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Stability Analysis of Discrete-Time Recurrent Neural
Networks With Stochastic Delay

Yu Zhao, Huijun Gao, James Lam, Senior Member, IEEE, and Ke Chen

Abstract—This paper is concerned with the stability analysis of
discrete-time recurrent neural networks (RNNs) with time delays
as random variables drawn from some probability distribution. By
introducing the variation probability of the time delay, a common
delayed discrete-time RNN system is transformed into one with sto-
chastic parameters. Improved conditions for the mean square sta-
bility of these systems are obtained by employing new Lyapunov
functions and novel techniques are used to achieve delay depen-
dence. The merit of the proposed conditions lies in its reduced con-
servatism, which is made possible by considering not only the range
of the time delays, but also the variation probability distribution. A
numerical example is provided to show the advantages of the pro-
posed conditions.

Index Terms—Delay dependence, discrete-time recurrent neural
networks (RNNs), mean square stability, stochastic time delay.

I. INTRODUCTION

B OTH theory and application of recurrent neural networks
(RNNs) have enjoyed tremendous development in the last

few decades. The existence of time delays, which are often en-
countered in the investigation of neural networks, has been rec-
ognized as a major cause of instability and performance deterio-
ration of the system. The results in [1] and [16] have shown that
the neuron property of delay has important influence on the dy-
namic properties of the neural network. In [6] and [7], results
on stability of discrete-time systems with time-varying state
delay have been obtained and delay-dependent output-feedback
stabilization of discrete-time systems with time-varying state
delay has been investigated. In [8] and [9], the global asymp-
totic stability criterion has been derived and delay-dependent
state estimation method has been developed for delayed neural
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networks. Both constant and time-varying time delays have at-
tracted considerable attention throughout the world and many
aspects of RNNs with time delays have been analyzed. A great
number of results concerning the existence of an equilibrium
point, global exponential stability, and the existence of periodic
solutions have been reported in literature (see [2], [3], [19], [20],
[24]–[28], [30], [31], [33], and the references therein).

Although RNNs are mostly studied in the continuous-time
setting, they are often discretized for experimental or compu-
tational purposes. The dynamic characteristics of discrete-time
neural networks have been extensively investigated, and many
results have been obtained (see [6], [7], [10], [22], [29], [32],
[34], [35], and references therein). In [10], the global robust
stability has been analyzed for a general class of discrete-time
interval neural networks which contain time-invariant uncer-
tain parameters with their values being unknown but bounded
in given compact sets. Some sufficient criteria have been de-
rived in [29] and [34] in order to ensure the asymptotic stability
of the equilibrium point for a discrete-time Cohen–Grossberg
neural network model. In [35], the existence of periodic solu-
tions has been proved for a nonautonomous discrete-time neural
network by using the topological degree theory. In [15], the sta-
bility analysis problem of the exponential stability for a class of
delayed discrete-time RNNs is investigated under a more gen-
eral description on the activation functions, and less conserva-
tive stability criteria are obtained by using a unified linear matrix
inequality (LMI) approach.

In [15], the following delayed discrete-time RNN system was
considered:

where and is a time-varying delay. Sufficient
conditions for the stability of the system are derived in terms of
the upper bound and lower bound of , that is, when

. As most commonly established results, the
proposed criteria in [15] employ only information of the vari-
ation range of the time delay. However, network tomography,
the technique that is concerned with inference of delay distri-
bution of networked systems, makes it possible that the prob-
ability distribution of time delay in practical systems is
known in advance (see [4], [5], [18], [21], and the references
therein). This provides the theoretical basis for our assumption
that delay probability distribution can be obtained in practical
systems. When the probability distribution of is available,
it would be possible to utilize such information to reduce the
conservatism of these criteria. In fact, as pointed out in [11] and
[23], a more practical and precise description for a given dis-
crete-time-delay RNNs is that there exists a small number such
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that where is a constant. What needs
to be investigated is finding an upper bound of for a given .
There is certain probability of to take values in
and , and is a set of jumping values which may
change its values from the intervals and . It
is obvious that this description is more general than the common
time-delay systems considered in [15] and the variation proba-
bility of the time delay will affect the size of the allowable vari-
ation range. However, to the best of the authors’ knowledge,
little consideration has been given to applying the probability
distribution of time-delay values to analyze the stability of dis-
crete-time RNNs and this motivates this study.

