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From Projection Pursuit and CART to Adaptive
Discriminant Analysis?

Rémi Gribonval

Abstract—While many efforts have been put into the devel-
opment of nonlinear approximation theory and its applications
to signal and image compression, encoding and denoising, there
seems to be very few theoretical developments of adaptive discrim-
inant representations in the area of feature extraction, selection
and signal classification. In this paper, we try to advocate the idea
that such developments and efforts are worthwhile, based on the
theorerical study of a data-driven discriminant analysis method
on a simple—yet instructive—example. We consider the problem
of classifying a signal drawn from a mixture of two classes, using
its projections onto low-dimensional subspaces. Unlike the linear
discriminant analysis (LDA) strategy, which selects subspaces that
do not depend on the observed signal, we consider an adaptive
sequential selection of projections, in the spirit of nonlinear ap-
proximation and classification and regression trees (CART): at
each step, the subspace is enlarged in a direction that maximizes
the mutual information with the unknown class. We derive explicit
characterizations of this adaptive discriminant analysis (ADA)
strategy in two situations. When the two classes are Gaussian with
the same covariance matrix but different means, the adaptive
subspaces are actually nonadaptive and can be computed with
an algorithm similar to orthonormal matching pursuit. When
the classes are centered Gaussians with different covariances, the
adaptive subspaces are spanned by eigen-vectors of an operator
given by the covariance matrices (just as could be predicted by
regular LDA), however we prove that the order of observation
of the components along these eigen-vectors actually depends on
the observed signal. Numerical experiments on synthetic data
illustrate how data-dependent features can be used to outperform
LDA on a classification task, and we discuss how our results could
be applied in practice.

Index Terms—Classification and regression trees (CART), classi-
fication tree, discriminant analysis, mutual information, nonlinear
approximation, projection pursuit, sequential testing.

I. INTRODUCTION

I N THE last decade, nonlinear approximation and sparse de-
compositions with wavelets or other dictionaries of func-

tions [1] have emerged as very successful tools for compression,
encoding and denoising of signals and images. Important efforts
have been put into the development of a coherent theory of non-
linear approximation [2] and efficient practical algorithms have
been introduced and studied [3]–[6].

The principle of nonlinear approximation consists in pro-
jecting a signal or an image (seen as a vector of sample
or pixel values in a high-dimensional vector space ) onto a
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low-dimensional linear subspace which is selected adap-
tively, that is to say depends on . Surprisingly, there seems
to be very few investigations of what benefits this simple
principle could bring to the area of feature extraction, selection
and signal classification. Indeed, many dimension reduction
techniques used in these domains are linear: they project the
data onto a fixed low-dimensional subspace and try to
keep in the projection as much as possible of the relevant
information carried by .

One of the objectives of this paper is to advocate and pro-
mote the development of a theoretical analysis of adaptive dis-
criminant analysis (ADA), that is to say discriminant analysis
based on data-adaptive projections. Our contribution to this de-
velopment consists in the mathematical analysis of an ADA
method—which is based on an information theoretic optimiza-
tion criterion—in the context of discrimination between two
Gaussian multivariate classes with either equal means or equal
covariances.

The paper is organized as follows. In Section II, after re-
calling the principles of linear and nonlinear approximation, we
switch to the framework of (statistical) classification and fea-
ture selection. A quick tour through classical techniques sheds
light on their common structure, which resembles that of linear
approximation: a linear projection onto a fixed subspace, inde-
pendent of the test data to classify. In Section III, combining
ideas from projection pursuit [7] and classification and regres-
sion trees (CART) [8], we give a theoretical description of what
an ADA method should look like, and point out some of the dif-
ficulties and questions related with this approach.

