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M ethods

Consider a cascading Poisson process with paramgtergp, {}. The inter-event time distribu-

tion is given by

- & T=0

p<7—‘0> - { (1_§)p6—p7— >0 (Sl)

and the probability of observing;, events during a time interval of duratidp can be written as

o e PT+ Ny, =0
p(Nr,|0) = {e_pT*QOVT* —1;0,T.) Ny, >0 (52)
where the polynomial
NN\ € [(1 = )pT )N
QN:0.T) = (-1 Y <n>€ [(1(ni)/;>'] (S3)
n=0 ’

accounts for the various ways that tNe= N, — 1 events during the time interval of durati@n

time units can be grouped into cascades of activity. Theareddikelihood function is given by

T/T,—1

£O) = [] Pr(Ne.l6), (S4)

k=0
whereT is the duration of the time segmefit, = 1 day, andNy, ; is the number of events that

occur on dayk. The derivation for these quantities can be found in Sec. S4.



S1 Preprocessing the data

The empirical data consists of letters sent or received byriers, performers, politicians, and
scientists §1,2,S3,$4, 5, 6,57, B, 0, S10,S11,S12,S13). In our study, we focused on the letters
that these individuals sent. There are a number of issuégkétdata that mandate preprocessing.
For example, according to the records, almost® of Ernest Hemingway's letters have either
unspecified or ambiguous authorship dates (eAug”* 1945”7, “1946/ 47", “Early 1950”,
“1960?” or“Fal | 1960") (S12). We remove all letters in the data for which the precise date
unknown.

Additionally, the letter correspondence records are agges from a variety of sources. Some
of the letters are carbon copies that were saved by the atigirthor. Other letters are collected
from the original recipients of the letters and returnedn® database. Having a complete letter
correspondence record for a particular individual, thaesf either relies oni) an individual to
retain a copy of each letterii) all recipients of an individual’s letters to retain a copiytloeir
letters, or (i) same fortuitous combination of)@nd {i). We have confirmed that our results are
robust with regard to these anomalies in the data collectiethod (Sec. S2).

In the case of Albert Einstein, there is one more challengeermal letters appear to be du-
plicates arising from the fact that the data is collectednfrdifferent sources. To illustrate the
difficulty in identifying duplicate entries, consider thed letters sent on September 25, 1907 to
Joseph Stark and Johannes Stark, both in Griefswald, Ggrnfartording to the database, the
letter to Joseph Stark is a typed transcript of a letter (teh®TRL in the database) and the letter
to Johannes Stark is a xerox copy of a handwritten and sigetet (ALSX). While it is conceiv-
able that Einstein sent a letter to Joseph Stark and anetierio Nobel Laureate Johannes Stark,
we think it is more likely that the letter addressed to Jos8fatk is actually a draft of the same
letter addressed to Johannes Stark, of which the databasexgaox copy. As this example illus-
trates, we can not simply use the designation ALSX or TTRLdtedt duplicate letters, we must
also use their names. To overcome this difficulty we use amjmprogramming text matching

algorithm §14) to semi-automatically detect if letters are duplicatbst is, exceptionally differ-
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ent recipients are automatically detected and we manuatite recipients who have marginally
similar names. This procedure excludes another 651 |lettetten by Einstein.
In summary, we exclude from our analysis letters with uragertlates and duplicate letters.

The results of our preprocessing procedure are summanzeoli S1.



S2 Robustnessof resultswith regard to data collection method

In e-mail correspondence, it is relatively trivial to caflecorrespondence activity; e-mail corre-
spondence can easily be extracted from the log files of anikesar@er. Collecting letter corre-
spondence data is not so simple. Unlike e-mail servers, distapservice does not archive all
written communications, so it is not possible to simply quigre postal service for all correspon-
dence written by a particular individual. Instead, colilegtcorrespondence records relies on the
letter authors or recipients to save letters and then refem to a centralized database. We exam-
ine two possible scenarios in which the limitations of thasedcollection method could potentially
distort our results.

In the first scenario, only a fraction of the total volume dfdes originally sent by an individual
are actually saved and compiled in a centralized databdsis.will almost certainly be an issue
for almost every individual, since it is highly unlikely thevery letter is saved by either the author
or the recipient. To test whether such an artifact of the datkection method might affect our
conclusions about the validity of the cascading Poissonge®, we randomly select a fraction of
the letters that Schoenberg sent. Although the resultingnpater estimates predictably decrease
as fewer and fewer letters are retained during our analf#gys §1), our Monte Carlo hypothesis
testing results confirm that this artifact of data collestaoes not affect our conclusion that a
cascading Poisson process is consistent with the empdatal (Tbl. S2). Importantly, although
we have simulated the loss rate to be uniform over Schoeisddéegime, a non-uniform loss rate
will not affect our results provided that the loss rate dg®ach time segment is approximately the
same.

