
SHIM: A Deterministic Model for Heterogeneous
Embedded Systems

Stephen A. Edwards
∗

Department of Computer Science
Columbia University, New York

sedwards@cs.columbia.edu

Olivier Tardieu
Department of Computer Science

Columbia University, New York

tardieu@cs.columbia.edu

ABSTRACT
Typical embedded hardware/software systems are implemented us-
ing a combination of C and an HDL such as Verilog. While each
is well-behaved in isolation, combining the two gives a nondeter-
ministic model whose ultimate behavior must be validated through
expensive (cycle-accurate) simulation.

We propose an alternative for describing such systems. Our SHIM

(software/hardware integration medium) model, effectively Kahn
networks with rendezvous communication, provides deterministic
concurrency. We present the Tiny-SHIM language for such systems
and its semantics, demonstrate how to implement it in hardware
and software, and discuss how it can be used to model a real-world
system.

By providing a powerful, deterministic formalism for express-
ing systems, designing systems and verifying their correctness will
become easier.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages

General Terms
Languages, Theory

Keywords
Hardware/software codesign, Deterministic model of computation,
Software synthesis, Hardware synthesis

∗Edwards and his group are supported by an NSF CAREER award,
a grant from Intel corporation, an award from the SRC, and by New
York State’s NYSTAR program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
Unlike single-threaded software programs or synchronous digi-

tal logic circuits, real-world embedded systems contain many com-
putational styles. Most are amalgams of hardware and software;
the hardware is often implemented as one or more islands of syn-
chronous logic, while the software may be single-threaded, concur-
rent, parallel, distributed, or event-driven.

We propose the SHIM (software/hardware integration medium)
model, a concurrent, asynchronous, deterministic model for spec-
ifying, validating, and synthesizing such heterogeneous embedded
systems, and discuss its simulation and synthesis. The need for con-
currency is clear: at the minimum, hardware peripherals operate in
parallel with software.

The need for an asynchronous model is more subtle: although
embedded hardware-software systems are typically implemented
using synchronous digital logic, software timing is difficult to pre-
dict. The cycles required to execute each machine instruction on a
modern processor is virtually unpredictable because of complex in-
teractions among instructions in the pipeline, the cache, superscalar
instruction scheduling, and branch predictors. While such behav-
ior can be modeled, it is costly to simulate. A truly asynchronous
model of software allows such details to be safely ignored.

The third characteristic of SHIM—determinism—is more con-
troversial. While nondeterminism has its place in models of unpre-
dictable systems (e.g., lossy communication systems such as the
Internet), we believe that it is wrong for specification languages
because it makes the already-very-difficult question of functional
verification that much harder.

Systems are invariably validated using simulation. Although sim-
ulation provides advantages such as scaling, its Achilles’ heel is its
need of appropriate stimulus. While the simulation of determinis-
tic models suffer from this problem, nondeterministic models are
worse because not only do they require the right stimulus, but since
the simulator makes nondeterministic choices, even the right stim-
ulus may not flush out bugs.

Nondeterministic models reduce the assurance a simulator pro-
vides from “the system will do that given this stimulus” to “the
system could do that given this stimulus.” Such a weak guarantee
seems unacceptable. We believe it is no accident that the two most
widely-used computational models—single-threaded software and
synchronous digital logic—are deterministic.

Determinism also has advantages for formal verification. By re-
ducing the number of possible behaviors the system can exhibit,
determinism reduces the computational burden. For example, per-
forming model checking on nondeterministic concurrent models is
possible, but such algorithms devote substantial energy to dealing
with nondeterminism.

A reviewer correctly noted that these systems’ environments are
often nondeterministic and raised the question whether determin-
ism in the model was as important as we make it out to be. We
believe it is: the number of behaviors that need to be considered
grows as the product of the number of behaviors of the environ-
ment and the number of behaviors of the system, since the two run
concurrently. For a deterministic system, this number reduces to the
number of behaviors of the environment.

In this paper we argue for the utility of SHIM. We describe the
model and give a proof of its determinism (Section 2) and present
a small language (“Tiny-SHIM”) for processes and give its formal
semantics (Section 3). This enables us to discuss modeling a real-
world hardware/software system in Section 4. Hardware and soft-
ware synthesis is discussed in Sections 5 and 6. We compare SHIM

to other models in Section 7, and discuss some specific modeling
techniques in Section 8.

2. THE SHIM MODEL
A system in the SHIM model consists of concurrently-running se-

quential processes that communicate exclusively with rendezvous
through fixed, point-to-point communication channels. This is a re-
striction of Kahn’s networks [18] that uses a style of communica-
tion inspired by Hoare’s CSP [14].

The processes in SHIM can be described in a classical imperative
way (i.e., think of them as C functions or Java methods). They do
not communicate through shared variables. All processes execute
concurrently and their relative execution speeds are undefined, i.e.,
they execute asynchronously.

Inter-process communication is synchronous in the sense that
both sending and receiving processes must mutually agree on when
data is to be transferred. In general, either the sender or receiver
may try to communicate first and will wait for the other. The topol-
ogy of communication channels (and the number and types of pro-
cesses) is fixed, and each communication channel connects a send-
ing process with a receiving process. The communication structure
of a system is therefore a directed graph whose nodes are processes
and whose arcs are channels. The graph may contain cycles.

THEOREM 1. The sequence of symbols transmitted over each
channel is deterministic.

