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Lowner-based Blind Signal Separation of Rational
Functions with Applications

Otto Debals, Student Member, IEEE, Marc Van Barel, Member, IEEE, and Lieven De Lathauwer, Fellow, IEEE

Abstract—A new blind signal separation technique is proposed,
enabling a deterministic separation of signals into rational func-
tions. Rational functions can take on a wide range of forms, such
as the well-known pole-like shape. The approach is a possible
alternative for the well-known independent component analysis
when the theoretical sources are not independent, such as for
frequency spectra, or when only a small number of samples is
available. The technique uses a low-rank decomposition on the
tensorized version of the observed data matrix. The deterministic
tensorization with Lowner matrices is comprehensively analyzed
in this paper. Uniqueness properties are investigated, and a con-
nection with the separation into exponential polynomials is made.
Finally, the technique is illustrated for fetal electrocardiogram
extraction and with an application in the domain of fluorescence
spectroscopy, enabling the identification of chemical analytes
using only a single excitation-emission matrix.

Index Terms—Blind signal separation, Lowner matrix, tensors,
block term decomposition, rational functions, independent com-
ponent analysis

I. INTRODUCTION

This paper deals with the separation of linear mixtures
of different source signals, known as blind signal separation
(BSS). The general solution to this problem is not unique and
various approaches have been proposed, ranging from apply-
ing independence assumptions to non-negativity and sparsity
constraints [ 1]. The former has received the name independent
component analysis (ICA) in which one assumes the sources
to be statistically independent [2], [3]]. ICA has already been
applied in numerous applications in for example image pro-
cessing, finance, telecommunications and biomedical sciences
[3]-[6]. It is a stochastic technique, tensorizing the observed
matrix data using higher-order statistics [7]. Many applications
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do not involve stochastic and independent signals however, and
one can also tensorize the data deterministically. In a source-
related deterministic setting, as in this paper, the separation of
the observed signals is based on a specific source model.

A first possible source model could be the class of poly-
nomials, as they have a simple form and well-understood
properties. However, polynomial signal models often require
a large number of coefficients. Second and more essential,
polynomial models generally do not allow a unique separation,
as will be illustrated in this paper. With the family of ex-
ponential polynomials (sums and/or products of exponentials,
sinusoids and/or polynomials), a source model is proposed in
[8] which is applicable for blind signal separation by using a
deterministic Hankel tensorization.

This paper proposes the class of rational functions, con-
tributing to a general framework of deterministic blind signal
separation. They encompass the class of polynomials, and
are able to model complicated structures with a fairly low
degree in both the numerator and denominator; much like
autoregressive—moving-average models are more powerful in
the field of system identification than pure moving-average
models [9]. Rational functions are mainly known because of
their pole-like behavior (suitable when modeling frequency
spectra, time-of-flight data, distribution functions, etc.) but can
take on an extremely wide range of shapes in the complex
domain; also smooth curves and signals with both low- and
high-varying regions can be modeled. Furthermore, by consid-
ering uniqueness properties, we show in this paper that rational
functions are suitable in a BSS context. It is also illustrated that
the sampling points need not be equidistant for the proposed
technique, contrary to the Hankel technique from [S]].

Another basis for BSS is sparse separation in which one uses
a fixed signal dictionary with the weights optimized according
to some sparse objectives [[10]-[12]. The proposed technique
in this paper goes a step further as there is no need for an
initial signal dictionary: the dictionary itself is estimated too.

The assumption of rationality is implemented using the the-
ory and properties of the Lowner matrix. This kind of matrix is
well-known in the domain of system identification regarding
rational interpolation [13]-[15], but is not acknowledged in
other application domains; its definition is given in Section
The observed data matrix is tensorized using Lowner matrices,
and the obtained tensor is analyzed using a block term tensor
decomposition [16]-[19]. Block component analysis (BCA)
describes the use of block term decompositions to identify
underlying components [20].

It is shown in this paper that the solution with the assump-
tion of rational sources is unique under mild conditions. This
is important as it explains that the assumption is powerful
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and natural, while in the case of non-negative constraints, for
example, additional sparsity constraints need to be imposed
to recover a unique solution [1]]. Furthermore, techniques
have been developed for ICA to recover more source signals
than there are observed signals, i.e., for underdetermined
mixtures [21]], [22]]. Because of the strong uniqueness results,
this is readily extended in the separation method described.
Simulations are presented in the final section of this paper.

The technique was briefly described in [23]. We present
the method with two illustrations using real-life datasets. The
first illustration is antepartum fetal heart rate monitoring with
the separation of mother and fetal electrocardiogram signals
from multilead cutaneous potential recordings. An excellent
separation is obtained, even for short sequences with coincid-
ing heart beats. The second illustration covers the detection of
chemical components in mixtures, using emission-excitation
data from fluorescence spectroscopy. With the technique, only
a single sample is sufficient to determine the concentrations
and frequency spectra of the different chemical components.

