-
couraging quantitative and qualitative performance analy-
sis.

1 Introduction
The analysis of human motion and activities by a ma-

chine has attracted the attention of many researchers. De-
tection and tracking of different body parts (arms, legs,
torso etc.) or landmark points (elbows, knees, shoulders
etc.) provides important low level information for surveil-
lance, human-computer interaction, action recognition, ath-
lete performance analysis, etc. The success of the above
mentioned applications strongly relies on the accuracy of
body joint detection and tracking.

Since a general solution to body part tracking is con-
sidered difficult to find, approaches encapsulate constraints.
These approaches are classified into model-free and model-
based due to these constraints [1]. Model-free approaches
do not rely on any prior knowledge about human pose or
structure. Several bottom up detection approaches were
proposed [3, 4, 5]. In these approaches body parts were de-
tected using AdaBoost [3], 2D shapes [5], and local appear-
ance models [4]. Model-free approaches may suffer from
long computational time due to the need to prune wrong

detections and human configuration [7]. Model-based ap-
proaches make use of the prior 2D and(or) 3D information
about the structure and/or kinematics of human body. There
were shape based approaches [2], motion based approaches
[8, 10], and a combination of both types [9, 11]. Large
databases of shapes and motion patterns [9, 6] increase ro-
bustness to viewpoint change. The analysis of a complex
human motion requires features, which were extracted from
the shape and the motion of human body [12, 6]. [13] pro-
poses an approach motivated by the laws of physics, and
presents a kinematic model. [14] presents a new approach,
which is based on hierarchical learning of appearance fea-
tures using an extensive training data set.

The proposed method explores underlying geometrical
similarity between the model and test actions. The nov-
elty of the method is the unique geometrical formulation of
human action, and the combination of the two geometric
constraints for estimation of the joint locations in the test
video. One advantage of this work is the avoidance of er-
ror propagation from frame to frame in the estimation pro-
cess, because each joint estimate is computed based on cor-
respondence between first frame of the model and the test
videos. Another advantage is that unlike most of the pre-
vious approaches, our approach separates spatial and tem-
poral information, which allows for the recovery of spatial
search space as soon as the human model is initialized in
the first frame of the test video. The third advantage is a
robustness to variations in anthropometry, execution rate,
viewpoint and execution style. Another advantage is that
the estimation phase helps detecting the cases of self occlu-
sions. This is not computationally expensive and does not
require extensive training.

2 Estimating Joint Locations

A human body is modeled by a stick figure, which con-
nects 13 landmarks (head, neck, two shoulders, two elbows,
two hands, belly button, two knees, and two feet). We
assume that all the landmarks are available for the entire
model video and only the first frame of the test video. With-
out loss of generality, the action execution rate in model and
test video is assumed to be the same. This assumption will
be relaxed in tracking phase.
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Affine Constraint: A human action can be considered
as a sequence of stick figures. We first show that the affine
constraint can be derived for the human action in 3D, and
then reduced to the 2D case in the image space. Fig. 1
shows stick figures from frame 1 and frame t of the model
and test videos. The body points connected by solid lines
are known, while those connected by broken lines (test
video) are unknown, including x′0. Landmarks xi repre-
sent 2D imaged locations of the 3D real-world landmarks
Xi. As shown in the figure X1,X2,X3, and X4 can be
considered coplanar in 3D with X0 off the plane. Connect-
ing X0,X1,X2,X4 in 3D creates a volume VX0,X1,X2,X4 .
Now consider volumes VX0,X1,X2,X4 & VX0,X2,X3,X4 ob-
served from model view and volumes VX′0,X′1,X′2,X′4 &
VX′0,X′2,X′3,X′4 observed from test view. With the amount
of out of plane motion being very small relative to the dis-
tance from the camera, an affine transformation relates the
two volumes [16], i.e.
VX0,X1,X2,X4

VX0,X2,X3,X4

=
VX′0,X′1,X′2,X′4

VX′0,X′2,X′3,X′4

, (1)

VX0,X1,X2,X4=
SX1,X2,X4h

3
,VX0,X2,X3,X4=

SX2,X3,X4h

3
,

VX′0,X′1,X′2,X′4=
SX′1,X′2,X′4h

′

3
,VX′0,X′2,X′3,X′4=

SX′2,X′3,X′4h
′

3
,

where SXi,Xj ,Xk
is the area of base triangle and h is the

height. Since 4(X1,X2,X4) and 4(X2,X3,X4) lie on
the same plane in 3D, the ratio of volumes in Eq.1 can be
rewritten in terms of area, projected onto the image planes
of both cameras
SX1,X2,X4

SX2,X3,X4

=
SX′1,X′2,X′4

SX′2,X′3,X′4

=
Sx1,x2,x4

Sx2,x3,x4

=
Sx′1,x′2,x′4

Sx′2,x′3,x′4

. (2)

The ratios in Eq.1 and 2 can be also expressed in other terms

VX0,X1,X2,X4=
SX0,X1,X2h1

3
,VX0,X2,X3,X4=

SX0,X2,X3h2

3
,

VX′0,X′1,X′2,X′4=
SX′0,X′1,X′2h

′
1

3
,VX′0,X′2,X′3,X′4=

SX′0,X′2,X′3h
′
2

3
,

where h1, h2, h
′
1 and h′2 are distances from X4 and X′

4 to
the planes of base triangles. Hence, the Eq.1 can be rewrit-
ten as SX0,X1,X2h1

SX0,X2,X3h2
=

SX′0,X′1,X′2h
′
1

SX′0,X′2,X′3h
′
2

.

