
Provable Protection against Web Application
Vulnerabilities Related to

Session Data Dependencies
Lieven Desmet, Pierre Verbaeten, Member, IEEE, Wouter Joosen, and Frank Piessens

Abstract—Web applications are widely adopted and their correct functioning is mission critical for many businesses. At the same time,

Web applications tend to be error prone and implementation vulnerabilities are readily and commonly exploited by attackers. The

design of countermeasures that detect or prevent such vulnerabilities or protect against their exploitation is an important research

challenge for the fields of software engineering and security engineering. In this paper, we focus on one specific type of implementation

vulnerability, namely, broken dependencies on session data. This vulnerability can lead to a variety of erroneous behavior at runtime

and can easily be triggered by a malicious user by applying attack techniques such as forceful browsing. This paper shows how to

guarantee the absence of runtime errors due to broken dependencies on session data in Web applications. The proposed solution

combines development-time program annotation, static verification, and runtime checking to provably protect against broken data

dependencies. We have developed a prototype implementation of our approach, building on the JML annotation language and the

existing static verification tool ESC/Java2, and we successfully applied our approach to a representative J2EE-based e-commerce

application. We show that the annotation overhead is very small, that the performance of the fully automatic static verification is

acceptable, and that the performance overhead of the runtime checking is limited.

Index Terms—Software/program verification, security, reliability, data sharing, Web-based services, Web technologies.

Ç

1 INTRODUCTION

WEB applications are widely adopted in today’s life.
More and more individuals and organizations

strongly depend on their correct functioning, resulting in
an increasing demand for reliability and security [1]. For
instance, many companies already incorporate e-commerce
into their business model to increase their revenues. At the
same time, Web applications tend to be error prone and are
a welcome target for attackers due to their high accessibility
and possible profit gain.

NIST’s national vulnerability database clearly shows an
increasing number of vulnerabilities located in the applica-
tion layer. A similar trend stands out in the Web Hacking
Incidents Database (WHID). Design flaws and implementa-
tion bugs are two important root causes for many
vulnerabilities in Web applications. They potentially lead
to erroneous behavior at runtime and undermine the overall
reliability and security of a Web application. This is
especially the case in Web applications since attackers can
more easily trigger specific implementation bugs because of
the open and reactive nature of Web applications.

This paper focuses on one particular type of implemen-
tation bugs, namely, runtime errors due to broken data

dependencies in data-centered Web applications. In a data-
centered application, the different components of the
application can indirectly share data through a shared data
repository without actually interacting with each other. This
loose coupling adds extra flexibility to the software develop-
ment and composition process and is often used in software
engineering as a viable trade-off between data encapsulation
and efficient data sharing. For instance, Web applications
typically use indirect data sharing to store and retrieve the
nonpersistent server-side session state for each user.

On the downside, data dependencies in data-centered
software compositions can easily break. A data-centered
application is correctly composed if, at runtime, each
component is able to retrieve the data from the repository
that it expects to find. Infringements typically manifest
themselves in unexpected exceptions. Thus, the correct
functioning of a component depends on the runtime state of
the shared repository during its execution. Since these
dependencies typically are hidden within a software
system, it is hard for a software composer to build Web
applications without breaking any of the hidden depen-
dencies between the components and the shared data
repository. This is a relevant composition problem and
typically leads to runtime errors. These runtime errors can,
for instance, be exploited in Web applications by applying
forceful browsing. The impact of the runtime errors
depends on the particular application, but possible con-
sequences include the execution of unexpected application
logic, information leakage due to bad error handling,
broken data integrity (for example, storing null strings to
the database back end), skipping of cleanup code (such as
the code that closes database connections), which, in turn,

50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

. The authors are with the Department of Computer Science, Katholieke
Universiteit Leuven, K.U. Leuven postbus: 2402, Celestijnenlaan 200A, B-
3001 Heverlee (Leuven), Belgium.
E-mail: {Lieven.Desmet, Pierre.Verbaeten, Wouter.Joosen, Frank.Piessens}
@cs.kuleuven.be.

Manuscript received 23 Feb. 2007; revised 10 July 2007; accepted 29 Aug.
2007; published online 10 Sept. 2007.
Recommended for acceptance by P. McDaniel and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0071-0207.
Digital Object Identifier no. 10.1109/TC.2007.70742.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

may lead to a denial-of-service attack, and many more.
Moreover, the loose coupling between components in
indirect data sharing circumvents several consistency
checks of today’s compilers, resulting in the late detection
of composition problems (that is, at runtime instead of at
compile time).

The main contribution of this paper is that it shows how
to formally guarantee that no data dependencies are broken
in a given Web application. To do so, the presented
approach only requires a limited annotation of the given
application and it applies a combination of static and
dynamic verification. The guaranteed absence of runtime
errors due to broken data dependencies results in a more
reliable and secure Web application. In addition, a proto-
type implementation of the presented approach is built
based on an existing verifier for Java and the prototype
implementation is successfully applied to Duke’s BookStore,
a J2EE-based based e-commerce application.

The rest of this paper is structured as follows: Section 2
provides some background information on indirect data
sharing in Web applications and some common composition
problems due to broken data dependencies. This concept is
illustrated in more detail in the Duke’s BookStore case study, a
representative e-commerce Web application, in Section 3.
Next, Section 4 defines the requirements for a solution to
counter these composition problems in a transparent and
developer-friendly way. In Section 5, we present our solution
to detect and prevent composition problems in data-centered
reactive Web applications. In Section 6, the design and
implementation of our prototype is demonstrated and
illustrated with the Duke’s BookStore e-commerce application.
In addition, the results are presented in Section 7. Next,
Section 8 discusses the chosen trade-offs between the
usability and the accuracy of the verification. In Section 9,
the presented work is related to existing research in program
verification and Web security and, finally, Section 10 sum-
marizes the contributions of this paper.

2 PROBLEM STATEMENT

This section provides more detailed background informa-
tion on indirect data sharing in Web applications and some
common composition problems. After a short, general
introduction to indirect data sharing in Section 2.1, the
typical use of a shared repository in Web applications is
described in Section 2.2. In addition, the erroneous behavior
due to broken dependencies is briefly discussed, as well as
the adequacy of existing security countermeasures to
prevent malicious users from exploiting these types of bugs.

2.1 Indirect Data Sharing

In the repository architectural style [2], a system consists of
a central data structure (representing the state of the
system) and a set of separate components interacting with
the central data store. This architectural style is quite
common in software engineering as a viable trade-off
between data encapsulation and efficient data sharing. For
instance, indirect data sharing is adopted in several
component models and APIs such as JavaServlet containers
[3], Pluggable Authentication Modules (PAM) framework
[4], and JavaSpaces in Sun’s Jini [5].

The application is correctly composed with respect to the
indirect data sharing if, at runtime, each component is able
to retrieve the data from the repository that it expects to
find. Thus, the correct functioning of a component depends
on the runtime state of the shared repository during its
execution or, rephrased, in applications with a shared data
repository, implicit semantical dependencies exist between
components that share a common data item on the shared
repository. In Fig. 1, the implicit semantical dependencies
within a data-centered application are explicitly shown,
while the actual component interactions (that is, the control
flow) are abstracted.

2.2 Session Sharing in Web Applications

Web applications are server-side applications that are
invoked by thin Web clients (browsers), typically using
the Hypertext Transport Protocol (HTTP). A user can
navigate through a Web application by clicking links or
URLs in his or her browser and the user is also able to
supply input parameters by completing Web forms.

