
Metoyer, R., Stumpf, S., Neumann, C., Dodge, J., Cao, J. & Schnabel, A. (2010). Explaining how to

play real-time strategy games. Knowledge-Based Systems, 23(4), 295 - 301. doi:

10.1016/j.knosys.2009.11.006 <http://dx.doi.org/10.1016/j.knosys.2009.11.006>

City Research Online

Original citation: Metoyer, R., Stumpf, S., Neumann, C., Dodge, J., Cao, J. & Schnabel, A. (2010).

Explaining how to play real-time strategy games. Knowledge-Based Systems, 23(4), 295 - 301. doi:

10.1016/j.knosys.2009.11.006 <http://dx.doi.org/10.1016/j.knosys.2009.11.006>

Permanent City Research Online URL: http://openaccess.city.ac.uk/210/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

Explaining How to Play Real-Time Strategy Games

Ronald Metoyera, Simone Stumpfa, Christoph Neumannb, Jonathan
Dodgea, Jill Caoa, Aaron Schnabelc

aOregon State University, Corvallis, OR 97331
bHewlett Packard, Corvallis, OR 97330
c9Wood, Inc., Springfield, OR 97477

Abstract

Real-time strategy games share many aspects with real situations in do-
mains such as battle planning, air traffic control, and emergency response
team management which makes them appealing test-beds for Artificial In-
telligence (AI) and machine learning. End user annotations could help to
provide supplemental information for learning algorithms, especially when
training data is sparse. This paper presents a formative study to uncover
how experienced users explain game play in real-time strategy games. We
report the results of our analysis of explanations and discuss their charac-
teristics that could support the design of systems for use by experienced
real-time strategy game users in specifying or annotating strategy-oriented
behavior.

Key words: strategy, explanation, real-time games, user study

1. Introduction

Artificial Intelligence (AI) research has shifted focus in recent years from
board games such as Chess or Go to real-time strategy (RTS) games, such
as that shown in Figure 1, as test-beds for learning complex behavior. RTS
games are typically carried out in a two-dimensional world in which multiple
players concurrently compete for resources, build armies, and guide them
into battle. Winning the game necessitates executing a strategy by placing
game-playing units in a spatial environment and giving them tasks to do
at the right time. RTS games are particularly appealing to AI because of
the many levels of complexity involved in the game play, such as resource
management, decision-making under uncertainty, spatial and temporal rea-
soning, adversarial reasoning, etc. (Buro, 2003). Such challenges are also

Preprint submitted to Knowledge Based Systems September 28, 2009

Figure 1: Our customized version of the “Nowhere to Run, Nowhere to Hide” map for the
real-time strategy game, Wargus.

present in many other domains that require strategy execution, including air
traffic control, emergency response management, and battle planning.

The typical approach has been to learn behavior from many instances
of game play log data. However, this approach cannot be applied if there is
sparse training data or if, in the extreme case, there is just a single game trace.
This challenge could be overcome by allowing end users, not adept in machine
learning, to inform learning algorithms about salient features and tasks by
supplementing the game trace with explanatory annotations or demonstra-
tion. Facilitating additional user feedback to learning algorithms has been
shown to produce improvement to learning in other domains (Stumpf et al.,
2008).

Expert explanations could be used in a Natural Programming approach
(Myers et al., 2004) as building blocks for the design of annotation or demon-
stration systems. While researchers have investigated expert game play in
traditional games as well as more recent action games (Reeves et al., 2007),
to our knowledge, there has only been limited research that has investigated
the explanations of experienced players for real-time strategy games.

By studying explanations of game play, we aim to uncover a user vocab-
ulary that includes objects, spatial aspects, and temporal constraints. We
also aim to help the design of annotation and demonstration tools for ma-
chine learning systems that operate on minimal user examples by trying to
understand how behavior is enacted in game play. The contributions of our
research are 1) coding schemes useful for transcripts of real-time strategy
game explanations 2) identification of the content of game play explanations
3) identification of the structure of game play explanations and 4) a set of
design implications for real-time strategy game annotations.