Note that, for human articulated actions, the ratio of vol-
umes in this equation can be approximated by area, pro-
jected onto image planes

Sx1,x2,x4

Sx2,x3,x4

≈ Sx0,x1,x2

Sx0,x2,x3

≈ Sx′0,x′1,x′2

Sx′0,x′2,x′3

. (3)

We estimate the location of the hand x′0 (see Fig. 1) using
the constraints based on the invariance of ratio of triangular
areas. One of these constraints can be derived from the area
of triangles 4(x1,x2,x4) and 4(x0,x1,x2) from model
video and another pair of 4(x′1,x

′
2,x

′
4) and 4(x′0,x

′
1,x

′
2)

from the test video. Note that Fig. 1 shows the two frames
side by side for illustration purposes only, in reality these
triangles are projected on top of each other. The invariance
of ratio of areas between the model and the test video is
presented as
Sx0,x1,x2

Sx1,x2,x4

≈Sx′0,x′1,x′2

Sx′1,x′2,x′4

⇒Sx′0,x′1,x′2−
Sx0,x1,x2

Sx1,x2,x4

Sx′1,x′2,x′4≈0.

This imposes one constraint for the solution of x′0 as a
quadratic equation. Similarly, all other possible pairs of tri-
angles, with x′0 as the common vertex, can be selected to
apply more constraints on x′0. Since there are 13 landmarks,
there are 66 possible triangle pairs. Thus, we have an over
constrained system of quadratic equations of the form

Sx′0,x′i,x
′
j
− Sx0,xi,xj

Sxi,xj ,xk

Sx′i,x
′
j ,x′k ≈ 0,

where k, i, j = 1, . . . , 12 and k 6= i 6= j. This system
of equations is solved using nonlinear least squares. Note
that recovering x′0 is independent of the other landmarks in
the frame and does not rely on the computed locations in the
previous frames, so the propagation of error is avoided. This
estimation is only robust if an affine transformation relates
the two viewpoints. In case of a perspective transformation,
we need additional constraints to reduce the estimation er-
ror.

Epipolar Constraint: The estimation error induced by
the affine constraint can be reduced by applying an epipo-
lar constraint between the two actors. Given the correspon-
dences among the joints in the first frame of the model and
test videos, the fundamental matrix F is given by the rela-
tionship xkFx′k = 0. A given joint location in the model
video is mapped to a line in the test video through the funda-
mental matrix. The epipolar line limits the search space of
the joint location in the test video. The point on the epipolar
line closest to the initial estimate is chosen as the final esti-
mate. The combination of the two constraints significantly
reduces the estimation error for the pair of the wide baseline
cameras, and captures the variations in viewpoints and the
anthropometry of the individuals.

3 Joint Tracking
The estimated locations were used, along with the ob-

served features, to track the 13 landmarks. In our method,
foreground silhouettes are used as the observed features.
We chose this simple feature to emphasize the impor-
tance of the previously computed joint estimates. This
approach would be useful in challenging cases with non-
discriminative local appearance (see Fig. 7). A human body
is represented by a cardboard model, as shown in Fig. 2(h).
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Figure 2. The main steps for detecting the right arm in
the current frame. (a) The input frame of the test video, (b)
extracted silhouette, (c) ICM for right arm, (d) subtraction
of (c) from (b), (e) right arm templates from a subset of
estimates are used to find position of the right arm, (f) se-
lected best overlap, (g) the same procedure is repeated for
the remaining body parts, and (h) final detection results.

In order to determine the exact locations of the body parts in
the test video, each part of the cardboard model was fitted
hierarchically to silhouette at each time instant. We agree
with Navaratnam et al. in [7] that such hierarchical fitting
is less complex than using the pictorial structure used in
[2, 4]. The model is initialized in the first frame using the
available locations of the 13 landmarks. For the follow-
ing frames, the hierarchical detection of each segment in
the test frame is performed in the following order: torso
(belly, both shoulders), head, legs, and arms. The main
steps involved in tracking the right arm are shown in Fig.2.
Fig.2(a,b) show the current frame and extracted silhouette,
respectively. The cardboard templates, positions of which
were determined in the previous frame, constitute an inter-
mediate cardboard model (ICM), in which the right arm is
not included, see Fig.2(c). ICM is subtracted from the sil-
houette to isolate part of the silhouette corresponding to the
right arm, Fig.2(d). The positions of the template corre-
sponding to the right arm are drawn from a subset of esti-
mates for each joint of the right arm over a temporal win-
dow, Fig.2(e). The best overlap between right arm template
and isolated blob of the silhouette determines the best tem-
plate position, Fig.2(f). The use of the temporal window
addresses the variation in the rate of the action execution
for each body part independently. The template location is
further improved by a local search over template length and
rotation angle. This operation accommodates for the spa-
tial variation in the style of the action execution. Fig.2(g,h)
show the final position of the cardboard model over the sil-
houette and current frame, respectively.

