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2D Laser-based Probabilistic Motion
Tracking in Urban-like Environments

All over the world traffic injuries and fatality tas are increasing every year. The
combination of negligent and imprudent drivers, ede road and weather conditions
produces tragic results with dramatic loss of lifa. this scenario, the use of mobile
robotics technology onboard vehicles could redwuasualties. Obstacle motion tracking is
an essential ability for car-like mobile robots. Wever, this task is not trivial in urban

environments where a great quantity and varietplaftacles may induce the vehicle to
take erroneous decisions. Unfortunately, obstaclese to its sensors frequently cause
blind zones behind them where other obstacles doeiltidden. In this situation, the robot
may lose vital information about these obstructbdtacles that can provoke collisions. In
order to overcome this problem, an obstacle motracking module based only on 2D
laser scan data was developed. Its main parts sbrnsi obstacle detection, obstacle
classification, and obstacle tracking algorithms.mftion detection module using scan
matching was developed aiming to improve the daaity for navigation purposes; a

probabilistic grid representation of the environmhevas also implemented. The research
was initially conducted using a MatLab simulatoatheproduces a simple 2D urban-like
environment. Then the algorithms were validatechgisilata samplings in real urban

environments. On average, the results proved th@ulress of considering obstacle paths
and velocities while navigating at reasonable cotapanal costs. This, undoubtedly, will

allow future controllers to obtain a better perfaance in highly dynamic environments.
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Introduction

As a result of the astonishing advances made dwerldst
decades on several scientific fields, today motuleots have many
real applications. They range from Automatic Guidédhicles
(AGVs) and Autonomous Mobile Robots (AMRSs) on fagtfioors,
personal assistants for disabled and elderly peopéxploration of
hazardous environments such as surface of plametdattom of
oceans. Wherever the robot may be and whatevpuifsoses are an
interface to exchange information is always needeor many
applications, e.g. when the interaction betweendnsrand robots
are not close, this interface may be a simple reroontrol. On the
other hand, when robots and humans interact djrectthey need to
be more autonomous and take decisions based amptreeption of
their environment, the interface might be much mooenplex.
Autonomous behavior is frequently represented gsem@eption-
reasoning-action loop. It means that given the ifpation of a
goal, the robot uses perception to identify relé\elements, then it
analyses them, plans tasks to attain the goal,fiaatly executes
these tasks. More autonomous systems may everedéfngoal to
be reached based on some criteria.

Recently, several events around the world and relsdanding
agencies have been impelling robotics researctef®dus their
works on developing, transferring, and adaptinchnégues and
approaches initially developed for indoor and ootdmobile robots
to car-like autonomous mobile robots. Events sixitha DARPA
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1% and 29 Great Challenge (2005, 2007), ELROB (2005), and C-
ELROB (2007) are paving the way for the use of psimy
technologies in military and civil vehicles (Thrwet al., 2006;
Dahlkamp et al., 2006; Lamon et al., 2006; and 8ta\et al., 2007).
On the other hand, in a near future, an assistaystem that helps
the driver and acts mostly in peril situations v implemented
more easily when compared to a fully autonomouseaysand will
probably be more attractive for the majority of ttigvers (one
should take into account that western people terloketstandoffish
regarding robots, in severe contrast to the Japaneso welcome
ubiquitous machines).

Systems like the Intelligent Parking Assist (IP$&ghnology
onboard the Toyota Prius are becoming very popalaong car
buyers. Due to this, many researchers are workimgaw-like robot
autonomous parking problem. This is a perfect examyd an
assistive system that uses sensors, e.g. ultrassendors and
cameras, to help the driver during maneuvers. Em®unts to
saying that a system which is able to provide d pdrking
maneuver procedure, without any human interventdesired and
will shortly become a serial item. Another examdethe Secure
Propulsion using Advanced Redundant Control proje8PARC -
developed at the Swiss Federal Institutes of Telclygyo(EPFL and
ETHZ) in cooperation with a European ConsortiumAatomotive
Companies (Holzmann et al., 2005-a and 2005-b Beuier et al.,
2007-b). Recent developments on sensors, actuatgosijthms, etc.
applied on intelligent vehicles can be found in Sgdties PT-132
(2006) and PT-133 (2007).

Today it is possible to think of freeways and urban
environments interconnected by high-tech netwohied will allow
the dissemination of fully autonomous vehicles fflcgams may be
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substituted by hundred of vehicles virtually interoected and
moving autonomously in a cooperative way. Onboardpmuters are
likely to work together and control completely thehicles under
any weather and road conditions. Neverthelessrderao achieve
this dream scenario, the entire road network artcle= fleet need
to be adjusted accordingly.

Taking into account that there are hundreds ofionidl of
vehicles and road kilometers in the world, thesanges possibly
represent a cost of bhillions of dollars. In a néature, a less
expensive solution is an intelligent road netwoalséd on road and
onboard vehicle sensors and computers. In this, cadepted
freeways monitor vehicles, road, and weather camditact as an
assistive system alerting the drivers for periliaitons. Today this
scenario is becoming a reality in Europe, Asia, Biodth America.
Another option is the use of intelligent assistsystems (e.g.: anti-
collision systems) onboard vehicles. In case of iamminent
collision, the system would alert the driver oruass the vehicle
control.

There are several problems to be solved in botescéilly
autonomous and assistive technologies), but retmrglopments of
onboard hardware and sensors are resulting in d@eradile research
progress. However, the best ratio between desirgdnamous
behavior and costs when selecting the onboard laedvand
software necessary for acquiring, extracting, amrpreting the
environment features is to be drawn. In the contéxdutonomous
and assistive systems, the importance of cogniaibdities is
noticeable. Similarly to persons that need theirses in order to
interpret and interact with the environment, anoaomous robot
needs sensors that would provide information ab@vicinity and
state. In practice, the interpretation of the sc@me: environment
feature extraction, robot auto-localization, obktacposition
detection, obstacle classification, obstacle pattdiption, etc.) is
essential to provide the robot controllers wittomfation to plan a
safe path. Although sensor technology has expertesegnificant
improvements recently, high dynamic changing andoustrained
environments still represent an enormous challdogéhe robotics
research community. This is the case of urban-ikeironments
where traffic (car, buses, bicycles, etc.) and pgt paths are
unknown and sometimes difficult to predict. In spif this, the
obstacle motion tracking is an indispensable promdfor
improving the robot environment perception. Unfogtely, it is a
difficult task when some obstacles close to theotsbsensors may
cause blind zones behind them. In this situatibae,robot may lose
vital information about hidden obstacles that coalbid future
collisions.