2

In this paper, we describe a formative user study designed to understand
how experienced users explain strategies and game play. We begin by dis-
cussing the related literature and then describe our experimental design to
capture explanations, including our methodology for coding the data. We
present the results of our analysis and discuss the trends and characteristics
of the explanations and how this information may be used to inform the de-
sign of end-user programming environments for agent behavior as well as for
annotating strategy for machine learning systems.

2. Related Work

While the machine learning and AI communities have focused on real-
time strategy games as a domain of interest for several years, to our knowl-
edge, none of the research has attempted to understand how people describe
their strategies. Instead, much of the literature in these areas is concerned
with identifying a language for representing problems and solutions in com-
plex learning and planning domains, such as Wargus (2009). Ponsen et al.,
for example, incorporate knowledge into their AI algorithms by hand cod-
ing domain knowledge for planning within the Wargus domain (Ponsen and
Spronck, 2004; Aha et al., 1990). Rather than finding a representation for
machines to use for learning, we are interested in finding a language or rep-
resentation for people to use for demonstrating or annotating behavior for a
machine.

Notations for specifying behavior can be found in the end-user agent
programming domain which has applications in many fields including robot-
ics, video games, and education. Agent programming approaches generally
fall under either direct programming approaches or programming by demon-
stration. In the direct programming case, some research has addressed the
challenge of programming agent behavior by developing specialized APIs or
code construction environments to support novice users of a general purpose
programming language. For example, the RoboCode project (Li, 2002) al-
lows a student to use and extend a Java API to define the behavior of a
virtual tank within a 2D simulated environment. Alice (Cooper et al., 2000)
employs techniques such as drag-and-drop construction and live method exe-
cution to assist the user in programming agents with an object-oriented tex-
tual notation. In a similar fashion, Agentsheets (Repenning, 1993) supports
end-user programming of agents by using an object oriented notation that
is augmented by fill-in forms and live execution within an environment that

3

emphasizes the use of a 2D grid as a means to organize the simulation space
(Howland et al., 2006). Whereas these approaches focus on reducing funda-
mental challenges associated with general purpose programming languages,
the focus of our experiment is to inform a notation which is grounded in the
language of end users of a RTS game.

Programming by demonstration (PBD) systems have been shown to lower
barriers to programming agents by allowing the user to simply demonstrate
the proper behavior. Examples of such an approach are KidSim (Smith et al.,
1994) and ToonTalk (Kahn, 1996). As noted by Modugno et al. (Modugno
et al., 1997) and Repenning (Repenning, 1995), PBD still requires a notation
to allow for editing and high-level specification and the form of that notation
can affect the effectiveness of the PBD system.

3. Experiment Design

In order to explore how behavior is explained by users in real-time strategy
games, our formative study followed a dialogue-based think-aloud design, in
which we paired an experienced user with a novice to help elicit explanations
of game play. The experienced user was asked to play the game while at
the same time explaining what he or she was doing. The novice was able to
observe the experienced user and ask for clarifications when necessary.

The dialogue-based think-aloud setup allows reasoning to be made ex-
plicit as explanations are given in a natural, interactive way through typical
social communication with their partners. As an experienced user showed
the novice how to play the game, he was able to draw attention to what
mattered and to justify his actions in the context of situations as they arose.
In response, novices were able to ask questions that clarified the experienced
users’ actions or explanations, drawing out additional details that may have
otherwise been unclear.

We chose Wargus as the RTS environment for our study. Wargus (2009),
and its commercial equivalent Warcraft II, allows users to command orcs or
humans in a medieval world that pits the player in battle against opposing
factions. We used a contained battle scenario shown in Figure 1 where the
computer controlled the opponent. In this simple map, the player starts off
on one side of a barrier of trees that separates him or her from the enemy.
There are a variety of ways that enable a player to play this scenario and
overcome the enemy but the game is simple enough to be completed within
a reasonable time.