We start by fixing the notation and discussing some basic
definitions and decompositions in the field of multilinear
algebra. In Section the problem statement is examined
and the Lowner-based technique is introduced. Section
contains a more advanced analysis. Uniqueness properties are
considered in Section [Vl A connection to the method from
[8] is investigated in Section and numerical experiments
are performed in Section

A. Notation and basic operations

Vectors (denoted by a bold, lowercase letter, e.g., a) and
matrices (denoted by a bold, uppercase letter, e.g., A) can
be generalized to higher orders, obtaining tensors. A general
Nth order tensor of size Iy X Iy x --- x Iy is denoted
by a calligraphic letter as A € KI1>2X*IN (with K we
mean R or C). A is a multidimensional array with numerical
values a;,iy...ixy = A(i1,12,...,in). The mode-n vectors of
A are constructed by fixing all but one index, e.g., a =
A(il, ey Z‘nfl, o in+1, ey ZN)

A number of products can be defined in the domain of
tensors. The mode-n tensor—matrix product between a tensor
A € Klvxl2xxIN and a matrix B € K7*!» is defined as

I,
(A ‘n B)i1~~i",1j’in+1“~i1\/ = : in=1 aili2“'iijin'

The outer product of two tensors A € KI1xf2>XxIn and
B e KJ1xJ2xxJu ig given as

(Ae B)

iniainijain = GiriaeinOjrjacin -

The matrices A" and A denote the transpose and Moore-

Penrose pseudo-inverse of A, respectively. The Frobenius

norm of a tensor is defined as the root of the sum of the squares
. I I 2\1/2

of the elements: || Al = (3 ;/_; -+ > iV @iy iy|?) /2,

11=1

B. Rank definitions and basic tensor decompositions

The column (row) rank of a matrix A is the maximum
number of linearly independent columns (rows) of A. Note

Je

T = |A; 4+ -+ A

Jen

Fig. 1. Decomposition of a tensor 7 in rank-(L,, Ly, 1) terms.

that the column rank is equal to the row rank for a matrix. We
make a distinction between the rank and the multilinear rank.

First, a tensor 7 has rank 1 if it can be written as the outer
product of some nonzero vectors: 7 = aWga@e . .. gal™).
If one writes a tensor 7 as a linear combination of R rank-1
tensors, one obtains a Polyadic Decomposition (PD):

7=%" alea?e...0al 2 [a®, A%, A,
r—1 T T T ) ) )

If this R is minimal, the rank of 7 is defined as R, denoted
by (7). The decomposition then becomes canonical (CPD).

Second, the mode-n rank of a tensor 7 is the dimension
of the subspace spanned by its mode-n vectors. It is equal to
the rank of the matrix constructed by stacking all the mode-n
vectors one after the other. If the mode-1 rank, mode-2 rank
and mode-3 rank of a third-order tensor are equal to L, M and
N, respectively, it is said to have trilinear rank (L, M, N). This
becomes the multilinear rank when generalized to arbitrary
order, obtaining the N-tuple (R1, Ra, ..., Rx). Connected to
this multilinear rank is the Tucker Decomposition:

T=G AL L A® . . A 2 [[g;A‘U,A(Q),... ,A<N)]]
with G € KF1xR2x.. xRN being a (typically small) core ten-
sor. Related are the multilinear singular value decomposition
and the low multilinear rank approximation; for details we
refer to [24]-[27].

In this paper we make use of the block term decomposition
(BTD), which starts from the idea of linearly combining ten-
sors of low multilinear rank [16]], [17]. For third-order tensors,
one obtains the BTD in R rank-(L,, M,, N,.) terms. A special
instance is the decomposition of a tensor 7 € KI1xI2xIs
in rank-(L,, L,, 1) terms (with M, = L, and N, = 1, for
1<r<R):

R
T=) _ Eoec, M

with the matrix E, € K1 x> having rank L, and vector ¢, €
K’s being nonzero. Each matrix E, can be factorized to give

R
T = ZT:I(ATBI) ®Cy, 2)

with A, € KI'xIr B e K2%Lr Tt is visualized in Figure

II. LOWNER-BASED BLIND SIGNAL SEPARATION

In this section, the technique for BSS with Lowner matrices
is discussed and the use of the previously defined BTD in
rank-(L,, L,, 1) terms is explained. Section discusses the
model setup and Section introduces Lowner matrices.
Section explains the tensorization technique. Finally, two
different ways to recover the original sources are discussed.
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Fig. 2. The observed data matrix is tensorized to stacked Lowner matrices, which are decomposed with a Block Term Decomposition in rank-(L.., Ly, 1)

terms. The mixing vectors my, ...

, mp appear as factor vectors in the third mode, and the Lowner matrices of the sources appear in the first and second

mode. The factor matrices have an interesting structure, explained in Section [ITI}

A. The Blind Signal Separation problem

Assume we have R source signals being linearly mixed into
K observed signals. For each signal N samples are available.
We consider the following data model in BSS:

X = MS + N,

with X € KEXN containing the observed data, S € KF*V
the R unknown source signals, M € KX*% the unknown
mixing matrix and N € KX*¥ representing additive noise.
The general goal in BSS is to recover the unknown sources
in S and the unknown mixing vectors in MM, given only the
observed data X. We investigate the behavior related to added
Gaussian noise in the experiments of Section but omit N
in the next analyses for convenience.