Some examples of researches developed in the fild
autonomous parking are those carried out by Chaal. &2005),
Khoshnejad M. and Demirli (2005), Yamamoto et a0Q5), and
Chiu et al. (2005). In this topic, fuzzy logic amdtificial neural
networks are some of the approaches used by theraub face the
problem. In addition to these researches, the wdegkeloped by
Wang and Thorpe (2002), Duan et al. (2004), LetGimen (2004),
Lu and Chuang (2005), Martinez-Marin (2005), Rordedéndez
et al. (2005), Thompson and Kagami (2005), Koldkale (2006),
and Ma&ek et al. (2006) addressed a more complex probiben:
path-planning task in urban environments for deg-tnobile robots.
The hidden and visible obstacles tracking probless addressed in
Becker et al. (2007-a). Virtual drivers, drive-assnt systems, and
lane detection using artificial vision systems wiereused in Maek
et al. (2004), Bellino et al. (2005), Holzmann &t (2005-a and
2005-b), and Lamon et al. (2006).

The present work focuses the 2D laser-based obstaction-
tracking problem in dynamic unconstrained environtegurban-
like) by applying a Kalman Filter in order to predihe obstacle
motions when they are hidden. This would allowahelike mobile
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robot controller to take into account hidden andn-h@den
obstacles when maneuvering the robot. A probaigilstcupancy-
grid representation of the environment was alsolémpnted. It
provides a given time horizon prediction view ofe ttrobot
surrounds based on motion-models of the obstacdsset and
obstacle-estimated velocities. Initially, the tpktform (Smart Car)
is presented. Next, a brief review of the stateadfon motion
tracking is addressed and the multi-obstacle mettiacking
algorithm (including the Kalman Filter) is shortiiescribed. Then,
the results obtained while using real data are shdwinally, the
conclusion and outlook are presented.

Nomenclature

a. = centripetal acceleration, nf's

F = state transition matrix, -

H = measurement transition matrix, -

ICM = instantaneous center of motion, -

L = distance between rear and front axles, m
MD = Mahalanobis distance, m

n = data quantity, -

P = state covariance matrix, -

Q = process noise covariance matrix, -

r = turning radius, m

R = measurement noise covariance matrix, -
S = innovation covariance matrix, -

t =time, s

\Y = velocity, m/s

V. = state vector, m and m/s

w = measurement white noise, m

W =filter gain, -

X = state vector, m and m/s

X = measured point x coordinate on a segment, m
y = measured point y coordinate on a segment, m
X = state prediction vector, m and m/s

z = state vector, m and m/s

z = state prediction vector, m and m/s
Greek Symbols

A = parameter variation, -

0 = steering angle, rad

M =expected mean value, m

v = innovation, m and m/s

o = standard deviation, m

o =variance, -

v = process white noise, m

@ = angular orientation, rad

w = angular velocity, rad/s

Subscripts

i relative to parameter indices
max relative to maximum value
min relative to minimum value
norm relative to norm

X relative to stochastic variable
Y relative to stochastic variabl

Superscripts
T relative to transpose matrix
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Test Platform — Smart Car and Laser Range Finder

The Smart Car used as test platform is based oar@dinary
smart fortwo coupé passenger car (Fig. 1). Obvjossine changes
and improvements were included in order to allow trehicle
autonomous behavior, e.g.: a steer-by-wire systdg. (2).
Undoubtedly, the heart of the vehicle is the onda@mputer. It is
interfaced with several sensors and actuatorsctivetrol the vehicle
through the controller-area network (CAN). For arste, braking,
acceleration, and steering controls are made biralting dedicated
motors. A system of cable and pulleys controllecabyiotor is used
to activate the brake pedal. An electronic systeam designed to set
the throttle command directly (the voltage, oridimagrovided by
the potentiometer in the throttle pedal, is geregtdity the computer
and sent to the CAN).

Figure 1. Modified Smart Car used at ASL. Observe t
laser sensor assembled on its front bumper.

he LMS 291 SICK

Position controller (PID)
Minimize : € = Bogeq —

Computer |

> =z
Zl < CAN to
of Qo I ; |
< 5 analo
% é Torque sensor
>
8 l Maaq
Torque —*|
o—| Steering (voltage) :
o ; DA Unit
o_| €lectronic board Velocity
Switch (CAN)
I Vehicle CAN

Figure 2. The steer-by-wire system implemented int  he Smart Car.

A set composed by a steering encoder and a mdtwsathe
computer to steer the vehicle front wheels. Sunuiragj the vehicle
CAN can access the following internal car statedat

1. Vehicle flags: engine on, door closed, brakdapgressed,

etc.;

2. Engine: engine gslaift,

temperature, etc.;

3. Odometry: global vehicle speed, individual whepeeds,

ABS activated;

4. Throttle pedal value and steering wheel angle.

A switch enables to select the manual or autononwatnicle
modes. The Smart Car is also equipped with Glolmait®ning
System (GPS) and 6 degree of freedom (DoF) In&tgasurement
Unit (IMU), allowing measuring the vehicle relatimeovement. The
IMU measures lateral acceleration in all three disiens, angular

rpm, instantaneous torque,
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rates up to 100°/s with a resolution of 0.025°, lateral acceleration
up to 2g with a resolution of 0.01 r/Exteroceptive sensors, such
as a monocular camera and a laser range findeK(2IG Laser
Measurement Sensor - LMS 291) both looking forwdralye also
been installed. The laser sensor was assemblekdedinant bumper
of the Smart Car and it has a 180° field of vievihwan angular
resolution from 1° to 0.25°. Its maximum range@sn8 and it has a
statistical error of 10 mm.

In this work we used the data from the laser scaaa¢he main
source of information. This choice was based onfalge that laser
sensor prices are gradually decreasing every ydet may make it
possible their commercial use in passenger vehiiglasear future.