4

Ten students participated in this study and were compensated for their
time. Participants were assigned roles as experienced users and novices based
on their experience with Wargus or Warcraft II. Participants with more than
20 hours of experience were considered experienced users, while novices had
less than 2 hours of experience. Experienced users and novices were then
randomly paired. Overall, the participants were made up of nine males and
one female with an average age of 22.8 years. Experienced users consisted of
five males, average age of 20.2 years, and novices were four males and one
female, average age of 25.4 years.

The study session began after a brief paper tutorial, in which the partici-
pants were familiarized with units, resources, and basic game-playing instruc-
tions. The experienced users were asked to play the game while “thinking
aloud” about what they were doing. The novices were instructed to ask
the experienced users about any detail they did not understand. Each ex-
periment session lasted approximately 35 minutes, during which two games
were played by the experienced user. We used the Morae (2009) system
to record the screen as the game was played, and to record the interaction
between experienced users and novices. All screen, video and audio data
was automatically synchronized. After the session, we captured background
and demographic information in the post-session questionnaire in addition
to subjective evaluations and comments about game play during the study.

4. Methodology

In order to analyze the think-aloud data, we used content analysis to
develop coding schemes for describing and understanding how game play
is communicated (Krippendorff, 2003). We developed two sets of codes:
the first set captures the content of explanations (Table 1) while the second
captures the structure of explanations (Table 2). We now describe our code
development process in more detail.

In order to facilitate analysis, the audio of the experienced user and novice
interactions was transcribed, and supplemented with time codes and infor-
mation about game actions and gestures. Transcripts then were broken up
into coding units. In our approach, each sentence a participant uttered was
segmented into one or more units. Sentences were broken up at coordinating
conjunction (e.g. ‘and’, ‘or’) or subordinating conjunction (e.g. ‘because’,
‘since’). Sentences were left intact if they contained correlative conjunctions
(e.g. ‘either. . .or’, ‘if. . .then’).

5

Table 1: Content Coding Scheme
Code Subcode Description Example
Object Enemy Object Important objects that are under the

control of the opposing player
“they have no more pe-
ons”

Fighting Object Units that are used for fighting “my archers”
Production Ob-
ject

Units that are involved in producing re-
sources/are resources

“I’m building a town
hall”

Environmental
Object

Object that is part of the game envi-
ronment, not under the direct control
of the game players

“I wanna not cut down
those trees

Unspecified Ob-
ject

Player refers to an object indiscrimi-
nately.

“my guys here”

Action Building / Pro-
ducing

When the action described in the state-
ment refers to building or producing
things

“I’m going to build a
farm”

Fighting When the action described in the sen-
tence refers to fighting

“and you only attack
one guy at a time”

Quantity Unidentified Dis-
crete

A reference to object quantity but
vague amount

“armies of peasants
are good”

Identified Discrete Reference to object quantity with a spe-
cific amount stated

“I want a barracks”

Comparative Reference to object quantity in compar-
ison to an (sometimes unspecified) ref-
erence point

“we need more farms”

Absolute Reference to quantity extremes “I went in and killed all
their grunts”

Temporal Ordering Referring to the sequence in which
things have to happen

“They’ll tend to at-
tack military units be-
fore peons”

Timing Referring to an absolute time “Are those trees now
wide enough to go
through?”

Speed Referring to the speed at which things
have to happen

“Be really fast in the
early game”

Repetition how often things have to happen “do that again”
Spatial Distance a relative distance between two objects

(e.g. close to, away from)
“I’m trying to keep
my archers away from
fighting”

Point A specific place “Is that a hole right
there”

Size Absolute reference to an object’s length
or space

“Let’s have them chop
where the gap is kind of
big”

Arrangement Specific spatial arrangement of objects “and if you can get
some archers along the
border killing their pe-
ons”

Previous research has not provided any coding schemes applicable to our
investigation. In order to develop coding schemes suitable to our aims, we
employed an affinity diagramming approach to develop codes by examin-
ing random transcript sub-portions in a team setting (Holtzblatt and Beyer,

6

Table 2: Structure Coding Scheme
Code Description Example
Fact A statement or opinion about how the world works, a

current event, or a future outcome.
“farms supply food”

Depend Language that reflects a dependency of one thing on
another or a constraining fact. A statement that re-
flects a forced or enabled course of action due to a
limiting or satisfied constraint.