Broadly speaking, we will map each observed signal (each
row in X) to a Lowner matrix. By stacking these Lowner
matrices, one obtains a tensor which is of low multilinear rank
because of the working hypothesis, i.e., the source signals
can be modeled by rational functions of low degrees. This
hypothesis is satisfied in many applications. By decomposing
the tensorized data, one can immediately identify the mixing
vectors. The reconstruction of the sources follows. Figure 2]
gives a comprehensive overview of the technique.

B. Lowner matrices

We first define the Lowner matrix for a function sampled
in a point set T' consisting of N distinct points:

Definition 1. Given a function f(t) sampled on points T =
{t1,t2,...,tn}. We partition the point set T into two distinct
point sets X = {x1,22,...,21} and Y = {y1,y2,...,9s}
with [ +J = N, and define the elements of the Lowner matrix
L e K™% as
_ fi) = f(ys)
Li,j =
Ti —Yj
We thus obtain the following matrix:
fl)—fy)  f@1)=f(y2)
T1—Y1 T1—Y2
flx2)—f(y1)  fl@2)—f(y2)

T2—Y1 T2—Y2

Vi, j.

flz)—f(ys)

T1—YJ
flz2)—fys)
To—ys

@ —f ()

Tr—yYJ

Fa—f)  fn—f ()

Tr—y1 Tr—Y2

In the literature, a parameter « is often used with I = « and
J = N —a. Matrix L is square when N is even and o = N/2.
Unless denoted otherwise, we assume [ = a = [N/2].

A Lowner matrix can also be constructed for point sets with
coinciding sample points, for which we refer to other literature
[28]], [29]. Notice that the Lowner matrix corresponding to a
constant function becomes the zero matrix.

The Lowner matrix has interesting properties in connection
to rational functions. Let the degree of an irreducible rational
function be defined as the maximum of the degrees of the
polynomial in its numerator and the polynomial in its denom-
inator. The following has been proven in [13]], [30], [31]:

Theorem 1. Given a Lowner matrix L of size I x J con-
structed from a function f(t) sampled in a point set T =
{t1,...,tn} with N = I+ J. If f(¢) is a rational function of
degree 0 and if I,J >0, then L has rank §:

rank(L) = § = deg(f).

This theorem is easy to verify for simple rational functions
of low degree. For example, f(t) = 75 gives Lij = —c-
P yjl_p. The corresponding matrix L is of rank 1, as it
can be written as an outer product of two vectors. The next
section gives an insight into the structure of the Lowner matrix
for a more general rational function.

Note that Theorem [1]is valid for any point set partitioning:
two straightforward partitionings are the interleaved partition-
ing with X = {¢1,t3,...} and Y = {to,t4,...} and the block
partitioning with X = {¢t1,...,t;} and Y = {t741,...,tn}.

C. Tensorization and block term decomposition

Consider again the BSS model with X = MS. Let us map
each row of X to a Léwner matrix of size I x J, and stack these
matrices in the third dimension obtaining a tensor Lx of size
I x J x K. We call this transformation the Lownerization of
matrix X. As the BSS transformation is linear, we can write:

R
Lx=7),  Lsem, (3)

with Lg. the Lowner matrix and m, the mixing vector of
source r. If source s,., i.e., each rth row of S, can be modeled
as a rational function of some (low) degree d.., the matrix Lg,
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will have a (low) rank 4, provided there are enough samples
for I,J > max, d,. The matrix Lg  admits a factorization
with some A, € KI*% and B, € K/*or;

R
Lx = Zr:l (A,B) @ m,, (4)

which is precisely the decomposition in rank-(L,., L,., 1) terms
from equation @) with 6, = L,. In Section [l we look into
the factorization of Ly, = A, Bl = Z, G, Z
the uniqueness properties are investigated regarding the use of
a BTD in rank-(L,., L,, 1) terms.

D. Recovery of the mixing matrix and the sources

The columns of the mixing matrix appear as the factor vec-
tors in the third mode of the decomposition. The source signals
can be reconstructed in two main ways. First, the estimated
matrix M can be inverted to calculate S = MTX. This is the
most straightforward method, and the default method for ICA.
However, it is not applicable for underdetermined mixtures
(with fewer observed signals than sources) or when the mixing
matrix does not have full column rank. The columns of S are
then determined up to arbitrary vectors in the null space of
M, as in underdetermined ICA [21], [22].

