
 
 
 
 
 
 
 

This is the published version: 
 
Zhao, Ying, Yue, Ye, Shi, Xuelin, Li, Jianwei and Sajjanhar, Atul 2008, The research 
and development of ChemGrid in CGSP, in ChinaGrid '08 : Proceedings of the 3rd 
ChinaGrid Annual Conference, IEEE Computer Society, Piscataway, N.J., pp. 223-
228. 
 

 
Available from Deakin Research Online: 

 
http://hdl.handle.net/10536/DRO/DU:30018199 

 
©2008 IEEE. Personal use of this material is permitted. 
However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new 
collective works for resale or redistribution to servers or lists, or 
to reuse any copyrighted component of this work in other works 
must be obtained from the IEEE. 

 
Copyright : 2008, IEEE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



The Research and Development of ChemGrid in CGSP 
 
 

Ying Zhao1, Ye Yue1, Xuelin Shi1, Jianwei Li1, Atul Sajjanhar2 

1 School of Information Science and Technology, Beijing University of Chemical Technology, 
Beijing, 100029, P.R.China 

2 School of Engineering and Information Technology, Deakin University, 221 Burwood HWY, 
Burwood, VIC 3125, Australia 

{zhaoy, yueye, shixl, lijw}@mail.buct.edu.cn; atuls@deakin.edu.au 
 

 
Abstract 

 
With the rapid development of computing 

technologies and network technologies, Grid 
technology has emerged as the solution for high-
performance computing. Recently, the grid of orient-
services has become a hot issue in this research area. 
In this paper, we propose an architecture of ChemGrid 
in CGSP (China Grid Support Platform). The 
effectiveness of the proposed architecture is 
demonstrated by an example which is developed as a 
Web service based on CGSP; the Web service is used 
for searching elements in the periodic table. An 
improvement of the user interface for applications is 
proposed in order to obtain results interactively. 
Finally, an extension of ChemGrid is discussed in 
order to integrate different types of resources and 
provide specialized services. 
 
1. Introduction 
 

Chemical engineering involves the design and 
manufacturing of new chemical compounds and 
materials, the analysis of chemical reactions, the 
simulation of computational fluid dynamics (CFD), the 
simulation of molecular movement, and so on. To 
lower costs and improve efficiency, information 
technology (IT) is increasingly employed in chemical 
engineering [1]. One of key IT component is grid 
computing, which can construct a virtual single image 
of heterogeneous resources, provide uniform 
application interface and integrate widespread 
computational resources into super, ubiquitous and 
transparent aggregation [2]. 

CGSP is a grid middleware in service-oriented 
architecture developed for China Education and 
Scientific Research Grid Project. This paper first 
discusses the implementation methods of ChemGrid in 
CGSP and gives an example of an application which 

enables searching of the periodic table of elements. 
Some applications need to get results quickly and 
interactively, so we propose an improvement of user 
interfaces provided by CGSP2.0. Finally, we use Web 
Services and Agent technologies to extend the current 
architecture of ChemGrid. 

The paper is organized as follows: In Section 2, 
architecture of ChemGrid is built based on CGSP. 
Section 3 introduces the implementation methods of 
Web Services with access to resources in CGSP. An 
improvement of the user interface is presented in 
Section 4. Section 5 discusses an extension of the 
current ChemGrid. The conclusion is made at the end 
of paper. 
 
2. ChemGrid Framework Based On CGSP 

 
The ChemGrid is a chemical grid built by Beijing 

University of Chemical Technology. It is supported by 
China Grid Support Platform (CGSP), and is also a 
grid computing application platform for chemical 
engineering applications. The details are described 
below. 
 
2.1.  China Grid Support Platform (CGSP) 
 

CGSP is a grid middleware developed to build the 
ChinaGrid, which integrates all kinds of resources in 
education and research environments, makes the 
heterogeneous and dynamic nature of resources 
transparent to the users, and provides high 
performance, high reliability, secure, convenient and 
transparent grid service for scientific computing and 
engineering research. CGSP provides both ChinaGrid 
service portal, and a development environment for 
deploying various grid applications. 