In the second scenario, only certain individuals might datters and return them to the cen-
tralized database. In the most extreme case, only one thdiyjiperhaps a close friend or family
member, might save their correspondence. To test whetlerasuartifact of the data collection
method might affect our conclusions about the validity & tdascading Poisson process, we con-
sider Charles Darwin’s correspondence to his close fridmelwell-known botanist J.D. Hooker.

Darwin sent Hooker 797 letters between 1844 and 1882. A#igmenting this time series to
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account for non-stationarities in the communication froaniin to Hooker, we obtain 31 time
segments. Monte Carlo hypothesis testing rejects 1 of thin8d segments, which is within the
95% confidence interval), 4] of the corresponding binomial model, indicating that a edétg
Poisson process is still consistent with the data in spite@bias in the sampling of Darwin’s cor-
respondence. Obviously, the resulting parameter estifiat®arwin’s correspondence to Hooker
are significantly different than the parameter estimatesifthe correspondence to all recipients
(Fig. S2). In particular, we note that cascades of activéigse to be important since it is highly
unlikely that someone would send more than one letter to dimigual in the same day.

These results demonstrate that these artifacts of lettezsgmondence data collection do not ob-
fuscate our primary claim that a cascading Poisson prosesmisistent with the letter correspon-
dence patterns of the individuals under consideratiorarctdgss of whether the correspondence
records are sampled uniformly at random or whether the spomdence records are sampled non-

uniformly.



S3 Other candidate models

We have conducted the same Monte Carlo hypothesis testinggure for three other candidate
models, the results of which are summarized in Tbl. S3 and $3g In the limit that cascades
of activity and weekly periodicities are irrelevant, a hayreoeous Poisson process may be a rea-
sonable candidate model for letter correspondence. Thdehi@as a single parameter—the rate
of sending letterg,—that is readily estimated using maximum likelihood (Set) &uring each
stationary time segmenthis model isrejected for 7 individuals.

In the limit that cascades of activity are irrelevant but igeycles of activity are important, a
non-homogeneous Poisson process may be a reasonableatamdadiel for letter correspondence.
Here, we assume that the non-homogeneous Poisson progessoidic on the weekly scale, so
this model has seven parameters—the rate of sending lpttedsiring each day of the week—
that are readily estimated using maximum likelihood fortestationary time segmenthis model
isrgected for 6 individuals.

If, as in the case of e-mail correspondence, cascades oftaand weekly cycles are im-
portant, a cascading non-homogeneous Poisson processenaasebsonable candidate model for
letter correspondence. Here, we assume that the cascaulinigomogeneous Poisson process is
periodic on the weekly scale, so this model has eight paensieithe rate of sending lettpy;,
during each day of the weelas well as the probability; of sending additional letters during cas-
cades of activity—that are readily estimated using maxinliuglinood for each stationary time
segment. Like the cascading Poisson process presentee mahuscriptthis model can not be
rejected for any individual, however the increased complexity of the cascading nonelgemeous
Poisson process is unwarranted since the simpler, twoyes model is equally descriptive of
letter correspondence.

These results illustrate a few interesting features of risotthat are necessary for describing
letter correspondence patterns. First, based on the suot#ise models that include cascading
versus those that do not, we infer that cascades of actikgtyaa essential element for describing

letter correspondence. Importantly, cascades of actang¢yalso essential for describing e-mail
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correspondence patterralb). Second, since the models that include weekly periodhiave no
greater explanatory power than the models that do not ieclueekly periodicities, we conclude
that weekly patterns of activity are not an essential eldrf@rdescribing letter correspondence.
This suggests that letter correspondence does not appémvéothe same dependence on the

weekly work cycle as e-mail correspondence.