Sensor Model

Laser scanners are active sensors that emit adasen and rely
on the time-of-flight principle for measuring diste. A rotating
mirror or prism is used in order to cover an angutnge. The
neighboring points are taken at successive rotatigrihe revolving
unit. Thus, they are taken with a time differencepprtional to the
rotational frequency f{ns,) Of the revolving unit (in our case,
fsensor= 7B5Hz). The sensor data flow can be understodolksvs:
the laser sensor acquire data over a period of finevhich is then
sent to the computer via RS422 where a real-timeathreads data
at 17Hz. In a first step, the data set is transéatrimto a coordinate
system centered on the vehicle and it is assigriddamime-stamp
and the vehicle position at this time. Dependingtba desired
angular resolution, the acquisition time variesr B&° resolution
two rotations are necessary, so the acquisitiore tamounts to
At = 2Fens0r During the first rotation the data points for goegular
position 1, 3,... are taken and the second rotgiionides the even
set of 2, 4,... When running in 0.25° mode even fotations are
necessary and the acquisition time amoutits 4/ fsnsor

In our case, the main objective of modeling thedaxanner is
to take into account known sources of uncertairtijfertracking the
obstacles. The main assumption used is that diffeseurces of
error are pair wise independent and can be modete@aussian
distributions. Thus, the resulting uncertainty nieyrepresented as
its covariance (Jensen, 2004). There are seveiginsrfor laser
measurements, but the main ones are: the timertioguthe time-
of-flight, the stability of the rotational frequenof the revolving
unity and the frequency with which beams are sent. o
Unfortunately, the sensor documentation (SICK AGQ& has no
data for ranges greater than 20 m and for the anguicertainty.
For the experiments carried out in this researchh®(@Gngular
resolution and 30 m range) we assumed the sensmisgecified in
the documentation for a 20 m range (the uncertaintthe distance
measured tw,” = 0.0f m?). Concerning the angular uncertainty, in
fact we observed that the angular values providethe sensor are
constant and taken from a table. Due to this, diiffscult to evaluate
the angular uncertainty experimentally. So, we ugez opening
angle of the laser beam (0.5°) and assume the angiuitertainty to
be half the beam widthof; = 0.25%%). As previously cited, distance
and angular uncertainties are assumed to be indepénand
Gaussian distributed, thus the sensor uncertantgaresented by:

1)

2 i 2 2
OSensor = diag(o5,05) -

Motion Tracking

Applications of motion tracking algorithms rangerfr military
(e.g. missile guided systems, air-space surveilamtc.) to civil
ones (e.g. virtual reality systems, human-machineraction, etc.).
All these applications face challenges concernioigensensor data
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and data uncertainty. In order to deal with thesblems the use of
Kalman Filters (KF) was proposed in the early 1969sKalman
(1960), and Kalman and Bucy (1961). Early studiesu$ed on
single and multi-target tracking, and data origntertainty applied
on environment surveillance also proposed the did€Fo(Sittler,
1964; Sea, 1971; and Singer and Stein, 1971). Vdleating with
the incorporation of uncertainty on the data origirtracking, one
should keep in mind that the robot is dealing wittultiple-
hypothesis tracking. This means that it has a coatbrial
explosion of hypothesis that usually cannot be hahth real-time
(Jensen, 2004). There is a large quantity of pabbas in the
literature related to motion tracking using a viri®f sensors
(vision, laser, etc.). As our test vehicle has abaard 2D laser
sensor used for extracting the environment datajewéed to focus
our literature review on the development of systéimas use mobile
robots with onboard 2D laser sensors. Neverthelglsen it comes
to car-like tracking applications in dynamic urlbsgenarios that use
only 2D laser sensor data, literature proved tedsrce up to now.
Pradalier et al. (2004) developed an interestingr@ch using as
test vehicle a bi-steerable car called CyCab. Hewethey did not
focus their research on multi-obstacle motion tiragkbut on the
integration of some essential autonomy abilitieso im single
application (simultaneous localization and envirentnmodeling,
motion planning and motion execution amidst modsyadynamic
obstacles).

Considering indoor applications, there are sevemlks that
focused the motion-tracking problem based on 2Brlasnsor data.
Shulz et al. (2001) addressed the application oftirabstacle
motion tracking algorithms onboard mobile robots feacking
moving persons. They applied a sample-based repesgm of the
joint probability density function (SJPDF) of allowing obstacles to
avoid the combinatorial explosion of multi-hypotisetracking. If
on the one hand they could combine SJPDF with al loccupancy
grid and show the tracking of several persons thinotemporal
occlusions in well structured environments, on ¢higer hand, the
use of SJPDF requires the knowledge of the trachbstacle
guantity. It means that they needed to use a Bayed#ter and the
time sequence of moving features quantity to eséntiae tracked
obstacle quantity. At the end, their motion tragkaigorithm had to
deal with local minima, non-linear relations duetk® increased
occlusion quantity, local occupancy grids, and thee of
probabilistic filters to filter static objects theduld become difficult
to handle in real-time for non-structured environtse Kluge et al.
(2001) presented a strategy for analyzing the rblbiotan
interaction scenario. It was based on a set obpypical situations
in crowded public environments and consists of ecanalysis,
tracking, action recognition, and intention reasgniprocedures.
llimann et al. (2002) extended this analysis bylgipg local person
density and tree-based vector quantization. Bertaaatial. (2002-a
and 2002-b) developed a system to segment trackspefson in a
common household environment. In this work, thekess were
obtained from static laser sensors and the segti@nfarocess was
based on Expectation Maximization approach. Theippse was
the detection of the intention of a person basedhisror her path.
Jensen (2004) addressed the multi-object trackimdplem using
single Kalman Filters for each individual probleim.order to deal
with data association he used validation gates @ndolve the
measurement-track assignment he utilized lineargnaraming
techniques. Our approach is based on (Jensen, 20@4¢xtends it
for urban-like environments focusing on trackingdestrians and
vehicles (e.g.: cars, trucks, and buses).
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Figure 3. Flowchart representing the General Struct ure of the Motion

Tracking Algorithm.

Figure 3 summarizes the approach developed forndike
environments. The 2D laser raw data acquired bySteEK laser
sensor are used as input data for the obstacletbetealgorithm.
Initially, the data are segmented in order to ettthe environment
features and to detect motion. Features that atemuwing are
considered static and stored in a local map thatlde used for
detecting motion. After detecting mobile obstackegrocess of data
association is applied to start new trackers oratgdexisting
trackers. Trackers that are hidden for more thahreshold value
(e.g.: one second) are deleted. Put simply, thelevipoocedure
outputs are:

1. Non-hidden obstacle quantity, obstacle positiand estimated

velocities (Trackers in Fig. 3);

2. Hidden obstacle quantity, obstacle predicteditipos and

velocities (Trackers in Fig. 3);

3. Obstacle classification, e.g. pedestrian, cackt etc. (Trackers
in Fig. 3);

4. Local Occupancy Grid Map;

5. Predicted Occupancy Grid Map for a given timezum (e.g.: 1

second).
Both procedures, obstacle detection and tracking, saortly
explained as follows.