A more general but more cumbersome technique is to
recover the sources from the separated Lowner matrices in
and (@). Each recovered matrix E, = A,B] contains
information about the corresponding source in a finite dif-
ference format. A linear system can be constructed to recover
the source signal from their corresponding Lowner matrices:

2
S, = arg min — HFST — vec(L )H for 1 <r <R,
sr

with the matrix F being the reshaped matrix version of the
following tensor F with size I x J x N:

Vimja n: fi,j,n = wz:UJ if n= 9(]),
0 elsewhere,

withgp:i—={ne{l,...,.N}:t,=2;}and 0:j = {n €
{1,...,N} : t, = y,;}. F is constructed by vectorizing the
third-order slices of F and stacking them as columns. With the
point set T = {x1,y1,22,y2} for example, we have ¢(1) =

1, ¢(2) = 3, 6(1) = 2 and #(2) = 4, and one obtains the
following linear system:
= 1 —1
(L )11 (z1=y1)  (@1—y1) (1) 0 sr(w1)
(L )2.1 = ? (z2—y1)  (z2—v1) 01 sr(y1)
(L )1.2 T1—y2 0 0 = sr(z2)
(L1)2.2 0 0 1 =1 | [sr(y2)
r2—Y2 2 —Y2

Let now p,- be the DC component of the rth source. Observe
that the vector [uy, ..., us]" € KV is an element of the null
space of the matrix F. The vector p = [uy,...,ug|" € KB
can be found solving an additional linear system:

p = argmin — HX M(S—i—p,e )H (MTX S)
I
with e = [1,...,1]' € RY. The vector p is determined

up to a vector in the null space of M, generating fewer
indeterminacies than the first method.

In Section

III. FACTORIZATION OF LOWNER MATRICES

There is well-known theory about the factorization of Han-
kel matrices with the Vandermonde decomposition [J8], (32],
[33]]. Each Hankel matrix H € C/*7 can be written as VGV
with Vandermonde matrices V. € C/*# and V e C/*H,
and a block-diagonal matrix G € C#*H  The rank H of H
is the degree of the underlying exponential polynomial. For
Lowner matrices, a general factorization has been developed
in [28]], [34]. We present the factorization in a way that
facilitates the use in signal processing for modeling signals
by rational functions of low degree. The factorization relies
on partial fractions and Cauchy matrices. A Cauchy matrix
Cuv € K> based on two vectors u € K/, v € K’ with
Vi, j : u; # vj consists of elements ¢; ; = 1/ (u; — vj).

We assume a rational source s(t) with the following partial
fraction decomposition:

F Dy

04y ®

f=1d=1 t_pf

meaning that s(¢) has F' complex poles ps which can have
a multiplicity Dy higher than one. Equation (3)) is general in
the sense that it covers all rational functions. The first term
in () denotes a polynomial of degree W. We define
L WJr Zf 1 Dy. As a working assumption, W is zero for
most sources; Section [[V] considers the uniqueness conditions.
In each of the three following subsections we illustrate the
factorization of the Lowner matrices corresponding to (3)) in
a constructive way, first discussing the case of non-coinciding
poles and afterwards discussing coinciding poles, i.e., poles
with a multiplicity higher than one. In a third subsection
polynomials are discussed. Subsection concludes the
section by applying the results to blind signal separation.

A. Case of rational functions with non-coinciding poles

Consider a rational function with W = 0 and with F' poles
py with multiplicities Dy = 1 for 1 < f < F (thus L = F)),
collected in a vector p and with corresponding coefficients c;:

F

s(t):a—i—z o

=il

If sampled in a point set 7" with /V distinct points and partitions
X and Y, the corresponding Lowner matrix is given by:

F F
cf cf
Li;= - Ti —Yj),
’ (Zmi—pf ZZUj‘Pf) / 5)

f=1 f=1
F 1 1 L.
= Z —cy - . Vi, j.
f=1 Ti —Pf Yj —Pf
Hence, the matrix L can be factorized as
L =Z -diag(—cy,...,—cp) - Z",
with
1 1 1 1
T1—P1 T1—PF _ Y1—P1 Y1—PF
7 — . . 7= : .
1 1 1 1
T1—P1 Tr—PF YJ—P1 YJ—PF
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One can see that Z = C, , and Z = Cy .

The assumption of non-coinciding poles with its factor-
izaton of the Lowner matrix suffices in many cases. We
present the general case with coinciding poles in the following
subsection for the sake of completeness.

B. General case of rational functions with coinciding poles

We ﬁrst study the Lowner matrix of the term corresponding
to Z do1 (tcfp d)d in @), i.e., for a pole py with multiplicity
Dy > 1. The matrix is given by

Dy Dy
Cf.d Cf.d
Lij = - (@~ ),
! dz::l (i — ps)e ; (y; — ps)° !
—pp)? = (i —py)* -
= d ) VZ,].
Z 14 T 35— )5 — 17
Because (z; —y;) = ((z; — ps) — (y; — ps)), one can derive
Dy 1
L = —C¥f ,d .

The result yields the factorization L = Zy p, Gy p fZ .D;
with Z¢ p ; and Z £.D; being Vandermonde matrices:

r 1 .. 1

T1—Pf (z1-pp)"F
Zsp; = : : g
1 T S
LTI—Pf (II*Pf)Df
r—1 . 1
y1—pf (y1 *Pf)Df
Zipy = : . :
1 P S
LYs—Pf (ws—pp) "t

These matrices are variants of the confluent Cauchy matrices
from [34]]. We also have

—Cf1 —Cf2 —Cf3 —Cf,0;

—Cf2 —Cf3 —Cpa 0
Gyp, = | 3 ~Ca —¢5 0

—Cf,D;y 0 0 . 0

C. Case of polynomials

Let s(t) be a polynomial of degree W, ie., s(t) =
Zg;l awt” = awtWV + ... 4+ a1t + ag, with a,, € K,
1 < w < W. The Lowner matrix corresponding to a point
set T" with partitions X and Y is given by:

e (ot Eror)

w=1

vwvl
—§QU,§I )

Vi, j.