Proof Follows from SHIM systems being a restriction of Kahn net-
works. First, interpret the system as a Kahn network (i.e., treat the
communication channels as unbounded buffers and make the write
operations non-blocking). Next, for each channel in the system,
introduce a second “acknowledge” channel going in the opposite
direction. After each receive operation, send on the acknowledge
channel. Similarly, after each send operation, add a receive on the
acknowledge channel. This receive forces the send to be blocking,
just as in our model. Under this transformation, the processes com-
pute continuous functions of their inputs and hence are determinis-
tic since this augmented system fits Kahn’s model. 2

COROLLARY 1. The sequence of states visited by each process
is deterministic.

Proof The states are determined by the structure of the machine
and the data values transmitted on each channel, both of which are
deterministic. 2

2.1 Rationale
Above, we discussed our rationale for wanting determinism: it

greatly simplifies system validation using either simulation or for-
mal techniques. Thus, we felt that nondeterministic models such as
CSP [14] or Petri nets [24] were unsatisfactory.

e ::= L | V | op e | e op e | (e)

s ::= V = e | if (e) s else s | while (e) s | s ; s
| read(C, V) | write(C, e) | { s }

Figure 1: The syntax of the Tiny-SHIM language. Expressions
and statements are classical except for the blocking read and
write operations, which communicate values through chan-
nels. L is a literal, V represents a variable name, C a channel
name, op represents the usual collection of operators (+, -, etc.),
and braces indicate grouping.

We rejected Kahn’s unbounded buffers because they make the
model Turing-complete even for simple processes. Buck [9] showed
that simple multiplexer-like processes in Kahn’s model could be as-
sembled to build a Turing machine.

The communication in our model is finite and does not intro-
duce Turing-completeness. Specifically, our model is finite-state
provided each process is finite-state. The advantages of this are
legion: scheduling is much easier in our model because the syn-
chronous communication restricts the number of choices. By defi-
nition, our models can always be simulated in finite memory; this
question is undecidable for Kahn networks. Compare our simple
scheduler, presented in Section 5, to the clever but costly one for
Kahn networks by Parks [25], which dynamically detects buffer-
overflow deadlock and increases buffer size in response.

Note that SHIM does not preclude buffered communication: it is
easy to construct buffers by chaining multiple single-place-buffer
processes. Such buffers are bounded, but modifying a design to in-
crease a buffer’s size is straightforward.

We could have chosen bounded buffers instead of rendezvous,
but it would have complicated the model and necessitated an op-
timization step to simplify buffer management. There are already
myriad ways to implement rendezvous communication, and many
opportunities for optimization.

We rejected the synchronous broadcast communication typically
used in register-transfer-level hardware languages such as VHDL,
because we feel it is more error-prone. From observing students
using this model, the most common mistake is a mismatch between
when a signal is sent and when it is expected. The simulator can-
not warn about such a situation because it is semantically valid,
producing a difficult-to-diagnose failure.

SHIM does not preclude synchronous broadcast-style communi-
cation, but it must be requested explicitly, i.e., with processes trig-
gered by a periodic clock that always receives every input.

3. TINY-SHIM AND ITS SEMANTICS
Figure 1 shows the syntax for Tiny-SHIM, a language embody-

ing our model. Each process is a statement (or group thereof) with
its own set of variables, and each channel is read and written by
exactly one process, although each such process may contain, for
example, multiple read operations for a specific channel.

Tiny-SHIM is a simple language with no syntactic sugar. Meant
as an easy-to-understand and analyze intermediate language, we
plan to create the larger SHIM language that will include many more
constructs. This will be dismantled into Tiny-SHIM.

We express the semantics of Tiny-SHIM in a structural opera-
tional style. The state of a process is represented as pair of the form
〈σ , p〉, where σ represents the state of the local store for each pro-
cess, i.e., a mapping from a process’s variables to values, and p is
the statement the process has become; or of the form 〈σ〉, which
represents the process terminated in state σ .

The state of a system is a multiset of such process states, i.e., an
unordered list of potentially repeated process states, since several
processes may be in identical states.

Most rules (i.e., the “→” rules) describe the operation of a single
process, which operates independently except for communication.
The last two rules describe the operation of the system as a whole
(the “⇒” rules) and either allow a single process or a pair of com-
municating processes to advance.

The rule for assignment statements is simplest. We use a helper
function

�
that maps a store and expression to the value of the ex-

pression. The rule transforms a process consisting of an assignment
to a variable v to a terminated process with the value of variable v
replaced with the value of the expression. Expression evaluation is
therefore side-effect free.

�
(σ ,e) = n

〈σ ,v = e〉 → 〈σ [v← n]〉
(assign)

The two rules for if statements are nearly as simple. Depending
on whether the predicate evaluates to a non-zero value, either the
then or else clause is scheduled to run.

�
(σ ,e) 6= 0

〈σ ,if (e) p else q〉 → 〈σ , p〉
(if-true)

�
(σ ,e) = 0

〈σ ,if (e) p else q〉 → 〈σ ,q〉
(if-false)

The two rules for while use the residual style. The first unrolls
the body of the while statement once if the predicate expression is
true; the second terminates if the predicate is false.

�
(σ ,e) 6= 0

〈σ ,while (e) p〉 → 〈σ , p ; while (e) p〉
(while-true)

�
(σ ,e) = 0

〈σ ,while (e) p〉 → 〈σ〉
(while-false)

The rules for read and write appear to be able to always execute,
but the (sync) rule below only allows processes that contain them
to execute in conjunction with each other.

