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ABSTRACT 

For many decades correlation and power spectrum have been primary tools for 

digital signal processing applications in the biomedical area. The information contained 

in the power spectrum is essentially that of the autocorrelation sequence; which is 

sufficient for complete statistical descriptions of Gaussian signals of known means. 

However, there are practical situations where one needs to look beyond autocorrelation 

of a signal to extract information regarding deviation from Gaussianity and the presence 

of phase relations. Higher order spectra, also known as polyspectra, are spectral 

representations of higher order statistics, i.e. moments and cumulants of third order and 

beyond.  HOS (higher order statistics or higher order spectra) can detect deviations from 

linearity, stationarity or Gaussianity in the signal.  Most of the biomedical signals are 

non-linear, non-stationary and non-Gaussian in nature and therefore it can be more 

advantageous to analyze them with HOS compared to the use of second order 

correlations and power spectra. In this paper we have discussed the application of HOS 

for different bio-signals. HOS methods of analysis are explained  using a typical heart 

rate variability (HRV) signal and applications to other signals are reviewed. 

 

Keywords: higher order spectra, spectrum, electrocardiogram, heart rate variability, 

electroencephalogram, epilepsy, entropy, linearity, stationary, Gaussianity, bispectrum, 

bicoherence.  

 
1. INTRODUCTION  
 

HOS techniques were first applied to real signal processing problems in 1970s, 

and since then they have continued to expand into different fields such as economics, 

speech, seismic data processing, plasma physics, optics and bio-medicine.  The 

estimation of power spectrum of discrete-time deterministic or stochastic signals is one 

of the most fundamental and useful tools in digital signal processing. The use of power 
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spectrum spreads across radar, sonar, communication, speech, biomedical, 

geophysical, and other data processing systems. In power spectral estimation, the signal 

under consideration is processed in such a way that the phase relationship among 

components is lost. The information contained in the power spectrum is essentially that 

which is present in the auto-correlation sequence and is sufficient to describe a 

Gaussian signal completely. HOS offers some unique features that make it more 

advantageous for use in some applications. Some of the motivations behind the use of 

higher order spectra in signal processing are as follow:  

i) HOS of non-Gaussian linear processes contains both amplitude and phase 

information. They have been used for time-series modeling, and identification of non-

minimum phase and non-causal systems. These applications include signal 

reconstruction from speckle images, seismic deconvolution and channel equalization.    

ii) The HOS of Gaussian signals are statistically zero. Thus, HOS can be used to 

measure non-Gaussianity and to separate additive mixtures of independent non-

Gaussian signals and Gaussian noise. This feature can be exploited to detect and 

classify non-Gaussian signals and provide high noise immunity in application where the 

signal source is corrupted with Gaussian noise. 

iii) A general non-linear system can be modeled using an Nth-order Volterra processor 

[Schetzen, 1980]. HOS is able to detect and characterize the non-linear properties of 

mechanisms which generate time series via phase relations of their harmonic 

components.  

iv) HOS are translation invariant because linear phase terms are cancelled in the 

products of Fourier coefficients that define them. Functions that can serve as features for 

pattern recognition can be defined from higher order spectra that satisfy other desirable 

invariance properties such as scaling, amplification, and rotation invariance. 

 

 HOS have been applied to many applications such as in oceanography 

[Hasselman et. al. 1963], 1D pattern recognition[ Chandran et. al., 1991,Chandran et. al., 

1993a], chaotic signal characterization[Chandran et. al., 1993b], array signal 

processing[El-Jaroudi et. al., 1994], telecommunication[El-Khamy et. al., 1995], 

ultrasound image processing[Abeyratne et. al, 1995], 2D pattern recognition[Chandran 

et. al., 1992, Chandran et. al., 1997], detection of mines from sonar images [Chandran et. 

al., 2002],  study of machine faults[Jang et. al, 2004], speaker verification[Chandran et. 

al., 2004], recognition of viruses from electron microscopic images [Ong et. al, 2005], 
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termite detection[De La Rosa et. al, 2007], analysis of bio-signals like the ECG[Khadra 

et. al, 2005] and the EEG[Muthuswamy et. al, 1999]. 

 

Many aspects of healthcare require the processing and analysis of physiological 

signals such as electroencephalogram (EEG), electrocardiogram (ECG), heart rate 

variability (HRV), electromyogram (EMG) and medical images. This may require tasks 

such as noise reduction, feature extraction/detection, pattern analysis/classification, 

visualization and modeling. Some of the inherent characteristics of biomedical signals 

are non-linearity, non-stationarity, non-Gaussianity, uncertainty and imprecision.  

Bio-signals are essentially non-stationary signals; they often display a fractal like self-

similarity. They may contain indicators of current disease, or even warnings about 

impending diseases. The indicators may be present at all times or may occur at random 

–in the time scale. However, to (study and) pinpoint anomalies in voluminous data 

collected over several hours is strenuous and time consuming. Therefore, a robust 

analytical tool for in-depth study and classification of data collected over long intervals 

can be very useful in diagnostics.  The use of nonlinear features motivated by the higher 

order spectra (HOS) has been reported to be a promising approach to analyze the non-

linear characteristics of the bio-signals. These HOS-based nonlinear dynamical 

techniques are based on chaos theory and have been applied to many areas including 

the areas of medicine and biology. The basic principles of HOS are discussed in section 

1. Different HOS techniques are used to analyze the data are discussed in section 2 and 

section 3. Section 4 of the paper covers the application of HOS to various bio-signals. 

Section 5 provides a discussion and the paper concludes in section 6. 

 
 
2. HOS and features derived from HOS 
 
2.1 Higher order spectra 
Higher order spectra are defined to be spectral representations of higher order 

cumulants of a random process. 