In this paper, the stability of the solutions for discrete-time
RNNs is investigated based on the information of both the varia-
tion range and the variation probability of the time delay. A new
modeling method is presented to show the effects of distribu-
tion probability of the time delay, and a new Lyapunov function
is employed for stability analysis. Based on Lyapunov method
and stochastic analysis theory, some new criteria to guarantee
the mean square stability of the system are derived using LMI
approach. A numerical example is provided to illustrate the re-
duction of conservatism of the proposed criteria. According to
the numerical example, when the variation probability of the
time delay is given, the upper bound of the time delay that can
be tolerated before instability occurs may be much larger than
that when only the variation range of the time delay is known.

Notation: The notation used throughout this paper is fairly
standard. The superscript “ ” stands for matrix transposition;

denotes the -dimensional Euclidean space; and the notation
means that is real symmetric and positive def-

inite (semidefinite). and 0 represent identity matrix and zero
matrix, respectively. In symmetric block matrices or complex
matrix expressions, we use an asterisk to represent a term that
is induced by symmetry and stands for a block-di-
agonal matrix. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

denotes the expectation and denotes the expec-
tation of conditional on .

II. PROBLEM DESCRIPTION

In the literature, the following delayed discrete-time RNN
was considered:

(1)

where is the neural state
vector; with is the state
feedback coefficient matrix; the matrices
and are the connection weight matrix and the de-
layed connection weight matrix, respectively; denotes
the neuron activation function, which satisfies

and the constant vector is the exogenous
input; and denotes the time-varying delay. In practice,
there is certain probability of time delay to take values in
different intervals. That is, takes values in and

according to probability. Thus, is a random

variable which takes values in the intervals and
. Here, the probability distribution of is assumed

to be

To give a more precise and reasonable description of the system,
we introduce a stochastic variable by

.

Then, it can be derived that

and

(2)

In terms of the definition of , the system in (1) can be
rewritten as

(3)

The positive integers and denote the time-varying
delay values satisfying

where , , , and are known integers satisfying
. Here, is a given integer which

is used to describe the delay bound. Similar characterization of
the delay has appeared in [20].

Assumption 1: The activation function
is continuous and bounded. Moreover, there

exist constants and such that

for all .
Remark 1: The constants and in Assumption 1 are

allowed to be positive, negative, or zero. Hence, the resulting
activation functions could be nonmonotonic, and are more gen-
eral than the usual sigmoid functions and the commonly used
Lipschitz conditions. Note that with such a milder assumption,
the analysis methods developed in [12] and [13] cannot be ap-
plied directly, and a new approach will have to be developed.

Remark 2: The delayed discrete-time RNN system in (1)
has been considered in [15] where is assumed to have
the upper and lower bounds, that is, .
In this paper, we assume certain probability distribu-
tion of the time delay. It is worth mentioning that when

, which means , (3) reduces to
,
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which is exactly the system treated in [15]. In this sense, the
model considered in this paper is more general than those in
the literature.

Remark 3: A more general system model may include dif-
ferent delay in each component of the state vector. In this case,
the system model can be described as follows:

This model can further be transformed into

where denotes the matrix derived from the transformation.
The method we employed in our paper is applicable to this gen-
eral case, and the stability analysis can be conducted similarly.
Our choice of the system gives a good lucidity of the exposition.