〈σ ,read(c,v)〉
c get n
−−−−→ 〈σ [v← n]〉 (read)

�
(σ ,e) = n

〈σ ,write(c,e)〉
c put n
−−−−→ 〈σ〉

(write)

Sequencing requires two rules: one for when the first statement
remains active, the other when the first statement terminates. Here,
the statement being executed may or may not require a communi-
cation with another process, depending on whether it is a read in-
struction (a = c get n), a write instruction (a = c put n), or another
instruction (no transition label).

〈σ , p〉
a
→ 〈σ ′, p′〉

〈σ , p ; q〉
a
→ 〈σ ′, p′ ; q〉

(seq)

〈σ , p〉
a
→ 〈σ ′〉

〈σ , p ; q〉
a
→ 〈σ ′,q〉

(seq-term)

The following rule expresses the fact that if a process can ad-
vance using one of the non-communicating rules, it can do so vol-
untarily without affecting any other processes. The] notation de-
notes the union of multisets.

〈σ , p〉 → s
{〈σ , p〉}]S⇒ {s}]S

(step)

The final rule expresses synchronous communication: the only
one to involve two processes and hence the only way two processes
may influence each other. One process must be waiting to write on
channel c; another must be waiting to read on c. Only when both
are satisfied can both processes advance.

〈σ , p〉
c put n
−−−−→ s 〈σ ′, p′〉

c get n
−−−−→ s′

{〈σ , p〉 ,〈σ ′, p′〉}]S⇒ {s,s′}]S
(sync)

To guarantee determinism, we require each channel to have a
unique reading process and a unique writing process, an easily-
checked syntactic constraint. While such a restriction is stronger
than necessary for determinism—that (sync) has no choice of which
processes may communicate is enough—more liberal rules would
require a more costly analysis.

4. MOTIVATING EXAMPLE
Our choice of model comes from the observation of many em-

bedded hardware/software systems. Here we describe one commer-
cial embedded system and how to model it.

In 1981, Bally/Midway produced the Robby Roto video arcade
game.1 Although primitive by today’s standards, it is representative
of many early arcade games and illustrates a realistic, commercial
embedded system.

Robby is a bus-based microprocessor system with support for
video, sound, and some simple input devices. Built around a Z80
running at about 1.8 MHz, it contains the usual RAMs (both static
and dynamic), ROMs, and memory-mapped I/O devices, including
a video controller with bit-mapped graphics, a hardware blitter, and
a pair of sound synthesizers.

Robby employs the usual mechanisms for communicating be-
tween hardware and software: memory mapped I/O for software-
initiated communication and interrupts for hardware-initiated. The
video display is the only source of interrupts in the system. It can
generate two types: a light pen interrupt that goes unused in the
Robby game (an artifact of its home arcade system origins), and
a scan-line interrupt that can be triggered at any scan line under
program control.

During gameplay, Robby uses the scanline interrupt feature to
invoke three separate routines at lines 50, 100, and 200. Each of
these immediately schedules the next one in sequence. Together,
they make the software operate synchronously with the frame rate.

Overall, Robby is a synchronous system that operates in lockstep
with the video display. Clocks include the 14 MHz pixel clock, the
1.8 MHz Z80 clock, the 31 kHz line clock, the 180 Hz software
clock, and the 60 Hz frame clock. Not unusual for such systems, the
slowest clock is separated from the fastest by nearly six orders of
magnitude, which would make it inefficient to simulate everything
at the fastest clock frequency.

While technically the behavior of every part of Robby in each
clock cycle is determined, its designers certainly did not conceive
of it that way. Instead, each system (e.g., video, sound) marches to
its own clock, or in the case of the software, is actually a collec-
tion of unscheduled (in the sense that the exact running time was
not considered) assembly-language instructions. Later, they veri-
fied that the software met its timing constraints (i.e., that each inter-
rupt routine was able to complete its task before the next interrupt).

We designed the SHIM model to capture this mix of multi-rate
synchronous hardware and software that is scheduled both coarsely
(e.g., the software) and finely (e.g., the video display).

1Robby is unique among commercial arcade games because Jamie
Fenton, the author of its software, released it to the public domain
in 1999. See http://www.fentonia.com/bio/

Software Blitter Memory Video
Interrupt

Interrupt

Blit

Blit

Blit

Pixels

Pixels

Pixels

Line

Line

Line

Line

Line

Figure 2: A message sequence chart illustrating the hard-
ware/software interaction of Robby. Time runs from top to
bottom, downward arrows indicate concurrently-running pro-
cesses, and horizontal arrows indicate communication. Tick
marks suggest the hardware and software clocks.

Software Blit

buffer

Video out

buffer

pixels

sync

Pixel Clock

frame

end-of-frame

command

pixels

start-of-frame

Figure 3: The software, blit, and video processes implementing
a double-buffered display. At the end of each frame, the soft-
ware signals the blitter memory to transfer its contents to the
video display. The video system signals the software at the start
of each frame.

4.1 Software and Video Interaction
Figure 2 illustrates the original interaction of the software with

the video system, which raises a number of interesting issues. At a
coarse level, the software runs synchronously with the video system
(a periodic interrupt from the video system is the software clock),
but at a finer level, the software is asynchronous, running a complex
mix of instructions whose exact running time is difficult to com-
pute. To draw objects on the screen, the software occasionally in-
vokes a hardware blitter that writes directly into the video memory.
Meanwhile, the video system is synchronous, reading data from
memory and continuously sending a stream of pixels to the display.