Our main contribution starts in Section IV: we state our the-
orems about ADA on the example of a mixture of two multidi-
mensional Gaussian random variables. Our main point is that,
if the two Gaussians share the same mean but have different co-
variance matrices , then the feature sequence (chosen
among the huge dictionary containing all possible unit vectors
in ), which consists in eigen-vectors of (Theorem 2),
should be observed in an order that depends (Theorem 3) on the
test data that is to be classified. The theorems are proved in
the Appendix. Based on our theoretical results, we describe in
Section V an adaptive feature selection and classification algo-
rithm and compare it numerically to linear discriminant analysis
(LDA). The numerical experiments on synthetic data show that
the data-adaptive classifier outperforms LDA.

II. FROM APPROXIMATION TO CLASSIFICATION

In this section, we briefly introduce some general background
about linear/nonlinear approximation, Bayesian decision theory
and feature extraction.
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A. Linear and Nonlinear Approximation

Given an orthonormal basis of the finite di-
mensional Euclidian space , one can approximate (linearly)
any input vector by its orthonormal projection

onto the subspace

If is a random variable (in the rest of this paper we will
use lower case letters for the realizations and upper case
letters for random variables) and is its Karhunen-Loève
basis (or principal components), then it is well known that
for each , the subspace minimizes the expected error

of linear approximation over all -di-
mensional subspaces . However, nonlinear approximation
[2] provides for each input vector a smaller approximation
error than linear approximation. If denotes the set of
the largest coefficients of in the basis—which obviously
depends on —then the best nonlinear approximant of is

B. Feature Extraction, Selection, and Classification

The classification of a high-dimensional signal (typ-
ically, a speech feature vector or an image), consists in finding
its unknown class , where is a symbol in a finite alphabet,
e.g., the name of the speaker in a speaker identification problem.
Assuming the observed data and its unknown class are
realizations of random variables and with joint proba-
bility distribution , the classification of an observed
data can theoretically be performed using the maximum like-
lihood (ML) estimator or, in a
Bayesian framework, the maximum a posteriori (MAP) esti-
mator .

Remark 1: Generally, a training dataset
is used in a learning stage to estimate a model of . In this

paper, we will not touch upon the intrinsic statistical problems
of the estimation of ; we will assume is a perfectly
known distribution, therefore, no training set is assumed. In this
sense, this paper is of a theoretical nature.

Due to the high dimension of the random variable and
the possibly intricate structure of the conditional law ,
the true ML/MAP estimator is not usable in practice and is
commonly replaced with some new estimator
where is a low-dimensional vector of
features. A new problem becomes the selection of appropriate
features that do not degrade the performance of the classifi-
cation. The rest of this paper is focussed on the selection of
linear features of the form , for some vector

.

Several techniques of feature selection have been introduced
and thoroughly studied in the literature of pattern recognition
[9]–[13]. Let us make a quick tour.

1) Principal Component Analysis: First comes to mind
principal component analysis (PCA), which we described
briefly above: it selects features according to their approx-
imation power, but we have already seen that a nonlinear
approximation strategy is more efficient, i.e., it better describes
the data. Moreover, classification requires the selection of
informative features, which is quite different from the good ap-
proximation power of the features selected by linear/nonlinear
approximations.

2) Independent Component Analysis and Sparse
Coding: Alternatives to PCA are independent component
analysis (ICA) [14] and sparse coding [15], which have been
the subject of intense research in the last decade. While
the Karhunen–Loève (orthonormal) basis
selected by PCA merely decorrelates the components

, ICA and sparse coding attempt to
find independent (resp. sparse) components. This is generally
done with nonlinear optimization techniques relying on higher
order moments. Independence (resp. sparsity) of the features

is certainly a desirable property for many
applications such as source separation or compression, however
it does not guarantee that each feature brings any valuable
information about the unknown class . In other words,
independent (resp. sparse) components are not necessarily
discriminant.

3) LDA: In Fisher’s LDA [9], [11], [12], a basis
is defined such that for each , the

first basis vectors maximize a discriminant mea-
sure. Computationally efficient LDA algorithms were recently
defined, where a (suboptimal) basis is selected from a library of
bases [3], [16]–[18]. A common aspect of LDA techniques is
that, for a prescribed number of features, the very same set
of basis vectors (i.e., the same linear projector

on the same subspace ) is used for every input data
that needs to be classified.