The following lemma will be used in subsequent derivations.
Lemma 1: Under Assumption 1, there exists an equilibrium

point of the system in (3).
Proof: Since the activation functions are bounded,

there exists a constant such that ,
. It follows from that is in-

vertible. We denote with
, and define

the map : by

where is a stochastic parameter taking values in . Obvi-
ously, is a continuous map, and it follows that

Therefore, maps into itself. By Brouwer’s fixed point
theorem, it can be inferred that there exists a fixed point of

, satisfying

which is equivalent to

Lemma 1 means that there exists an equilibrium point of the
system in (3). Then, we denote as the
equilibrium point of the system in (3). For convenience, we shift
the equilibrium to the origin by letting

and the system in (3) can be transformed into

(4)

where is the state vector of the transformed system. Obvi-
ously, the stability of the system in (4) can ensure the stability
of the system in (3).

Since the system in (4) involves a stochastic parameter, to
investigate its stability, we need the following definition.

Definition 1: The system in (4) is said to be mean square
stable (MSS) if there exists a scalar such that

where the set of vectors gives
the initial state of the system in (4).

Remark 4: Mean square stability is one type of stability cri-
teria which applies to the systems with stochastic properties. A
system that is MSS in the sense of Definition 1 will have the
expectation of system state tend to zero as time tends to in-
finity for arbitrary initial state (that is, for arbitrary ,

). This stability criterion is of great prac-
tical value since many optimal control problems use the squared
norm in their calculations, and this motivates us to investigate
the condition for mean square stability in this paper.

III. MAIN RESULTS

In this section, we will derive some criteria which can guar-
antee (4) is MSS. First, we rewrite (4) as

(5)

To facilitate our presentation, in the following, we denote

To develop the mean square stability, we notice that the differ-
ence of the expectation of the constructed Lyapunov function

can be upper bounded
by a quadratic form involving a vector containing the terms in

. In this way, the stability condition can be inferred by the
negative definiteness of the matrix associated with the quadratic
form which, by applying Schur complement, can be converted
into an LMI of some matrix variables. Since LMIs can be nu-
merically solved conveniently, this transformation of the sta-
bility condition to an LMI form facilitates the check of stability.
We are in a position to give the main result.

Theorem 1: Under Assumption 1, the system in (4) is MSS
if there exist matrices , , , , and
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, diagonal matrices , , and , and
matrices and such that the following LMI holds:

(6)

where

and

Proof: Construct a Lyapunov function as

(7)

where

Here, is the common term in the Lyapunov function. The
first parts of and are common terms in the Lya-
punov function constructed for delayed systems. The second
parts of and are introduced for the systems with
time-varying delay. is constructed so that the derived
condition is delay dependent. Denoting

, it follows:

Therefore, based on (2) and (5), it can be shown that

(8)

and
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(9)

and

(10)

and

(11)

Let

Then, it follows from (8)–(11) that

(12)

By introducing free-weighting matrices which are used to elim-
inate the undesirable terms in (12), it can be easily seen that (12)
is equivalent to

(13)
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It is obvious that for satisfying

we use certain weight matrix as coefficients for and to
make the term including and agree in dimension, and
also to eliminate certain terms in the future derivation. Adding

inequalities together, we obtain

Since , we further obtain

which is equivalent to

(14)

and similarly, we can obtain

(15)

Substituting (14) and (15) into (13) and taking expectation on
both sides of (13), we obtain

From Assumption 1, we have

which are equivalent to

where and denotes the unit column vector
having one element on its th row and zeros elsewhere. De-
noting positive diagonal matrices ,

, and , we
have the equation shown at the bottom of the next page.

Applying Schur complement to (6), we obtain that there exists
a scalar such that

Therefore

(16)

From (16), it can be easily computed that

(17)

From the definition of , it can be shown that a scalar
can be found such that

(18)

Combining (17) and (18), we finally conclude that

and the proof is completed.
Remark 5: To facilitate understanding, we summarize the re-

spective roles of the matrices involved in matrix in Theorem
1. Matrix involves matrices , , , , , , , ,

, , , and . Matrices , , , , and are used to
construct the Lyapunov function. Matrices and are used
to characterize the bounds of the condition in Assumption 1, and
they reflect the properties of the activation functions. Matrices

, , and are the weights for the group of inequalities which
are derived from Assumption 1. They are chosen so that the in-
equalities derived from Assumption 1 can be combined with the
inequalities derived from the Lyapunov function. and are
free-weighting matrices. They are introduced to eliminate the
terms and
in (11). The introduction of the free-weighting matrices leads
to a less conservative result.
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As pointed out in Section I, when , that is, there
is only one delay interval with , system (4) is
equivalent to

(19)

In this case, takes values in the interval . Based
on Theorem 1, the following corollary is obtained.