A  Analytical results

Before we derive the likelihood function for a cascadingsBon process where the data are cen-
sored, it is illustrative to first pedagogically demonstrabw to derive the likelihood function for

a homogeneous Poisson process in the absence and preseensafng and then for a cascading
Poisson process in the absence and presence of censorimgir derivations of the parameter
estimate® for these models, we consider a time sefigst,, . .., ty} of N ordered events occur-
ring within time segmenj0, 7'). For clarity, we omit the index which was used throughout the

manuscript to denote the paramet@rsluring time segment

Homogeneous Poisson process. A homogeneous Poisson process with paramelers {p}
predicts that, during an infinitesimal time window of duoati/t, an event either occurs (denoted
by e) at timet with probability Pr,(t) = pdt or does not occur (denoted by at timet with
probabilityPr.(t) = (1 — pdt). Note that for a homogeneous Poisson process the outcoimeeat t
t is independent of the outcome at tihe dt. Given an observed sequence/dfordered events
0<t <ty <--- <ty < T duringtime segmenb, T, the probability that this sequence was

generated from a homogeneous Poisson process is given by

tl/dt—l tg/dt—l

Pr(ty,ta, ... ty]0) = | J[ Pro(kdt)| Pro(tr) | [ Pro(kdt)| Pro(ts)---

k=0/dt k=t /dt+1
T/dt—1
Pro(ty) | J]  Pro(kdt)
k=tn /dt+1

— (1 _ pdt)(tl_o)/dtpdt(l _ pdt)(tz—tl)/dt—lpdt o

pdt(1 — pdt)T—tw)/dt=1

Note that

At/dt
lim (1 — pdt)At/dt—l = lim w
di—0 dt—0 (1 — pdt)
e—Pdt(At/dt)

1
—pAt

=€



Using this result, we obtain the likelihood function for anmageneous Poisson process in the limit

thatdt — 0
E(O) = Pr(tl,tg, Ce ,tN\O)
= e_p(tl_O)pdte_p(tz_“)pdt~ . ~pdt6_p(T_tN),
= (pdt)Ne T, (S5)

By taking the derivative ofog £(60) with respect to the ratg, it is straightforward to see that the
likelihood function is optimized with the best-estimatéera = N /T for a homogeneous Poisson
process.

When the data are interval censored, as is the case of lett@spondence, our approach to
estimating the parameters changes to reflect our uncertainhe precise timing of events. For
instance, suppose that our data have a resolutidh ef 1 day and that, on a particular day, we
observe thatv, events occurred. Assuming that our data are generated byagemeous Poisson
process, the probability thaf;, events occurred during a time interval of duratin= 1 day is
given by marginalizing the IikeIihooBr(tl, to, oty |0) over all possible configurations of an

ordered set of events< t; <t, <--- <ty, < T, occurring during this interval:

T, Tk Ty
Pr(Nr,|0) = // / PN e Tty - - digdt
0 & tNg, —1
T Ty T
— pNT* G_PT* // P / dtNT* « .. dtzdtl
0t INp, —1
_ (pT)NrerT (S6)
Ne!

resulting in the well-known Poisson distribution. Thenggiimate the parameters of a homoge-
neous Poisson process over the entire time segfeni, we can account for the interval censor-
ing during parameter estimation by writing down the probgof observing/Ny, , events on each

dayk as
T/T.—1

LO)= [ Pr(Nr.l6) (S7)

k=0
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whereT’ /T, is the number of days during time segmgnt’). By taking the derivative diog £(0)
with respect to the ratg, we again find that the best-estimate rate N/7T'. Although this result
is exactly the same for a homogeneous Poisson process lesgaad whether the data is interval
censored or not, the important distinction is that maximikalihood parameter estimation in the
interval censored case explicitly dependskuiNy, |#). This fact is important to consider when

deriving the censored likelihood function for the cascgdioisson process.

Cascading Poisson process. Recall that in our cascading Poisson process, cascadeiafsev
are initiated by a homogeneous Poisson process withprated that each additional event in the
cascade occurs with probabiligys> pdt. A cascading Poisson process with paramedets{p, ¢}
therefore predicts that, during an infinitesimal time wiwdaf durationdt, an event either occurs
(denoted bye) or does not occur (denoted by depending on whether an event occurred at time
t — dt: if an event did not occur at time— dt, then an event occurs at timewith probability
Pr..(t) = pdt or does not occur with probabilityr..(t) = (1 — pdt); if an event did occur at
time ¢t — dt, then an event occurs at timewith probability Pr..(t) = £ or does not occur with
probability Pr..(t) = (1 — £). Then, given a sequence &f ordered events, the probability that

this sequence was generated from a cascading Poisson phaesy the time segmefit, 7') is
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given by

tl/dt 1

Pr(tl,tg,. . tN|0 [ H Pl"oo k‘dt)

k=0/dt

Pro.(tl)