HTTP is a stateless application-level request/response
protocol and has been in use on the World Wide Web since
1990 [6]. Since the protocol is stateless, each request is
processed independently, without any knowledge of pre-
vious requests. To enable the typical user’s session concept
in Web applications, the Web application needs to add
session management on top of the stateless HTTP layer.
Different techniques exist to embed Web requests within a
user session, such as the use of cookies, URL rewriting, or
hidden form fields [7].

Nowadays, most Web applications use an underlying
framework or Web technology to facilitate the development
and the deployment of the Web application. Widespread
technologies, such as PHP, ASP.NET, and JSP/Servlets,
support, among others, the management of user sessions.
Next to tracking to which user session a Web request belongs,
these technologies also provide the server-side state for each
user session. While processing a Web request, server-side
Web components can store nonpersistent user-specific data
(for example, a shopping cart in an e-commerce site) in a
shared data repository bound to the user session. Other Web
components can then retrieve this data while processing
future requests in the same user session.

Breaking data dependencies is a common risk in
composing data-centered applications and, likewise,
data-centered Web compositions are vulnerable to broken
data dependencies without additional support. Based on

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 51

Fig. 1. Data dependencies in data-centered applications.

extensive experience in several data-centered applications,
we identified two common types of composition mis-
match: cases in which a data item is not available on the
shared repository although a reading component expects
it on the repository during execution and cases in which
the type of an available data item does not correspond
with the type expected by the reading component. Since
the loose coupling in indirect data sharing circumvents
several consistency checks of today’s compilers, these
composition mismatches typically lead to runtime errors
(for example, NullPointerExceptions and ClassCastExceptions
in Java-like languages). This is a relevant composition
problem, and, although the impact of such a runtime error
depends on the particular Web application, broken data
dependencies undermine the reliability and security of the
Web application. Possible consequences of such runtime
errors include the execution of unexpected application
logic, information leakage, and denial-of-service.

Existing security solutions do not provide adequate
support to protect Web applications against such imple-
mentation-specific bugs. Network security fails to effec-
tively protect Web applications against attackers [8].
Network firewalls such as stateful packet filters typically
operate on the network or transport layer (for example,
granting access to a complete Web application by allowing
TCP port 80 traffic), whereas Web applications are typically
attacked on the application layer. To counter Web applica-
tion vulnerabilities, Web Application Firewalls (WAFs)
operate on the application layer and analyze Web requests
between a browser and the Web server [9]. Often, WAFs are
placed inline between the browser and server (as displayed
in Fig. 2) and enforce real-time access control, based on
application-level information such as the requested URL,
the supplied credentials and input parameters, and the user
session’s history.

WAFs are applied to mitigate a range of vulnerabilities,
including vulnerabilities to forceful browsing. Forceful
browsing is the act of directly accessing Web pages (URLs)
without consideration for their context within an applica-
tion session [10]. Bypassing the intended application flow in
a Web application can generally lead to unauthorized access
to resources or unexpected application behavior [11].
Moreover, a malicious user will typically apply forceful
browsing to exploit implementation-specific broken data
dependencies in data-centered Web applications in a more
or less controlled way. Therefore, WAFs that counter
forceful browsing attacks are an important countermeasure
to prevent the exploitation of broken data dependencies.

According to the “Web Application Firewall Evaluation
Criteria” [12], such a WAF implements the strict request flow

enforcement criterion. This criterion refers to the technique
where a WAF monitors individual user sessions and keeps
track of the links already followed and of the links that can
be followed at any given time [12].

An important drawback of WAFs is their limited
coverage of protecting implementation-specific vulnerabil-
ities. A WAF uses either a positive or a negative security
model as the basis for access decisions and is configured
manually by the administrator or automatically by obser-
ving legitimate or malicious network traffic. Thus, WAFs
are typically configured without a strong binding to the
implementation of the Web application they protect and
because of this, there is no strong guarantee that a
configured WAF actually mitigates all implementation-
specific bugs of a given Web application. Therefore,
additional support is needed to achieve stronger security
guarantees in data-centered Web application.

3 CASE STUDY: THE DUKE’S BOOKSTORE

APPLICATION

In this section, the Duke’s BookStore application illustrates in
more detail the typical use of shared data repositories for
sharing a session state in a servlet-based Web application.
In addition, the case study will be used in Sections 5 to 7 to
illustrate and validate our solution.

The Java Servlet technology is part of the J2EE specifica-
tion and provides mechanisms for extending the function-
ality of a Web server and for accessing existing business
systems [3]. Java Servlets are functional units of the Web
tier. A J2EE Web application is typically a collection of Java
Servlets and is deployed in a servlet-based Web container
such as Tomcat, JBoss, or WebSphere. Servlets can indir-
ectly share data by means of a shared data repository. In
fact, five instances of shared repositories are provided to the
servlet, each with a different access scope:

1. a data repository associated with the dynamic Web
page,

2. a data repository associated with the Web request,
3. a data repository associated with the user session,
4. a data repository associated with the Web context,

and
5. a data repository associated with the application.

We limit the illustration of data sharing by only discussing
sessions. The verification of broken data dependencies on
the request level has been investigated in [13].

The Duke’s BookStore Web application is an exemplary
Java Servlet application that is bundled together with the
J2EE 1.4 Tutorial [14]. This relatively small e-commerce
application consists of about 3,500 lines of code and
implements the basic functionality of a Web shop by using
Java Servlets. The core application logic is supplied by six
servlets and one filter:

1. BookStoreServlet. The BookStore servlet returns the
main Web page for Duke’s Bookstore. From this start
page, links are provided to browse the book catalog

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 2. Web Application Firewall infrastructure.

or jump to the book details of a particular book (for
example, a book in promotion).

2. BookDetailsServlet. The BookDetail servlet returns
information about any book that is available from
the bookstore. Links are provided to the user to
either add the book to the shopping cart or to look
further into the book catalog.

3. CashierServlet. The Cashier servlet asks for the user’s
name and credit card number so that the user can
buy the books in his or her shopping cart. Payment
information is sent to the Receipt servlet.

4. CatalogServlet. The Catalog servlet displays the book
catalog and provides the possibility of adding books
to the user’s shopping cart or buying the books in
the shopping cart by redirecting to the cashier
servlet.

5. ReceiptServlet. The Receipt servlet processes the
order by updating the book database inventory.
Next, the servlet invalidates the user session.

6. ShowCartServlet. The ShowCart servlet returns infor-
mation about the books in the user’s shopping cart.

7. OrderFilter. The Order filter provides server-side
logging of shopping orders whenever the Receipt-
Servlet is called.

The components share three data items on the shared
session repository: messages, cart, and currency (Table 1).

The data item messages is a ResourceBundle and contains

locale-specific objects. This data item is important for the
internationalization of the application and can be used by

all components to display messages in the user’s preferred

locale. Similarly, the data item currency of the type Currency

contains the user’s preferred currency. In addition, the data

item cart of type ShoppingCart represents the shopping cart

of the user in the e-commerce application.
The components interact with the shared session

repository as listed in Table 1. The interactions are specified

by a type (for example, ResourceBundle), a string identifier

(for example, messages), and the type of interaction. The
interaction types used are displayed in Table 1. We have

chosen to use more fine-grained interactions than just

simple read and write operations to increase the accuracy.
The type def. read/write stands for a defensive read/write

operation, as shown in Fig. 3, that is, the application can

handle a null pointer as a result of the read operation and,
in that case, the servlet stores a nonnull object of the

expected type to the shared session repository. The label

cond. means that the operation possibly occurs, depending
on an unspecified condition (for example, the runtime state
of the book database inventory).

