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Abstract

We compute the number of triangulations of a convex k-gon each of whose sides
is subdivided by r − 1 points. We find explicit formulas and generating functions,
and we determine the asymptotic behaviour of these numbers as k and/or r tend
to infinity. We connect these results with the question of finding the planar set of
n points in general position that has the minimum possible number of triangulations.
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1 Introduction

Let k and r be two natural numbers, k ≥ 3, r ≥ 1. Let SC(k, r) denote a
convex k-gon in the plane each of whose sides is subdivided by r − 1 points.
(Thus, the whole configuration consists of n := kr points.)

A triangulation of a planar point set S is a dissection of its convex hull
by non-crossing diagonals into triangles. We denote the number of triangu-
lations of SC(k, r) by tr(k, r). Triangulations of subdivided convex polygons
were studied to some extent by Hurtado and Noy [4] 7 and by Bacher and
Mouton [2]. We find enumeration formulas and precise asymptotic results for
the numbers tr(k, r). Some of our results extend those from earlier papers,
and answer questions and conjectures stated there and in the OEIS [5].

2 Formulas

The first step is developing an inclusion-exclusion formula for tr(k, r). 8

Theorem 2.1 We have

tr(k, r) =

⌊r/2⌋k∑
m=0

(−1)m ak,r,mCkr−m−2, (1)

where Cn is the nth Catalan number, and

ak,r,m := [xm]

⌊r/2⌋∑
ℓ=0

(
r − ℓ

ℓ

)
xℓ

k

.

Proof (Sketch) We construct a bijection between triangulations of SC(k, r)
and a subset of triangulations of the convex (kr)-gon, determined by certain
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“forbidden” diagonals. The expression ak,r,m is the number of triangulations
of the convex (kr)-gon that use at least m forbidden diagonals. We apply the
inclusion-exclusion principle and obtain formula (1). 2

Next, we observe that
∑⌊r/2⌋

ℓ=0

(
r−ℓ
ℓ

)
(−x)ℓ = xr/2 Ur

(
1

2
√
x

)
, where Ur(x) is

the rth Chebyshev polynomial of the second kind. We use explicit expressions
for these polynomials and for the generating function of Catalan numbers, and
apply Cauchy’s integral formula. This yields

tr(k, r) =
1

2πi

∫
C

((
1 +

√
1− 4x

)r+1 −
(
1−

√
1− 4x

)r+1
)k (

1−
√
1− 4x

)
2(r+1)k+1xrk(1− 4x)k/2

dx,

(2)
where C is a small positively oriented circle around the origin.

Next we obtain the following expressions for tr(k, r).

Proposition 2.2 We have the following formulas:

tr(k, r) =
1

2πi

∫
C

(1− 2t) dt

trk−1(1− t)rk(1− 2t)k
(
(1− t)r+1 − tr+1

)k
(3)

= − 1

4πi

∫
C

dt

trk(1− t)rk(1− 2t)k−2

(
(1− t)r+1 − tr+1

)k
(4)

=
k∑

j=0

rk−(r+1)j−2∑
l=0

(−1)j 2l
(
k

j

)(
k − 2 + l

l

)(
(r − 1)k − l − 3

rk − (r + 1)j − l − 2

)
. (5)

Proof (Sketch) The formula (3) is obtained from (2) by the substitution
x = t(1−t). In order to obtain (4) (the advantage of which is in the symmetry
in t and 1 − t), we take (3) and blow up the contour C so that it is sent to
infinity. Thus we have to take the residue at t = 1 into account. In this
way, another expression for tr(k, r) is obtained. Its arithmetic mean with (3)
yields (4).

The formula (5) is obtained from (3) by using Cauchy’s integral formula
and interpreting it as a coefficient extraction formula. 2

3 Generating Functions

Here we present formulas for “horizontal” and “vertical” generating functions
for the numbers tr(k, r). In particular, we show that these generating functions
are algebraic.



Theorem 3.1 For fixed r ≥ 2, we have∑
k≥1

tr(k, r)xk = −1

2

r∑
i=1

ti(x)
r(1− ti(x))

r(1− 2ti(x))
2

( d
dt
Pr)(x; ti(x))

, (6)

where the ti(x), i = 1, 2, . . . , r, are the “small” zeroes of the polynomial

Pr(x; t) = tr(1− t)r − x
(1− t)r+1 − tr+1

1− 2t
,

that is, the zeroes t(x) for which limx→0 t(x) = 0.

Proof (Sketch) We sum up
∑

k≥1 tr(k, r)x
k, using formula (4) for tr(k, r)

and the summation formula for geometric series. Thus, we obtain∑
k≥1

tr(k, r)xk = − 1

4πi

∫
C

tr(1− t)r(1− 2t)2

Pr(x; t)
dt, (7)

where, as before, C is a small positively oriented circle around the origin. By
the residue theorem, this integral equals the sum of the residues at poles of
the integrand inside C. The poles are the “small” zeroes of the denominator
polynomial Pr(x; t). We show that it has r “small” and r “not small” zeroes.
We apply the residue theorem to (7) and use the formula for the residue of a
quotient of two functions. This yields the claim. 2

A similar reasoning yields a formula for “horizontal” generating functions.