In the current implementation of Robby, there is a danger of non-
deterministic behavior because the blitter and video display is ap-
parently unsynchronized. Depending on when in the frame a par-
ticular blit operation is requested, the effects may become visible
in the current frame, in the next frame, or a combination of the
two. The designer may have manually scheduled the code to avoid
this problem (e.g., by making sure important blit operations happen
during vertical refresh), but this is not clear.

Double-buffering is one well-known solution to the problem.
This uses two memory spaces for the frame buffer. At any time,
one space is being displayed while the other is being modified, and
their roles are swapped after each frame.

Figure 3 is our model of the game. We added an “end-of-frame”
channel from the software to the blitter and an additional video
buffer. The blitter process (Figure 4) repeatedly takes an end-of-
frame message that indicates whether the software is done updating
the current frame. When another object needs to be displayed (i.e.,
when end-of-frame is false), the blitter then received a command
followed by stream of pixels to be displayed. When the frame is

while 1 do
while Read end-of-frame is not true do

Read the blit command
Write the pixels to memory

Write the frame to the video process

Figure 4: Pseudocode for the blitter process.

while the player is alive do
Wait for (read from) start-of-frame
...game logic...
Write “false” to end-of-frame
Write to the blitter
...game logic...
Write “true” to end-of-frame

Figure 5: Pseudocode for the software process.

done, the blitter sends the frame to the video-out process. Since the
size of each frame is fixed, the video-out process knows when to
read the next frame from the blitter.

Although it appears the contents of the entire video frame is
copied from the blitter to the video-out buffer, this is merely one
way to interpret the model, not necessarily how it must be imple-
mented. In general, communication may be implemented in a vari-
ety of ways, including through shared memory, which is the typical
way to implement a video display. In fact, the transmission of the
frame called for in the model would probably be implemented by
simply exchanging the roles of two halves of a shared memory.

The software process is straightforward (Figure 5). It is a loop
that periodically waits for (reads from) the start-of-frame signal.
Within each cycle, in addition to executing the game logic (where
the enemies move, what score the player has achieve, etc.), the soft-
ware occasionally invokes the blitter to draw objects on the screen
such as the player and the enemies.

Modeling the video process is also easy (Figure 6). It consists
of nested loops that read from memory to generate a sequence of
pixels to send to the display. An external pixel clock is used to
synchronize this system, and writing to the start-of-frame channel
synchronizes the software to the video system.

5. A SOFTWARE IMPLEMENTATION
We describe a technique for implementing SHIM systems with

single-threaded software. By design, this is not the only possible
implementation, and it is certainly not the most efficient, but it il-
lustrates how simple our models are to execute and points the way
to more efficient techniques. For example, Lin and Zhu [23, 27]
describe a more efficient quasi-static technique for our model that
may produce exponentially-large code.

while 1 do
Write start-of-frame
for each line do

Emit line timing signals
for each pixel do

Read (wait for) the pixel clock
Read the pixel from memory
Send the pixel to the display

Read the next frame from the blitter

Figure 6: Pseudocode for the video process.

Mark all processes as ready
while there is some ready process do

Fairly select a ready process p
if no instruction is left in p then

Mark p as terminated
else if p reached read(c, ...) or write(c, ...) then

if another process p′ is blocked on c then
Synchronize p and p′ and mark p′ as ready

else
Mark p as blocked on c

else
Execute one step of p

Figure 7: The software scheduling algorithm.

Our algorithm, Figure 7, consists of a preemptive scheduler that
orchestrates the execution of the processes. Repeatedly, the sched-
uler chooses a runnable process and passes control to it. This pro-
cess executes a single step (e.g., an assignment, a test) indepen-
dently from other processes, synchronizes with another process, or
fails to do so and blocks, in any case passing the control back to the
scheduler.

5.1 Fairness and Preemption
The algorithm in Figure 7 performs preemptive, fair scheduling

to ensure that every system executes as much as possible, but such
a pedantic approach is often unnecessary. Many systems can be
executed with an unfair, non-preemptive scheduler (i.e., one that
only regains control from a process when the process reaches a read
or write statement or terminates), which are often more efficient;
these are permitted by the structure of communication in most well-
behaved systems.

First of all, systems that terminate or deadlock (i.e., reach a point
where every process has either terminated or is waiting for commu-
nication on a channel and no two processes are waiting on the same
channel) do not need preemptive or fair schedulers. It follows from
the determinism of our systems that any correct scheduling proce-
dure (i.e., is always running some ready process) will ultimately
reach this point. However, many interesting embedded systems are
non-terminating, so we wish to consider them in more detail.

Two subclasses of systems are interesting: cooperative systems,
which can be executed indefinitely with a non-preemptive sched-
uler; and dynamically connected systems, a type of cooperative
system whose communication behavior makes it impossible for an
unfair scheduling policy to cause process starvation. A coopera-
tive system is one in which no process diverges, i.e., fails to either
terminate or initiate communication beyond a point. Informally, a
system is cooperative if its processes never enter infinite loops that
do not contain a communication action. This is a dynamic property
of the whole system since a process may make a data-dependent
choice to enter such a loop.

By design, a cooperative system can be scheduled with a non-
preemptive scheduler because any process will eventually relin-
quish control to the scheduler. However, a cooperative system may
still require a fair scheduling policy. Consider a system consisting
of two pairs of mutually-communicating processes that do not oth-
erwise communicate. An unfair scheduler may choose to execute
only one of the two pairs of processes, which is undesirable be-
cause the system will not approach its correct infinite behavior.