Session repository interactions are typically not specified
in a servlet-based application nor are they in this J2EE
application. Thus, the implicit assumptions of the developer
on how a servlet or filter should be used with respect to its
interactions with the shared session repository are neither
articulated nor available in the source code. This makes the
correct deployment or software evolution very hard with-
out reanalyzing the complete source code.

Even in small e-commerce applications such as Duke’s
BookStore, the interactions with the shared session reposi-
tory impose restrictions on the allowed client-server
interaction protocol. If, for example, a user session starts
with any URL path other than the /bookstore starting
point of the application (which is a typical forceful
browsing attack), the execution of any servlet ends up with
a NullPointerException: Every servlet retrieves the messages
data item from the shared repository and assumes in its
execution that the retrieved ResourceBundle is not null.
Another NullPointerException occurs in the Duke’s Book-
Store application if the OrderFilter (according to the
deployment information of this application applied to the
ReceiptServlet) is called in a user’s session before the cart and
currency data items are stored to the shared repository.
Also notice the impact of software evolution on indirect
sharing. For example, the latter problem only occurs if the
OrderFilter is added to the application.

The impact of a NullPointerException during execution
depends on the particular application. Possible conse-
quences include the execution of unexpected application
logic, information leakage due to bad error handling,
broken data integrity by storing null strings to the database
back end, skipping of cleanup code (such as the code that
closes database connections), which, in turn, may lead to a
denial-of-service attack, and many more. In the remainder

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 53

TABLE 1
Interactions with the Shared Session Repository in the BookStore Application

Fig. 3. Example of a defensive read/write operation in the Book-

DetailsServlet.

of this paper, we assume that the occurrence of a
NullPointerException due to data repository interactions in
a Web application negatively affects the security of the
application and thus should be prevented from happening.

Similarly, incompatibilities between the type of the data
item on the repository and the type expected by a retrieving
component result in ClassCastExceptions at runtime. In Java-
like data-centered Web applications, existing static type
checking at compile time is merely circumvented since
retrievals from the repository are done under the Object
type and the retrieved object is then downcast to the
expected type at runtime.

Finally, the complexity of shared data dependencies in
real-life applications may not be underestimated. We have
documented the complexity of the GatorMail Webmail
application in [15]. In the in-depth dependency analysis
of this medium-sized software system, more than 1,350 in-
teractions with the shared data repository were already
identified without any form of documentation.

4 REQUIREMENTS

The high-level goal of this research is to increase the
reliability and security of data-centered Web applications
by reducing runtime errors caused by broken data
dependencies. We define the following desired composition
property for indirect data sharing in data-centered Web
applications.

No broken data dependencies:

No client request causes a data item to be read from the server-side
shared session repository before it has actually been written. For
each shared data read interaction, the shared data item that already
has been written to the shared session repository is of the type that
is expected by the read operation.

In particular, this paper eliminates certain types of
runtime errors (such as a NullPointerException or a
ClassCastException) by giving a formal guarantee that the
no-broken-data-dependencies property is not violated in a
given composition.

The composition property defines the correctness of the
indirect data sharing in terms of what is expected by a
component whenever it tries to read a data item from the
shared repository. In addition, it is also important to
investigate the control flow of an application since the
control flow determines which components are executed in
which order and, hence, also what shared data interactions
occur in what order.

Reducing certain types of runtime errors by formally
verifying that a given composition does not violate the
desired composition property certainly improves the relia-
bility of the software composition, but, in order to be really
useful, the following interoperability and usability criteria
are important as well:

1. Interoperability. It is important that the proposed
solution is interoperable with the existing Web
infrastructure and does not interfere with other
Web security solutions. Optimally, the solution can
be added to the infrastructure in a transparent way
and cooperates with other security countermeasures
if needed.

2. Usability. In order to encourage wide adoption by
developers, we also identified two important usabil-
ity characteristics for the solution:

a. Limited overhead. In order to be generally applic-
able, the introduced overhead for the software
developer and software composer must be
minimal, both in terms of additional workload
and verification time. In addition, the solution
must be easy to understand for mainstream
developers and software composers. The less
overhead and complexity the solution intro-
duces, the more likely it is that the proposed
solution will actually be adopted.

b. Applicability to real-life applications. The applic-
ability of the proposed solution may not be
limited to toy examples, but the proposed
solution must also be more generally applicable
to larger real-life applications. This includes,
among others, that the proposed solution is
scalable to larger software projects and that the
solution is not limited to a specific choice of
program language or software framework.
Instead, a rather technology-neutral solution is
preferred, which can then be easily adopted in
different software platforms.

5 OVERVIEW OF THE SOLUTION

In this section, we propose our solution: We specify a
component’s interactions with the shared session repository
and use static and dynamic verification to guarantee that no
client-server interaction leads to the violation of the no-
broken-data-dependencies property. Fig. 4 depicts an overview
of our solution. At the left side of the figure, the different
artifacts of our application are listed; next to the imple-
mentation, the deployment information and the runtime
Web traffic are also used as input for our verification
process.

The verification process consists of three steps. First, the
interactions with the shared session repository are explicitly
specified in component contracts and static verification is
used to verify that each component implementation obeys
its contract specification. Second, the no-broken-data-depen-
dencies property is verified in each possible execution path
within a user’s session. To verify this property statically, an
upper bound is defined for the client-server interactions,
namely, the intended client-server protocol. Next, the property

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 4. Solution overview.

is verified under the assumption that the client-server

interactions are prefixes of the intended client-server protocol.

Finally, runtime policy enforcement is used to guarantee

that only the Web requests that are prefixes of the intended

client-server protocol are processed by the Web application.

By combining these three verification steps, our solution

ensures the no-broken-data-dependencies property in a given

application.
We will now discuss each of the three steps in more

detail in the following sections.

5.1 Server-Side Specification and Verification

In order to specify a component’s interactions with the

shared session repository, each Web component is extended

with an appropriate component contract. The contract is

expressed in a problem-specific contract language, which is

easy to understand for application developers. The gram-

mar of the proposed problem-specific contract language is

shown in Fig. 5.
The problem-specific contract language expresses the

interactions with the repository in terms of read, write, and

possibly write statements:

1. Read statement. This lists the component’s expecta-
tions about the repository state. To do so, the
contract specifies the expected type for each relevant
data item and uses the label Nullable to indicate that
the component can handle a null reference for that
particular data item. The latter one reflects the
defensive reads, as shown in Fig. 3.

2. Write statement. This expresses the data items on the
shared session repository that will be altered into a
nonnull instance of the specified type by executing
the component.

3. Possibly write statement. This lists the data items on
the shared session repository that may be altered by
executing the component. This statement defines
that, for each of the data items, the write interactions
result in a nonnull instance of the specified type or
that the particular data item is not altered at all,
depending on unspecified conditions.