4 Asymptotics

We prove the following asymptotic results for the numbers tr(k, r).

Theorem 4.1 1. For fixed k ≥ 3, we have

tr(k, r) =
2(r−1)krk−3

π

(∫ ∞

−∞

du

uk−2
sink(2u)

)(
1 + o(1)

)
, as r → ∞. (8)

2. We have

tr(k, r) =

(
2r(r + 1)

)k
16
√
π(r(r + 5)/6)3/2k3/2

(
1 + o(1)

)
, as k → ∞. (9)

Proof (Sketch) Starting from the integral representation (4), we deform the
contour C into a shape that consists of a segment that connects the points



(1/2,−R) and (1/2, R) and the left half-circle whose diameter is this very
segment. It is easy to show that the integral over the half-circle tends to 0 as
R → ∞, and, thus, upon the substitution t = 1

2
+ iu, we obtain

tr(k, r) = −2(r−2)k

π

∫ ∞

−∞

du

(1 + 4u2)rk(iu)k−2

((
1 + 2iu

)r+1

−
(
1− 2iu

)r+1
)k

.

Then the substitutions u → u/r and u → u
√
kR, where R = r(r+5)/6, yield

(8) and (9), respectively, after applying standard techniques. 2

5 The case k = 3

For k = 3, we also deal with the non-balanced case, and obtain some compact
formulas. Let ∆(a, b, c) denote a triangle whose sides are subdivided by a, b
and c points, and let tr(∆(a, b, c)) denote the number of its triangulations.

Theorem 5.1 We have

tr(∆(a, b, c)) = 2s −
a−2∑
ℓ=0

(
s

ℓ

)
−

b−2∑
ℓ=0

(
s

ℓ

)
−

c−2∑
ℓ=0

(
s

ℓ

)
, (10)

where s = a+ b+ c− 1; and

tr(∆(a, b, c)) =
∑

i,j,m≥0

(
a

i+ j

)(
b

j +m

)(
c

m+ i

)
. (11)

Proof (Sketch) In order to prove (10), we notice that each triangulation
either contains a diagonal that connects a corner of the basic triangle to an
interior point of the opposite side, or it contains a triangle whose vertices are
interior points of different sides of the basic triangle. Counting triangulations
of the first kind is elementary; counting triangulations of the second kind boils
down to determining

[xaybzc]
xyz

(1− x− y)(1− y − z)(1− z − x)
,

which can be done by manipulations with binomial coefficients. Putting ev-
erything together, we obtain (10).

In order to prove (10) 9 , we construct a bijection between triangulations of
∆(a, b, c) and the ways to choose i+ j out of a points, j +m out of b points,

9 This formula, restricted to the balanced case, was conjectured in OEIS/A087809 [5].



m + i out of c points, that subdivide the corresponding sides, over all triples
of non-negative integers (i, j,m). 2

6 Generalizations of the Double Circle and its triangu-
lations

An almost convex polygon ISC(k, r) is obtained from SC(k, r) by “infinites-
imal” pulling in all the interior points of the strings into the interior of the
convex hull of the basic k-gon along circular arcs of sufficiently big radius 10 .
Any triangulation of the convex hull of ISC(k, r) consists of a triangulation of
ISC(k, r) and triangulations of k sets of r points in convex position. Therefore
our results imply asymptotic estimates for the numbers of triangulations of
ISC(k, r) and its convex hull. In particular, the exponential growth rate for the
number of triangulations of ISC(k, r) is 8 for any fixed k and r → ∞; and it is

2(r+1)1/rC
1/r
r−1 for k → ∞ 11 . For r = 2, the convex hull of ISC(k, r) is called

Double Circle. It was conjectured by Aichholzer, Hurtado and Noy [1] that
the Double Circle of size n has the minimum number of triangulations over all
planar sets of n points in general position. Our results support this conjecture
showing that it is impossible to improve this example using balanced almost
convex polygons of any kind and letting n to tend to ∞ in whatever way.
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multiplicity of some common geometric graphs, SIAM Journal on Discrete
Mathematics 27:2 (2013), 802–826.

[4] Hurtado, F., and M. Noy, Counting triangulations of almost-convex polygons,
Ars Combinatoria 45 (1997), 169–179.

[5] “The On-Line Encyclopedia of Integer Sequences”, http://oeis.org/.

10 See [4] for details.
11The latter result is also stated in [3]; however, the argument given there is non-rigorous
since it relies on [4, Theorem 3] which holds for fixed k rather than for k → ∞.