 
Let x(k) be a real, discrete time and nth-order stationary random process. Moreover, let 

[ ]T
nwwww ,..., 21= and [ ]T

nkxkxkxx )(),....(),( 11 −++= ττ . Then the nth-order moment of 

( )12,1 ,.......,),( −n
x
nmkx τττ  is defined as the coefficient in the Taylor expansion of the 

moment generating function 
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( ) ( )[ ]xiwEw Texp=φ            (1) 
 

In practice, the nth-order moment can be equivalently calculated by taking an 

expectation over the process multiplied by ( )1−n lagged versions of itself [Nikias et. al., 

1993]. 
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Similarly, the coefficients in the Taylor expansion of the cumulant generating function, 

also known as the second characteristic function 

( )( ) exp Tx w lnE jw x =                                                                                  (3) 

are thn  -order cumulants of ),(kx  denoted by ( )121 ,....,, −n
x
nc τττ . 

 
Combining (1) and (3) it is obvious that cumulants can be expressed in terms of 

moments and vice versa. One can easily calculate cumulants as certain nonlinear 

combinations of moments. The second-, third- and fourth-order cumulants are [Nikias et. 

al., 1993] 
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  (4) 

 
If the signal )(kx  is zero-mean ,01 =xm  then the second- and third-order cumulant are 

identical to second- and third order moments, respectively. If the process has nonzero 

mean, the mean may be subtracted from it first and this is often the practice with 

estimation from finite records. However, to generate the fourth-order cumulant we need 

to have the knowledge of the fourth-order and second-order moments, i.e  
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In practice, because of unique linear property of the second characteristic function 

working with cumulants and cumulant spectra instead of moments is more common and 

preferable in the case of stochastic signals. However, it is noteworthy that estimates of 

cumulants are obtained in practice after computing estimates of moments from time-

domain samples using their relationship. Besides, higher order spectra are often 

estimated directly in the spectral domain as expected values of higher order 

periodograms. In cases where HOS are estimated in spectral domain, cumulants may 

not be calculated. Cumulant spectra can be obtained from moment spectra in the 

spectral domain through similar relationships [D. R. Brillinger, 1967b; C. L. Nikias, 1987; 

Chandran, 1994].  

 

Cumulants of the first three orders at zero lag are the well known parameters, variance, 

skeweness and kurtosis used to describe probability density functions. 

 
By putting 1 2 3τ τ τ= = into the equations above, we obtain; 

( ){ } ( )0222
xckxE ==γ  (variance)              (6) 

 
( ){ } ( )0333

xckxE ==γ  (skewness)              (7) 
 

( ){ } ( ) ( )0,0,03 4
2

244
xckxE =−= γγ  (kurtosis)              (8) 

 
 
Some of the important properties that any nth-order cumulants satisfy [Nikias et. al., 
1993b] are: 
 
(i) Scaled quantities: The cumulants of scaled quantities equal the product of all the 

scale factors times the cumulant of the unscaled quantities, i.e., if nii ,....,2,1, =λ  are 

constants and nixi ,...2,1, =  are random variables, then: 

( ) ( )1 1 2 2 1 2
1

, , ..., , , ...,
n

n n i n
i

cum x x x cum x x xλ λ λ λ
=

 
=  

 
∏             (9) 

(ii) Symmetry: Cumulants are symmetric in their arguments, i.e. 
( ) ( )1 2 1 2, , ..., , , ...,n i i incum x x x cum x x x=                (10) 
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where (i1,i2, …, in) is a permutation of (1,…, n); interchanging the arguments of the 

cumulant in any way does not change its value, e.g.: 

( ) ( ) ( )4 1 2 3 4 3 1 2 4 2 3 1, , , , , , .c c c etcτ τ τ τ τ τ τ τ τ= =  

 
(iii) Additivity: Cumulants are additive in their arguments, that is the cumulants of sums 

equal sums of cumulants. For example, even if x0 and y0 are not statistically 

independent, it is true that 

( ) ( ) ( )0 0 1 0 1 0 1, , ..., , , ..., , , ...,n n ncum x y z z cum x z z cum y z z+ = +           (11) 

 

(iv) Additive constants: Cumulants are insensitive to additive constants, that is, for 

α  constant: 

( ) ( )1 1, ..., , ...,n ncum z z cum z zα + =               (12) 

 

(v) Sums: The cumulants of a sum of statistically independent quantities equals the sum 

of the cumulants of the individual quantities, i.e., if the random variable [xi] are 

independent of the random variables [yi] for i = 1,2, …, n  then: 

( ) ( ) ( )1 1 1 1, ..., , ..., , ...,n n n ncum x y x y cum x y cum y y+ + = +           (13) 

Note that if xi and yi are not independent, then from equation (11) there would be 2n 

terms on the right hand side. Statistical independence reduces these terms to just 2. 

 

(vi) Independent subsets: If a subset of the random variables such as },{ 21 xx  is 

independent from the rest },....,,{ 43 nxxx , then 

( )1, 2,..., 0ncum x x x =               (14) 

 
 
2.2 Frequency Domain Definition and Properties 
 
The Weiner-Khintchine relation indicates that the spectral density function ( )x

nM ω  and 
the correlation function ( )x

nm τ  constitute of Fourier transform pair, that is 
( ) ( )x x

n nm Mτ ω↔               (15) 
where w  denotes frequency, and ↔ denotes a Fourier transform pair. Cumulant based 
spectra can similarly be defined. 
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The second-order cumulant spectrum is the power spectrum and the , third-, and fourth-

order cumulant spectra are known as the bispectrum and the trispectrum, respectively.  