Notice the explicit distinction between write and

possibly write statements. Write statements are subsumed

in possibly write interactions but are semantically richer in

describing the state of the shared data repository. A write

statement clearly describes the state of the data item after

executing the component (that is, that the data item will be

altered to a nonnull instance of the given type), whereas a

possible write statement gives less information about the

state of the data item. Moreover, every update of the shared

session repository during the execution of the component is

either covered by the write statement or the possibly write

statement.
For instance, Fig. 6 shows such a problem-specific

contract of the ShowCartServlet, which is a straightforward

mapping of the following shared data interactions:

The read interaction for the messages data item is

translated into a read statement in the problem-specific

contract (data item messages in line 1 in Fig. 6). The def. read/

write interaction is translated into a combination of a

Nullable-labeled read statement and a write statement (data

item cart in lines 1 and 2 in Fig. 6). Similarly, the cond. def.

read/write interaction is translated into a combination of a

Nullable-labeled read statement and a possibly write

statement (data item currency in lines 1 and 3 in Fig. 6).
The formal semantics of these contracts are given by a

translation into the Java Modeling Language (JML) [16]. We

briefly discuss this translation in Section 6.1.
Given the component contracts for each component,

static verification is used to verify that a component’s

implementation obeys its contract, that is, that the read and

write interactions that happen are only those specified in

the contract.
Notice that, in case of a mismatch between the provided

contract and the component implementation, this first static

verification step will fail to verify the compliance and, as a

result, the overall verification process will fail.

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 55

Fig. 5. EBNF notation of the problem-specific contract language.

Fig. 6. Problem-specific specification of the ShowCartServlet.

5.2 Application-Specific Property Verification

The no-broken-data-dependencies property is verified by
checking all of the possible execution paths in a user’s
session. To verify the property statically, an upper bound is
defined for the client-server interactions, namely, the
intended client-server protocol. This is an upper bound for
the nondeterministic interactions between the client and the
server and includes all valid client-server interactions that
may occur in the application under normal circumstances.

The intended client-server protocol can be expressed in
various ways, such as a regular expression, an EBNF
notation, or a labeled state transition system. For example,
Figs. 7 and 8 are two different representations of the
intended protocol for the Duke’s BookStore application.
Note that, in Web applications, the protocol can be
interrupted at any time, for example, if a Web user stops
surfing to the given Web application or closes the browser.
This is indicated by nil in the EBNF notation and with
dashed lines in the labeled state machine.

In order to statically verify that any prefix of the intended
client-server protocol does not violate the desired application
property, the intended protocol is verified in combination
with the component contracts and the given deployment
information. In a J2EE Web application, for example, the
Web deployment descriptor contains, among others, the
mapping between URLs and servlets, as well the servlets on
which filters are applied.

To verify the desired application property, it is important
that component contracts precisely describe the interactions
with the shared repository. In case of too generic contracts
(for example, if a programmer does not take time to
adequately identify the interactions or tries to shortcut the
annotation process by annotating every interaction as
possibly write), the second verification step will not succeed
for certain legitimate client-server protocols and, as a result,
the overall verification process will fail.

5.3 Runtime Protocol Enforcement

Finally, since the no-broken-data-dependencies property is
verified under the assumption that all Web requests obey
the intended client-server protocol, this assumption needs to be
enforced at runtime. This can be done by loading the

protocol specification into a supporting WAF or extending
the application with an appropriate filter. As a result, only
prefixes of the intended client-server protocol are allowed to be
processed by the Web application.

6 DESIGN AND PROTOTYPE

In this section, we describe the design and implementation
of our prototype and discuss how it can be used to secure
the Duke’s BookStore Web application.

6.1 Server-Sid03e Specification and Verification

In order to use existing verifiers to check if the implementa-

tion of a component adheres to its contract, the problem-
specific contracts are translated into JML [16]. For instance,
the JML contract in Fig. 9 expresses the interactions between
the ShowCartServlet and the shared session repository in
terms of the prestate and poststate of the repository.

In our prototype, the problem-specific component con-

tracts are translated automatically into JML contracts and
the translation tool can be downloaded from the paper’s
accompanying Web site [17]. The rationale for the transla-
tion is given as follows:

1. Read statements. Read statements in the problem-
specific component contracts are translated into the
precondition that the given data item is of the
expected type. For instance, line 10 in Fig. 9 specifies
that the method requires that the data item messages
on the shared session repository is a nonnull
instance of ResourceBundle.

In case the read statement is labeled with Nullable,
the requirement on the data item is relaxed to be
either a nonnull instance of the expected type or the
null reference (for example, line 9 in Fig. 9).

2. Write statements. Write statements in the problem-
specific component contracts are translated into an
ensures clause specifying that, after execution, the
given data item is of the expected type. Line 12 in
Fig. 9 specifies, for example, that the method ensures
that, after execution, the data item cart on the shared
session repository will be a nonnull ShoppingCart. In

56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 7. EBNF notation of the client-server protocol.

Fig. 8. Client-server interaction protocol.

addition, the JML contract also explicitly expresses
the frame condition of the method, that is, what part
of the session state a method is allowed to modify.
This is done by adding a modifies clause for each
written data item (for example, data item cart in
line 14 in Fig. 9).

3. Possibly write statements. Possibly write statements in
the problem-specific component contracts are trans-
lated into an ensures clause specifying that, after
execution, the given data item is of the expected type
or that the given data item remains unchanged while
executing the method (line 13 in Fig. 9). In addition,
a frame condition is added for each data item that is
possibly written by executing the method. For
instance, line 15 in Fig. 9 expresses that the method
may alter the shared data item currency.

Finally, notice the use of the also keyword in the JML
contracts. The ShowCartServlet extends the HttpServlet and,
by doing so, it inherits the public method specification of
the doGet method. To refine the specification of an over-
ridden method (for example, by weakening preconditions
or by strengthening postconditions), the specification in
JML starts with the also keyword, which combines the
specifications of the supertype and the subtype. Similarly,
the also keyword can also be used in regular specification to
combine different specification blocks into a nested speci-
fication. More information about the desugaring of also
combinations in JML can be found in [18].

Since the doGet method of the HttpServlet does not
provide common behavior for all of the inheriting servlets,
the supertype method is annotated with the strongest
possible precondition, that is, the requires false pragma. In
this way, all inheriting servlets are able to weaken this
precondition, conforming to the Liskov substitution princi-
ple. Note that this design decision prohibits polymorphic
use. This was not an issue in the prototype implementation
since we did not encounter polymorphic use of the
HttpServlet objects in the different servlet implementations
or the application-specific check method.

In the remainder of the paper, we have chosen to show
the translated JML contracts since JML is a fairly well-
known contract language. One of the main advantages of
JML is the large amount of tool support that is available

[19]. Tools are available for runtime contract checking, test
generation, static verification, and inference of specifica-
tions. A variety of static verification tools are available that
make different trade-offs in verification power and the need
for user interaction.

In our prototype, we have chosen to use the ESC/Java2
verifier [20]. The main advantage of this verifier is that it
requires no user interaction. On the downside, the verifier is
far from complete and has some known sources of
unsoundness [21]. In Section 8, we will discuss how this
impacts our prototype.

To check the compliance of the component implementa-
tion with ESC/Java2, the specification of the shared
repository is generated (Fig. 10). Here, explicit JML pragmas

provide a mapping between a ghost field and the state of a
specific data item in the hash table since the current version
of the ESC/Java2 tool does not support reasoning about
hash table indirections. This mapping allows us to express
the state of the data repository in a component’s contract in
terms of the object fields rather than hash table indirections
and allows us to still reason about the repository state
without losing the verification power of ESC/Java2.