“building archers re-
quires wood”

Do Prescriptive instructions on how to behave, in par-
ticular, talk about manipulating concrete things and
taking concrete actions

“Build a farm”

Goal A statement of intent or desired achievement that is
non-specific about means or actions.

“Block them from reach-
ing your ranged units”

History A statement that describes an action or event that has
already occurred in the past.

“They had ranged units
and I didn’t”

Mistake A statement that negatively describes an action or
event that has occurred in the past.

“It would have been
good if I had gotten
archers early on”

Question A statement where further clarification is requested. “Are those trees now
wide enough to go
through? ”

UI A statement that refers to software-specific features “Control-1 just makes
them group 1”

1993). After initial identification of candidate codes, we refined them it-
eratively and tested the reliability and coverage of coding application. In
the refinement process, a candidate coding scheme included definitions of
potential codes and corresponding examples from the transcripts. The can-
didate codes were applied independently by researchers to a randomly chosen
transcript section and agreement measures were calculated. Any codes that
proved difficult to apply were further refined and integrated into a revised
candidate coding, which was in turn applied to a new random transcrip-
tion section. Once sufficient agreement between the coders was reached, the
remaining transcripts were coded by individual researchers.

Agreement measures are useful in developing codes that provide coverage
of the area under investigation, and that can be consistently and reliably
applied by different researchers (Carletta, 1996; Raghoebar-Krieger et al.,
2001). For the first coding scheme, the content codes, multiple codes could be
applied to the same unit, making standard Kappa unsuitable as an agreement
measure. We therefore calculated agreement between researchers using the
Jaccard index, which is the intersection of two researchers’ codes divided by
the size of their union. We reached an overall code agreement of 80.12% for
the content coding scheme.

7

For the second coding scheme, the structure codes, we used a slightly
modified process to account for three raters using mutually exclusive codes.
We calculated agreement in two different ways. We first calculated a simple
agreement measure by using the proportion of actual agreements over pos-
sible agreements, applied pairwise between all three researchers; the average
agreement over three researchers for the structure code set was 83.44%. We
also calculated Fleiss’ Kappa for this code set, which was 0.69 (agreement
over 0.61 is usually considered substantial (Landis and Koch, 1977)).

5. Results and Discussion

One of our contributions is the development of two coding schemes that
allow the structure and content of explanations to be explored within the
realm of real-time strategy games (see Tables 1 and 2). These coding schemes
could also be re-used or adapted for other domains that feature dynamically
changing environments with spatial and temporal constraints.

5.1. What Concepts Are Used in Explanations

Understanding the content of user explanations can help in identifying
concepts that an annotation language or demonstration system should cover.
We analyzed the content codes (Figure 2) to understand what aspects were
frequently mentioned in RTS explanations.

O
bj

ec
ts

Ac
tio

n
Q

ua
nt

ity
Te

m
po

ra
l

Sp
at

ia
l

production
�ghting

enemy
unspeci�ed

environmental

building/producing
�ghting

identi�ed discrete
absolutes

comparative
unidenti�ed discrete

timing
ordering

speed
repetition

point
distance

arrangement
size

Codes Subcodes

Figure 2: Frequency of content code occurrences over all transcripts.

8

References to Objects (sometimes called entities) of the game environ-
ment occur most frequently (72.1%). Not surprisingly, participants talked
most frequently about their own units (e.g. such as Production and Fighting
units) but objects relating to the Enemy are referenced very often (15%).
This indicates that an important aspect of game play is monitoring the ac-
tivity of one’s opponent.