 
2.2. Architecture of ChemGrid 
 

The Third ChinaGrid Annual Conference

978-0-7695-3306-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ChinaGrid.2008.15

223



The system of Chemical Grid provides a web 
interface for users to access the above services. Users 
can select the service they need and submit jobs. Then 
the system invokes the service to execute the jobs. The 
results can be acquired from a webpage or a file 
system. Fig.1 shows the system architecture of 
Chemical Grid: 

 

CGSP 

Process Monitor 

Task Schedule 

Resource Retrieval

Resource Deploy

Collaborative Resource Sharing

Mathematics 
Computing 

Applications 

Quantum Chemistry 
Computing 

Applications 

CDF 
Applications 

Polyflow 
Applications 

Chemical Engineering Applications 

Portal 

 
Figure 1.  Architecture of ChemGrid 

 
The above applications can cover most of the 

requirements of chemical engineering researchers in 
Beijing University of Chemical Technology (BUCT), 
China. By defining standard workflow and general 
interfaces for every type of application, the platform 
facilitates large-scale computer-related resources and 
services for users. Therefore all these users can access 
any service on Chemical Grid platform and share the 
resources fairly. 

The portal is a web interface for users, which is the 
entry point for the end user to use grid services. By 
using the portal, users can submit their jobs, monitor 
the execution of jobs, manage and transfer data, 
inquiry the grid resource information. 

Collaborative environment can also provide job 
scheduling and monitoring functions. When receiving 
a user’s request, it locates a suitable node in the grid to 
perform the computation. Resource sharing 
environment provides deeper sharing and management 
capability for domain specific resources. 

A scenario of an example job execution workflow is 
shown in Fig.2. Firstly, user inputs the computing 
requests according to the submission form from the 
web page generated by the portal of ChemGrid 
platform. 

 

 
Figure 2.  Web Interface of ChemGrid Platform 

 
The ChemGrid is a chemical grid built by Beijing 

University of Chemical Technology. It is supported by 
China Grid Support Platform (CGSP), and is also a 
grid computing application platform for chemical 
engineering applications. The details are described 
below. 

 
3. Grid Services Based on CGSP 
 

CGSP is based on the core of Globus Toolkit 3, and 
is compatible with WSRF and OGSA. CGSP 2.0 
provides a powerful platform to execute various jobs, 
including legacy programs, Web services, WS-
Resources and Composite Services. All the external 
components are defined in WSDL, which is derived 
from Globus Services directly. When multiple 
resources are involved, Web Services Resource Frame 
should follow factory/instance module and Web 
resources factory module. Factory service is 
responsible for creating resources, and Instance service 
is used for accessing information of a resource. In 
order to explain services clearly, the paper presents an 
example of an application, namely, Periodic Table of 
Elements which demonstrates the implementation of 
Web Services deployed in CGSP2.0. The users can 
provide parameters like atomic weight, discovery day, 
or discoverer to this service and can get all the 
information about the element. The six steps describing 
this Web Service are as follows. 

 
3.1. Define the interface in WSDL 
 

The first step of creating a Web service is to define 
an interface of the service, which does not provide 
low-level details about implementation, just like an 
implementation algorithm. The service and code are 
separated and only operations are defined in this step. 

224



The syntax of WSDL follows XML format. The 
definition code is as follows: 

<?xml version="1.0" encoding="UTF-8"?> 
< definitions name="Elements" 
targetNamespace=http://www.chinagrid.edu.cn/nam
espaces/test/elem/Elements_instance 

… 
<types> 
targetNamespace="http://www.chinagrid.edu.cn/na
mespaces/test/elem/Elements_instance" 

xmlns:tns=http://www.chinagrid.edu.cn/namespaces
/test/elem/Elements_instance 

… 
<portType name="ElementsPortType" 
wsdlpp:extends="wsrpw:GetResourceProperty" 

wsrp:ResourceProperties="tns:ElementsResourcePr
operties"> 

… 
The content ("wsrpw:GetResourceProperty) in label 

“< portType >” is not standard WSDL, but a part of 
namespace (WSDLPreprocessor) provided by Globus. 
This reference can tell us that WSDL Preprocessor 
contains “GetResourceProperty portType” from WS-
ResourceProperties [5]. WSDL Preprocessor is 
provided by GT4 which specifies some resource 
properties, and is described as: 