Obstacle Detection

There are several approaches for detecting objesitgy a 2D
laser scanner in the literature, most of them cedten indoor
mobile robotics applications. For a fixed sensors thask is
straightforward since it is possible to compare teansecutive
scans and immediately determine which points resairthe same
spot and which do not. For a mobile sensor likedhe onboard a
mobile robot or a vehicle such as a car, the tadgomewhat more
difficult due to the translation and rotation cadisdy its
displacement. Take for example a static obstaeleithseen by only
one point in the first scan. In the next scan #reser has moved a
little and the changed viewing angle results in ploent being seen
at another spot on the same obstacle. This phermmesn give a
false impression that the static obstacle is algtuabving. In order
to avoid this, it is necessary to take into accpuast precisely as
possible, the vehicle position. This work focuses aetecting
moving obstacles like vehicles and pedestrians.p&dorm this
task, we utilized the Motion Filter approach (Litrden and
Eklundh, 2001; and Wang and Thorpe, 2002).

It is important to emphasize that this work is fastused on the
vehicle position estimation. This topic was prewlythighlighted in
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Lamon et al. (2006-a and 2006-b) and Kolski et (@007).

Basically, in order to accurately localize the wobhi the GPS, the
IMU, and the wheel encoder data were combined uaif@lman

Filter to estimate its 6 degrees of freedom, ite.gosition and
attitude (Sukkarieh et al., 1999; and Dissanayalks.£2001). This
filter is called Information Filter (IF) and durirthe experiments it
produced excellent results when the vehicle wasgelirsg at low

speeds in open areas (far from large structuremets, etc.). The
standard deviation of the filtered position wasléeen 0.025 m for
all three position coordinates. Based on this teael decided to
neglect the vehicle position uncertainty, while relialy the Kalman
Filter used to estimate the obstacle motions winey &re hidden
(see Kalman Filter item). Following this premisee would use
directly the vehicle position estimated by the &-produce local
maps and detect motion, even when the vehicle vaasng.

Segmentation

Grouping measurements that belong to the same tobjec
mandatory, when processing data from a laser scafihe scans
will consist of length measurements at equidistangles and
therefore it is very likely that two points thaeaslose to each other
also belong to the same object. Likewise, two coutbee
measurements that are far away are likely to inipif a change in
the observed object has occurred. Since it is Bacgto define a
distance threshold, there is always the risk of inwalerrors in the
segmentation process, either by creating one sisegenent out of
two or more close objects, or by dividing an objetd more than
one segment. The segmentation makes it possibléotdurther
processing on the different segments or point elgstThis normally
consists of classification by size, dynamic statois,geometrical
features (MacLachlan, 2004).

Motion Based Approach

Basically, the idea is to compare two scans apardme time
interval, At, trying to match them in order to determine whidints
are static and which are dynamic. By using thisrapgh one can
suppress spurious readings from the static enviesgiving a
better input to the tracker. The scan matchingaslenby storing the
previous scan and comparing it to the new oneeBoh point in the
new scan, distances to points in the old scan aleulated and
compared to a threshold value (in our case, + 1)) tfra match is
found, the point is likely to be static. One exdaptis when points
are matched to a different area on a moving obestdot instance
along the side of a passing vehicle. This probleas later solved by
checking the dynamic classification in the firsaisclf a point was
labeled dynamic at that time, it is likely to bendynic in the next
scan. However, if no match is found, one cannotff@agure that the
point is moving without further processing. The rgocould have
been occluded in the first scan or out of rangetdueshicle motion
between scans. Therefore, we make use of the fezethat is the
space between the robot and the obstacles or aoge.rIf a point
seen in the second scan is not found but withis &dnéa in the first
scan, thereby observable, it is labeled as movilgsegment
containing a certain amount of points labeled asingocan be sent
to the tracker, after its center point is calcudate

During the simulation phase, we observed that itn@le use of
scan matching was not sufficient to deal with spusireadings. One
reason for this behavior was the translation amation movements
of the sensor. Aiming to increase the detectiorstafic points, a
local map was created. At first, the map was imgleted as a
position vector, storing in each scan the coordisaif all points
labeled as static ones. New scans were then chegjandst the map
and when a match was found, the weight for that paipt was
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increased. In order to keep down the size of the, mach point kept
track of its own age. When a terminal age was redch.g. after 10
seconds, the point would be deleted from the mé&e. Static map
helped to improve the motion detection, but sonmsadirantages
were noticed. The representation of the map usiigte was one of
them. Measurements are never exact, and therefasedifficult to
determine how many map points are needed to raprese
obstacle. If we add all new static points, we getesy large map
which slows down the matching process. But if wé/@ud points
that were not matched to the map before, we wiltaggly miss
useful information. A method that turned out tosbleetter approach
to the local mapping was the Time Stamp Method r{Ricand
Shiller, 1998). Basically this method is an OccupanGrid
Representation (Elfes, 1989) that does not conditeruncertain
cells. Due to this, only free and occupied cells eonsidered and
the computational time necessary for each enviroinsean is
reduced.

Thanks to the use of the Fiorini and Shiller's qaocy
representation, we could improve and simplify tleans matching
process. Latter, the occupancy grid was used nigt tonrepresent
the static environment, but also to represent ptes@d future
predictions of the tracker output. This was carmed by adding a
probabilistic grid to the occupancy representatisae Predicted
Occupancy Grid Map item). Due to this, it was neaegto classify
and model the obstacles that were being tracked.

Obstacle Classification

By classification, we refer to the process of dataing if a
moving segment belongs to vehicles or pedestriafisle working
with the MatLab Simulator (Becker et al., 2007 @9destrians were
rarely detected by more than two or three scan &tee the sensor
is placed about 50 cm from the ground, it usuadljedts one point
on each leg. If the pedestrian stands close tseheor it is easier to
distinguish a contour, but this was rarely the ca%e obvious
difference between vehicles and pedestrians iy thiee, so we
decided to base the classification on it. We udese standard
deviation of each segment to represent its size:

10 170

Hx ==2.% Hy ==20Yi @
Ni=1 Ni=1
120 120

0% == (ux ~%)? e ==Y (uy - vi)* ®)
Ni=1 niz

whereX andY are stochastic variables,andy are measured points
on a segment) is the data quantity, andand o are expected values
and standard deviations respectively.