III. FROM LDA TO ADAPTIVE FEATURE SELECTION

LDA is analogue in structure to linear approximation, with
the difference that the chosen subspace maximizes a
discriminant measure instead of minimizing an approximation
error. In this section, we consider what could be the analogue
of nonlinear approximation for discriminant analysis, that is to
say how one could select a data-dependent subspace
with a discriminant measure. First, we see how nonadaptive,
embedded subspaces can be
selected using a projection pursuit approach [7]. Then, using
ideas from CART [8], we will propose a theoretical mean of
changing viewpoint and making the sequential selection adap-
tive. In Section IV, we will provide a more explicit construction
of data-dependent embedded subspaces for a classification
problem with two Gaussian classes. We will describe in Sec-
tion V an algorithm that is based on this construction and
compare it numerically to LDA on an example.
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A. Sequential LDA and Projection Pursuit

In the spirit of the projection pursuit/matching pursuit algo-
rithm [7], [19], one can select iteratively (linear) features from a
dictionary of unit vectors with an information
criterion. A first vector

(1)

is selected, where is a measure of the “average in-
formation” that the random variable gives about . In
this paper, we will focus on the case where

is the mu-
tual information [20], however, one could consider several other
measures of information, such as the Hellinger distance, the
Kullback–Leibler divergence, etc.

Using the chain rules for mutual information [20], the fol-
lowing vectors are iteratively defined (for ) as:

(2)

Remark 2: There is, in general, no simple expression of the
conditional mutual information described previously, hence,
real-life algorithms must estimate it in practice with Monte
Carlo methods, and its estimate for large has poor statistical
significance. In order to overcome this issue, some authors
[18], [21], [22] replace (2) with

(3)

How different is the feature sequence selected with (3) from the
one chosen through (2) ? We will give an answer to this question
for an example in Section IV.

B. Adaptive Feature Selection and CART

Using (2) or the heuristics (3) noticeably leads to (nonadap-
tive) variants of LDA. Instead, a data-dependent choice

would depend explicitly on the observations
that were already collected about at the previous

iterations, in the spirit of CART [8]. In a binary decision tree,
each node of the tree is associated to a binary test . Starting
from the root node, a signal is classified by descending recur-
sively through the branches of the tree as follows: if the binary
test at the current node answers 0, the signal is sent to the left
child of the node, else it is sent to the right one. The process
ends when the signal reaches a leaf node and is assigned the
class label of this leaf.

Here, instead of a binary tree, we have a tree where the
number of branches starting from each node is essentially
the number of linear features in the dictionary . At the
root node, a first feature is chosen using only our prior
knowledge, i.e., the distribution just as in (1). Then
the feature is observed, and we now know that

belongs to the set of realizations of the random variable
that satisfy . Using this information, a second
vector
is chosen, and a second feature is observed.

The process goes on iteratively for with the selection of
as

(4)

While, for obvious reasons, cannot depend on , it is natural
to wonder whether and how depends on for .
Such questions will be studied and answered in the next sec-
tion on two examples. Such an adaptive feature sequence (AFS)

has a tree structure which is quite
different from the nonadaptive sequences that can be selected
through (2) or (3). Indeed, the difference between the adaptive
selection rule and the nonadaptive ones is of the same nature
as the difference between linear and nonlinear approximation:
they correspond to a different approach to the feature selection
problem. The adaptive rule can bring some improvement in clas-
sification performance when very few features are
selected compared to the nonadaptive ones, but it is also more
complex to understand, analyze and implement than the non-
adaptive one. We dedicate the rest of this paper to its theoretical
and practical analysis on a tractable example.

Remark 3: After the observation of each feature ,
it is possible to either select and observe the next one, or to stop
and make a decision on the class of . Wald’s sequential deci-
sion theory [10], [23] would help design a stopping criterion to
select adaptively the number of observations, this would
correspond to pruning the AFS tree. Note that in CART and its
variants [24], decision trees are also pruned but for a different
reason: the aim is to avoid fitting the training data they were
learned from.