"tns:ElementsResourceProperties" 
 

3.2. Implement service in Java 
 

After the definition of the Web service, the next step 
is to implement the service in Java. However, if this 
program needs to access MySQL database and read 
Chinese characters from the database, it is necessary to 
specify the encoding type as “UTF-8”.  

public interface ElementsQNames { 
 public static final String NS = 
"http://www.chinagrid.edu.cn/namespaces/test/ele
m/Elements_instance"; 

     public static final QName RP_STATUS = new 
QName(NS, "Status"); 

 public static final QName 
RESOURCE_PROPERTIES = new QName(NS, 
"ElementsResourceProperties");} 

private ResourcePropertySet propSet; 
private String status; 
… 
this.propSet = new         
SimpleResourcePropertySet(ElementsQNames.RES
OURCE_PROPERTIES);  

status=""; 
 

3.3. Create WSDD and JNDI configuration file 
 

Up to this point, we have written the two most 
important parts of our stateful Web service: the service 
interface (WSDL) and the service implementation 
(Java). How do we make the web service available to 
client requests? In this step, we will take all the loose 
pieces we have written up to this point and make them 
available through a Web services container. The 
WSDD (Web Service Deployment Descriptor) is used 
for source mapping and the JNDI (Java Naming and 
Directory Interface) is responsible for multiple 
parameters and resources. The following is WSDD file 
where the service name should be set 
“test/elem/Elements” for the application call. 

… 
<service name="test/elem/Elements" 
provider="Handler" use="literal" 
style="document"> 

<parameter name="className" 
value="cn.edu.chinagrid.test.elem.service.impl.Ele
ments"/> 

… 
Because our service only use one resourse, JNDI 

configuration is definied simplely： 
<?xml version="1.0" encoding="UTF-8"?> 
<jndiConfig 
xmlns="http://wsrf.globus.org/jndi/config"> 

<service name="test/elem/Elements"> 
 

3.4. Create GAR files 
 

This GAR file is a single file which contains all the 
files and information the Web services container needs 
to deploy our service and make it available to the 
whole world. The services generator can finish 
generalRunningservice style file automatically. First, 
there should be a folder. Second, the build.xml 
(provided by Globus), Java code file, WSDD and JNDI 
file are put into this folder. Then it is time to create the 
GAR file. The following is the command line to create 
the GAR file. 

./globus-build-service.sh -d <service base 
directory> -s <services WSDL file> 

"globus-build-service.sh" （ globus-build-service.py 
in Windows）is provided by Globus to create the GAR 
file. In here, “<service base directory>” is the directory 
of the Java code file and “<services WSDL file>” is 
the directory of the WSDL file. It should be noted that 
this service needs an activated file, if not, CGSP can 
not find where the service is. This file is also WSDL 
file format. 

 
<parameter id="getElem"> 
 <caption>getElem</caption> 
… 

225



<operation name="getElem">   
<soapAction> 
http://www.chinagrid.edu.cn/workflow_job_sample/i
mage_processing/ 

</soapAction> 
… 
</operation> 
 

3.5. Deploy the service into a Web Services 
container 
 

The GAR file contains all the files and information 
the web server needs to deploy the web service [6]. 
Deployment is done with a GlobusToolKit4 tool 
“globus-deploy-gar”, which unpacks the GAR file into 
key locations in the CGSP directory tree. The 
command line is shown as follows: 

$GLOBUS_LOCATION/bin/globus-deploy-gar 
./elem.gar 

The “elem.gar” is from the previous step. On error-
free completion of the operation, the “successful” sign 
will appear. 