Spatial and temporal aspects of game play are important areas for learn-
ing. One challenge may be that explanations could be too vague or too
infrequent to be able to generate good examples from which to learn. Sur-
prisingly, we found that experienced players expressed Spatial, Temporal,
and Quantity concepts frequently throughout the game, in 11.4%, 19.5%,
and 28.9% of the coded units respectively. Participants were also very spe-
cific about these concepts. Spatial concepts occurred mostly in terms of
Point specific locations (7.2%) such as “here” or “at the farm”, Temporal
concepts occurred most often as Timing statements (9.8%), such as “now”
or “at the end” while participants often described a specific Identified Dis-
crete quantity (12.1%) or Absolute value (6.9%), such as “two units at a
time” or “all”. Even when they were not able to give a discrete quantity,
they were able to give Unidentified values (5.5%), such as “little bit”, or
Comparative amounts (6.0%), such as “more footmen than archers”. This
indicates that experienced users tended to be very concrete in their explana-
tions while playing the game. They were able to refer to particular numbers
of objects, at particular locations, and indicated particular times at which
events occurred.

Some concepts that were expressed are more abstract or complex, and
may require specialized support. Some explanations referred to the spatial
arrangement or distance of objects to each other in the game, while temporal
constraints such as ordering, speed, or repetition were also mentioned.

Design implications: Users pay attention to aspects under their control
as well as to aspects that are outside their realm of manipulation. Annota-
tions need to account for monitoring of these outside factors, which may lead,
in turn, to changes in future choices of actions. Any annotation or demon-
stration interface should account for and provide a means for specifying or
choosing these specific concepts possibly through mouse pointing (point loca-
tions), time indicators for both discrete and comparative (now, early, as soon
as, etc.), and a broad range of quantity selection mechanisms such as number
entry for object quantities, object group selection, and selection/deselection
of all objects. In addition, annotation and demonstration tools need to lend

9

support to the user to easily specify more complex concepts that puts various
objects in relation to each other.

5.2. Explaining How to Win

Choosing the right strategy and executing it correctly helps the user win
the game. We investigated the structure of how experienced users explained
the strategy and necessary actions. Figure 3 shows the set of structure codes
and their distribution over all game transcripts. Participants mentioned
Goals less frequently than expected (7.9%). While some participants used
Goal codes more than others, it was surprising to us that experienced users
did not provide high-level explanations of their strategy more frequently, es-
pecially considering that experienced users summarized their strategies suc-
cinctly with general, high-level descriptions in the post-study questionnaire.

It appears that Goal as a high-level intent was only one way in which
a strategy could be described by experienced users. In a Do code, an ex-
perienced player gave instructions on how to behave, focusing on specific
actions in the pursuit of an intended strategy. In our study, experienced
users employed Do more frequently than Goals (12.1%). Experienced users
on the whole tended to explain their strategy during the interaction by using
a finer granularity, in which they made detailed reference to what to do in
the context of the game.

Do and Goal should be considered as a spectrum in which to explain strat-
egy. While most experienced users preferred to explain strategy in terms of
prescriptive instructions in pursuit of a higher level goal which is not neces-
sarily verbalized, others tended to employ high-level descriptions of general
intent instead. When these two codes (Do and Goal) are considered in com-

fact

depend

do

goal

history

mistake

question

ui

extraneous

350

Figure 3: Frequency of structure code occurrences over all transcripts. Fact occurs in 35%
of the total transcript segments.

10

bination, they made up a considerable amount of explaining of what to do
to win the game (20%).

Understanding when strategy explanations occur is important in deciding
when to make annotation or demonstration capabilities available. A reason-
able but naive assumption would be that strategy is stated at the beginning
and then enacted or decomposed into smaller tasks in the remainder of a
game. In our study, strategy explanations in the form of Do or Goal were
found interspersed throughout both games–even for the second game in a
study session, in which participants could have omitted strategy explana-
tions since they had already been covered previously.

Design implications: Our results show that experienced users provided
many explanations of their intended behavior, but that they had a preference
for choosing a certain level of granularity in which to express the strategy.
Experienced users that chose high-level strategy explanations tended to pro-
vide fewer detailed, fine-grained strategies, and vice versa. The variance of
users’ preference for detail is an important factor to consider for notations
in order to provide a match to the granularity of expression. Furthermore,
notations for expressing strategy that are only available at the beginning of
the game, and force decomposition in a top-down fashion, may run counter
to how users prefer to explain strategy. In our study, strategy explanations
were made in a situated way throughout, drawing on the surrounding con-
text. Our findings imply that behavior annotation and/or demonstration
could possibly benefit from environments that are tightly coupled to game
play and that allow annotation and demonstration within the game context.
In addition, annotation strategy behavior within the context of the environ-
ment should provide a means for detailed prescriptive instructions and the
intent behind them while annotations outside of the environment may still
benefit from a higher-level, general mechanism for specifying the strategy.