IV. ADAPTIVE FEATURES FOR TWO GAUSSIAN CLASSES

As we already pointed out, the conditional mutual informa-
tion has in general no simple analytic expression. The explicit
computation of the AFS from (4)
is in general almost impossible, and one has to rely either on
Monte Carlo estimation or on a nicely structured distribution

.
In a very specific, well-structured problem, Geman and Je-

dynak [25] were able to exhibit a simple algorithmic rule (“ac-
tive testing”) that computes a maximizer of a suitably modi-
fied version of (4). Later on, Geman and Li [26] dealt with the
case of a mixture of (multidimensional) Gaussian classes and

a given basis, however they replaced the mutual infor-
mation with the Hellinger distance, for which they were able
to derive an analytic expression. In this section, we state sim-
ilar results for a mixture of two (multidimensional) Gaussian
classes, using the mutual information—which is more complex
to manipulate than the Hellinger distance—and choosing linear
features in a redundant dictionary .

A. Notations

We consider a mixture of two Gaussian classes
and , with mixture parameter . That is to
say: the conditional distribution of under the hypothesis

is the multivariate normal distribution
with mean and covariance ; the prior distribution of the
two classes is given by . We assume that has
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full rank, . Given a dictionary , what is the AFS
? The answer depends on whether

the two Gaussians share the same mean or covariance matrix or
not, and how large the dictionary is.

B. Case where

If the Gaussians share the same covariance matrix , but have
different means, then the best strategy is to select one vector co-
linear to the matched filter [27] , if such a vector is
contained in the dictionary; otherwise the best sequence can be
computed with an algorithm similar to an orthonormal matching
pursuit [28]. This is our first theorem, which is similar to a result
of Li [26, p. 44] with the Hellinger distance, and an
orthonormal basis:

Theorem 1: Assume and , and let
be any dictionary. A sequence is an AFS if,
and only if, for

(5)

where defines a weighted inner product on
is the associated weighted Euclidian norm and

is the orthonormal projector (with respect to this inner product)
onto the orthonormal complement of

.
The proof is in the Appendix. In this case, the discrimination

problem is indeed very close to an approximation problem, and
the AFS coincides with the features predicted by Fisher’s LDA
that are independent of the test data .

Looking at the proof would also show that here, selecting the
features with the simplified criterion (3) would yield the same
nonadaptive feature sequence, and this may explain the good
behavior of nonadaptive feature selection strategies [18], [21],
[22] that use linear projections instead of conditional mutual
information estimation.

C. Case where

The situation becomes completely different if the two Gaus-
sians share the same mean but have different covariance ma-
trices. In this case, Theorem 2 will show that the AFS among a
huge dictionary—containing all possible unit vectors in —is
a sequence of eigenvectors of (which was predicted by
LDA using the Bhattacharyya discriminant measure [11, pp.
456–457]). However, and this is the main point of this paper,
Theorem 2 will show that the order of the sequence is now
data-dependent, i.e., it depends on .

Theorem 2: Assume that and .
Let be the whole unit sphere of and a basis
of unit eigenvectors of . There exists an (adaptive) per-
mutation of such that

is an AFS if, and only if, for all and

(6)

The proof is in the Appendix. In this case, the AFS potentially
depends on the test data , in that the order of the
observations may depend on . The following definition
will be useful to characterize the dependence.

Definition 1: Let be the eigenvalues of as-
sociated to the unit eigenvectors , and for

, let be the indexes of the
extremal remaining eigenvalues after steps

(7)

(8)

For , and are actually independent of . We al-
ready noticed that the first feature vector cannot depend on ,
hence, , and are independent of . For
(and by consequence and ) can generally depend
on . The reason for the previous definition is the following the-
orem, which gives more information on the nature of this depen-
dence. Let us denote

(9)

the a posteriori probability that after observations.
Theorem 3: Let with ‘log’ the natural

logarithm and define

(10)

(11)

The adaptive order has the following properties:

a) for all and ;
b) if then

;
c) if then , and this goes

recursively because ;
d) if then , and this goes

recursively because ;
e) if and , then the set

can be parti-
tioned into two nontrivial subsets where

and , respectively.
The proof is in the Appendix. It is rather technical and does

not provide an explicit decision rule to select when
and . One should also note

that Theorem 3 only gives sufficient conditions for to
depend/not to depend on , but there are cases where we do
not know whether there is a dependence or not. The analysis is
indeed quite technical and it is not clear whether one can find
necessary and sufficient conditions and explicit decision rules.