 
3.6. Register service 
 

The service should be registered on a node of CGSP. 
The main purpose is to allow users to access services 
on the portal. One grid platform may include a lot of 
nodes, all unregistered services could not be executed 
even if these services were deployed. These services 
must be registered to some nodes for execution. The 
registry information is given as following: 

Name: C-service 
Wsdl: http://222.199.242.21:9090/wsrf 
         /services/test/elem/ElementsService/wsdl 
Desc: this is an Elements-Search service 
Address: http://222.199.242.21/wsrf/services/test 
              /elem/ElementsService 
Keyword: Elements-Search 
Catalog: Chemistry 
Invoke Doc: http://222.199.242.21:9090/share 
                    /schema/elem/Elements_desc.wsdl 
NRS Address: http://222.199.242.21:9090/wsrf 
                      /services/NodeRegistryService 
 

4. Improvement of user interface 
 

CGSP is based on the core of Globus Toolkit 3 , and 
is compatible with WSRF and OGSA. CGSP 2.0 
provides a powerful platform to execute various jobs, 
including legacy programs, Web Services, WS-
Resource and Composite Service which is actually a 
defined workflow. Furthermore in order to provide a 
user friendly interface to utilize CGSP functions, 

CGSP portal also provides webpage interface for end 
users. From the web portal, users can browse services 
and resources in the grid, view users' data space, 
upload and download files with http or gridftp, submit 
jobs to applications and services. 

The services deployed on CGSP are unfriendly 
because the user can not get results immediately after 
the job is run successfully. If the user wants to get 
results quickly, he or she must submit another job to 
get the results, which is unfriendly. To solve the 
problem, it is necessary to know the execution process 
of Web services. CPDK is a Globus development tool 
based on Globus and Java CoG. It uses JavaBean/JSP 
to implement the portal in Tomcat. The important 
function of CPDK is to initialize the portal engine, 
which contains some basic portal information, like log, 
job submit, job supervise and the portal information 
database. The portal also provides an authentication 
certificate of authorization and user management. 
When the Web explorer sends an http/https-request to 
the portal server, CPDK wakes up the page. Page look-
up table is a configuration file of object mapping active 
pages. An active page does a logic Grid portal 
operation and call the service program to perform the 
requested operation. In the end, it transfers the control 
to a view page which is generated by a JSP Servlet. 

 

 
Figure 3.  The process of work 

 
Since then the JSP Servlet should get the result of 

job. Some code from CGSP2.0 portal is described 
below. 

HashMap para=new HashMap(); 
para.put("instanceID",s); 
JobInstanceInfo 
info=jobmonitor.querySingleJob(para); 

 
The expected result is in info.getJobResult(). 

However, besides the result, there are some job labels 
like job ID. So we make a program to filter the labels 
and retain the result that the user needs. Fig. 4 shows 
the results: 

User 
GPDK 

JSP 

Page Objects 

226



 
Figure 4.  The result of portal improvement 

 
The core code snippet is described as follows: 

ServiceInvoke      
sk=(ServiceInvoke)session.getAttribute(JobSessio
n.SERVICEINVOKE); 
 

Where sk is a ServiceInvoke type which has been 
defined in the background and gets the initial 
information of the job. Besides it also needs a 
CGSPAdapter: 

CGSPAdapter cgsp = (CGSPAdapter) 
session.getAttribute("cgsp"); 

Then the function 
“sk.submitNoBlock(cgsp.getJobSubmitter(), request, 
session)” can do the job. If all of the above is 
successful, the result will appear. 

Furthermore, the results are in the 
info.getJobResult(). Besides the result, there are some 
job labels, just like job ID. So we make a C program to 
filtrate this labels and keep back the result that user 
want. The main code includes: 

void analyzeXML(string &Content){ 
    if ('<'==xmlContent[0]) 
    { 
    size_t it= Findfirst(Content,'>'); 
    string tagName = Substr(1,it-1,Content); 
        ... 
    //Find end tag 
    string tagEndStr= "</"+nodeName+">"; 
      size_t tagIndex=find(Content,tagEndStr); 
        ... 
       //Get the content between two tag 
   string tagMid=Substr(++it,tagIndex-it,Content); 
   analyzeXML(tagMid); // Recursive 
  } 

 
 
5. The Extension of ChemGrid 

 

We have built the ChemGrid project to provide 
large-scale chemical computing, however, some 
resources are very private and some software are 
computer sensitive. It is very difficult to integrate these 
resources into our ChemGrid. Actually, we have been 
working in Web services and have built some services 
for chemical engineering applications. Web services 
are defined as self-contained, modular units of 
application logic which provide business functionality 
to other applications via an Internet connection. So we 
can integrate these pure Web services into ChemGrid, 
and extend the services and functions of ChemGrid. 