 
General formula 

 ( ) ( )
1 1

1

1 2 1 1 2 1
1

, , ..., ... , ,..., exp
n

n
x x
n n n n i i

i
S cum j

τ τ

ω ω ω τ τ τ ω τ
−

∞ ∞ −

− −
=−∞ =−∞ =

 
= − 

 
∑ ∑ ∑           (16) 

 
When n =2, we have power Spectrum: 

( ) ( ) [ ]2 2 expx xS cum j
τ

ω τ ωτ
∞

=−∞

= ∑                (17) 

 

 

Bispectrum: n =3 

The bispectrum is the 2D-Fourier transform of the third cumulant function: 

( ) ( ) ( )
1 2

3 1 2 2 1 2 1 1 2 2, , expx xS c j
τ τ

ω ω τ τ ω τ ω τ
∞ ∞

=−∞ =−∞

 = − + ∑ ∑            (18) 

for 1 2,ω π ω π≤ ≤ , and 1 2ω ω π+ ≤ . 

 

In the above definitions, it is assumed that the moment or cumulant functions satisfy the 

conditions necessary for a Fourier (spectral) representation. This implies that they decay 

with increasing lags and are at least square integrable. For discussion on existence of 

polyspectra for random processes, refer to [Brillinger et. al, 1967]. Note that the 

cumulants are deterministic functions even though the process is random. 

 

For a deterministic signal x(n), the power spectrum can be expressed in terms of the 

Fourier transform of the underlying signals as: 

( ) ( ) ( )*
2S X Xω ω ω=  

 
For a deterministic, zero-DC signal the bispectrum may be expressed in terms of the 

Fourier transform of the underlying signal since: 

)](exp[)()()(),( 22112

1 2

1213 τωτωττωω
τ τ
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∞
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setting 1n mτ+ = and 2n kτ+ =  and splitting the exponent it can be shown that : 
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Note that in the expressions above for the power spectrum and the bispectrum of a 

deterministic signal, these spectra are products of Fourier transforms of the deterministic 

time-domain signals. The bispectrum is a triple product evaluated at two frequencies and 

their sum frequency. This expression is similar the periodogram expression for power 

spectrum and is referred to as a higher order periodogram. It can be shown that the 

bispectrum of a random process can be estimated as the expected value of this bi-

periodogram over an ensemble of realizations of the process. Often only a single 

realization of the process is all that is available. If the process is indeed stationary, this 

realization can be divided into segments and bi-periodograms from the different 

segments can be averaged to obtain a reliable estimate of the bispectrum.  

 

If x(n) is a finite duration sequence  the existence of its (discrete) Fourier transform 

(DFT) is guaranteed. 

The symmetry conditions of the bispectrum ( )3 1 2,S ω ω follow from those of the third 

cumulant, namely: 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

*
3 1 2 3 2 1 3 2 1

*
3 1 2 3 1 2 2

3 1 1 2 3 1 2 1

3 2 1 2

, , ,

, ,

, ,

,

S S S

S S

S S

S

ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω

= = − −

= − − = − −

= − − = − −
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Thus, knowledge of the bispectrum in the triangular region 2 2 1 1 20, ,ω ω ω ω ω π≥ ≥ + ≤  is 

sufficient to describe the rest (Figure 1). This region (labeled 1) is often termed the 

principal region or the non-redundant region of computation of the bispectrum. 
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               Figure 1 Non-redundant region of computation of the bispectrum of a discrete-
time signal assuming that the sampling interval is 1 and the Nyquist frequency is thus π  
radians/second. 
 
2.3 Estimation of Higher-order spectra 
 

In practice, even if the underlying process is random and continuous, digital 

computations require discrete or sampled data and the data available are of finite length. 

Just like the power spectra, there are two main approaches that can be used to estimate 

higher-order-spectra [Nikias et. al 93]: the conventional non-parametric methods (or 

“Fourier type”) and the parametric approach – i.e based on autoregressive model (AR), 

moving average (MA) , autoregressive and moving average (ARMA) or Volterra model.  

The interested reader may refer to tutorials in [Nikias et. al 87, Nikias et. al 93] for the 

details of these methods. The Matlab based Higher Order Spectral Analysis toolbox [ 

Swami et. al., ] consists of various functions to estimate HOS both in parametric and 

non-parametric methods, as well as some utility functions for various test and 

measurements. 

 

The methodology adopted in the results presented here is the parametric approach. 

Simply put, the bi-periodogram as in equation 20 is computed for all available records in 

an ensemble or all segments obtained from a finite record. These segments may be 

made to overlap to improve statistical reliability. The biperiodgram is averaged over the 

entire ensemble to obtain the estimate of the bispectrum.  
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3. ANALYSIS USING HOS FEATURES 
 
3.1 BISPECTRUM, BICOHERENCE AND QUADRATIC PHASE COUPLING 

The estimate of the bispectrum of a stationary and ergodic random process with the non-

parametric approach is given by  

   

( ) ( ) ( ) ( )[ ]21
*

2111, ffXfXfXEffB +=            (21) 

Where )( fX  is the Fourier transform of a segment (or windowed portion) of a single 

realization of the random signal )(nTx , n is an integer index, T  is the sampling interval 

and [.]E  stands for the expectation operation. Note that a finite length record of a single 

realization of the random process is a deterministic signal and it is absolutely summable 

in discrete form and its Fourier transform is guaranteed to exist. The expectation 

operation over a number of realizations is extremely important for statistical reliability. 

Windowing introduces spectral leakage in the DFT operation and provided this effect can 

be ignored, the bispectrum of the original random process can be expected to be close 

to the estimate computed by equation 21. Statistics of the bispectrum and effects of 

leakage are discussed in [(S. Elgar, 1988; S. Elgar, 1989; Chandran and Elgar, 1991; 

Chandran, Elgar et al., 1994)] 

 

 The bispectrum is a function of two frequencies unlike the power spectrum which 

is a function of one frequency variable. The frequency f may be normalized by the 

Nyquist frequency (one half of the sampling frequency) to be between 0 and 1. The 

bispectrum can be normalized (by power spectra at component frequencies) such that it 

has a magnitude between 0 and 1, and indicates the degree of phase coupling between 

frequency components [Nikias et al, 87; Nikias et. al, 1993].   