Dynamically connected systems are an interesting subclass of
cooperative systems whose communication behavior ensures fair
execution even without a fair scheduling policy. The processes in

a dynamically connected system may not terminate, and the graph
of communication channels over which an infinite number of com-
munication take place must be connected, i.e., there cannot be two
or more islands of processes with non-infinite communication be-
tween them.

To see why a dynamically connected system can be executed
with an unfair, non-preemptive scheduler, consider an unfair sched-
uler that tries to starve a particular process p. By definition, p must
try to communicate infinitely often through at least one of its chan-
nels. If the scheduler starves p, it will eventually block the other
endpoint of this channel, which will eventually block that process,
and by induction all other processes in the system since the graph of
infinitely-communicating processes is connected. The system will
reach the point where every other process is blocked and the sched-
uler will be compelled to execute p, thus breaking the logjam.

We expect most interesting embedded systems will be dynami-
cally connected since most systems do not deliberately shut parts
of themselves down forever. This is a good thing since unfair, non-
preemptive schedulers are usually more efficient than their fair, pre-
emptive counterparts. The one possible exception would be systems
whose execution starts with an initialization phase, which could in-
clude some terminating processes. However, if these had to com-
municate with the infinitely-running remainder of the system, an
unfair scheduler would still work.

6. A HARDWARE IMPLEMENTATION
Here, we present a syntax-directed translation of Tiny-SHIM into

synchronous digital hardware. The SHIM semantics admit many
other translations as well as optimizations of this one. Thus, this
particular translation is meant to illustrate the issues in a hardware
implementation rather than be an ultimate solution.

Like Berry’s translation of Esterel [4], our technique uses a tem-
plate for each type of statement and produces a circuit whose struc-
ture follows the control-flow graph of the program. A true value on
a wire in a cycle indicates control passes through the corresponding
part of the program in that cycle.

Our templates are simpler than Berry’s because our language
omits the preemption constructs of Esterel, but our translation deals
with dataflow using static single-assignment analysis. We employ
the algorithm of Cytron et al. [12] and construct a circuit using a
technique like that of Edwards [13].

Our synthesis procedure translates each process into a control-
flow graph with four node types: assignments, decisions, merges,
and cycle boundaries. Static single-assignment analysis then iden-
tifies the data pathways, and finally the control-flow graph and data-
path information is mechanically translated into gates.

Figure 8 shows the four types of blocks in the control-flow graph
and how they are translated into circuitry. Each block is translated
into a control circuit fragment, which implements the control-flow
of the imperative code, and a datapath fragment, which implements
operations on variables.

An action block, which assigns the value of a (side-effect-free)
expression to a variable, has a trivial control fragment: a wire that
passes control to the next statement in order. The complexity comes
in the datapath, which calculates the value of the expression.

A decision block evaluates its expression and passes a Boolean
value back to a control circuit, which passes control to either its
then or else branch.

A merge block forms the logical OR of its two (mutually ex-
clusive) control inputs; the datapath implements a type of multi-
plexer that selects between variables coming from its two incom-
ing branches. Static single-assignment analysis determines which
variables must be so chosen.

CFG
Node

Control
Fragment

Datapath
Fragment

Assignment v = e e

Decision
e e

Merge

Cycle
Boundary . . .

Figure 8: The four types of control-flow blocks and their hard-
ware equivalents. The signal flow in the hardware schematic
fragments follows the structure of the control-flow graph.

Finally, a cycle boundary turns into a collection of registers: one
for the control path, and one for each bit of each live variable cross-
ing the cycle boundary.

Figure 9 shows how we translate each statement in Tiny-SHIM

into a control-flow graph fragment. The if-else statement is straight-
forward; notice that it executes in a single cycle if its branches
do. The while statement is mostly a decision in a loop, but a cy-
cle boundary after the body ensures that no combinational cycles
are produced. In many cases, this extra cycle is unnecessary; in the
future, we plan to devise an optimization that will eliminate these.

The template for communication is the richest: a pair of post-test
loops each containing a cycle boundary. These boundaries force
each communication action to take place at least one cycle after it
is requested, thus ensuring that at most one communication takes
place on each channel per cycle. This seemingly wasteful choice
greatly simplifies the logic: while it would be possible to construct
circuitry that performs multiple communications through a single
channel in the same cycle, such circuitry is very complicated in
general because communication can be data-dependent. For exam-
ple, imagine a pair of processes that contain four read statements
and three write statements. If these statements could all execute in a
single cycle and each were conditional, the circuitry would have to
handle the case where the first read matched up with the first write
or the second write, the second read matched up with the first write
or the second write and so forth. We plan to consider such a trans-
lation in the future, but it will require substantial static analysis.

The OR gates for read and write collect the “request” signals
from their communication counterparts. Our language requires that
all read states for a particular channel reside in a unique process,
and that the corresponding write statements for the channel reside
in a another, different process. By construction, then, the inputs to
each OR gate are exclusive because control can only be at a single
point within each process.

To illustrate our translation procedure, consider the pair of pro-
cesses in Figure 10. Although fairly simple, they illustrate an idiom
for (deterministic) arbitration for a shared resource. Each consists
of two nested loops; the innermost loops are data-dependent. Fur-
thermore, the communication behavior is also data-dependent, al-
though this example is simple because it uses only a single channel.