5.3. Explaining What to Notice

Actions in RTS games depend on the context in which they are enacted.
What to do may draw on certain features of the situation, require constant
monitoring, and may have to be adjusted based on unexpected outcomes.
We were interested in how the context of game play is communicated in RTS
games.

One problematic aspect of game play and the actions that a player could
carry out is that there are potentially a myriad of features of the situation
which could matter. How does an experienced player communicate which

11

of these features to attend to? One such way is by statements that express
Facts, which draw attention to certain features in the game that are impor-
tant. In addition, Depend statements draw out constraints that need to be
met in these particular features and situations.

Experienced players focused on highlighting the important features and
constraints frequently. In our experiments, Fact and Depend structure codes
combined occurred in 45% of the transcript (34.6% and 11.7%, respectively)
(See Figure 3). We also found that Fact and Depend occurred constantly as
the games proceeded.

Design implications: An interface for annotating or demonstrating
strategy behavior should provide a simple and efficient means for describing
the important current features in a situation. This allows a user to efficiently
select important features that the behavior depends on. For demonstration
or annotation for machine learning, for example, the context describes the
important features that the system needs to take into consideration and
feature selection is often a difficult problem in machine learning.

5.4. How Concepts Are Used in Strategy and Context

In order to complete the picture of game playing instructions, it it useful
to consider what is explained and how it is explained at the same time. To
do so, we computed the co-occurrence of structure codes with content codes.

To calculate co-occurrence, we counted, over all transcripts, the num-
ber of times a content code appeared in the same unit with a particular
structure code. We computed the percentage of co-occurrence for each con-
tent/structure code pair by dividing the number of co-occurrences by the sum
of the total number of times each of the two codes appeared in all transcripts.
Figure 4 shows an example of the co-occurrence computation for Enemy and
Fact over all transcripts.

The pattern of co-occurrence is complex but there are some patterns that
occur across the codes (Figure 5). When giving explicit instructions (Do
codes), participants talked mainly about Production objects and Fighting
Objects and the act of Producing/building (12.6%, 9.3%, and 15.3% respec-

Figure 4: Diagram demonstrating the co-occurrence calculation for Enemy and Fact.

12

tively). Addtionally, they tended to reference both Unidentified discrete and
Identified discrete quantities and Point specific locations (8.5%, 10.5% and
9.0% respectively). This means that participants frequently gave specific
instructions about ‘where’ to place ‘how many’ buildings and/or units for
resource accumulation or battle. In contrast, Goal codes most frequently
appeared with Fighting(9.2%), building/producing(6.5%), and the associ-
ated Enemy(6.7%) and Fighting Objects(6.3%). Additionally, they often
mentioned Goal in concert with Timing(7.7%), Arrangement(6.7%), Dis-
tance(6.1%) codes. It appears that participants’ specification of a higher-
level strategy tended to be more concerned with laying out complex spatial
concepts, coupled with specific temporal aspects.

Some patterns can also be discerned in explanations of what to notice.
Facts frequently involve all Objects but in particular Enemy objects(13.0%)

enemy

�ghting object

production object

environmental object

unspeci�ed object

distance

point

size

arrangement

ordering

timing

speed

repetition

unidenti�ed discrete

identi�ed discrete

comparative

absolute

building/producing

�ghting

uifact
depend

do goal
hist

ory

mist
ake

questi
on

extra
neous

high

low

Figure 5: The co-occurrences, over all transcripts, between structure codes and content
subcodes.