A couple of simple examples can illustrate the implications
of Theorem 3.

Example 1: Assume , i.e., all the eigenvalues of
are larger than one. Then, by Theorem 3-(c),

for all , and the AFS is independent of . The order of ob-
servations is actually that of the decreasing rearrangement of the
eigenvalues of .

Example 2: A simple function study shows that for any
, either and , or

and , or
and . On Fig. 1, the white region corresponds
to the couples where and

; the quadrants that are not displayed corre-
spond to where either or ; the grey regions corre-
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spond to the configurations ( or
) not dealt with in Theorem 3. Take and

, with . The circles corre-
spond to the possible pairs , and close
to each circle is the corresponding value of .

• For , and . Because
, we know that , and it follows that

and . This is illustrated by an arrow that joins
to , with the indica-

tion .
• For 1, as the pair is in the white

region, we deduce from Theorem 3-(e) that (depending on
) we may either have 2 or 7, which is

depicted on Fig. 1 by the two corresponding plain arrows.
• At any later stage of the selection process, the behavior is

the same, provided that the pair
is in the white region.

• When the process leads us to leave the white region
(for example by choosing from the situation

, as depicted on Fig. 1 by the
dashed arrow), this results either in or

(on the example, ). Afterwards,
the remaining eigenvectors are observed in the order of
decreasing magnitude of .

By comparison, LDA based on the Bhattacharyya discriminant
measure [11, pp. 456–457] on this example would select the
very same features, but in a fixed order corresponding to the
decreasing magnitude of

.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical evidence that ADA can
outperform LDA. First, we describe a feature selection and clas-
sification algorithm that implements the ADA strategy corre-
sponding to the theory developed so far. Then, we discuss the
experimental setup and the results of the numerical experiments.

A. ADA Algorithm

We consider a restricted model with two Gaussian classes
where Theorem 2 and 3 take the simplest form: we assume
centered Gaussian classes and diagonal
covariance matrices . It follows that

with , and the AFS
simply corresponds to projections onto the canonical coordi-
nates, i.e., . We denote the
mutual information between a class variable with

and a one-dimensional (1-D) observation
drawn according to if and if .

The adaptive order of observations for an input
is (theoretically) computed as follows.

Step 1) Initialization: Set
, and

.
Step 2) Adaptive selection:

Fig. 1. White region corresponds to the set of values (log� ; log� ) where
C (� ; � ) > 0 and C (� ; � ) < 0. It contains the “line” � = 1=� .
The lower-left grey region corresponds to C (� ; � ) � 0 while the
upper-right one corresponds to C (� ; � ) � 0, which are the cases not dealt
with in Theorem 3.

Step 3) Observation: Observe ;
Step 4) Update: Update according to

(7) and (8), and compute the new score1

(12)

Step 5) Either:
- increment and go back to Step 2; or
- stop and make a decision

if
if

(13)

The adaptive selection step (Step 2) is not explicit but could
be implemented using a table of sampled numerical values of

. Instead, we propose to rely on Theorem 3 (see also
Lemma 2 in the Appendix) and replace Step 2 with a modified
adaptive selection rule.

Step 2bis) Semiheuristic adaptive selection:

a) if , then ;
b) else if , then ;
c) else if ,

then ;
d) else if ,

then ;
else compute the heuristic threshold

(14)

1The expression of the update rule (12) is justified in the Appendix.
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on the log-likelihood ratio to get
e.1) if , then ;
e.2) if , then .