Figure 11 shows how the code of Figure 10 is translated into a
control-flow graph using the templates from Figure 9, which can be

if (e) s1
else s2

e
s2 s1

while (e) s

e
s

write(c, e) read(c, v)

c = e v = c

Figure 9: The translation of statements in our language.

d = 0;
while (1) {

e = d;
while (e > 0) {
write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(c, r);
if (r != 0) {
read(c, v);
a = a + v;

}
}
b = b + 1;

}

Figure 10: A pair of processes to illustrate the hardware syn-
thesis process. The receiving process on the right reads a value
from the channel and uses it to decide whether to immediately
read a normal value on the channel or to treat it as an end-of-
block marker. The process on the left produces a series of such
blocks consisting of descending sequences of numbers.

a = 0

b = 0

1
r = 1

r

r = c

r

v = c

a += v

b += 1

d = 0

1

e = d

e

c = 1

c = e

e−= 1

c = 0

d−= 1

Figure 11: The translation of the processes in Figure 10.

translated into hardware using the templates of Figure 8. The two
OR gates in the center of Figure 11 determine when the processes
attempt to communicate.

The circuit implied by Figure 11 has a lot of redundancy and
presents many opportunities for optimization. In addition to the
usual Boolean simplifications, the most interesting aspect of such
circuits is their communication pattern. The current translation of
read-write pairs is relatively complicated because it must cope with
all cases, e.g., read executed before write, write runs before read,
etc. However, as is often the case, the communication pattern in this
example is regular and such regularity could be used to greatly sim-
plify the circuitry used for communication. Lin [23] performs ex-
haustive analysis to determine communication patterns in a model
much like ours, although he uses the result for software synthesis.

7. RELATIONSHIP TO OTHER MODELS
The SHIM model is similar to many existing concurrent system

models: a restriction of some, a generalization of others. We strove
to find the most liberal model that somehow remains tractable.

7.1 CSP
SHIM differs from Hoare’s CSP [14] primarily in its focus on de-

terminism. Like Hoare, we use a rendezvous model of communica-
tion in which two communicating processes can only advance when
they synchronize, which has the advantage of simple semantics yet
can easily model more flexible (and complicated) buffered commu-
nication. Hoare’s processes also block when waiting for communi-
cation, but our insistence that a process may only block on a single
channel is fundamental to guaranteeing determinism.

7.2 Kahn Networks
SHIM systems are deterministic for much the same reason as

Kahn’s [18], but are more restrictive. Kahn’s processes commu-
nicate through unbounded buffers, which can be an advantage (our
systems are subject to deadlock from buffers filling up; Kahn’s are
not) and a liability. Adding unbounded buffers makes Kahn net-
works Turing-complete and difficult to schedule since it is desir-
able to use bounded buffer memory wherever possible. Parks [25]
scheduling algorithm does this, but it can be difficult to implement
and (understandably) provides no a priori bounds on buffer sizes, a
real liability for resource-constrained embedded systems.

Once buffer sizes are fixed, a Kahn network can easily be trans-
lated into SHIM. Determining these sizes can be difficult in prac-
tice, but at least the deterministic property of our model can help to
answer the question of whether a particular system will deadlock
because of insufficient buffer space.

Like ours, other formalisms are restrictions of Kahn’s networks.
Karp and Miller’s [19] and Lee and Messerschmitt’s [22, 21] sys-
tems both restrict the behavior of processes in a Kahn-like model
to make their relative execution rates predictable. Again, because
SHIM can be used for Kahn systems with fixed-sized buffers, these
other models can be translated into SHIM with no loss of behavior.

7.3 Asynchronous Hardware Models
SHIM was inspired in part by van Berkel’s asynchronous hand-

shake circuits [26], which show among other things the practicality
of implementing a fairly traditional imperative language with as-
signments, conditionals, and loops using nothing but rendezvous
communication. Handshake circuits and the Balsa/Tangram (now
called Haste) language, however, are aimed at the challenges of im-
plementing asynchronous digital circuits and as such contain many
low-level directives that would not make sense, say, for software.

Another troubling aspect of handshake circuits is their inclusion
of arbiters, which break the determinism of the model. While cer-
tainly adding to the expressiveness of the model, arbiters make
simulation substantially more difficult. Janin, Bardsley, and Ed-
wards [15] describe a simulator that takes snapshots of the system
at every nondeterministic (arbitrated) choice to allow the simula-
tion to be restarted from these points.

Related to CSP, Josephs’s Receptive Processes [16] are lower-
level than SHIM. Aimed at modeling the gate-level behavior of
asynchronous circuits, they do not explicitly represent data, assum-
ing instead that it is encoded in interaction order. Josephs also pro-
posed a deterministic variant [17], but it remains at a level inappro-
priate for software.

The Polis project [1] had aims similar to ours. They proposed a
unifying model of computation that could support both hardware
and software implementations (CFSMs [11]) and constructed sim-
ulators and hardware and software synthesizers around it. Their
model, however, is nondeterministic and its specification of pro-
cesses rather abstract, making it difficult to synthesize large pieces
of software.

7.4 Synchronous Models
Synchronous models [3] are also concurrent and deterministic.

While attractive, these models place a bigger scheduling burden on
a designer and thus tend to be better-suited for lower-level mod-
els. Our motivation for using an asynchronous model came in part
from trying to model something like the videogame described in
Section 4 in a purely synchronous model. That system is most nat-
urally described as multi-rate, with clocks ranging from pixel-speed
to frame-speed.

The synchronous languages Lustre [10], Esterel [5], and Sig-
nal [20] can all handle multi-rate dataflow, but only Esterel re-
ally supports an imperative style of coding—natural for software—
and unfortunately its support for multi-rate behavior is currently
poor, despite a number of attempts. Berry and Sentovich’s construc-
tion [6] show that the Esterel semantics can be implemented in an
asynchronous model.