In order to reduce the verification complexity and the
overhead of instrumenting all library calls, we use a
pragmatic framing approach to verify if a component’s
implementation obeys its contract. Instead of letting ESC/
Java2 verify the modifies clauses, we use a component-specific
specification of the session repository in which we constrain
the allowed write operations to the actual write interactions
that the component claims to have in its modifies clauses.

Fig. 11 is an example of such a component-specific
annotation to use with the ShowCartServlet: The precondi-
tion of the setAttribute method states that only write
operations are allowed for the cart and currency data items.
In contrast to the complete specification of the session
repository (Fig. 10), the messages data item may not be
modified by the ShowCartServlet.

In case the component’s implementation triggers an
unspecified state change in the shared data repository,
the verification of the component with ESC/Java2 will
detect this contract violation (even without checking the
component’s modifies clauses) since the state change will

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 57

Fig. 9. Contract for shared session repository interactions (ShowCartServlet.spec).

also violate the precondition of the component-specific
setAttribute annotation of the shared repository.

The full component contracts of the Duke’s BookStore
validation experiment (both in the problem-specific con-
tract language and in JML), the contract translation tool,
and the generator tool for the component-specific reposi-
tory specification can be found on the paper’s accompany-
ing Web site [17].

6.2 Application-Specific Property Verification

A server-side check method is automatically generated
from the intended client-server protocol to statically verify
that no client-server interaction violates the no-broken-data-

dependencies property. This check method simulates the
intended protocol in a server-side method body in which
every Web interaction is translated into a method call to the
appropriate request processing component (if needed, it is
preceded by one or more filters). In addition, reactive or
nondeterministic behavior is translated by applying the
java.util.Random class, if-then-else branches, switch cases,
and while loops. The protocol-simulating check method for
the Duke’s BookStore application is listed in Fig. 12.

The application-specific property verification is then
reduced to statically verifying the implementation of the

check method with ESC/Java2. Compliance with a compo-
nent’s assumption on the shared session state is verified
implicitly because static verifiers such as ESC/Java2 check
that the preconditions are fulfilled for each method that is
called. Since the static verifier verifies all possible execution
paths in the check method, the no-broken-data-dependencies
property is verified for all transitions of the intended client-
server protocol and for all of its prefixes.

For the application-specific protocol verification, ESC/
Java2 relies on the explicit framing conditions of the
different component contracts in combination with the full
specification of the shared session repository in Fig. 10.

6.3 Runtime Protocol Enforcement

Since the static verification step requires that the protocol at
runtime adheres to the intended client-server protocol,
runtime enforcement is needed to ensure that only requests
conforming to the intended protocol are processed by the
application.

As a proof of concept, we embedded a lightweight
runtime enforcement engine in our Web application
container by installing a custom J2EE Filter. Before a servlet
is invoked by means of the service(ServletRequest request,
ServletResponse response) method in a J2EE Web application,
a chain of deployed filters is always applied to the request.

At deployment time, our enforcement engine is loaded
with an object-oriented instantiation of the labeled state

58 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

Fig. 10. JML contract of the session repository (HttpSession.spec).

Fig. 11. Component-specific specification of the repository (HttpSession.

spec for ShowCartServlet).

transition system (Fig. 13). For each user session, the current
state is stored and, for each incoming Web request, the
enforcement engine verifies that the transition is allowed
and the current state is updated before the request is
dispatched to the servlet. In case of a protocol violation, a
pluggable strategy is consulted, defining the action that
should be taken, ranging from blocking access to the
originator’s IP or invalidating the user’s session to just
logging the access violation.

The proposed property verification assumes sequential
processing of requests within a user’s session. In order to
guarantee the absence of broken data dependencies in a
multithreaded server environment, the runtime protocol
enforcement of our prototype uses coarse-grained locking
on the user’s HttpSession object. By doing so, all requests

belonging to one session are processed sequentially, while
the server still can process multiple sessions in parallel.

7 EXPERIMENTAL RESULTS

We successfully applied the proposed solution to verify the
no-broken-data-dependencies property in the Duke’s Book-
Store Web application. We used this validation experiment
to measure the annotation cost, the verification perfor-
mance, and the runtime overhead of the proposed solution.

7.1 Annotation Overhead

As a quantification of annotation overhead, a specification
line count is performed on the annotated components. At
most four lines of specification per component are used to
express the interactions with the shared session repository.
In addition, thanks to the pragmatic framing, no library
calls need to be instrumented to verify the different
components.

7.2 Static Verification Performance

To evaluate the performance of the static verification
process, the verification time is measured. The performance
tests were run on a Pentium Mobile (1.4 GHz) processor
with 512 Mbytes of RAM, running Debian Linux while
using Java 1.4.2_09, ESC/Java2 2.0a9, and Simplify 1.5.4.

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 59

Fig. 12. Protocol-simulating check method to be verified by ESC/Java2.

Fig. 13. Class diagram of the runtime enforcement engine.

Table 2 shows the performance results of verifying the
implementation compliance. Notice that the control flow
complexity of the ShowCartServlet and CatalogServlet com-
ponents exceeded the verification power of ESC/Java2 and
the underlying theorem prover Simplify so that we had to
split up the doGet method for both components in order to
get them verified.

The verification of the protocol-simulating check method
succeeded smoothly in about 13.5 sec.

7.3 Runtime Enforcement Overhead

To estimate the overhead of the runtime flow enforcement,
we ran the following experiment on the BookStore applica-
tion with and without our enforcement filter: We sequen-
tially simulated 1,000 different visitors in which each user’s
protocol consisted of six Web requests and 2 percent of the
visitors applied forceful browsing. For the experiment, the
BookStore application has been deployed on the Sun Java
System Application Server Platform Edition 8.2.

We ran 40 simulations, alternating the BookStore with and
without runtime protocol enforcement. The processing times
of these 40 simulations are shown in Fig. 14. We noticed an
increasing processing time because of the increasing number
of open sessions on the server. In this experiment, we
measured a worst-case runtime overhead of 5.4 percent,
although the average runtime overhead is much lower.

The validation experiment in the Duke’s BookStore
application showed that the proposed solution is applicable
to real-life Web applications. The problem-specific contracts
led to a small annotation overhead and an acceptable
verification performance was achieved thanks to the

modular verification. By combining static and dynamic

verification, the runtime overhead was also limited.
Moreover, similar experiments to specify and verify

shared data interactions on the request scope show that this

type of annotation and verification easily scales to larger

Web applications [13].
In addition, the proposed solution is interoperable with

the existing Web infrastructure and does not interfere with

other Web security solutions. Moreover, the proposed

solution is able to leverage the power of existing WAFs by

providing formal techniques to prove the absence of broken

data dependencies in a given WAF protocol enforcement

configuration. This partially counters an important draw-

back of today’s WAFs, which have limited coverage in

protecting implementation-specific vulnerabilities.

8 DISCUSSION

In this paper, the required usability characteristic has been

an important driver for the solution and, therefore, we

deliberately chose a developer-centric point of view. This

developer-centric point of view significantly influenced the

proposed solution. In every step of the solution, we aimed

to achieve the right trade-off between the accuracy and

power of formal verification on the one hand and limited

overhead for the developer and composer and applicability

to real-life software applications on the other hand. In this

section, we first discuss the most important trade-off

decisions of our prototype in more detail. Next, we

highlight opportunities to further improve the usability of

the proposed solution.