The matrix adrgits to a factorization L = ZWGWZ{,V with
Zy € KIXW, Zy € K*W:

1 27 - a:‘fv_l 1 yp - yYV_l
Zw=| o L Zw=|i o | ©
1 27 - x}’V—l 1 yy - yy—l
and with
ap az aw
as as 0 WX W
Gy = e KW *W,
aw 0 0

D. Summary and implication for blind source separation

Regarding the complete rational signal s(¢) from (3), its
associated Lowner matrix L admits to a general decomposition

L=7GZ" (7
in which Z = [ZW VA o Z27D2 ZF,DF] S KIxL
and Z = [Zw Zip, Zop, Zrp,| € K% with

L=W+ Zle Dy. The matrix G € KEL*F is a block-
diagonal matrix with Hankel and upper antitriangular matrices
Gy and Gf,Df for 1 < f < F on its diagonal.

Instead of a single signal, suppose we have R different
sources s, (t). From this point on, we use the subscript
r to denote the specific source. Each Lowner matrix L.,
constructed with the same point set partitions admits to a
decomposition of the form (7).

Let us assume that I,J > max(Lq,...,Lg). First, the
matrices Z, and Z, clearly have full rank for distinct points.
Second, G, is nonsingular since its diagonal blocks are
nonsingular. Each Lowner matrix L, is then of rank L, and
the rth term in (@) is rank-(L,, L,, 1) for 1 <r < R. Hence,
eq. (@) is a decomposition of Lx in rank-(L,, L,,1) terms.
Furthermore, the matrix multiplication A, B} in can be
written as ZTGTZI with the previously explained structure.

The next section will explain whether (and when) this
decomposition in rank-(L,, L., 1) terms is unique.

IV. UNIQUENESS

The analysis in this section is the Lowner counterpart of the
Hankel case [8]]. We first recall [[16, Theorem 4.1] regarding
the uniqueness of a BTD in rank-(L,., L., 1) terms:

Theorem 2. Consider a decomposition of T € K/*/*K iy
rank-(Ly, Ly, 1) terms as in (T) and @), with 1,.J > S5 | L,
IfA = [Al A2 AR] and B = [Bl B2 BR]
have full column rank and C = [cl c R] does not have
proportional columns, then the decomposition is essentially
unique.

We call the decomposition ‘essentially unique’ when one
can only permute the rth and r'th terms in (I) when L, =
L, and when one can only scale E, provided that c, is
counterscaled. In [8] the theorem is generalized into the
following theorem for the block term decomposition, including
a necessary condition:
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Theorem 3. Consider a decomposition of T € KIXIxK iy

rank (L, L,,1) terms as in and (). Define W(w) =

ZT 1 wrE,. Assume the followzng conditions to be satisfied:

(C1) For every w that has at least two nonzero entries, we
have that rank(E(w)) > max;|,, -o(Lr).

(C2) The columns of C are linearly independent.

The decomposition is then essentially unique. On the other

hand, if condition (C1) is not satisfied, then the decomposition

is not essentially unique.

We now apply Theorem [2]to BSS for rational sources with
coinciding poles and polynomial terms:

Theorem 4. Consider a matrix M € KX*E that does not
have proportional columns, and a matrix S € KEXN in which
every row has a structure as in (3). Assume that L%J >
Zle L,. If all the poles p, y, are distinct for 1 < f, <
F.,1<r<Rin (EI) and if at most one source contains a
polynomial term (at most one W,. # 0), then the decomposition
X = MS is essentially unique.

Proof. The constraint [~ | > Zil L, allows us to map

the rows of X to Lowner matrices with sizes I x J and with
I,J > 25:1 L,. With distinct poles in (@), the matrices
Z = [Zrzl Zrzg e Zr:R] . diag(Ger, ey G’I’:R)
and Z = [Z,— Z,— Z,_g] have full column
rank. This is assuming that at most one W, # 0, ie., at
most one Zy, and Zy, from (6) is included in Z and Z,
respectively. Indeed, Z, and Zy,, from (6) have mutually
linear dependent columns for r # ' (likewise for ZWT). The
uniqueness result then follows from Theorem [2] O

The proof shows that it is not possible to separate polyno-
mials, as pointed out in [§]] too. A polynomial from a single
source can be identified though.

It is also important to remark that if the sources have
distinct poles, uniqueness of the factorization X = MS is
guaranteed when enough samples are available. Even so, only
2 x ZT 1 L, samples are needed, with L, mostly small.

Furthermore, uniqueness results can be obtained if the
sources share common poles too [8]. Part gives an
example with the second fetal electrocardiogram experiment.
A sufficient property can be found in [35, condition (5.18)].