7.5 Heterogeneous Models
Projects such as Lee’s Ptolemy [8] take a different approach to

modeling hardware/software systems. Ptolemy is primarily a flex-
ible simulation environment in which different models of compu-
tation can be supplied in the form of “domains.” Communication
between domains, however, has largely been ad hoc, and the main
focus of Ptolemy has never been automated implementations. SHIM

could easily be implemented as a domain in Ptolemy.
The Metropolis project [2], a follow-on to Polis, tries to pro-

vide a structured environment for multiple models of computation.
The system provides a meta-modeling language in which different
models of computation, such as SHIM, can be specified. Metropolis
is therefore orthogonal to SHIM, and perhaps could be used as an
implementation environment.

8. MODELING TECHNIQUES

8.1 Buffers
Although communication in SHIM is unbuffered, it is easy to

create finite-size buffered communication channels. For a buffered
channel of size n, introduce a chain of n single-place buffer pro-
cesses that repeatedly read a value from an input channel and im-
mediately write to an output channel. To initialize the contents of a
channel, begin one or more of the processes with a series of write
statements.

8.2 Interrupts
We cannot directly model traditional software interrupts since

they are nondeterministic in their full generality. In practice, how-
ever, interrupts are generally used in a deterministic way to emulate
concurrency in software. Most interrupt handlers take great pains
not to modify the state of the program they run above and usually
perform little more than a simple buffering action.

As a result we suggest the effects of well-behaved interrupts be
represented with a pair of processes: one for the program being
interrupted, the other for the interrupt handler that communicates
with the interrupt source and then the other process.

Using interrupts to implement our systems is an obvious possi-
bility. Processes that buffer data coming from hardware processes
and pass them to software are obvious candidates.

8.3 Pure Synchrony
Synchronous processes march to a common clock and communi-

cate in a broadcast style. In SHIM, such systems can be modeled by
introducing “redundant” communication. A synchronous process
in our model must periodically communicate with all of its peers
(i.e., every process with which it ever communicates). The one-to-
many channels typical in synchronous models can be emulated with
“fanout” processes in our model that repeatedly read from an input
channel and replicate the data on every output channel.

8.4 Synchronous Dataflow
Lee and Messerschmitt’s Synchronous Dataflow [22]—SDF—

can be implemented in SHIM once buffer sizes are known. Each
SDF actor becomes a process connected through finite-size buffers.
Inconsistent-rate SDF systems will eventually deadlock since our
model does not allow unbounded accumulation of data on buffers.

Obvious future work includes trying to identify SDF-like subsys-
tems in SHIM systems and applying some of the very sophisticated
SDF scheduling techniques [7].

8.5 Timing Issues
In SHIM, communication serves the double purpose of synchro-

nization and data transfer. Ensuring precise timing, therefore, can
be done through synchronization to a periodic clock, and while it
might appear that SHIM would demand that the clock wait for a
slow process, our vision is to employ a form of static timing analy-
sis to determine that the process will always be faster than its clock.
While well-known for hardware, this is more difficult for software
because of its more unpredictable nature.

8.6 Sensors
We can model sensors—unsynchronized time-varying environ-

mental signals—as processes with a single output through which
the sensor value is constantly available to be read. While the timing
of such values would be difficult to control without an additional
clock signal, the system will respond only to the sequence of val-
ues it receives from the sensors.

8.7 Arbitration
Although SHIM prohibits nondeterministic access to shared re-

sources, it can describe deterministic arbiters. Choosing an appro-
priate arbitration algorithm is the responsibility of the designer.
Round-robin, hold until release, or some more complicated mech-
anisms are possible; the choice will vary with the application.

9. CONCLUSIONS AND FUTURE WORK
We propose SHIM, a deterministic, concurrent model for em-

bedded hardware/software systems that amounts to Kahn networks
with rendezvous-style communication. We presented Tiny-SHIM, a
simple language for realizing such systems and its formal seman-
tics, a motivating example illustrating how to model a real-world
hardware/software system, software and hardware implementation
techniques, and addressed a variety of modeling issues.

Our next step will be to create a hardware/software codesign en-
vironment around this model and demonstrate a real-world system
implemented with it. We envision at least four major components
of this system: an extended SHIM language with, for example, a
richer type system, a simulation environment that allows complete
systems to be debugged before any hardware or target system is
complete, a software synthesis system that takes hints about how
to implement certain processes (e.g., “make this an interrupt ser-
vice routine”) and generates C code for various real-time operat-
ing system environments, and a hardware synthesis system that can
generate register-transfer level VHDL or Verilog.

By design, timing is conspicuously absent from the SHIM model.
Our philosophy is that functional verification should be separate
from timing verification. The determinism of SHIM makes it pos-
sible to do this, just as for synchronous digital logic or sequential
software programs, but in this paper we have only addressed func-
tional aspects of our model.

In addition to mechanisms for optimizing performance (speeding
simulation, generating faster hardware circuits), a SHIM-based de-
velopment system will need mechanisms for static timing analysis.
For hardware, the problem is fairly well-understood and it should
be possible to adapt many existing techniques for use in our envi-
ronment. Timing analysis of software is much less mature, although
work is progressing. One of the long-range goals of SHIM is to bring
some of the discipline of hardware concurrency to software devel-
opment, and this will be one of the important ways.