Checking the norm of standard deviations againsteaefined
threshold yields the classification into vehiclepadestrian:

_ 2 2
Onorm=\Ix *0y -

Obstacle Tracking

(4)

A robot navigating in an environment with other rimayy
obstacles needs some kind of information concerniitg
environment in order to avoid collisions. Some syt just prohibit
movement in directions which will bring the robaitclose to an
obstacle, regardless of how the obstacle movesg\@i¢ and
Nourbakhsh, 2004). For efficient path planningjthiowever, much
better to know more about the dynamic state ofdahstacles. The
way to achieve this goal is by tracking them antinegting their
future positions (states). Tracking makes it pdesib measure the
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dynamic state of an obstacle, i.e. its position egldcity, and with
this information predictions can be made on thetaubss future
positions (Bar-Shalom and Fortmann, 1998; and Bédrat., 2005).

In an urban environment, laser measurements argeciuto
noise, which we have to suppress by filtering.sltalso usual to
expect obstacles being hidden by other obstaclesveMer, it is

Marcelo Becker et al.

H:[l 0 0 oj_ (10)
00 10

In the prediction step, the latest state estimatelt is used to
produce a new state prediction At ¢ t). Predictions are also made

possible to continue to track these obstacles i} are seen again 0" the state and innovation covariances, respégtigs. (13) and

and thereby minimize the risk of a collision. Easlbstacle in this
setup is characterized by its center of gravityatdeast the center of
gravity for the part that is being seen. Sincegbanner provides a
2D output, this point is described by §) coordinates. Th& andy
velocities were also introduced in the state ofdileamic object for
tracking the motion of each obstacle and predicitagcontinued
path. The state vector then becomes:
Vstate =(X X Y Y)T =X ®)
However, from now on we will simply denote it as The
measurements, containing only the x and y valuesiadeledz.

Kalman Filter

The Kalman Filter (KF) is a wide spread technique f
estimating the state of a dynamic system obserkiealigh noisy
measurements. The filter is a recursive state asbimwhich means
that in every step it uses the output of the previstep to make a
new prediction. It consists basically of two stepe prediction step
when estimation is made based on the old stateaantpdate step
when that estimation is updated with a new measeménThe state
and measurement predictions are denoteck bgnd Z. In order to
predict a dynamic system response, a dynamic nisdesled. In this
study the linear constant-velocity model (Jens@942 was applied.
Due to its linearity, it is simple to implement.can be described by
its discrete-time transition and noise covarianceatrices,
respectively Egs. (6) and (7):

1 4 0 0
010 0
F - . ©®)
0 0 1 4
00 0 1
433 a2 o 0
M2 4 0 0 7
o =| 2/ . %
0 0 433 4?2
0 0 4?2 &

Other models were considered and, especially faicles, the
constant angular velocity model could improve thacking for
vehicles making turns. However, such implementatiwould
require a more complex filter, Extended KalmandflEKF (Thrun
et al., 2005). It is also beneficial to keep a dempnot too
specialized, model since the tracker is dealindy wibstacles with
different dynamic properties (e.g.: pedestrian amdhicles). The
evolution of the dynamic system can now be desdrise

X(t+4t) = F(At)x(t) +o(t + 4t), (8)

Z(t+ At) = Hx(t + 4t) +w(t + 4t), 9)

—ya-1,T
wherev andw are respectively the white process and measurement MD =vS “v".

X(t+4t) = F(A)X(t). (11)
(t+A)=HX(t+4) , (12)
P(t+4t)=F(4t)P(t)+F(4t)", (13)
S(t+A)=HP(t+4A)HT +R, (14)

where the measurement noise covariafitejs the variance &)
times the identity matrixl§, Eq. (15); in our case the variance is
represented by the sensor data uncertainty, Eq.P(19 the state
covariance matrix, anfl is the innovation covariance matrix.
R=10°. (15)
The following step is called the update step, bseaa
measurement is used to update the tracker. Novintievation,v,
can be calculated as the difference between tHemeasurement

and the predicted one. The filter gaW, is calculated after state
and covariance updates:

v(t+4t)=z(t+ 4t)-Z(t + 4t), (16)
W(t+4t)=P(t + 4)H TSt + 4t), (17)
X(t+4t) =X(t)+ W(t +24t)v(t + At), (18)
P(t+4t) =P(t)-... (19)

SW(E+AE)S(E+ ADW(E+ 4T

More details concerning the implementation of Kainklters
and Extended Kalman Filters may be found in: Kalraad Bucy
(1961), Bar-Shalom and Fortmann (1998), Jensend(2@@d Thrun
et al. (2005).

Data Association

Each tracker must be associated with new measutsnagren
available, if the filter is working properly. Therare various
approaches for data association that are designesdit different
scenarios. A Joint Probability method (Bar-Shalamd &ortmann,
1998), for instance, is an interesting choice weampling data in a
cluttered environment, because it takes into accthenfact that the
closest sample is not always the right one in dirtariget scenario.
The intuitive approach in this case was the Nedesgghbor
Standard Filter, NNSF (Bar-Shalom and Fortmann,8)99he
NNSF algorithm iteratively calculates all the distas between
trackers and measurements. The distance is repeesdry the
Mahalanobis distanc®ID:

(20)

noises andH is the measurement matrix, which transforms aestat

vector into a measurement vector, Eq. (10):
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MD is the same as the Euclidian distance, if the canee
matrix is the identity matrix, |. Each tracker ieh associated with
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the closest measurement, if it does not exceed emlefined of motion - ICM. The vehicle front wheel anglesatile to their
threshold. However, problems may occur if the aggpion deals straight ahead position is called the steeringearigtnceforth noted
with unambiguous association. An optimization wasied out by 0. Due to mechanical reasons most vehicles have ximum
using integer programmingviD was collected in a matrix where steering angle that is by far less than 90°. Wheaaintaining
one tries to minimize the total sum provided. Theey be only one constant steering anglé,# 0, the vehicle is moving on a circular

value selected from each column and each row (de2664).