Corollary 1: The system in (19) is asymptotically stable, if
there exist matrices , , and , diagonal ma-
trices and , and matrix such that the following
LMI holds:

(20)

where

and

Remark 6: Our proposed criteria are less conservative than
previous results for the reason that the theorems in the literature

can be obtained by selecting special structures for the matrix
variables in Corollary 1. Let us select the following structures
in Corollary 1:

with being a sufficiently small positive constant. Then, condi-
tion (20) reduces to

where

which is equivalent to [15, Th. 1]. Hence, Corollary 1 is less
conservative than [15, Th. 1].

Remark 7: In our main result, the stability analysis problems
are dealt with for a general class of discrete-time neural net-
works with time-varying delays. An LMI-based sufficient con-
dition is derived for the mean square stability of the neural net-
works under consideration. The mean square stability can be
checked by the solvability of a set of LMIs, which can be done
by resorting to Matlab LMI toolbox.

Remark 8: It is noticed that in Theorem 1 both the variation
range of the time delay and the probability of the time delay
are considered while in previous research (see [14], [15], and
[17]) only the variation range of the time delay was investigated.
Therefore, Theorem 1 is less conservative than the criteria de-
rived in the literature.
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TABLE I
COMPUTED MAXIMUM DELAY BOUND � AND FEASIBLE

INTERVALS FOR DIFFERENT �

IV. ILLUSTRATIVE EXAMPLE

Consider the delayed discrete-time RNN system with the fol-
lowing parameters:

(21)

Take the activation functions as follows:

Now assuming that the lower bound of is 4, according to
Corollary 1, we obtain that the maximum allowable delay bound
is 24 using Matlab LMI toolbox. However, there is no feasible
solutions for this system using [15, Th. 1] when and

. This result demonstrates that our theorem is less
conservative than [15, Th. 1]. Also, if the variation probability
of is known, the corresponding upper bound for the time
delay can be solved by using Theorem 1. Here, we assume

, , and and we intend to find the upper bound
so that the system is MSS. The maximum allowable values

of are given in Table I when the values of are 0.3, 0.6, and
0.9, respectively. The feasible solutions for are given
as follows:

TABLE II
FEASIBLE INTERVALS FOR DIFFERENT �

Fig. 1. Simulation of the system in (21) for � � ��� and � � � � �.

Fig. 2. Simulation of the system in (21) for � � ��� and � � � � �.

It is illustrated in Table I that, when the variation probability
of the delay is known, the maximum allowable delay bound may
be increased. It is worth mentioning that our theorem is not lim-
ited to the special case when . It allows a possible
gap between the two intervals, which means . To
show this, we assume , and the feasible intervals
are given in Table II.

Fig. 1 is the simulation figure of the state response in (21) for
when . The initial condition of the system

is , where and . Fig. 2
is for when . The initial condition of
the system is , where and
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. It is shown that all the state variables converge to their
equilibrium point.

V. CONCLUSION

By defining a new Lyapunov function and by exploiting
the probability distribution of the time-varying delay, we have
obtained new results for the stability analysis of discrete-time
RNNs with delay. The merit of the proposed results in this paper
is that it has taken into consideration the probability distribu-
tion of the time delay. We have drawn a comparison with the
previous result and demonstrated that when the information of
distribution probability of time delay is available, the maximum
allowable bound of the delay can be extended compared to the
case when only the range of variation of the delay is known.
Another advantage of our result is that it can deal with the case
when a gap exists between the delay intervals. One important
future research direction is to generalize our stability conditions
to the case when there are more than two delay intervals.
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