Other general and useful results are presented in [36],
while the procedure from [37] can be used to deduce generic
uniqueness conditions.

V. CONNECTION WITH HANKEL-BASED TENSORIZATION
AND VANDERMONDE DECOMPOSITION

In subsection we give a connection between Lowner
and Hankel matrices, with the latter being used in blind signal
separation of exponential polynomials [8]]. A discussion about
the choice of sampling points is given in a second subsection,
illustrating that an equidistant sampling is not needed for
Léwner-based BSS.

A. Transformation between Lowner and Hankel

A strong connection between Lowner and Hankel matrices
was given in [28]] and afterwards generalized in [29]] and used
in [34]. We repeat the theorem in a customized way:

Theorem 5. For fixed point sets X and Y with distinct points,
the mapping F : H — L = WxHW_ is an isomorphism
(i.e. there is a one-to-one relationship) between the class of
all T x J Hankel matrices and the class of I x J Léwner
matrices corresponding to X and Y, with

1 dlag(z
Wy = 222G ) =TT - )
I dz —0 ,
z i#k
1d%
(W)= 2EE 1y ) T ).
Inodzt |, iri

The matrices W and Wy, depend only on the point sets X
and Y and not on the actual signals. As the matrices W and
W, are of full column rank in the generic case, an important
consequence of the isomorphism is that rank(L) = rank(H).
The relationship enables, for example, the transposition of
uniqueness results between the different techniques.

The condition number of Wx and Wy depends heavily on
the point set however. For equidistant samples on the real axis,
the matrices are highly ill-conditioned, so that the explicit use
of the transformation can pose numerical difficulties.

B. Choice of sampling points

The results obtained in the previous sections (such as
Theorem [ or the factorizations in Section are independent
of the sample points used. Any sampling in the complex
domain can be used.

For the Hankel case, one needs measurements sampled in an
equidistant way; otherwise the Vandermonde decomposition is
not applicable. This is a fundamental difference with respect to
the Lowner case for which any collection of sampling points
can be used: Chebyshev nodes, logarithmic distribution,
The arbitrary choice of sampling points enables the use
of compressed sensing techniques. One can, for example,
randomly sample the observed signals at a number of time
instances, useful in the case of high-cost measurement settings.

VI. EXPERIMENTS AND APPLICATIONS

In the first subsection an example of a separation is
given with one source containing a polynomial term. We also
investigate the behavior for a low number of samples and with
respect to the presence of noise. Subsection [VI-B| presents the
separation for an underdetermined mixture with more source
signals than observed signals. A third subsection[VI-C|explains
the illustration of fluorescence spectroscopy. We conclude with
a description of the use of Lowner-based tensorization for fetal
electrocardiogram extraction in subsection

To present the recovered sources and to determine the rela-
tive error, we use an optimal scaling and permutation step (the
default indeterminacies in BSS) with respect to the theoretical
sources. The relative error is then defined as the relative dif-
ference in Frobenius norm, e.g., if S are the recovered sources
after this step, we have a relative error eg = ||S — S||/||S]|.
Second, the signal-to-noise ratio (SNR) is defined as the
power of the signal to the power of the noise, with the noise
being Gaussian additive noise (unless stated otherwise). To
calculate a BTD in rank-(L,., L,., 1) terms, various approaches
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Fig. 3. Results for the first experiment of section[VI-A] Left: the two original
sources. Middle: the observed signals. Right: the perfectly recovered sources.

similar to CPD algorithms exist such as alternating least
squares, unconstrained nonlinear optimization, or non-linear
least squares [17]], [38], [39]. We employ the latter by using
Tensorlab [40]. A generalized eigenvalue decomposition is
used for the initialization [[16]. In all experiments only a few
iterations are needed to reach convergence. For information
about complexity we refer to [38], [39]. By default, the sam-
pling points are chosen equidistantly on the real axis in [0, 1].
To construct the Lowner matrix, we use square matrices and
partition the point set 7" in two interleaved partitions X and Y.
An extensive analysis did not give a clear answer on which
partitioning method is preferred; both methods described in
section [[I-B] give a similar performance. The sources are by
default recovered by using the inverted mixing matrix, except
for the underdetermined case in subsection [VI-Bl

A. General experiment
We start with the separation of the two following sources:
s1(t) = ((t = 0.2)? +0.05%) " + ((t — 0.8)% +0.05%) " +¢2,

s2(t) = ((t — 0.4)* +0.08%) ' + (¢t — 0.6)* +0.08%) .

The first source of degree 6 has two conjugated pole pairs
0.2+ 0.055 and 0.8 £ 0.057, and also includes a polynomial
term of degree 2. The second source has two conjugated pole
pairs 0.4 +0.08;5 and 0.6 £ 0.087 and has degree 4. The two
sources are divided by a factor 100 and 50, respectively, to
obtain suitable magnitudes. Figure [3] shows the signals. A
mixture with M = [0.5, 0.3; 0.5, 0.7] is used, and L; = 6
and Lo = 4. In a first case, we take 100 equidistant samples
in [0,1]. The recovered sources for the noiseless case are
presented in Figure [3] and the results for the noisy case are
shown in Figure ] on the left. A second case, presented in
function of SNR in Figure @ on the right, only uses 20 samples.