Oty +dt.tsPlee (t2) +

(1 — 6t1+dt,t2) PI'.o (tl + dt)

to/dt—1
11 Proo(kdt)] Pro.(tg)} .

k=t /dt+2

{5tN1 4ty Plee(tn) +

tn/dt—1

H Proo(k‘dt)] Pro.(tN)}

k=tn_1/dt+2

(1 — 6tN71+dt7tN) Proo(ty—1 + dt)

Pl".o tN + dt

T/dt—1
1T Proo(kdt)]

k=ty /dt+2

Pr(ty,ta,...,tx|0) = [(1 — pdt)(tl_o)/dt] pdt
{5t1+dt,t2§+
(1 = O taes) (1 —§) [(1 - Pdt)(tQ_tl)/dt_zl Pdt} o
{5tN1+dt,tN§+
(1= 0ep ytarty) (1 =) [(1 — Pdt)(tN_tNl)/dt_2] pdt}

(1-¢) [(1 — pdt) T C“] :
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whered,, a4, 1S Kronecker’s delta. In the limit thaft — 0, this simplifies to the likelihood

function

N-—1

ﬁ( —e prdt { H 5tn+dt,tn+1€ + (1 — 6tn+dt,tn+1)(1 — f)pdﬂ } (1 — 6) (88)
n=1

= e MM (1= pdt] ", (S9)

where M is the number of times thaf, ., — ¢, = dt. By taking the derivative ofog £(6) with
respect to each of the parameters and setting the resuli tecgero, it is straightforward to see
that the uncensored likelihood function for a cascading$tm process is optimized when the
best-estimate parameters are specified by /N andp = (N — M)/T.

As in the case of the homogeneous Poisson process, whentthardanterval censored we
must instead estimate the parameters from the censordéitidigd, Eq. (S7), which depends on the
probability Pr( N7, |@) of observingNy, events during a time window df, = 1 day. Assuming
that our data are generated by a cascading Poisson prBcéds, |0) is obtained by marginalizing
Pr(tl, to, .o tng, \0) over all possible configurations of an ordered set of evertaming during
this interval. If there are no eventd/’f, = 0), then in the limit thailt — 0 we are trivially left

with
T, /dt—1
Pr(Ng, =018) =[] Proo(kdt)
k=0/dt
_ (1 _ pdt)T*/dt

— T (S10)

and if there are some eventS{ > 0), we have from Eq. (S8)

Ty Ty NT*—l
Pr(Nr,|0) — / / / e—PT*pdtl{ 11 [5tn+dt,tn+1£+<1—@n%,ml)(l—£>pdtn+1}}<1—£>

tNT . n=1
Ty Ty NT*_2
_ o / / / >pdt1{ II [5tn+dt,tn+1£+<1—6tn+dt,tn+l><1—£>pdtn+1}}
n=1
tNp, —2

T

/ |:5tNT*71+dt7tNT*£ + (1 = Oy, ittty V(1 — E)pding,

tNp, —1
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T* T* T* NT*_2
Pr(N7.|0) = ¢ ™ / / / <1—5>pdt1{ 11 [%dt,tnﬂsm—6tn+dt,w><1—f)pdth}}

n=1

tNp, —1
T* T* T* NT*_2

—e [ [ ] <1—£>pdt1{ 11 [5tn+dt,tm£+<1—@M,W)(l—£>pdtn+1}}
0 t tNp, —2 n=1

€+ (1= &)p(Th — try, —1)]

= e " (1 = &)pT, N:: (NT*n_ 1) ¢ld _(fl)i C%]TT*_M. (S11)
Taking Egs. (S10-S11) together, we see that
—pT% —
Pr(N.|6) = {Z—ZT*@WT* vem) Moo (512
where the polynomial
(V)€ - e
ON:0.T) = (1-8pT. ) (n) ~ (513)

n=0
accounts for the various ways that the= N7, — 1 events during the time segment of duration
T, time units can be grouped into cascades of activity. Estimgdhe parameters of the cascad-
ing Poisson process from the censored likelihood funcscemialytically intractable. Instead, we
estimate the parameters of the cascading Poisson processmrically maximizing the corre-

sponding censored likelihood function, Eq. (S7), for thecealing Poisson process.
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S5 Monte Carlo hypothesistesting