The rationale behind Step 2bis is as follows.

• In case (a) [resp. (b)] it gives the optimal choice as shown
by Theorem 3-(c) [resp Theorem 3-(d)].

• In case (c) [resp. (d)], when is sufficiently close
to 0 or to 1, Step 2bis gives the best choice according to
Lemma 2. Heuristically we keep the same choice for any

.
• In case (d), Lemma 2 shows that Step 2bis also gives the

best choice whenever is big enough ( close
enough to 1) or small enough ( close enough to 0).
Heuristically, we use a threshold to specify what is “big
enough.”

Though it is partially heuristic, the previous approach is compat-
ible with Theorem 3 and Lemma 2 and provides some adaptive
order of observations which can outperform LDA, as shown by
our experiments in the following.

B. Experimental Setup

We conducted experiments in a very simple setting where

(15)

(16)

with some constant, and consequently

(17)

As already noticed, on such a discrimimation problem, LDA
with the Bhattacharyya discriminant measure [11, pp. 456–457]
selects the eigenvectors of with any fixed order

of observations such that
is nonincreasing. By observing the components in such an
order, one can iteratively update a log-likelihood ratio
and, at any step, make a decision using the analogue
of (12) and (13). In our case, since
is constant, there is no preferred order and we used a random
order.

In the ADA framework, at any step where
and , we have

hence, and the rule to select the next component
to observe is iff , until the re-
maining available eigen-values are either all smaller or all larger
than one (note that this can only happen when ).

After observations, the two strategies lead to two estima-
tors and . Our experiments consisted in es-
timating the probability of error of these esti-
mators for . To do that we draw test samples

according to the Gaussian mixture
, applied the feature selection

Fig. 2. Average error rates (in logarithmic scale) of the fixed feature sequence
classifier Ŷ (x) (‘+’ signs) and the AFS one Ŷ (x) (circles) for an
increasing number m of observations.

strategy and the corresponding classifier (ADA, or LDA with a
different random order for each index ) to each ,
and measured the average number of errors.

C. Numerical Results

We ran the experiment in dimension 64, with ,
using test samples of the mixture model
and an equal a priori probability . Fig. 2
compares the average error rates (in a logarithmic scale) of the
LDA and ADA strategies for increasing values of .

For (the signal is not observed at all) the error rate
is since the decision is made completely at random. In
both strategies, the first observation and does
not depend on , which explains why the error rates also co-
incide for . For , ADA provides in few steps
quite a smaller error rate that LDA. For small (typically for

, i.e., when the adaptive strategy is possible because
and ) the error rates of

both estimators seem to decrease linearly in a logarithmic scale,
however the slope of this linear decrease is clearly stronger for
the ADA strategy. When becomes closer to the dimension of
the full feature space , the LDA and ADA estimators both con-
verge to the “full” Bayesian estimator obtained with the com-
plete knowledge of , so the gap between their performances
decreases and they have equal performance for . One
should notice that when the error rate becomes small, the total
number of errors over the test samples become a small integer
and the estimate of the error rates becomes less reliable, which
explains the irregular behavior of the curves for large .

This example shows that one can obtain the same classifica-
tion performance with less observations using ADA instead of
LDA. For example, one can read on the figure that an error rate
below one percent is achieved after 21 observa-
tions with ADA and 26 observations with LDA. Since the
only overhead in the algorithmic implementation of ADA versus
LDA consists only in a few tests, this means that the same clas-
sification performance can be achieved with about 20% fewer
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computations. The adaptive strategy is likely to display an even
higher gain in performance compared to the passive one when
the dimension of the data becomes larger.