1. Problem-Specific Annotations and Pragmatic Framing.
We used a problem-specific annotation language to
significantly reduce the annotation overhead for the
developer. However, this partial specification also
implied that, as a consequence, the framing condi-
tions of the different components were partially
specified as well and that traditional framing
verification was not feasible in such scenarios.

In this paper, we used a pragmatic framing

approach to only verify state changes on the shared

data repository. Since other state changes were

neglected on purpose, this framing approach only

guaranteed correct framing with regard to state

changes on the shared session repository. Although

such a pragmatic framing is not applicable for

general verification purposes, this framing approach

was sufficient for our verification process since we

60 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

TABLE 2
Verification Performance

Fig. 14. Results of the overhead measurement experiment.

were only interested in the component’s interactions
with the shared repository.

In fact, the pragmatic framing approach was an
interesting enabler for our approach. Thanks to the
pragmatic framing, we were able to verify partially
specified components, that is, we only specified the
parts of the contract that we were actually interested
in (namely, the interactions with the shared reposi-
tory). In case we would have applied traditional
framing, we would also have to specify every state
change that occurred in the application by executing
a component’s method, as well as to annotate every
called library method with its appropriate frame
condition.

2. Use of ESC/Java2. In our prototype, we have chosen
to use the ESC/Java2 verifier. The main advantage of
this verifier is that it requires no user interaction. On
the downside, the verifier is far from complete and
has some known sources of unsoundness [21]. We
will shortly discuss how this impacted our verifica-
tion process:

a. Limited reasoning about hash table indirections. One
of the problems that we were confronted with in
our prototype was the poor support of the ESC/
Java2 tool for reasoning about hash table
indirections. We were forced to circumvent this
lack of support by introducing ghost variables
and verbose specifications of the shared reposi-
tory. This is a temporary problem and future
versions of the tool are expected to incorporate
better hash table support.

b. Default framing. When reasoning about a call to a
routine, ESC/Java2 assumes that the routine only
modifies its specified modification targets (as
given in modifies pragmas). As defined in JML,
ESC/Java2 has a default for missing modifies
clauses (that is, modifies neverything) to unhide
unexpected changes to variables caused by call-
ing a routine. However, the logic for reasoning
about routine bodies that contain these modifies
clauses has not yet been implemented in ESC/
Java2. As a result, methods without explicit
modifies clauses can be verified since the default
frame condition includes everything. However,
the current implementation of ESC/Java2 does
not take this default frame condition into account
when such methods are called, resulting in an
unsound verification.

In our prototype, we annotated every method
that updates the shared repository with an
appropriate framing condition. By doing so,
we prevented those calls to methods without a
framing condition that could break data depen-
dencies without being detected.

c. Loops. To avoid the need for loop invariants,
ESC/Java2 implements an approximate and
possibly unsound verification of loops. Since
the influence of loop bodies on the state of the
repository is typically limited, this did not
impact our verification of Duke’s BookStore. In

fact, inferring loop invariants about the state of
the repository seems feasible and is an interest-
ing item for future work. With inferred loop
invariants, this potential source of unsoundness
could be removed completely.

d. Unsound pragmas. ESC/Java2 allows users to
introduce assumptions into the verification
process by using unsound pragmas such as
assume. When these assumptions are invalid,
the verification is unsound. In the Duke’s
BookStore application, we needed to instrument
some of the components with assume pragmas
to assist the verifier in the verification process,
for example, by supplying type information
while iterating over Collections. Notice that these
annotations are needed because of the lack of
generics in Java 1.4 and are not necessary in later
versions of Java.

All of these issues are limitations of the current tool and can
be expected to disappear with improved technology for Java
program verification. Our experience with this experiment
shows that state-of-the-art program verification technology is
already useful today and further improvements to the
technology will further increase that usefulness.

To valorize this research in a concrete developer’s tool,
the balance between usability and accuracy can probably be
shifted even further in favor of the developer and composer
in several steps of the solution:

1. Problem-specific annotation and contract verification. To
reduce the annotation overhead for the software
developer, the problem-specific annotation of a
component can be inferred from its implementation.
This specification inference significantly lowers the
impact on the development process but also implies
that some implementation bugs will only be identi-
fied during the property verification phase (typically
close to deployment), rather than during the contract
verification phase in which mismatches can already
be detected between the problem-specific annotation
and the component’s implementation. Moreover, the
specification inference eliminates the need for
checking the compliance between problem-specific
annotation and the component’s implementation.

2. Intended client-server protocol. To verify the no-broken-
data-dependencies property statically, an upper bound
is defined for the client-server interactions, namely,
the intended client-server protocol. At this moment,
the intended client-server protocol is constructed
manually, based on the expected use of the Web
application and the URLs generated by the different
Web pages. In order to reduce the composer’s
involvement in the verification process, this applica-
tion-specific protocol can also be constructed auto-
matically based on a representative client
implementation (for example, in case of a rich
Web client) by analyzing the hyperlinks generated
by the different Web pages or by observing
legitimate Web traffic, as is often done in WAFs.

3. Integrated tool. To be practically useful for software
developers, providing an integrated tool is essential.

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 61

The different subtasks of the solution can be
integrated in a single framework-specific tool and
the tool is preferably embedded in the developer’s
Integrated Development Environment (IDE). In
addition, extra support is needed to give useful
feedback to the developer in case the no-broken-data-
dependencies property verification fails. By doing so,
the software developer is able to build more secure
and reliable Web applications while being comple-
tely shielded from the underlying specification and
verification process.

9 RELATED WORK

The work presented in this paper is related to a broad
spectrum of ongoing research. We only present some key
pointers for each of the domains and, in more detail, for the
domain most related to the proposed solution, namely,
static and dynamic verification in Web application security.

Several implementation-centric security countermea-
sures for Web applications have already been proposed
[22], [23], [24], [25], [26], [27], [28], but most of them focus on
injection attacks (SQL injection, command injection, XSS,
etc.) and use tainting, pointer analysis, or data flow
analysis. Our solution targets another set of implementation
bugs, namely, bugs due to broken data dependencies on the
server-side session state, and, to do so, we rely on the static
and dynamic verification of component contracts.

Gould et al. also aim to reduce the number of runtime
errors in Web applications by applying static verification
[29]. Their solution focuses on the reduction of SQL runtime
exceptions and uses a static analysis tool to verify the
correctness of all dynamically generated query strings
within an application. Our solution is based on program
annotations and we verify interactions between compo-
nents and the nonpersistent server-side state.

We combine in our solution static and dynamic verifica-
tion to reduce the runtime enforcement overhead. The idea of
combining static and dynamic verification is not new and has,
for instance, already been adopted by Huang et al. in securing
Web applications against Web vulnerabilities caused by
insecure information flow, such as SQL injection, XSS, and
command injection [30]. Their approach uses a lattice-based
static analysis algorithm for verifying information flow based
on type systems and the type state. The sections of the code
considered vulnerable are automatically instrumented with
runtime guards. In contrast, our approach aims to reduce
runtime errors due to composition problems. In addition, our
approach is based on program annotations and the verifica-
tion of component preconditions.