Figure [5] shows the results for an experiment in which the
number of source signals is varied, given ten observed signals.
The ith source is given by s;(t) = ((t — r;)? + ¢?) !, with 7,
equidistantly spaced in [0, 1]. Two cases are considered: ¢ =
0.01 (mildly overlapping) and ¢ = 0.1 (highly overlapping).
An SNR of 25 is used. M is taken column-wise orthonormal.

B. Underdetermined system

We examine the identification of more sources than there
are observed signals available. Consider the following three
source signals:

s1(t) = ((t = 0.1)2+0.05%) " (pole pair 0.1 + 0.055)
so(t) = ((t—0.5)* +0.20°) ™" (pole pair 0.5 + 0.205)
s3(t) = ((t—0.7)> +0.15>) "' (pole pair 0.7 + 0.155)

10° === 10° g
107t E 1107tk £

w B e B 7
107% ¢ 5 1077
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Fig. 4. Recovery results for 100 and 20 samples when Gaussian noise is
added, in function of SNR. The median relative errors across 100 experiments
are shown, for the mixing matrix ( ), and for the recovered sources for the
two different recovery methods of II-D: by using the inverted mixing matrix

(- - - ) and by using the Lowner matrices (----- ).
10° ¢ ————
g 10*1% ///,/////” é
o
N
Fig. 5. Recovery results for a varying number of mildly ( ) and

highly (- - -) overlapping source signals. Median relative errors across 100
experiments are shown.

sampled in ¢ € [0,1] with N = 100 equidistant points. The
signals are mixed into two observed signals using the mixing
matrix M = [-0.5, 0.5, 1; 0.9 0.9 — 0.2]. We use L; =
Lo = L3 = 2. A perfect reconstruction of the three sources is
obtained, as Figure [§] illustrates.

In Figure [7] we include results for varying SNR and different
values of (L1, Lo, L3). Note that several choices of the degrees
lead to good results. This shows that the choice of the (mul-
tilinear) rank(s) is not very critical [8]], [20]. A trial-and-error
method can be used to deduct L,., knowing%hat the multilinear
rank of Lx is bounded by (Zf‘:l L., L, R).

C. Fluorescence spectroscopy

Source separation, also known as curve resolution, is a
valuable technique used in fluorescence spectroscopy. It en-
ables the estimation of relative concentrations and pure analyte
spectra from fluorescence measurements of chemical analytes
in mixtures. Consider a sufficiently diluted chemical solution
containing different amounts of R chemical components. By
exciting the mixture at K different excitation wavelengths and

0.5 ! 0.5 :
0.6 v 05 0.6 L
0.4 N 0 0.4 .
021 . 8 021 /. 8
QL —0.5 ! Qe L
0 05 1 0 05 1 0 05 1

Fig. 6. Results for the underdetermined experiment. Left: the three original
sources. Middle: the two observed mixed signals. Right: the three recovered
sources after optimal scaling and permutation. A perfect recovery has been
obtained of more sources than observed signals.
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SNR

SNR

Fig. 7. Results for the underdetermined mixture, in function of SNR and for
varying ranks with (L1, L2, L3) being (2,1,1) (—e—); (2,2,2) (——); (3,2,2)
( ); (4,3,2) (—+—) and (4,4,4) (—=—). The sources are determined up to
a constant, cf. subsection II-D. Median relative errors across 100 experiments
are shown.

measuring the spectrum of the emitted light at N different
emission wavelenghts, one obtains an intensity matrix called
X € REXN_ Through the Beer-Lambert law [41], the spectra
of the mixture are linearly dependent on the spectra of the
underlying chemical components and on their concentrations,
and one can show that X = AXB = MS with A € RE*E
containing the excitation spectra of the R underlying chemical
components in the columns, B € R¥*Y containing the emis-
sion spectra of the components in the rows, and 3 € R* £
a diagonal matrix with the concentrations. When interpreted
in terms of source signals in S with a mixture matrix M,
the matrix 3 can be included both in S or M. We allocate
the emission spectra (rather than the excitation spectra) to
the source signals. As the different spectra of the underlying
components are unknown, this is a standard BSS problem.

Typical techniques using multilinear algebra resort to the
use of multiple mixtures: the different excitation-emission
matrices (EEM) are stacked, and a solution is obtained with
a CPD [42]-[44]. Our technique only requires a single EEM,
reducing the measurement cost and enabling analysis when
only a single EEM is available. This is done with the under-
standing that the emission spectra can be well approximated
by rational functions. It is also a possible alternative to time-
dependent spectroscopy techniques.