A normalized bispectrum by Haubrich [Huabrich 1965] is given by   

         ( ( ) ( ) *( )]
1 2 1 2( , )

1 2 ( ) ( ) ( )
1 2 1 2

E X f X f X f f
B f fnorm P f P f P f f

+
=

+
                    (22) 

where )( fP is the power spectrum. Bicoherence, ),( 21 ffBco , is defined as the squared-

magnitude of the normalized bispectrum. If the Fourier components at the frequencies 
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1f , 2f  and 21 ff +  are perfectly phase-coupled in every realization (or block of data) the 

bicoherence will be 1. If they are completely random-phase the bicoherence would be 0, 

in theory. Since the power spectral values in the denominator are estimates in practice, 

this normalization does not ensure that the magnitude of the normalized bispectrum 

obtained from finite time series will be bounded by 1. An alternative normalization of the 

bispectrum by Kim and Powers [Kim et. al, 1979] ensures that the magnitude of the 

normalized bispectrum will be bounded by 1, as has been proved using the Schwartz 

inequality. Kim and Powers bicoherence is given by 
[( ( ) ( ) *( )]

1 2 1 2( , )
1 2 [ ( ) ( )] [ ( )]

1 2 1 2

E X f X f X f f
B f fnorm E P f P f E P f f

+
=

+
                (23) 

This is important only if we are interested in measuring the degree of phase coupling 

between frequency components reliably. In practice when we have only an estimate of 

the bispectrum or the bicoherence from a finite number of realizations, the estimate has 

a finite bias and variance. Values of bicoherence [Elgar et. al, 1988] and tricoherence 

[Chandran et. al, 1994] at various significance levels are known for Gaussian random 

noise. It is known that the bicoherence and tricoherence are asymptotically Chi-squared 

distributed [Elgar et. al, 1988, Chandran et. al, 1994]. If N realizations are averaged to 

compute the estimate, 95% of the bicoherence values should lie between 0 and 
N2

6 . 

Thus, if 100 independent blocks of data are averaged in the estimate, a bicoherence 

greater than 0.03 would be significant at the 95% confidence level to reject the 

hypothesis that the particular frequency components came from a Gaussian noise 

process. The case of a harmonic random process is discussed in [Chandran et. al, 1994]. 

For other processes, values for the random-phase hypothesis at different significance 

levels can be determined by randomizing the phases of the Fourier components while 

keeping the magnitude (and hence the power) spectrum the same and computing the 

distribution of bicoherence values. If the data blocks are short, the statistics of the 

bispectrum and the bicoherence can also be influenced by spectral leakage [Chandran 

et. al, 1991].  Bicoherence plots of zero mean and unit variance  Gaussian noise and 

generalized extreme value noise with 100 blocks of data and each block 256 samples 

are shown in Figure 2. 
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Figure 2 Bicoherence noise plots (a) Gaussian (b) Generalized extreme value noise with 
100 blocks of data and each block 256 samples. 
 

The bicoherence of Gaussian random variable is nearly zero with about 5% of the 

distribution above the 95% significance level of 0.03 as expected. For generalized 

extreme value random variable, the bicoherence is not statistically 0. It is found in the 

experiment above that about 13% of the bicoherence distribution over the triangular 

region of computation lies above the 95% significant level. It can therefore be concluded 

that the bicoherence is not zero at the 95% level of confidence for this distribution. 

Hinich [Hinich, 1982] has developed statistical tests for Gaussianity and test for linearity 

based on HOS. 

 

Figure 3 shows a sample of real bio-signal which is a typical heart rate signal of a normal 

subject.  

Comment [c1]: Inside the plot, valuable 
-> variable ? 
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                            Figure 3 Typical heart rate signal of normal subject. 

Figure 4 shows the bispectrum and its normalized version, the bicoherence, for the HRV 

signal shown in   figure 3.  

The heart rate we resampled using algorithm in [ Berger et. al, 1986], and the sampled 

data were partition into blocks of 512 points with an overlap of 256 points (ie 50%). The 

bicoherence were computed from the average value of 11 blocks of data altogether 

giving the value of 95% confident level of 0.2727 ( i.e b95% = 6/2N = 6/22).     

The bispectrum plot can be used to examine the non-linear interaction between 

harmonic components of a signal.  
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                              (a)                                                           (b) 
           Figure 4  Plots of (a) bispectrum  (b) bicoherence of Figure 3. 

 

 

 

Comment [c2]: You need to say 
something about figure 4. What do the high 
values of bispectrum denote? What are the 
bi-frequencies for these? What does the 
bicoherence plot reveal? Why not plot the 
non-redundant region zoomed in to show 
more clearly.  
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Besides testing for linearity, detecting quadratic phase coupling and checking for 

Gaussianity, HOS will provide information about signal wave shape. Assuming that there 

is no bispectral aliasing, the bispectrum of a real signal is uniquely defined with the 

triangle 0≤f2≤f1≤f1+f2≤1. Parameters are obtained by integrating along the straight lines 

passing through the origin in bifrequency space (Chandran and Elgar, 1991; V. 

Chandran, 1993). The region of computation and the line of integration are depicted in 

Figure 5. The bispectral invariant, P(a), is the phase of the integrated bispectrum along 

the radial line with the slope equal to a. This is defined by  

               )arctan()( )(
)(

aI
aI

r

iaP =                                                               (24) 

where  

)25()()(),()( 1
1

01
111 ajIaIdfaffBaI ir

a
f

+== ∫ +
+=

 

for 0<a≤1, and j = 1− . The variables Ir and Ii refer to the real and imaginary part of the 

integrated bispectrum, respectively.  