Tracking Obstacles

The tracking obstacles task is performed after theda
association procedure. In the beginning (the vénst &can), all
measurements are initialized as new trackers aeid ithitial state
vectors, Xniial, represent their positions and null velocitiestigy
all observed features are considered static on€syariance
matrices are also initialized to reasonable valtaddng into account
the sensor documentation (SICK AG, 2006). Eachkaads

associated with a variable callbtldenthat keeps the scan quantity

in which the tracker has not been updated with asmement. At
initiation or after a successful update this vadab reset to zero. In
every consecutive scan, trackers are updated iitelsatin the
following sequence:

for each TRACKERIo

Calculate Kalman prediction state;

MD, O Mahalanobis Distances of all measurement data;
MD O min(MDa”);

if MD < thresholdthen

update Kalman Filter with measurement;
hidden= 0;

else

. hidden=hidden+ 1;

10:end if

11:if TRACKER is hidden for more than threshptden
12: Delete TRACKER

13:end if

14:end for

15:for each unmatched measuremeat

16: Create a new TRACKER

17:end for

eeNOrNE

Predicted Occupancy Grid Map

The inclusion of tracked obstacle path predictidns the
occupancy grid map of the environment that surrgutige robot
improves the map usefulness for navigation. Inrkituve plan to
fuse the procedure presented in this work with tiaigation
procedures previously presented at Kolski et aD0@). The
predictions are carried out by calculating possip&ths for the
trackers and adding some uncertainty at some tirep ® the
future. As the trackers are keeping the dynamite sththe tracked
obstacles, this information can be used for predica future state.
For vehicles it is a relatively easy task, takintpiaccount that the
vehicle maneuverability model can be expressed icoaple of
equations. On the other hand, for pedestrians tde& is quite
complex. A person is often moving at a speed whiltbws it to
stop abruptly, or entirely change heading. One ifgit instance,
stop to talk with someone and continue in anothaecton
afterward. Since pedestrians are likely to tratehther low speeds,
the constant-velocity model was considered sufficfer predicting
their paths.

Unfortunately, for vehicles this solution was natspible and
we decided to use vehicle steering kinematics tdehthe vehicle
behavior. Aiming to keep the model as simple asibtss, instead of
applying the Ackermann Geometry (Gillespie, 1992¢, make use
of a simple steering model based on the vehiclkainaneous center
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path. A simple car model (LaValle, 2006) gives us 21):

tand=L (21)

R’
wherelL is the distance between the front and rear whdesaand
R is the radius of the circular path with centerlirstantaneous
Center of Motion — ICM.

Continuing with deriving the angular velocity inettpath we
have:

d=2% o7y = A@r (22)
2n

whered is the distance along the circular path, same/sts andA@
is the change in angular orientatiohpE wAt, wis the angular
velocity). Further simplifications:

vat=rmd - @= % : (23)
Combining Egs. (21) and (23) yields:
@ = %tane- (24)

Equation (24) means that it is possible to caleutae angular
velocity of an obstacle knowing its velocity, siegrangle and axle
distance. Using the velocity and angular veloditg predicted path
can be easily calculated. Obviously, the placenadrdaxles varies
between different types of vehicles, but it stayshie same vicinity
when the same vehicle class (e.g.: cars) is coresideA future
combination of 2D laser sensors and embedded cameoald
solve this difficulty by recognizing and classifgithe vehicles into
more detailed classes (e.g.: buses, cars, trudkss,betc.) based
also on visual data. For the moment, this classlila is possible
based only on vehicle speeds and sizes. In ordeintplify the
model, a maximum steering angle for vehicles wastse0.42
radians @,,.x= 24°). Another constraint that was applied to lithi
model was the fact that steep steering angle tarasunlikely at
high speed. This is related to centripetal accéterabecause if
extending it to the extreme, the car would sliprigka steep curve
with too high speed. In a city-driving situationigt fairly unlikely
that a driver would experience more than 1-g asadhacceleration.
The equation for centripetal acceleration is:

8= 2= (25)
r
Combining Egs. (24) and (25):
B =2 (26)

The maximum angular velocity is now given as thestevalue
from Eqgs. (24) and (26). One limitation in the pdare is that it
does not provide angular velocity for the trackémsorder to do that
accurately, an EKF is needed. Due to this and keeipi mind that
we wanted to maintain the approach as simple asikjes we
decided to use predicted velocity changes of eadkeéd obstacle to
estimate the obstacle angular velocities. In agidito this, choosing
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a number of values in the intervaldia, @had and then calculating
predicted paths for each one give us a set of éragossible
positions for a given time horizon. Assuming thhe tpredicted
tracker is centered on the estimated turning r@g;mated (Fig 4),
the highest probability value is assigned to théest path, obtained
from @.qimates Therefore, the probability decreases as the ritista
between the predicted paths and the widest onedser

[m],

ZDSSUH'I el

estimate: = @estimater T Whna

2‘.5 [m]

@estimater + Tnay

Oestimater = Cnay

25 [m]

(b)
Figure 4. lllustration of Predicted Paths for a tra  cked obstacle. In (a) the
tracker is currently going along the y-axis ( @stimated) ShOwing 7 possible

paths, ranging from left ( @estimated - @hax) 10 right ( @estimated + @nax) Maximum
steering angles. In (b) we estimated the current st  eering angle that allows
us to center the predicted paths on it.

Now, based on obstacle class path models, it isilplesto
implement the predicted occupancy grid map for eemitime
horizon. Since we decided to represent the robat@snt mass, the
occupancy grid had to be enlarged to compensatiéaéorobot sizes
(we use the robot circumscribed circumference madas the
occupancy grid growth rate). The predicted occupayred map is
obtained iteratively for each map update in twqstdn the first
step, only the environment static features areidensd. They have
their occupied cells enlarged by the growth ratemfng a new
occupancy grid map with expanded occupied cellsGEChese
cells are considered as having the highest prabatf being
occupied (probability density equals to 1). Themnf the EOC
borders to cell borders that are distant up togrewth rate, the
probability densities are linearly decreased reaghiero at the
borders. Next, in the final step, the obstacle joted paths are
considered. A number of possible path predictiorzsl been
calculated for each tracker and for each path abeumof equidistant
points are selected along that path. The pointseteprocess takes
into account the obstacle class parametam{ @i and
maximum acceleration and deceleration) and theratkstime
horizon. In the sequence, each point is associatdda grid cell
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and the process described before for environmeic seatures is
applied for all trackers. In the end we obtain aoupancy grid that
contains obstacles at present time and their eghaositions at a
given time horizon. It is important to emphasizattthe predicted
occupancy grid map is stored in a separate datatste. It means
that the original occupancy grid map is not changed