In [31], Offutt et al. generate bypass tests that check if an
online Web application is vulnerable to forceful browsing or
parameter tampering attacks. The bypass tests are black-box
tests using data that circumvents client-side checks. They
define three levels of fault injection: bypass tests at the
value level, at the parameter level, and at the control flow
level. Since the fault injections are based on violations of the
client-side validations, they operate independently of the
server implementation and do not give formal guarantees
about the absence of bugs. In contrast, our verification
approach is able to guarantee the absence of errors at the

control flow level and, in future work, we would like to
investigate how well our approach is suited to counter
errors at the other two levels as well.

Firewall configuration analysis is proposed to manage
complex network infrastructures (such as networks with
multiple network firewalls and network intrusion detection
systems) [32], [33]. These approaches aim to achieve
efficiency and consistency between the different network-
layer security devices, whereas our approach focuses on the
application-layer consistency between the WAF and the
Web application.

For more than a decade, software architectures have
been used to abstract reasoning about software systems
from the source code level toward coarse-grained architec-
tural elements and their interconnections [2], [34], [35], [36].
Architectural styles abstract reoccurring patterns of compo-
nents, connectors, and behavioral interactions within
different software architectures and try to capture the
advantages or main characteristics of a particular architec-
tural style, as well as the constraints introduced by the style.
In [2], Shaw and Garlan proposed a taxonomy of different
architectural styles, including the data-centered style.

To support architecture-based reasoning, (semi)formal
modeling notations and analysis techniques are required.
Several Architecture Description Languages (ADLs) are
proposed for architectural specification and analysis.
Although these ADLs strongly vary in the abstractions
and analysis capabilities they provide, most ADLs explicitly
provide abstractions for components, connectors, and their
behavioral interactions, as well as tool support for analysis
and architecture-based development [36], [37]. However, in
most cases, a discontinuity exists between the architectural
model and the actual implementation model, making the
outcomes of architectural analysis meaningless. To counter
this, ArchJava [38] offers a unique binding between
architectural description and actual implementation, but
ArchJava does not yet provide indirect sharing verification.

Component contracts already were often proposed
before for various purposes [39], [40], [41], [42]. For
components written in Java, JML [16] is a popular formal
contract specification language. The use of JML or related
languages such as Spec# [43] for verifying component
properties is a very active research domain. For example,
Jacobs et al. [44] verify the absence of data races, and
Pavlova et al. [45] focus on the security properties of
applets. Other applications of JML are surveyed in [19].

The research presented in this paper proposes a
pragmatic solution to broken session dependencies in
Web applications. The main advantage of such pragmatism
is the potential for short-term applicability. However, of
course, research on more fundamental approaches is also
needed and can have a more substantial impact in the long
term. There is a large body of research on how to improve
programming languages for programming distributed
applications. In his keynote speech at ICSE 2005, Cardelli
discussed three important areas where improvements are
important: asynchronous concurrency, dealing with semi-
structured data, and additional security abstractions [46].
The programming language E [47] is an example of a
language that has emphasized security in its design. Other

62 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

languages focus on specific classes of Internet applications

such as distributed consensus applications [48].

10 CONCLUSION

In this paper, we have presented an approach to improve

the security and reliability of Web applications by guaran-

teeing the absence of runtime errors. In particular, we have

proposed a solution to prevent runtime errors due to

broken data dependencies on session data.
Our solution combines development-time program

annotation, static verification, and runtime checking to

provably protect against broken data dependencies in Web

applications. We designed and developed a prototype

implementation, building on the JML and the static verifier

ESC/Java2. In addition, we successfully applied our

approach to Duke’s BookStore, a representative J2EE-based

e-commerce application.
Our solution also provides a good trade-off between

usability and verification power. Because of some well-

considered developer-centric design decisions in our pro-

totype, the validation experiment showed a limited over-

head and demonstrated the applicability of the presented

approach to real-life applications. In addition, the proposed

solution is interoperable with the existing Web infrastruc-

ture and does not interfere with other Web security

solutions. Moreover, the proposed solution is able to

leverage the power of existing WAFs by providing formal

techniques to prove the absence of broken data dependen-

cies in a given WAF protocol enforcement configuration.
To the best of our knowledge, the research presented in

this paper is the first to improve Web application security

by providing an appropriate solution to the specific

problem of broken data dependencies on session data.

ACKNOWLEDGMENT

The authors would like to thank Wolfram Schulte (from

Microsoft Research), Bart Jacobs, Adriaan Moors, and Jan

Smans (from the Katholieke Universiteit Leuven) for their

useful comments and insight in some interesting discus-

sions on this research.

REFERENCES

[1] P.G. Neumann, “Keynote Speech: System and Network Trust-
worthiness in Perspective,” Proc. 13th ACM Conf. Computer and
Comm. Security, Oct.-Nov. 2006.

[2] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[3] Sun Microsystems, Inc., “Java Servlet Technology,” http://
java.sun.com/products/servlet/, 2007.

[4] V. Samar, “Unified Login with Pluggable Authentication Modules
(PAM),” Proc. Third ACM Conf. Computer and Comm. Security,
pp. 1-10, 1996.

[5] E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces Principles,
Patterns, and Practice. Addison Wesley Longman, 1999.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol—HTTP/1.1,”
IETF RFC 2616 (Category: Standards Track), http://www.ietf.
org/rfc/rfc2616.txt, June 1999.

[7] V. Raghvendra, “Session Tracking on the Web,” Internetworking,
vol. 3, no. 1, Mar. 2000.

[8] Karl Forster, Lockstep Systems, Inc., “Why Firewalls Fail to
Protect Web Sites,” http://www.lockstep.com/products/
webagain/why-firewalls-fail.pdf, 2007.

[9] I. Ristic, “Web Application Firewalls Primer,” (IN)SECURE, vol. 1,
no. 5, pp. 6-10, Jan. 2006.

[10] S. Pettit, “Anatomy of a Web Application: Security Considera-
tions,” technical report, Sanctum, Inc., July 2001.

[11] webScurity, Inc., “The Weakest Link: Mitigating Web Application
Vulnerabilities,” http://www.webscurity.com/pdfs/webapp_
vuln_wp.pdf, 2007.

[12] Web Application Security Consortium, “Web Application Firewall
Evaluation Criteria, Version 1.0,” http://www.webappsec.org/
projects/wafec/, Jan. 2006.

[13] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten, “Static
Verification of Indirect Data Sharing in Loosely-Coupled Compo-
nent Systems,” Proc. Fifth Int’l Symp. Software Composition, pp. 34-
49, 2006.

[14] E. Armstrong, J. Ball, S. Bodoff, D.B. Carson, I. Evans, D. Green, K.
Haase, and E. Jendrock, The J2EE 1.4 Tutorial. Sun Microsystems,
Inc., Dec. 2005.

[15] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten, “Dependency
Analysis of the Gatormail Webmail Application,” Report CW 427,
Dept. of Computer Science, Katholieke Universiteit Leuven,
Belgium, Sept. 2005.

[16] G.T. Leavens, “The Java Modeling Language (JML),” http://
www.jmlspecs.org/, 2007.

[17] L. Desmet, P. Verbaeten, W. Joosen, and F. Piessens, “Provable
Protection against Web Application Vulnerabilities Related to
Session Data Dependencies,” http://www.cs.kuleuven.be/
~lieven/research/TSE2007/, 2007.