These bispectral invariants contain information about the shape of the waveform 

within the window and are invariant to shift and amplification and robust to time-scale 

changes. These features are rotation, translation and scaling invariant when applied to 

one and two dimensional pattern recognition [Chandran et al., 1991]. They are 

particularly sensitive to changes in the left-right asymmetry of the waveform. For 

windowed segments of a white Gaussian random process, these features will tend to be 

distributed symmetrically and uniformly about zero in the interval ],[ ππ +− . If the process 

is chaotic and exhibits a coloured spectrum with third order time-correlations or phase 

coupling between Fourier components, the mean value and the distribution of the 

invariant feature may be used to identify the process.   

Ng et. al.[Ng et. al, 2004] have used mean magnitude and phase entropy as 

features to investigate images in particular on photomontage. We present these features 

here. However, unlike their work, we calculated these features within the region 1 

defined in figure 1 (which is equivalent to Ω of figure 5).  

 Mean Magnitude of the bispectrum: Mave = )2,1(
1 ffb
L ∑ Ω                    (26)                            
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 Phase Entropy: Pe = ∑n nn pp )(log)( ψψ                                                            (27) 

 

)28()))2,1(((1
1

)( nn ffb
L

p ψφψ ∈= ∑ Ω  

1,...,1,0,/)1(2/2|{ −=++−<≤+−= NnNnNnn ππφππφψ                (29)  

Where L is the number of points within the region in figure 5, φ refers to the phase angle 

of the bispectrum, Ω  refers to the space of the defined region in figure 1, and 1(.)  is an 

indicator function which gives a value of 1 when the phase angle   is within the range 

of bin ψn in equation 9. 

In biosignal processing, bispectrum plots are derived from different classes of 

signals and found to be different in structure and distribution of values. There have been 

several attempts to define features to distinguish these plots. These features are derived 

from  the centroid, moments or the entropies of the distributions. 

The weighted centre of bispectrum (WCOB) [Zhang et. al. 1998]  is given by:  

1 2

( , ) ( , )

( , ) ( , )m m

iB i j jB i j
f f

B i j B i j
Ω Ω

Ω Ω

= =∑ ∑
∑ ∑

                      (30) 

  where i, j are the frequency bin index in the non-redundant region. 

Entropies were used to characterize the regularity or irregularity of the biosignals 

from bispectrum plots. Chua et. al. [Chua et. al, 2007] have defined two bispectral 

entropies similar to that of Spectral entropy [Inouye et. al, 1991]. The formulae for these 

bispectral entropies are given as: 

Normalized Bispectral Entropy (BE 1):  

P1 = ∑−
n ii pp log                                                                           (31) 

where  ∑Ω

=
),(

),(

21

21

ffB
ffB

pi                                                     (32) 

Ω = the region as in Figure 5. 
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Normalized Bispectral Squared Entropy (BE 2):  

P2 = ∑−
n nn pp log                                                      (33) 

where  
∑Ω

=
2

21

2

21

),(

),(

ffB

ffB
pn                                                      (34) 

 Ω = the region as in Figure 5.   

 
 

Figure 5   Region of computation of the bispectrum for real signals. Features are     
calculated by integrating the bispectrum along the dashed line with slope=a.   
 Frequencies are shown normalized by the Nyquist frequency. 

 

  The normalization in the equations above ensures that entropy is calculated for 

a parameter that lies between 0 and 1 (as required of a probability) and hence the 

entropies (P1 and P2) computed are also between 0 and 1.  

The features related to moments [Zhou et. al 2008] the plot are: 

The sum of logarithmic amplitudes of the bispectrum: 

( )( )1 1 2log ,H B f f
Ω

= ∑      (35) 

The sum of logarithmic amplitudes of diagonal elements in the bispectrum: 

( )( )2 log ,k kH B f f
Ω

= ∑      (36) 

f2 

f1 
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0.5 1 

f2=a f1 
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The first-order spectral moment of amplitudes of diagonal elements in the bispectrum: 

( )( )3
1

log ,
N

k k
k

H k B f f
=

= ∑      (37) 

Although in this paper, all these features are defined within the principle domain in figure, 

one could also compute these features based on bispectrum of all the quadrants.  An 

example of normal HRV signal with its corresponding bispectrum and bicoherence is 

given below.  

P1 = 0.6911, P2 = 0.4698, Pe = 3.5713,  Mave = 1.82e05,  

H1=6.04e04, H2=567, H3 = 3.08e4, f1m =25.29 and f2m = 8.848.  

P(a) =1.0518,  P(a) =   -2.1798  for a = 1/16 and 3/16 respectively are values for Figure 5. 

4. Application of HOS on various signals 

The HOS has been used to analyze various different bio-signals namely 

electroencephalogram (EEG), electrocardiogram (ECG)/heart rate (HR) signals, 

electromyogram (EMG), lung sounds, heart sounds, bowel sounds and medical images.  

They are briefly explained below. 

 

4.1 Electroencephalogram (EEG) analysis 
 
Bicoherence was applied to EEG signals to study quadrature phase coupling (QPC) 

relations [Huber et. al., 1971]. It was shown that the interaction is mostly between the 

α rhythm and its higher harmonics. 

 

The bispectrum and bicoherence index showed some prominent peaks at low frequency 

components indicating the existence of QPC in [Ademoglu et. al, 1992 ]. This study also 

found that both the undisturbed (EEG) and the specifically activated states of the brain 

(Auditory Evoked Potential) exhibit interactions between neuronal substrates oscillating 

in different frequencies. QPC in EEG from Alzeheimer’s patients was studied in [Samar 

et.al, 1993 ].  They found QPC in the evoked potential EEGs in the delta, theta, alpha 

and beta bands. Bicoherence was used to examine the deviation from Gaussianity and 

linearity, and QPC of the EEG of different mental states (eye –closing and eye-opening) 
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in [Haejeong et. al, 1994]. It was found that the eye-closed state was more nonlinear and 

more non-Gaussian.  