One may observe that the predicted occupancy gragp m
building process may be time and memory consuméagedding on
the characteristics of the environment. Due to, this adopted two
simplification strategies:

1. We reduced the update frequency for the statit pf the
occupancy grid map;

2. Obstacles whose distances to the robot aredsicrg above a
threshold value were neglected.

The first strategy is justified because static fesg usually do
not change their positions. But if, for instanceparked car or a
person starts to move unexpectedly, there is ahmayacceleration
period that can be noticed by the obstacle trackirecedure (it
immediately reclassifies this obstacle as a mobiie). In spite of
this, the new mobile obstacle has its update frequéncreased for
building the predicted occupancy grid map. Coneggrthe second
strategy, obstacles that are not considered dangdyecause they
are moving away from the robot are obviously negley If they
change their path and start to represent a rigl, dne not neglected
anymore. These two strategies allowed us to keeptithe and
memory consumptions at an acceptable level duritg t
experiments.

Smart Car Simulator

In the beginning, we developed the algorithms usindatLab
Simulator (Becker et al., 2007-a). It reproducesnaple 2D urban-
like environment (approximately 800 m by 800 m)hwyitarked and
moving cars, buses, trucks, people, buildings, syadtreets, and
trees. When using the simulator, one may reprodiee 2D
kinematical behavior of the modified Smart Car. Thmart Car
vehicle was kinematically modeled by applying thekérman
steering geometry (Gillespie, 1992) and the rehiale dimensions.
While modeling the sensors, their real characiesistvere taken
into account. Lines and/or arcs represent all emvirent static and
dynamic features. The sensor data are extractedh ftoe
environment based on its geometrical descriptioth @sed as input
data for testing the algorithms. It is importantetophasize that the
simulator also allowed testing the algorithms whie simulated
Smart Car was in movement.

Basically, the simulator uses the global positidnthe Smart
Car in the environment for selecting a feature-windhat contains
all lines and/or arcs close to the vehicle. Thesirulates the laser
sensor data by verifying the intersections betwten simulated
laser beam and the environment features. Afterwardmise signal
is added to the sensor raw data vector (based GK 3G, 2006
data). As the simulator was designed for testififgidint approaches
before installing the codes in the real car, ibwh the user to select
and set different strategies, set points, and hioidsvalues.

Results

Firstly, as cited previously in the text, the resbawas
developed using the Smart Car Simulator. During tiiase it was
possible to test different techniques for trackitig obstacles.
Aiming to facilitate the results comprehension, vpresent
simulations and experimental samples with the \elparked in the
following figures. Due to this choice, it becomessier for the
reader to compare the features, trackers, etdffateiht time spots.
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Figure 6. Experiment location represented by the x
aerial view and the Sensor Field of View represente
transparent area (a) and view of the experimental a  rea (b).

Table 1 — Real data sampling details.
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Tracker
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X Axis  [m]
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=30

Location EPFL, facing ME G building
Scan Acquisition Frequency 5Hz

Scan Range 30m

Scan Angular Resolution 0.5°
Experiment Length 602 seconds
Observed Dynamic Obstacle 33

Figure 5. Simulation of the Smart Car parked in an  urban-like environment
tracking vehicles on a street cross. Two different time steps are
presented. One may observe that vehicles are tracke  d even when outside
the sensor visible area (represented by salmon colo ). In this case, a pink
circle represents the tracker.

Figure 5 shows some simulation results. The trackeide the
range and the matched ones are represented byvyeilicdles and
the hidden or out of range trackers, by pink ciclehe black lines
represent the obstacle predicted positions forcbred All occluded
tracks were kept for 1 second. Meanwhile, if thegravobserved
again, their states were updated and they werassfied as non-
hidden tracks. On the other hand, if they wereatsierved anymore
after 1 second, they would be deleted. Regardireg algorithm
performance, we compared the moving obstacles afginspeeds
with their actual speeds, and the errors obsenere ess than 5%.

Aiming to test and refine our approach, real sangata were
acquired on streets at EPFL. After these tests/adg possible to
improve the tracking algorithms. The sites for shngpdata were
chosen near the parking lots at EPFL for catchsighany cars and
persons as possible. The sampling took approxisndi@l minutes
and it was also drawn in the late afternoon whemethwere people
heading home by car. The vehicle was parked in raecoof an
intersection where the exit of a parking lot cobklseen (Fig. 6-a).
We could not use the moving obstacle speeds téyuae algorithm
performance because the data sampling took placa ireal
environment, where we could not control them. Hosveweach
tracker had its center point subsequent positiemspared with the
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Table 1 presents some experiment set-up detailshenguantity
of moving obstacles observed during the data aittpis We
experienced traffic and the obstacles were oftessipg by close to
the sensor. Because of the intersection we weodadgy to capture
a few cases when one obstacle occluded anotherinténesting
condition in this case was that we had many paskikgs. They
were sometimes classified as cars, sometimes a®spizths
depending on the viewing angle. Their tire spokes produced an
interesting problem: some of the laser readingsuised by the
sensor were behind the bike (the sensor laser Ipeesed trough
the spokes and detected other environment feabatewtias behind
the bike). Due to this, the segmentation algoritipmoduced
erroneous input data for the feature extraction motion detection
algorithms. This problem was solved latter by refin the
segmentation algorithm. In the beginning, the sedai®n process
was based only on consecutive measurements andtifiermon we
decided to also consider the data that are clogether, as if
belonging to the same object.

When it comes to computer processing power perfoceawe
used a 5 Hz sensor data acquisition frequency. Ulotedly, the use
of a dedicated computer for processing the obstaateking task
will increase the frequency up to sensor limits Q5KRBd data
transmission rate for a serial RS422 data intejfable also decided
to use a 0.5° angular resolution to detect pedestriat large
distances. The development framework introducedrleyry et al.
(1997) was also used. It allows us to execute tgerithms as
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modules on a single laptop running Linux (Dell D50&entrino
1.5 GHz). The tasks, coded in GenoM, follow the sapproach
that is used in embedded systems like typical aotive platforms.
Figures 7 and 8 present more results, now basedandata
sampling. In both cases the scanner was placeleirrigin (0,0),
looking along the positive x-axis and plotted framehich are not
consecutive, they were chosen by their contents.tdpnof each
plot, one may observe the time stamp (Time) andethpsed time

Marcelo Becker et al.

traversing, coming from the upper right corner. Thrackers
continued from (a) to (b) until the moment when Hilee went out
of range in (c), although the tracker is kept forecsecond after
disappearance. People continued approaching haetilwere almost
perceived as a single segment, (e). In (f), thaylccde separated
again and both trackers were updated. In addifag, 8 shows the
trackers, the estimated velocities, the static remvient features
laser sensor readings, and the predicted occupanicy map

between two consecutive scami), both in seconds. The elapsed(represented by gray scale cells — as darker @neagll is as higher

time is almost constant, but sometimes, if the cemetects any
error while reading or sending the data, it caretknger because
the data is excluded and a new scan data is adqaine sent
(compare Fig. 7-g and h). Aiming to facilitate thesults

comprehension, we present in Fig. 7 only the trecked in Fig. 8
the predicted occupancy grid.