13

and Fighting objects(13.1%), whereas Depend codes most frequently co-
occurred with Production objects(14.8%) and Building/Producing(15.3%).
Both Fact and Depend also co-occur often with Timing(6.6% and 6.4% re-
spectively) while Depend occurs more frequently with all kinds of Quantity
references than does Fact. It seems that constraints on actions usually in-
volve resource management but that constraints are not considered as much
during monitoring opponents and battle planning. Additionally, constraints
apparently are described in terms of the quantities necessary to achieve the
strategy.

Design implications: In certain situations some aspects of the game
play are more salient than others. In explaining strategy, specific instructions
about what to do with objects may be easily given but more complex spatial
concepts may need to be captured through annotations involving higher-
level strategy. Similarly, constraints could be expressed easily for resources
under one’s own control but possibly are hard for complex battle situations
involving an opponent’s resources.

5.5. When More Explanation Is Needed

Questions usually provide explicit requests for more information and are
indications of information gaps (Kissinger et al., 2006). Thus, we paid partic-
ular attention to questions that novices asked experienced users, since they
indicate a breakdown in the novice’s understanding.

Questions occurred frequently (9.2%) throughout the games, indicating
that experienced users did not explain in sufficient detail at all times. Table 3
shows the percentage of times that a particular code preceded a Question.
Questions occurred after every code, indicating that anything was liable to
cause a breakdown. However, Questions after Do codes were especially fre-
quent.

Table 3 also shows the code that immediately followed a question. This
gives an indication of the type of answers that follow requests for more infor-
mation. Goal and Do were not present in substantial numbers after Ques-

Table 3: The frequency of structure codes in relation to Question codes (in percentages)

Fact Depend Do Goal History Mistake Question UI
Code preceded Question 11.2 10.3 20.3 8.3 8.0 3.3 8.4 13.0
Code followed Question 44.9 13.1 6.5 1.9 4.2 0.5 8.4 14.0

14

tions. It appears that experienced users did not provide answers in terms
of strategy. In contrast, Fact (44.9%) and Depend (13.1%) codes most fre-
quently followed questions. It appears that answers focused on explanations
of what things were important (situation context) for the novice to consider
when applying the strategy.

Design implications: The high incidence of breakdowns following ac-
tions (Do) indicates that notations may be useful to provide further clari-
fication for these situations. Novel approaches in programming by demon-
stration, annotation, or machine learning could also generate questions that
might help identify relevant information. Answers to these questions may be
more likely to highlight which features to pay particular attention to.

5.6. Revisiting the Past

Some explanations do not occur concurrently with the execution. Ex-
perienced players sometimes referred to mistakes as well as present or past
courses of action. Mistakes were pointed out rarely and randomly (1.9%).
More frequent were references to what had gone on in the past, in the form
of History codes (7.6%). The majority of these statements occurred at or
towards the end of transcripts.

Design implications: Experienced users’ mistakes and reflection on
the past implies that a programming or annotating environment needs to
give users the opportunity to connect observed behavior to causes of that
behavior. This is in line with findings of Reeves et al. (Reeves et al., 2007),
who found that experts become better by reflection on their own play. It
is therefore natural to assume that experienced users could explain their
failures and successes by reflecting on their actions. Annotation tools should
allow the user to pinpoint when the strategy started to go wrong or locate
the turning point for success. In addition, an annotation or demonstration
interface would possibly benefit from a means for ‘recalling the context’ for
the user to properly annotate history.

6. Conclusion

We have presented a study aimed at understanding how and what experi-
enced users explain in RTS games. Our first contribution is the development
of two coding schemes that allow a structural, content, and combined in-
vestigation. Our second contribution is an analysis of the study data and
the practical implications of our findings when designing an annotation or

15

demonstration environment for specifying and coordinating complex behav-
ior.

Gaining a rich understanding of how RTS game play is explained by users
can lead to better annotation and demonstration tools for machine learning
systems, and may also provide a first step annotation in other dynamic envi-
ronments in which users must make real-time decisions within specific spatial
and temporal constraints.

Acknowledgements

The authors would like to thank the study participants and gratefully
acknowledge support of the Defense Advanced Research Projects Agency
under DARPA grant FA8650-06-C-7605. Views and conclusions contained in
this document are those of the authors and do not necessarily represent the
official opinion or policies, either expressed or implied of the US government
or of DARPA.