 

HOS features have been used to monitor the depth of anesthesia successfully [ Rezek 

et.a al., 2005, Rezek et.a al., 2007]. They have presented a model that generalizes the 

autoregressive class of polyspectral models by having a semi-parametric description of 

the residual probability density.  A bispectral index derived from bispectral analysis of 

EEG recordings was used to quantify the depth of anaesthesia in  [Billard].   

Bispectral analysis was used for non-invasive detection of cerebral ischemia in rats 

[Zhang et. al. 2000].  The maximum magnitude and the weighted center of EEG 

bispectrum (WCOB) change according to the extent and the place of the injury region. 

The study indicated that the EEG bispectrum analysis may be useful to distinguish the 

ischemic region from the normal one and to estimate the extent of cerebral ischemia. 

Bispectral features were used to classify EEG signals corresponding to left/right-hand 

motor imagery [Zhou et. al, 2007]. The feature set included parameters derived from 

moments of the power spectrum and moments based on the bispectrum of EEG signals. 

Experimental results have shown that based on the proposed features, the LDA 

classifier, SVM classifier and NN classifier achieved better classification results than 

those of the BCI-competition 2003 winner [BCI Competition II – final result]. 

HOS has also been used to characterize the dynamics of sleep spindles using sleep 

EEG signals [Akgul et. al, 2000]. Their results show that, the normalized spectrum and 

bispectrum, described frequency interactions associated with nonlinearities occurring 

during sleep spindle EEG activity.  

Huang et. al have developed an new approach, based on bispectrum analysis of EEGs 

and an artificial neural network (ANN), to predict seizures[Huang et. al, 2003]. The 

maximum magnitude and the weighted center of EEG bispectrum (WCOB) were 

extracted from the EEG bispectrum contour and a four layer ANN was used for 

prediction. The proposed system was able to correctly predict the succedent seizures 

and prediction times ranged from 12 to 24 seconds, prior to the onset of epileptic 

seizures.   
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Recently HOS based measures such as bispectrum entropy and bispectrum phase 

entropy to distinguish normal, pre-ictal and seizure stages have been proposed in [Chua 

et. al, 2007].  These entropy based features discriminate between the classes with high 

confidence levels (p-value of less than 0.05). Normal, pre-ictal and epileptic EEG 

classes were identified using HOS features with a classification accuracy of 93.11% in 

[Chua et. al, 2008].  They have shown the superiority of the performance of HOS based 

features as compared to the PSD features which yielded classification accuracy up to 

88.78% for the three classes (normal, pre-ictal and epileptic) with the same classifiers. 

4.2 ECG and HRV analysis 

Third-order cumulant on 1-d slices and a four-layer neural network classifier was used to 

classify ECG late potentials in [Sabry-Rizk et. al. 1999]. They were able to classify 

normaI, confirmed, and suspected abnormal subjects with an accuracy of 96%.  

The degree of changes in the dominant frequencies during ventricular fibrillation using 

Wigner transforms was studied on dogs by [Patwardhan et. al, 1999]. They have used 

auto-bispectra to quantify phase coupling between different dominant rhythms. Their 

results show that during ventricular fibrillation there is substantial frequency modulation 

of the dominant rhythms and these rhythms are phase coupled.  

A new way of detecting the R-wave in a QRS complex of an electrocardiogram (ECG) 

based on higher-order statistics (HOS) was presented by [Panoulus et. al, 2001]. They 

used HOS-based parameters, such as skewness and kurtosis, to identify the R peak 

with an accuracy of 99%.  

Atrial fibrillation (AF) and ventricular tachycardia (VT) are other types of tachy-

arrhythmias that constitute a medical challenge. Ventricular fibrillation (VF) and 

ventricular tachycardia (VT) ECG parameters were derived  by AR modeling using PSD  

as well as AR modeling using HOS in [Alliche, A et. al, 2003]. Classification results with 

Learning Vector Quantization (LVQ) code books demonstrated that HOS based AR 

modeling performed better than the PSD based one in classifying VF and VT.   An 

algorithm based on the bispectral analysis for the analysis and classification of cardiac 

arrhythmias was proposed by [Khadra et. al., 2005]. The bispectrum was estimated 

using an autoregressive model and it was observed that different arrhythmias occupied 

different range of f1 and f2 in the bispectrum plot.  This frequency ranges called 
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“frequency support” of the bispectrum was used to classify atrial and ventricular tachy-

arrhythmias. Their study showed a significant difference in the parameter values for 

different arrhythmias.  

The most difficult problem faced in automatic ECG analysis is large variation in the 

morphologies of ECG waveforms, not only of different patients or patient groups but also 

within the same patient. The ECG waveforms may differ for the same patient to such 

extend that they are unlike to each other and at the same time alike for different types of 

beats. As a result, the beat classifier which perform well on the training data may fare 

badly when presented with different patients ECG waveforms[ Osowski and Linh, 2001]. 

In their study, they show that the higher order statitistics are less sensitive to the 

variation of morphology of ECG. Motivated by this,Engin developed a fuzzy-hybrid 

neural network for electrocardiogram (ECG) beat classification with features consisted of 

the combination of autoregressive model coefficients, higher-order cumulant and wavelet 

transform variances instead of the original ECG beats [Engin 2004]. In this approach 

wavelet tranforms captured non-stationary information and HOS characterized the non-

Guassian information and reduced the variation due to morphological changes. Over all 

effect of combining different features for the classifier resulted a better performance of 

classification of 98% accuracy when tested on the MIT/BIH arrhytmia database [MIT 

Arrhytmia Database]. In a saparate work, Oswoski et al have developed an ECG 

recognition system using HOS features and the support vector machine (SVM) [Osowski 

et.al., 2004]. Their expert system was able to achieve an average error rate of less than 

4% for the recognition of 13 heart rhythm types.  