Another idea, suggested by a reviewer, is to develop algorithms
for determining buffer sizes. Doing this in general (e.g., asking
whether the system will deadlock and whether introducing addi-
tional buffering could prevent it) is probably too costly (it is at
least as hard as state-space exploration). Instead, we suspect that
the problem is tractable and interesting for certain classes of SHIM

systems, such as feed-forward networks or those in the synchronous
dataflow model, so we plan to pursue this question.

In short, we envision SHIM becoming the standard for developing
both the software and hardware in wide class of embedded systems.
We believe the discipline and simplicity of the underlying model
will be a key enabler for raising the level of abstraction available to
designers.

10. REFERENCES
[1] Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio

Passerone, Ellen Sentovich, Bassam Tabbara, Massimiliano
Chiodo, Harry Hsieh, Luciano Lavagno, Alberto
Sangiovanni-Vincentelli, and Kei Suzuki.
Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach. Kluwer, Boston, Massachusetts, 1997.

[2] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano
Lavagno, Claudio Passerone, and Alberto
Sangiovanni-Vincentelli. Metropolis: An integrated
electronic system design environment. IEEE Computer,
36(4):45–52, April 2003.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, and Robert de Simone. The
synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, January 2003. Invited.

[4] Gérard Berry. Esterel on hardware. Philosophical
Transactions of the Royal Society of London. Series A,
339:87–103, April 1992. Issue 1652, Mechanized Reasoning
and Hardware Design.

[5] Gérard Berry and Georges Gonthier. The Esterel
synchronous programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, November 1992.

[6] Gérard Berry and Ellen Sentovich. An implementation of
constructive synchronous programs in POLIS. Formal
Methods in System Design, 17(2):165–191, October 2000.

[7] Shuvra S. Bhattacharyya, Ranier Leupers, and Peter
Marwedel. Software synthesis and code generation for signal
processing systems. IEEE Transactions on Circuits and
Systems—II: Analog and Digital Signal Processing,
47(9):849–875, September 2000.

[8] Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G.
Messerschmitt. Ptolemy: A framework for simulating and
prototyping heterogeneous systems. International Journal of
Computer Simulation, 4:155–182, April 1994.

[9] Joseph Tobin Buck. Scheduling Dynamic Dataflow Graphs
with Bounded Memory using the Token Flow Model. PhD
thesis, University of California, Berkeley, 1993. Available as
UCB/ERL M93/69.

[10] Paul Caspi, Daniel Pilaud, Nicholas Halbwachs, and J. A.
Plaice. LUSTRE: A declarative language for programming
synchronous systems. In ACM Symposium on Principles of
Programming Languages (POPL), Munich, January 1987.
Association for Computing Machinery.

[11] Massimiliano Chiodo, Paolo Giusto, Attila Jurecska,
Luciano Lavagno, Harry Hsieh, and Alberto
Sangiovanni-Vincentelli. A formal specification model for
hardware/software codesign. In Proceeding of the
International Workshop on Hardware-Software Codesign,
Cambridge, Massachusetts, October 1993.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[13] Stephen A. Edwards, Tony Ma, and Robert Damiano. Using
a hardware model checker to verify software. In Proceedings
of the 4th International Conference on ASIC (ASICON),
Shanghai, China, October 2001.

[14] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, Upper Saddle River, New Jersey, 1985.

[15] Lilian Janin, Andrew Bardsley, and Doug A. Edwards.
Simulation and analysis of synthesised asynchronous
circuits. International Journal of Simulation Systems,
Science & Technology, 4(3–4):31–43, 2003.

[16] Mark B. Josephs. Receptive process theory. Acta
Informatica, 29(1):17–31, February 1992.

[17] Mark B. Josephs. An analysis of determinacy using a
trace-theoretic model of asynchronous circuits. In
Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages
121–130, Vancouver, BC, Canada, May 2003.

[18] Gilles Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74: Proceedings of
IFIP Congress 74, pages 471–475, Stockholm, Sweden,
August 1974. North-Holland.

[19] Richard M. Karp and Raymond E. Miller. Properties of a
model for parallel computations: Determinacy, termination,
and queueing. SIAM Journal on Applied Mathematics,
14(6):1390–1411, November 1966.

[20] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and
Claude Le Maire. Programming real-time applications with
SIGNAL. Proceedings of the IEEE, 79(9):1321–1336,
September 1991.

[21] Edward A. Lee and David G. Messerschmitt. Static
scheduling of synchronous data flow programs for digital
signal processing. IEEE Transactions on Computers,
C-36(1):24–35, January 1987.

[22] Edward A. Lee and David G. Messerschmitt. Synchronous
data flow. Proceedings of the IEEE, 75(9):1235–1245,
September 1987.

[23] Bill Lin. Efficient compilation of process-based concurrent
programs without run-time scheduling. In Proceedings of
Design, Automation, and Test in Europe (DATE), pages
211–217, Paris, France, February 1998.

[24] Tadao Murata. Petri nets: Properties, analysis, and
applications. Proceedings of the IEEE, 77(4):541–580, April
1989.

[25] Thomas M. Parks. Bounded Scheduling of Process Networks.
PhD thesis, University of California, Berkeley, 1995.
Available as UCB/ERL M95/105.

[26] Kees van Berkel. Handshake Circuits: An Asynchronous
Architecture for VLSI Programming. Cambridge University
Press, 1993.

[27] Xiaohan Zhu and Bill Lin. Compositional software synthesis
of communicating processes. In Proceedings of the IEEE
International Conference on Computer Design (ICCD),
pages 646–651, Austin, Texas, October 1999.