[18] A.D. Raghavan and G.T. Leavens, “Desugaring JML Method
Specifications,” Technical Report 00-03e, Dept. of Computer
Science, Iowa State Univ., May 2005.

[19] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens,
K.R.M. Leino, and E. Poll, “An Overview of JML Tools and
Applications,” Int’l J. Software Tools for Technology Transfer, vol. 7,
no. 3, pp. 212-232, June 2005.

[20] KindSoftware, “The Extended Static Checker for Java Version 2
(ESC/Java2),” http://secure.ucd.ie/products/opensource/ESC
Java2/, 2007.

[21] J.R. Kiniry, A.E. Morkan, and B. Denby, “Soundness and
Completeness Warnings in ESC/Java2,” Proc. Fifth Int’l Workshop
Specification and Verification of Component-Based Systems, pp. 19-24,
2006.

[22] T. Pietraszek and C.V. Berghe, “Defending against Injection
Attacks through Context-Sensitive String Evaluation,” Proc. Eighth
Int’l Symp. Recent Advances in Intrusion Detection, pp. 124-145, 2005.

[23] V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint Propaga-
tion for Java,” Proc. 21st Ann. Computer Security Applications Conf.
pp. 303-311, 2005.

[24] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D.
Evans, “Automatically Hardening Web Applications Using Pre-
cise Tainting,” Proc. 20th IFIP Int’l Information Security Conf.,
R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, eds., pp. 295-308,
2005.

[25] W.G.J. Halfond and A. Orso, “Amnesia: Analysis and Monitoring
for Neutralizing SQL-Injection Attacks,” Proc. 20th IEEE/ACM Int’l
Conf. Automated Software Eng., pp. 174-183, 2005.

[26] W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range of
Attacks,” Proc. 15th Usenix Security Symp., p. 9, 2006.

[27] V.B. Livshits and M.S. Lam, “Finding Security Errors in Java
Programs with Static Analysis,” Proc. 14th Usenix Security Symp.,
pp. 271-286, Aug. 2005.

[28] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities,” Proc. ACM
SIGPLAN Workshop Programming Languages and Analysis for
Security, pp. 27-36, 2006.

[29] C. Gould, Z. Su, and P. Devanbu, “Static Checking of Dynamically
Generated Queries in Database Applications,” Proc. 26th Int’l Conf.
Software Eng., pp. 645-654, 2004.

[30] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,
“Securing Web Application Code by Static Analysis and Runtime
Protection,” Proc. 13th Int’l Conf. World Wide Web, pp. 40-52, 2004.

[31] J. Offutt, Y. Wu, X. Du, and H. Huang, “Bypass Testing of Web
Applications,” Proc. 15th Int’l Symp. Software Reliability Eng.,
pp. 187-197, 2004.

DESMET ET AL.: PROVABLE PROTECTION AGAINST WEB APPLICATION VULNERABILITIES RELATED TO SESSION DATA DEPENDENCIES 63

[32] T.E. Uribe and S. Cheung, “Automatic Analysis of Firewall and
Network Intrusion Detection System Configurations,” Proc. ACM
Workshop Formal Methods in Security Eng., pp. 66-74, 2004.

[33] K. Golnabi, R.K. Min, L. Khan, and E. Al-Shaer, “Analysis of
Firewall Policy Rules Using Data Mining Techniques,” Proc. 10th
IEEE/IFIP Network Operations and Management Symp., pp. 305-315,
Apr. 2006.

[34] D.E. Perry and A.L. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Software Eng. Notes, vol. 17, no. 4,
pp. 40-52, 1992.

[35] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice. Addison Wesley Longman, 1998.

[36] N. Medvidovic and R.N. Taylor, “A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages,” IEEE Trans. Software Eng., vol. 26, no. 1, pp. 70-93, Jan.
2000.

[37] P.C. Clements, “A Survey of Architecture Description Lan-
guages,” Proc. Eighth Int’l Workshop Software Specification and
Design, p. 16, 1996.

[38] J. Aldrich, “Using Types to Enforce Architectural Structure,” PhD
dissertation, Univ. of Washington, Aug. 2003.

[39] B. Meyer, “Applying ’Design by Contract’,” Computer, vol. 25,
no. 10, pp. 40-51, Oct. 1992.

[40] B. Liskov, Abstraction and Specification in Program Development. MIT
Press, 1986.

[41] Y.L. Traon, B. Baudry, and J.-M. Jezequel, “Design by Contract to
Improve Software Vigilance,” IEEE Trans. Software Eng., vol. 32,
no. 8, pp. 571-586, Aug. 2006.

[42] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison Wesley Longman, 2002.

[43] M. Barnett, K.R.M. Leino, and W. Schulte, “The Spec# Program-
ming System: An Overview,” Lecture Notes in Computer Science,
vol. 3362, pp. 49-69, Jan. 2005.

[44] B. Jacobs, K.R.M. Leino, F. Piessens, and W. Schulte, “Safe
Concurrency for Aggregate Objects with Invariants,” Proc. Third
IEEE Int’l Conf. Software Eng. and Formal Methods, pp. 137-146,
2005.

[45] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet,
“Enforcing High-Level Security Properties for Applets,” Proc.
Sixth Smart Card Research and Advanced Application IFIP Conf.,
J.-J. Quisquater, P. Paradinas, Y. Deswarte, and A.A.E. Kalam,
eds., pp. 1-16, 2004.

[46] L. Cardelli, “Transitions in Programming Models: 2,” Proc. 27th
Int’l Conf. Software Eng., p. 2, 2005.

[47] M.S. Miller, “Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control,” PhD dissertation,
Johns Hopkins Univ., May 2006.

[48] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw, “Specifying
Internet Applications with Dicons,” Proc. 16th ACM Symp. Applied
Computing, pp. 576-584, 2001.

Lieven Desmet received the PhD degree in
computer science from the Katholieke Universi-
teit Leuven, Belgium, in January 2007. He is a
postdoctoral researcher in the DistriNet Re-
search Group in the Department of Computer
Science at the Katholieke Universiteit Leuven.
His research interests include network and
software security and software engineering. In
particular, he is currently active in Web applica-
tion security and security for mobile devices. He

is a board member of the Belgian/Luxembourg OWASP Chapter.

Pierre Verbaeten received the PhD degree in
computer science from Katholieke Universiteit
Leuven (K.U. Leuven), Belgium. He is a full
professor in the Department of Computer
Science at K.U. Leuven and is currently the
head of the department. His research interests
include open system software, dynamic config-
uration and integration, and ad hoc networks. He
is a member of the ACM, the IEEE, and the
IEEE Computer Society.

Wouter Joosen received the PhD degree in
distributed and parallel systems from the Katho-
lieke Universiteit Leuven, Belgium. He is a
professor in the Department of Computer
Science at the Katholieke Universiteit Leuven.
He is also a member of the DistriNet Research
Group, which aims at developing open, distrib-
uted object support platforms for advanced
applications, with a focus on industrial applica-
tions. His research interests include distributed
and secure software.

Frank Piessens is a professor in the Depart-
ment of Computer Science at the Katholieke
Universiteit Leuven, Belgium. His research
interests are in software security, including
security in operating systems and middleware,
architectures, applications, Java, and .NET, and
software interfaces to security technologies. He
is an active participant in both fundamental
research and industrial application-driven pro-
jects, provides consulting to industry on distrib-

uted system security, and serves on program committees for various
security-related international scientific conferences.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

64 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