 

The compression performance and characteristics of two wavelet coding compression 

schemes of electrocardiogram (ECG) signals suitable for real-time telemedical 

applications was studied in [Istepanian et. al., 2001]. The two proposed methods, 

namely the optimal zonal wavelet coding method and the wavelet transform higher order 

statistics-based coding method, were used to assess the ECG compression issues. 

HOS with wavelet analysis achieved high compression ratio with low compression error.   

 

Chua et al have proposed unique bispectrum and bicoherence plots for the normal and 

seven cardiac arrhythmia classes using the HRV signal [Chua et. al, 2008a]. HOS 

features such as bispectrum invariant features and bispectrum entropies derived for 

these cardiac states were found to be clinically significant (p-value <0.02).  They have 
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also classified cardiac states (normal and three abnormal) using HOS parameters with 

an average classifier efficiency of more than 85% [ Chua et. al, 2008b].   
 
4.3 Analysis of Surface Electromyogram (SEMG)  

 

It is important for a quality neuromuscular diagnosis to obtain information on innervation 

pulse trains and motor-unit action potentials (MUAPs) characteristics. Non-linear 

decomposition based on HOS for the synthetic surface EMG (SEMG) signals was 

studied reliably in a noiseless case in [Pelvin et. al, 2002]. They also tested different 

levels of additive Gaussian noise and found out that the robustness of HOS to such 

noise leads to satisfactory results in noisy environments. The cepstrum of bispectrum 

based system reconstruction algorithm was applied to recover MUAP from wired-EMG 

(wEMG) and surface-EMG (sEMG) signals in the Rectus Femoris and Vastus Lateralis 

muscles in [Shahid et al., 2005]. In this work MUAP estimates recovered from cepstrum 

of bispectrum were comparable in quality to those produced by the multiple electrode 

approach but without the need for specialized equipments. Furthermore, it was observed 

that the appearance of the estimated MUAPs clearly showed evidence of motor unit 

recruitment and crosstalk, if any, due to activity in the neighbouring muscle. 

 

Kaplanis et al have used HOS to analyze the surface EMG signal (sEMG) [Kaplanis et 

al., 2000]. They have shown that the level of Gaussianinity of sEMG changed as mean 

voluntary contraction (MVC) varied. The signal became less Gaussian at very low and 

very high MVC but some where at the middle, sEMG became more Gaussian. The level 

of non-Gaussianity of sEMG signal variation was used to classify sEMG signals 

[Nazarpour et. al., 2007]. They compared the performances of seven different 

combinations of cumulant-based feature vectors for sEMG classification. They used the 

Sequential Forward Selection (SFS) to select the best feature set in a high-dimensional 

feature set generated by the HOS. With only three selected features (ie, C2,x(0), C2,x(1) 

and C4,x(0,0,0)) they  were able to achieve an average classification accuracy of 93.23%. 

 

 

4.4 Analysis of other bio-signals - lung sound, heart sound and bowel sounds  
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The QPC of the lung sound on preclassified signals (wheezes, ronchi, stridors) was 

studied [Hadjileontiadis et. al, 1997]. They observed three distinguished peaks (410.2Hz, 

820.4Hz, and 1230.6Hz) in the power spectrum of inspiratory stridor, at f0, 2*f0 and 3*f0 

respectively.  On the other hand, the corresponding bispectrum of the signal showed 

only a sharp peak in the bifrequency domain, located at (f1,f2)=(410.2Hz,410.2Hz). This 

is an indication that a strong quadratic phase coupling among the frequencies of the 

related frequency pair and hence a nonlinear production mechanism of respiratory 

stridors. 

 

HOS was used in an autoregressive modeling to characterize the source and 

transmission of lung sounds [Hadjileontiadis et. al, 1997b]. The lung sound source in the 

airway was estimated using the prediction error of an all-pole filter based on higher-order 

statistics (AR-HOS), while the acoustic transmission through the lung parenchyma and 

chest wall is modeled by the transfer function of the same AR-HOS filter. The study had 

showed a reliable and consistent estimation of lung sound characteristics for different 

lung diseases using HOS method, even in the presence of additive Gaussian noise. 

  

An adaptive heart-noise reduction method, based on fourth-order statistics (FOS) of the 

recorded signal, without requiring recorded “noise-only” reference signal was presented 

in [Hadjileontiadis et. al, 1997c]. This algorithm was used to preserve the entire 

spectrum. Furthermore, the proposed filter was independent of Gaussian uncorrelated 

noise and insensitive to the step-size parameter.  

 

A kurtosis (zero-lag fourth-order statistic) technique for the detection of nonstationary 

bioacoustic signals, such as explosive lung and bowel sounds, in clinical auscultative 

recordings was presented [Rekanos et. al, 2006]. The iterative kurtosis-based detector 

(IKD) detected important peaks of the kurtosis, estimated within a sliding window along 

the signal under investigation, which indicated the presence of non-Gaussianity in the 

raw signal. Experimental results demonstrated IKD’s ability to detect bioacoustic signals 

of diagnostic interest in the presence of background signal with high amplitude. 

 

Studies conducted by different researchers showed that a phonocardiogram (PCG) is a 

non-Gaussian process [Shen et. al, 1997; Hadjileontiadis et. al, 1997c]. They 

demonstrated different bispectral structures in both normal and pathological heart 
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sounds.  Hence, polyspectra may be an effective and useful tool for understanding the 

basic heart sound mechanism and improving diagnostic sensitivity via heart sounds. 