D. Perspective of Application

Before concluding, let us briefly mention an example where
ADA with the model of mixture of centered Gaussians might be
useful in a practical setting. The Wiener filter is a well known
tool to perform signal denoising, however it is based on a (gen-
erally centered) Gaussian model of the signal of interest and of
the noise. Real signals are never purely Gaussian, and in some
cases even the noise is not Gaussian: this is, e.g., the case when
the signal of interest is speech and the noise is some background
music. However, it is often reasonable to model the signal as
locally Gaussian, with power density spectrum that varies with
time. Thus, denoising becomes feasible provided that the proper
(centered) Gaussian model is used at each time: the problem be-
comes the identification of the most likely couple of power spec-
trums (of the signal and of the noise). Such an adaptive Wiener
filter approach has been proposed for single channel signal sep-
aration [29] and our ADA technique could be used to estimate
the most likely Gaussian model on each time frame with a fast
algorithm, so as to denoise the signal with a low numerical com-
plexity.

VI. CONCLUSION

In this paper, we have explored the theory of adaptive pro-
jections for feature extraction and classification. Combining
the spirit of nonlinear approximations, projection pursuit and
CART, we have proposed a formalism for ADA.

In the case of two Gaussian classes entirely characterized by
their mean (i.e., with ), we showed that ADA is a non-
adaptive variant of LDA that corresponds to an approximation
strategy similar to the orthogonal matching pursuit. Our main
point is that, in the case of classes entirely characterized by their
covariance structure, ADA is actually data-dependent. We pro-
vide numerical evidence that, with a small number of tests, a
more reliable classification can be obtained with the data-de-
pendent strategy than with LDA.

The question of the actual performance of ADA compared
to LDA is of course fundamental for applications: it should
be carefully studied in a proper experimental setup that is not
the purpose of this contribution. We can nevertheless mention
some issues that will certainly come up for such a comparison.
First, we have assumed Gaussian models with known covari-
ance matrices . In practice, the matrices must be es-
timated from training data that are not necessarily Gaussian:
how robust is ADA feature selection and classification to mod-
eling error and/or inaccurate estimates of the eigenstructure of

? Is it robust enough that we can use fast computational
harmonic analysis techniques to select approximate eigenvec-
tors in a finite dictionary (e.g., wave-packets [3])? Can we ob-
serve on some real data as substantial an improvement in clas-
sification performance (for fixed number of observations) as
in our numerical experiments with synthetic data? Another re-
lated question is how to design a suitable modification of the

sequential probability ratio test [23], [10] to use a data-depen-
dent number of steps of ADA before stopping and making
a decision.

APPENDIX

VII. PROOF OF THE THEOREMS

It is a good exercise of probability (we leave it to the reader) to
check, for any unit vectors , and , the following
algebraic expressions of conditional expectations:

where is the projector perpendicular to
with respect to the inner product

, i.e., the projector onto
with kernel . The expressions are also true for with
the convention , i.e., .

For any vector , let an AFS,
and for

(18)

It follows from the previous expressions that for any
and , the conditional distribution of under the
assumption that and is a
one-dimensional Gaussian with

(19)

(20)

Using the invariance of mutual information [20] with respect
to translations and dilations of , it is easy to show that the
property (4) of the AFS is equivalent to selecting as

(21)

where denotes the mutual information be-
tween a class variable with and a 1-D obser-
vation drawn according to if 0 and if

1, with .
The proof of our theorems relies on the variations of

and . They are summarized in the fol-
lowing lemma, which we prove in the Appendix.

Lemma 1: For any value of :

a) the even function is increasing with .
b) the function is strictly decreasing on

and strictly increasing on .
Let us now proceed to the proof of the theorems. In order to sim-
plify the notations, we will generally not write the dependence
of , and on .
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Proof of Theorem 1: As , the projector
is independent of and (20) can be

written as . As a result
for all , and (21) combined with Lemma 1-(a) shows that

Using (19) and (20) this becomes

(22)

where the weighted inner product and its associ-
ated weighted norm define an Euclidian structure on .
It follows by induction that the AFS is nonadaptive:
let us show that (22) corresponds to a variant of the orthogonal
matching pursuit [19], [28] on the signal .