In Fig. 7 one may observe the trackers (represdmyetircles),
the estimated velocities (represented by line seggheand the
static environment features laser sensor readingwesented by
dots). The line segments length and direction ssarerespectively
their estimated modulus and direction. In the sdenaresented in
Fig. 7, two pedestrians were moving towards eablerptone from
the right and one from the bottom of the scene.il lwas also

Time: 108.959 [s] dt: 0.207 [s]
25 T

is the probability of an cell being occupied). lig.F8, the predicted
occupancy grid is shown. It is updated at the sacam acquisition
frequency (5 Hz). The static environment featuresrewalready
detected and enlarged by the growth rate, formireg dccupancy
grid map with EOCs. In (a), a car was coming fréma tpper right
corner and a bike from the bottom. Then the cysliatted to reduce
its speed (b) as it approached the intersectior. cen kept moving
and crossing the intersection until it hid the @stc{c), but the bike
tracker was kept. In (d) the car continued movimgl ahe bike

tracker was seen again. The car is not seen anyimo(e) and

finally the cyclist turns left in (f).

Time: 113.218 [s] dt: 0.207 [s]
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Figure 7. Real data sample on streets at EPFL (108.
the bottom of the scene. A bike was also traversing
the bike went out of range in (c), though the track
almost perceived as a single segment, (e). In (f),
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96 s to 120.91 s). Two pedestrians were moving towa
, coming from the upper right corner. From (a) to (
er is kept for one second after disappearance. The
they could be separated again and both trackers wer

rds each other, one from the right and one from
b) the trackers continued until the moment when

persons continued approaching until they were
e updated. The frames are not consecutive.
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Figure 7. (Continued).
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Figure 8. Real data sample on streets at EPFL (362. 26 s to 366.53 s). In (a), a car was coming from th e upper right corner and a bike from the bottom.

Then, the cyclist started to reduce his speed (b) a s he approached the intersection. The car kept movi  ng and crossing the intersection until it hid the

cyclist (c), but the bike tracker was kept. In (d) the car continued moving and the bike tracker was s een again. The car is not seen anymore in (e) and
finally the cyclist turned left in (f). Observe tha  t the frames are not consecutive.
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Figure 8. (Continued).
of road and chart maps of the urban area and GRS, differential
Conclusions version (DGPS), combined with embedded camerass Wauld

The successful implementation of car-like mobilbats that are
able to move autonomously on streets and roadsndspen the
vehicle ability of dealing with highly complex emehments. Due to
this, many researches initially developed for indapplications are
being extended and adapted for outdoor environméesently,
some algorithms that fuse path planning and olestagbidance
tasks into a single navigator structure were preserHowever, few
researches of obstacle path prediction on urbandikvironments
are being carried out (most of them are centeredgion systems).

Our work presented results on obstacle trackinig itaslynamic
urban-like environments. It focused on 2D lasercbagbstacle
motion-tracking problem. A Kalman Filter was apgliem order to
predict the obstacle motions even when they weddédri. First of
all, we introduced a short review on the motiorckimag techniques
found in literature and highlighted the scarcitypoblications when
it comes to car-like tracking applications in dynemrban scenarios
using laser data. Then, our approach and the tagogn used, a
modified smart fortwo coupé passenger car namedtSDea, were
briefly described. Our approach focused on detactitassification,
and tracking tasks of vehicles (e.g.: cars, busss,) and
pedestrians. This technique allows the controtigake into account
hidden and non-hidden obstacles when maneuvermgshicle. A
probabilistic occupancy-grid representation of teevironment,
named predicted occupancy grid map, was also imgiésd. It
provided a given time horizon prediction view ofetlvehicle
surroundings based on motion-models of the obstaeleses and
obstacle estimated velocities. Real data samples used to refine
the algorithms earlier developed and tested usindMatlLab
simulator. Finally, the results were presented.

The results using real data samples indicated thetacle
detection, classification, and tracking tasks owith a 2D laser
scanner are laborious. It happened because weedetdfocus our
research on the use of a single sensor in ordebtain a cheaper
commercial solution that could be used on passecger. Due to
this, it was necessary to take into account sevenaironment
feature details to turn them into diverse algoritharameters. For
instance, the presence of bushes and leaves cadngaregpurious
readings and induce the algorithm to consider tremmoving

increase the system overall performance by promatiata fusion
that would allow false mobile obstacles removal #ralrecognition
and classification of obstacles into more detadledses, e.g.: walls,
trees, buses, cars, trucks, bikes, pedestriansOéigously, as the
use of vision systems is computer time expensive aary
dependent on scene illumination, it is necessarwddk on scene
lighting and find a balance between computer prsiogs
consumption and adequate data acquisition. Of epufsmore
computers are used onboard the vehicle, this drelwlzan be
overcome easily. For the moment, this class labetircarried based
only on obstacle speeds and observed sizes. Thestpieth class
uses the constant-velocity model and the vehi@dsscimakes use of
a simple steering model based on the vehicle ICMpfedicting
their paths. When it comes to the predicted occapagrid map
building, we adopted two strategies that allowedoulseep the time
and memory consumptions at an acceptable levelnguthe
experiments: we reduced the update frequency fisthtic part of
the occupancy grid map and we decided to neglestaokes whose
behaviors were not considered dangerous (e.g.:adbst whose
distances to the Smart Car were increasing abdleeahold value).
Concluding, our results can be considered a vatuatdp towards
promoting the future interface between the moticacking and
dynamic path planning algorithms found in literaturThis
procedure allows the controller to obtain a befterformance in
urban-like environments.
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