Occlusion Handling: A common problem in human
body part tracking is self occlusion among body parts. Fig.
3(a) shows one example where both arms come in front of
the torso and are not distinguished in the silhouette.

We use two measures for detecting start and end of self
occlusion. The first measure is αt

j , which represents the area
of the foreground blob, corresponding to the jth segment in
the tth frame. The second measure is βt

j , which represents
the proportion of the detected segment j that is occluded by
the other segments of the cardboard model. The condition
for occlusion is based on the normalized change over time
τ ,
∑t−1

i=t−τ αi+1
j − αi

j

ταt−τ
j

< T,

∑t−1
i=t−τ βi+1

j − βi
j

τβt−τ
j

> T,
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Figure 3. Occlusion handling: (a) Snapshots of the mov-
ing arms, (b) Cardboard models superimposed on silhou-
ettes. Templates corresponding to occluded body parts are
shown in green. Presence of occlusion is detected by the
amount of change in αt

j and βt
j . In particular, (c) and (d)

show αt
j and βt

j values corresponding to the left arm.
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Figure 4. Error in joint estimation. The first row shows
the maximum euclidian error in estimations from view 1 to
2 (a) and view 2 to 1 (b). The second row presents frames
from each view with maximum error.

where T is the percentage threshold (we use 70% in our
experiments) and τ is the size of the temporal window. Pos-
itive T value signifies entering occlusion, while the nega-
tive T value signifies exiting occlusion. The plots shown in
Fig. 3(c,d) present the change in these parameters for the
left arm. Once the start and the end of occlusion are deter-
mined, the difference in the rate of actions between model
and test videos is calculated. Linear interpolation is used
to estimate the joint locations during this occlusion interval.
Fig. 3(d) shows the estimated location of the arms on the
foreground silhouette during occlusion.

4 Experimental Results
Experiments were performed on several video sequences

to analyze the performance of the proposed approach.
These videos contained articulated motion, self occlusion,
change in viewpoints, and a variety of actors. In the first ex-
periment (shown in Fig. 4(a, b)) an action was captured by a
pair of cameras with significant perspective variation. The
length of the video was 163 frames. In both videos body
joints were manually marked for the ground truth. Using
the joint locations in view 1 and initialized landmarks in the
first frame of the view 2, the locations of the joints in video
2 were computed and compared to the ground truth. This
process was repeated in the reverse direction. Estimated tra-
jectories were computed in two different ways: using only
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Figure 5. Joint estimation. (a) Trajectories corresponding to the model action. (b-g) show the trajectories of estimated joint
locations of four different actors with significant changes in the anthropometric measurements.

Figure 6. The output of tracking on 285 frames sequence is shown here. The tracking output was observed to be accurate.
1 80 137 200 268 314 352 380 400 440 476

Figure 7. Output of the tracking phase on the video shown in Fig. 5(c). The test video is 476 frames long with articulated motion
or arms. The arm undergoes full (frame 80) and partial occlusion (frame 400).
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Figure 8. Plot shows mean of tracking error in the thir-
teen landmark locations. Each curve corresponds to a video
shown in Fig. 5(c-f). Video (c) is also shown in Fig. 7
and the two peaks correspond to the instances with severe
occlusion of arms.

affine constraint and affine with epipolar constraint. The
first row of Fig. 4 shows the plot of maximum error in each
frame. In this case the epipolar constraint reduces the error
significantly. The second row of Fig. 4 shows the frames
with the largest error. The results demonstrated here show
the robustness to the viewpoint changes. Fig. 5 shows more
estimation results on six videos with the predicted trajecto-
ries superimposed on a keyframe.

The results of the tracking phase are presented for two
different actions. The results of the first action are shown in
Fig. 6. This video contains 285 frames and the body parts
were tracked correctly throughout all frames. The second
action was more challenging as it contained larger varia-
tions in the viewpoint, anthropometry of individuals and the
execution rate. In addition, there is large out of body plane
motion and self occlusion. Fig. 5 shows the estimation re-
sults for this action and Fig.7 shows the tracking results for
the video in Fig. 5(c). Fig. 8 presents a graph of the track-
ing errors from the four videos shown in Fig. 5(c-f). The
peaks in error are at the point of self-occlusion.

5 Conclusion
We have proposed a novel 2D model-based approach for

human body joint estimation and tracking. It can have vari-
ety of applications in the area of action and activity analysis.
The formulation of the geometric constraints on the geome-

try of human action is novel. Compared to other approaches
that use either linear or non-linear filters for human motion
modeling, the proposed approach is easier to adapt to any
model, more robust to viewpoint changes, and does not re-
quire extensive training. The experiments support the thesis
that the proposed approach can handle significant variations
in the anthropometry and execution rate. This research was
funded by the US Government VACE program.
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