 
4.5 Analysis of 2D biosignals  
 
 
A new method based on higher order statistics for detection of microcalcifications in 

mammograms was proposed in [Gurcan et. al, 1997]. Mammogram images were first 

band-passed filter without subsampling. Microcalcifications gave rise to small isolated 

bright regions which forms outliers which modify the histogram of the image.   The 

bandpass filtered sub-image was divided into overlapping square regions in which 

skewness and kurtosis were used as measures of the asymmetry and impulsiveness of 

the distribution. Their study showed that a region with high positive skewness and 

kurtosis was successfully used in detecting regions with microcalcifications.  

 

Abeyrathne et al have modeled a tissue as a collection of point scatterers embedded in 

a uniform media in [Abeyratne et. al, 1997]. They showed that the higher order statistics 

(HOS) of the scatterer spacing distribution can be estimated from digitized RF scan line 

segments and can be used to characterize tissue signatures.  

Two dimensional images have been transformed into one dimensional signals for HOS 

analysis. This was done using Radon transform [(Chandran and Elgar, 1992)Chandran 

et. al, 1997] or using slicing algorithm [Balan et. al, 1995]. Features that were invariant to 

shift, scaling and rotation were used for pattern recognition and texture analysis.  

Invariant features based on HOS were used for virus recognition in [ Ong et. al, 2005 ]. 

Viral particles from one or more images were segmented and analyzed to verify whether 

they belong to a particular class (such as Adenovirus, Rotavirus, etc.) or not. Bispectral 

features and Gaussian mixture modeling of their probability density were shown to be 

effective in identifying viruses from electron microscope images. Another group of 

researchers also developed similar invariant features based on the phase of the 

bispectrum moment [Shao, et. al, 2001] and these features were used to automatically 

recognize and classify malignant lymphomas and leukemia [ Luo, et. al, 2006].   

Acharya et al, have automatically identified the normal, mild DR, moderate DR, severe 

DR and prolific DR using the bispectral invariant features of higher order spectra 

techniques and support vector machine (SVM) classifier in [Acharya et al., 2008]. They 
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have obtained an average accuracy of 82% in identifying the unknown class and 

sensitivity, specificity of 82% and 88% respectively.  

A computer-based intelligent system for the identification of clinically significant and 

clinically non-significant maculopathy fundus eye images was proposed in [Chua et al., 

2007].  Bispectrum invariants and Sugeno fuzzy model based fuzzy classifier were used 

for the automatic identification.  They demonstrated a sensitivity of 97% and specificity of 

100% for the classifier and results are very promising.  

 

5. DISCUSSION  

Time domain measures of variability are easy to compute and provide valuable 

prognostic information about patients. They are susceptible to noise which causes 

baseline wander and artifacts. The time domain and second order methods may not 

always be able to identify different bio-signals (different rhythms) as these signals may 

have identical means and standard deviations. Hence, more rigorous techniques to 

differentiate these physiological signals is necessary to derive clinically useful 

information. 

 
 Fourier and wavelet transforms can be used to analyze the signal in the 

frequency domain. The signal is assumed to be implicitly periodic to apply the discrete 

Fourier transform. In the interpretation of experimental data, periodic behavior may or 

may not exist when evaluating alterations in spectral power in response to intervention. 

The signal is also assumed to be stationary. The assumption of stationarity may not hold 

when the signal is recorded for long durations and when underlying mechanisms of 

signal generation change. Spectral analysis is more sensitive to the presence of artifacts 

than time domain methods. 

Wavelet transforms (WT) were found to be more suitable for the bio-signal analysis than 

the Short Time Fourier Transform (STFT) because of their better resolution. It is able to 

extract dynamical information from the signals.  STFT and WT help to convey the 

frequency information at a particular instant. But they fail to extract non-linear 

relationships within the signal or time series.  
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Higher order spectral analysis can be used as a powerful tool for the nonlinear 

dynamical analysis of the physiological signals. It was observed that HOS techniques 

would be a better approach than traditional time domain and frequency domain methods 

in analyzing the bio-signals. It performs better when applied to weak and noisy signals. 

The HOS of Gaussian signals are statistically zero and the methods provide robustness 

to additive Gaussian noise. The bispectrum and bicoherence 2-D plots of signals such 

as the HRV are unique for many diseases [Chua et al., 2006, 2007] and the bispectrum 

entropies can characterize the behaviour of physiological signals such as the HRV and 

the EEG.  Bispectrum based invariant features can also be used to characterized pulse 

shapes in physiological signals such as the ECG and 2D shapes in biomedical imagery. 

[Acharya et al., 2008; Chua et al., 2007].  

This review surveyed a range wide range of applications of HOS in biomedical field. In 

some of the examples, the reasons HOS was used is also discussed giving the reader 

some appreciation what advantages HOS can offer as a signal processing tools. 

Different signal analysis tools such as Fourier transform, wavelet transform and HOS do 

have their own strengths and provide useful insight into the signal from different 

perspectives. HOS is useful in detecting non-linear coupling, deviation from Gussianity 

and features derived from it can be made invariant to shift, rotation and amplification. 

These features can be explored for various biomedical applications.  

 

6. CONCLUSION   

      Physiological signals can be used to observe state of the different parts of the body. 

Some of these signals, like the HRV or the EEG, are highly noisy can be considered as 

chaotic. Linear and power spectral frequency methods are not very effective in the 

analysis of such physiological signals. They ignore phase relationships between 

harmonic components and non-linearity in underlying generation mechanisms. HOS 

methods can be applied to improve the analysis . HOS parameters have been used for 

the analysis of pathological signals and found to be good indicators of pathologies and 

useful for extracting clinically significant diagnostic information. We have discussed the 

application of HOS on various physiological signals.  
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