Web Services as an emerging technology has good 
prospects for development. Normally it includes three 
roles: service broker, service provider, and service 
requestor. The Web services platform is usually 
perceived as a combination of XML,  HTTP, SOAP, 
WSDL, UDDI. The new architecture of new ChemGrid 
is shown in Fig. 5. 

ChemGrid Portal UDDI 

Service 
Provider  
Of Math. 

Service 
Provider  
Of Bio. 

Service 
Provider  
Of Mole. 

 Figure 5.   Extension of ChemGrid 
 

In this architecture, a UDDI is integrated into the 
portal of ChemGrid. This UDDI registry is similar to a 
CORBA trader, or it can be thought of as a DNS 
service for business applications. It has two kinds of 
clients: service provider that wants to publish a service 
(and its usage interfaces), and users who want to obtain 
services of a certain kind. In here, Apache JUDDI is 
applied to ChemGrid. 

Providers of Web services are generally known as 
application service providers. Some applications 
software belong to an organization, and they hope that 
they are self-manageable. The owner of applications 
can control when they can be used, and who can use 
them. When a service is created and pushed to UDDI 
registry, the portal of ChemGrid will show this service 
to users. When the service owner does not want to 
provide service, it can revoke this service from UDDI. 
The portal will delete this service immediately.  

Until now we have been working to use CGSP to 
register these services, but we failed to achieve a 
seamless connection. An independent UDDI register 
had to be provided in order to publish services quickly. 

227



 
6. Conclusion and future work 

 
In this paper, we present an architecture of 

ChemGrid, developed by BUCT, which supports 
chemical engineering applications related to 
computation, simulation, and virtualization. Since 
CGSP considers all the resource as grid services, 
developing and deploying a service on CGSP is 
sensible. The example of periodic table of elements 
demonstrates the steps and methods in creating a Web 
Service for ChemGrid.  

When the user wants to get results from ChemGrid, 
the user needs to enter their user space to retrieve 
results. The user is unable to get results on a Web 
page. In order to provide a user friendly interface to 
utilize CGSP functions, we make an improvement of 
CGSP portal and can provide results on a Web page 
immediately.  

Finally, an extension of ChemGrid by Web Services 
is discussed. The owner of resources can create its own 
Web Services, and publish them to the portal of 
ChemGrid, which has integrated Apache JUDDI. The 
end user can access the services from this portal. This 
means a lot of resources can be joined into ChemGrid 
by Web services technology. 

In the future, Chemical Grid will integrate more 
chemical engineering applications and resources.  

 
Acknowledgements 

 
This paper has been supported by the Chemical 

Grid Project of Beijing University of Chemical 
Technology. 

 
References 
 
[1] Ying Zhao, Xuelin Shi, “Collaborative Computational 
Chemical Grid Based on CGSP”, Proceedings of NPC 2007, 
Oct. 2007, pp.199-202. 
[2] Jin Hai, “China Grid: making grid computing a reality”, 
Proceedings of ICADL’04, Lecture Notes in Computer 
Science, Vol.3334,2004,pp.13-24.  
[3] Ian Foster, “Globus Toolkit Version 4: Software for 
Service-Oriented Systems”, U.S.A.:Math & Computer 
Science Division, Argonne National Lab，2005. 
[4] Novotny J., “The Grid Portal Development Kit”, 
Concurrency and Computation: Practice and Experience, 
2002,14(13), pp. 1128-1145. 
[5] Foster I, Czajkowski K, Fcrguson D F., “Modeling and 
Managing state in Distributed systems:The Role of OGSI and 
WSRF”, proccedings of the IEEE, 2005,93(3), pp.603-613. 
[6] Borja Sotomayor, “The Globus Toolkit 4 Programmer's 
Tutorial”, http://gdp.globus.org/gt4-tutorial, 2005. 

228