References

Aha, D., Molineaux, M., Ponsen, M., 2005. Learning to Win: Case-Based
Plan Selection in a Real-Time Strategy Game, in: Proceedings of 6th
International Conference on Case-Based Reasoning (ICCBR-05), 5-20.

Buro, M., 2003. Real-Time Strategy Games: A New AI Research Challenge,
Proceedings of IJCAI, 1534-1535.

Carletta, J., 1996. Assessing agreement on classication tasks: the kappa sta-
tistic, Comput. Linguist. 22 (2), 249-254.

Cooper, S., Dann, W., Pausch, R., 2000. Alice: a 3-D tool for introduc-
tory programming concepts, in: Proceedings of the Fifth Annual CCSC
Northeastern Conference on the Journal of Computing in Small Colleges,
Consortium for Computing Sciences in Colleges, 107-116.

Holtzblatt, K., Beyer, H., 1993. Making customer-centered design work for
teams, Commun. ACM 36 (10), 92-103.

Howland, K., Good, J., Robertson, J., 2006. Script Cards: A Visual Pro-
gramming Language for Games Authoring by Young People, in: IEEE
Symposium on Visual Languages and Human-Centric Computing, 2006.
VL/HCC, 181-186.

16

Kahn, K., 1996. ToonTalk-An Animated Programming Environment for Chil-
dren, Journal of Visual Languages and Computing 7 (2),197-217.

Kissinger, C., Burnett,M., Stumpf, S., Subrahmaniyan, N., Beckwith, L.,
Yang, S., Rosson, M.B., 2006. Supporting end-user debugging: what do
users want to know?, in: AVI 06: Proceedings of the Working Conference
on Advanced Visual Interfaces, 135-142.

Krippendorff, K., 2003. Content Analysis: An Introduction to Its Methodol-
ogy, Sage Publications, Inc., Thousand Oaks.

Landis, J., Koch, G. G., 1977. The measurement of observer agreement for
categorical data, Biometrics 33 (1), 159-174.

Li, S., 2002. Rock em, sock em Robocode!, http://www-
128.ibm.com/developerworks/java/ library/j-robocode/.

Modugno, F., Corbett, A.T., Myers, B.A. 1997. Graphical representation of
programs in a demonstrational visual shell-an empirical evaluation, ACM
Transactions on Computer-Human Interaction(TOCHI) 4 (3),276-308.

Morae. TechSmith, http://www.techsmith.com/morae.asp, Last accessed
August 2009.

Myers, B. A., Pane, J. F., Ko, A., 2004.Natural programming languages and
environments, Commun. ACM 47 (9), 47-52.

Ponsen, M., Spronck, P., 2004. Improving Adaptive Game AI with Evolu-
tionary Learning, Masters thesis, Delft University of Technology.

Raghoebar-Krieger, Sleijfer, Bender, Stewart, Popping, 2001. The reliabil-
ity of log- book data of medical students: an estimation of interobserver
agreement, sensitivity and specicity, Medical Education 35 (7), 624-631.

Reeves, S., Brown, B., Laurier, E., 2009. Experts at Play: Understanding
Skilled Expertise,4 (3), 205.

Repenning, A., 1993. Agentsheets: A Tool for Building Domain-Oriented
Dynamic, Visual Environments, Ph.D. thesis, University of Colorado at
Boulder.

17

Repenning, A., 1995. Bending the rules: steps toward semantically enriched
graphical rewrite rules, in: VL ’95: Proceedings of the 11th International
IEEE Symposium on Visual Languages, 226.

Smith, D. C., Cypher, A., Spohrer, J., 1994. KidSim: programming agents
without a programming language, Commun. ACM 37 (7), 54-67.

Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong, W.-K., Burnett,
M., 2008. Integrating rich user feedback into intelligent user interfaces, in:
IUI ’08: Proceedings of the 13th International Conference on Intelligent
User In- terfaces,50-59.

Wargus, http://wargus.sourceforge.net/, Last accessed August 2009.

18