With respect to the new Euclidian structure, the Gram-
Schmidt orthonormalization of is where

, and is the
orthonormal projector onto , hence

and (22) corresponds to choosing so as to maximize the
increase

in the (weighted) energy of the projection onto .
Proof of Theorem 2: Let be a basis of unit eigen-

vectors for . We shall prove by in-
duction that there exists such that for

(23)

The relation is true for with the convention
. Let us show that if (23) holds for , then it is also true for

. The induction hypothesis implies that ,
i.e.

(24)

Hence, the two projectors onto
with kernel are equal. Using (19)

we get for all and (20) combined
with Lemma 1-(b) and (20) shows that corresponds to
an extremum of

Using Lagrange multipliers, such an extremum is obtained
when, for some

(25)

The notation stands for the adjoint of in the standard
Euclidian structure. Linear algebra shows that condition (25) is
equivalent to ,
that is to say .

From (24), we know that the projector commutes with
, because its range and kernel are stable

under . Thus, (25)

is either zero or an eigenvector of . But cannot
be zero, for it would mean , and such a cannot
bring any additional information on the class . It follows that

is an eigenvector of . As a result

and (23) is true at step .
Proof of Theorem 3: Let . Clearly

because an already observed feature cannot
bring any additional information. Moreover for

, hence

Using Lemma 1-(b) and the notations from Definition 1 we im-
mediately get that

(26)

which gives Theorem 3-(a). Lemma 1-(b) shows that
(resp. ) is a sufficient condition for the maximiza-

tion (26) to be independent of : for example if
then for every value of , and

is the only possible choice. The statements
Theorem 3-(c)-(d) immediately follow. It is easy to show by a
change of variables that , hence,

and we get Theorem 3-(b) by
Lemma 1-(b). The following lemma, proved in the Appendix,
shows that the maximization (26) can depend on the value of .

Lemme 2: Let , and
with ‘ ’ the natural logarithm. For close to 0

(27)

while for close to 1

(28)

Assume that after observations
, the extremal remaining eigen-

values and satisfy and
. Then, if is close enough to 0 (which

is true for some values of )
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while if is close enough to 1 (which holds for some other
values of ),

The last statement of Theorem 3 follows.

VIII. VARIATIONS OF THE MUTUAL INFORMATION

Notations 1: Let be the Gaussian
probability density function (pdf) of unit variance. The entropy
of is ([20], Example 9.1.2). So as
to simplify future computations, let . The pdf of the
mixture is . Let us denote

.
The mutual information can be written

(29)

Proof of Lemma 1-(a): We compute

In (a) we integrated by parts, in (b) we introduced at the
numerator, and in (c) we used the cancellation of the integral of
the odd function . Hence, the result.

Proof of Lemma 1-(b): We compute

In (a) we used the change of variable and in (b) we inte-
grated by parts. As is a pdf of unit variance

, the computation of goes on

This shows that the sign of is that of ,
hence, the result.

IX. PROOF OF LEMMA 2

In order to prove Lemma 2, we need a technical lemma first.
Lemme 3: The mutual information, in nats (i.e., defined

using the natural logarithm ‘log’ rather than the logarithm in
base 2 “ ” [20]) can be developed as

(30)

Proof: We use the notations of Section I-B, and
‘ ’ is the natural logarithm. Let us denote

, which enables us to write
as

(31)

because . Using the variances (1 and ) of the pdf
and , we can compute

(32)

Collecting (29), (31), and (32), we get the estimate

(33)
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Let us now estimate the remaining integral term. The dominated
convergence theorem shows that

hence

As , we get

which leads to

(34)

Combined with the development , (33)
and (34) finally lead to (30).

Lemma 2 is actually a corollary of Lemma 3. It is easy to
show by a change of variables that ,
hence, using Lemma 3 we get for

which gives (27) and (28).

X. UPDATE OF THE LOG-LIKELIHOOD RATIO

In this section, we prove that in the simplified model corre-
sponding to our numerical experiments, the log-likelihood ratio
can be updated at each step as expressed in (12). To simplify
the notations, we do not write the dependence of
on . Using Bayes rule and the conditional independence of the
coordinates conditionally to the class standard computations we
get

Since

we obtain
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