The dataseﬂ used in this paper contains the components
phenylalanine, tyrosine and tryptophan [42], [45]], [46]. The
measurements are done with excitation wavelengths in 260-
300 nm and emission wavelengths in 250-450 nm, both with
steps of 1 nm. We mix the analytes with concentrations of
0.5, 0.2 and 0.3, respectively. In Figure [§] the pure emission
and excitation spectra of the components are visualized; the
emission spectra have been Lownerized and approximated by
rational functions of a significantly low degree. The technique
is used to separate the observations in three components with
L, = 2 for r = 1,2,3. The results are given in Figure [§]
and one can see that the components are separated very well
given that only a single mixture has been used. A relative
error on the emission (excitation) spectra of 0.1094 (0.096)
has been obtained. For comparison, ICA yields a relative error
of 0.640 (0.305), 0.818 (0.491) and 0.606 (0.682) for FastICA,
RobustICA and JADE, respectively.

A final remarkable thing to mention is that in theory, we

! Available from http://www.models.kvl.dk/Amino_Acid_fluo
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Fig. 8. Results for the fluorescence experiment. On the left the emission
spectra are shown (being approximated with rational functions of degree 2)
and on the right the excitation spectra are shown. The real signals are given
by solid lines ( ) and the reconstructed signals by dashed lines (- - -).
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Fig. 9. Results for the fluorescence experiment of the relative error on the
mixing matrix (—e—) and the recovered sources (—e—) in function of the
number of excitations used.

do not need fluorescence measurements across 50 different
excitation wavelengths. The more observations in practice
however, the more accurate the separation will be. Figure 0]
illustrates the findings if less than 50 excitation wavelengths
are used. The extracted rows from the observed data matrix
are selected as equidistant as possible.

D. Fetal electrocardiogram extraction

In this application, the proposed technique is used for
the extraction of antepartum fetal electrocardiogram (fetal
ECG or FECG) from multilead cutaneous potential recordings.
While examining ECG recordings measured on the pregnant
woman’s skin (cutaneous), one tries to eliminate the dominant
heartbeat of the mother. Seeing the problem as a blind signal
separation problem, one can resort to the use of ICA [47]. ICA
falls short however when only few samples or heartbeats are
available. Second, for coinciding beats, the basic independence
assumption of ICA is not valid.

It seems that ECG beats (with their easily recognizable
QRS complexes) can be well modeled by rational functions

01 [~ T T T T ]
B e e B ey
—0.11E ! B
0.1F ‘ 7
Y Y Y
_01 C | | | | |
01 [~ I I I I ]

—-0.1
01T T T T T =

—-0.1
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| S e AR A
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Fig. 10. Visualization of the 5 abdominal ECG recordings used in the first
FECG experiment.
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Fig. 11. The separation of the ECG recordings into three recovered source
signals for the first FECG experiment. One clearly notices the separation of the
fetal heart beats (above) and the heart beats of the mother (below). Typically,
the fetal heart rate is significantly higher than the mother’s heart rate.

[48]-[50]. The Lowner technique needs no preprocessing, as
opposed to the technique in, e.g., [51]. We carry out two
experiments with real-life datasets to illustrate the technique.

The first dataset consists of 8 measurement signals (of which
5 abdominal and 3 thoracic signals), available at DaISyE| 471,
[52]. For the sake of simplicity, only the 5 abdominal signals
and only the first 500 samples are used, with the observations
shown in Figure [I0] Each signal has been scaled to unit
norm. For recovery, a separation into two source signals is
not enough and at least three source signals are needed; this
is also the case when applying ICA [47]. For the BTD, a rank
of 20 for each source signal has been used. The three recovered
sources are visualized in Figure [TT] with a clear separation of
the two different ECG sources.

The second dataset contains a limited number of heartbeats
with the beats of the mother and fetus coinciding. A mixing
matrix M = [1 1;1 —0.8] is used to mix the signals. Figure[12]
visualizes the signals and the recovered sources. When using
the proposed technique with again a rank 20 for each source
signal, an excellent recovery is obtained with a relative source
error of 0.013. To compare, ICA recovers the signals up to a
relative error of 0.126, 0.125 and 0.29 for FastICA, RobustICA
and JADE, respectively.

VII. CONCLUSION

A novel technique for blind signal separation has been
proposed for signals that can be modeled as rational functions.
The tensor-based technique makes use of a deterministic
tensorization with Lowner matrices and the obtained tensor
is decomposed with a block term decomposition. In the paper,
the factorization of the Lowner matrices has been analyzed,
together with the uniqueness conditions. The proposed method
can be applied to any collection of sampling points and
not only for equidistant points, as has been discussed while
relating the method to another separation technique using
a source model of exponential polynomials. Two synthetic
experiments (including an underdetermined mixture) and two
real-life illustrations with fluorescence spectroscopy and fetal
electrocardiogram extraction have been used to verify the
proposed technique. The method has been compared against
ICA, demonstrating the power of the deterministic Lowner
technique when the source signals are not independent or when
only a limited number of samples are available.

2 Available from http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html.
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Fig. 12. Illustrations for the second FECG experiment. Left we have a
limited amount of heart beats of mother (above) and fetus (below) where
some beats coincide. The mixed signals are shown in the middle. To the
right, the recovered sources are shown. An excellent recovery is obtained
with a relative error on the sources of only 0.013.
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