Given a modeM with parameter®,, we use Monte Carlo hypothesis testing to determine whether
the model can be rejected during each time segiffent; ) of durationAT; = T;,, — T; (S16,
S15). The Monte Carlo hypothesis testing procedure is as falofirst, we calculate the best-
estimate paramete% for model M using maximum likelihood estimation. Second, we compute
the test statisticS (detailed below) between the modet (8;) and the empirical dat®; during
that time segmenf;, ;. ;). We next generate a synthetic dataBefrom model M (5,-) over the
same time segmefit;, 7;. ;) using the best-estimate parame@r,sand we treat the synthetic data
exactly the same as we treated the empirical data: first, Weelate the best-estimate parameters
53 for model M from maximum likelihood estimation; second, we computettdst statisticS,
between the modeVl(@s) and the synthetic dat®,. We generate synthetic data sétsand their
corresponding synthetic test statistig:suntil we accumulate an ensemble of 10,000 Monte Carlo
test statistic§ S,}. Finally, we calculate a two-tailegrvalue with a precision of0~* by com-
putingPr(|S; — (Ss)| > |S — (Ss)|) where(S;) is a suitably chosen centroid of the distribution of
synthetic test-statistics. As is customary in hypothessting, we reject the modél during time
segmentT;, T;,,) if the p-value is less than a threshold value. We selegtvalue threshold of
0.05; that is, if less than 5% of the synthetic data sets éxidviations in the test statistic that are
larger than those observed empirically, the model is regefar that time segmefit;, 7} ).

Testing a model over a particular time segm@it7; . ;) introduces two challenges to hypoth-
esis testing. First, an important consideration in MontedChypothesis testing is that we must
use a distribution for which both the empirical and synthefita sets have the same number of
observations. Since our synthetic data is generated dargmecified time segmefit;, 7;,,), we
can not use the inter-event time distribution because eauetic time series is not guaranteed
to have the same number of events as the empirical time sarggsad, we assess the consistency
of our model with the empirical data by comparing the disttidkn Pr( Nz, |@) of the number of
eventsNy, during a time period of a specified duratidh We choose a duration i, = 1 week

as this seems to be a reasonable time scale for human a¢&¥hy, so both the synthetic and
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empirical distribution®r (N7, |@) haveAT; /T, observations. We have confirmed that our results
are insensitive to the specific choice’fprovided thatl, < AT;.

Second, since we use the distributiBrn( N1, |@) of the number of eventd/;, during a time
period of a duratiorf, = 1 week—a discrete distribution—it is important to use a téstistic
S that is appropriate for testing discrete distributions. W¥e they? test statistic. An important
consideration in using thg? test statistic is that one must bin the observations andotege®b-
servations according to modgéi (@) in a meaningful way. We bifrr(Nr, |@) such that each bin
has at least one expected observation according to m‘doj@t), which prevents observations that

are exceptionally rare from dominating our statistical saxl skewing our results.
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Fig. S1: Cascading Poisson process best-estimate pararflete {p;, ¢;} during each time seg-
ment for Arnold Schoenberg when only a fraction of the orgjietters are returned to the central-
ized database. We include here the parameter estimatdsefariten 100%, 60%, and 20% of all
letters are returned to the centralized database.
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Charles Darwin
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Fig. S2: Cascading Poisson process best-estimate paraflete {p;, ¢;} during each time seg-
ment for Charles Darwin when we consider all of his corresiemee (black line) or only his
correspondence to J.D. Hooker (red line).
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Fig. S3: Cumulative distribution gf-values from the Monte Carlo hypothesis tests for all 1@lett
correspondents during each time segm@htT7;.,) (black line) for each model under consid-
eration: a homogeneous Poisson process (PP), a non-hoemgeRoisson process (NHPP), a
cascading Poisson process (CPP), and a cascading non-eoeos Poisson process (CNHPP).
We reject a model during a particular time segmé&ht7;, ) if the p-value is less than 0.05 (grey
shaded region). Note that if the data were drawn from one efe¢hmodels, we would expect a
uniform distribution ofp-values (dashed red line). Since this is very nearly the ftagbe cascad-
ing Poisson process and the cascading non-homogeneogs®pi®cess, this provides additional
evidence that these models are consistent with letter gporelence patterns.

18



Rate, p, [d 1]

Rate, p, [d'l] Rate, p, [d'l] Rate, p, [d'l]

Rate, p, [d'l]

0.8

James H. Leigh Hunt
T T

[L

1

! {17 il

— 0.6

— 0.4

— 0.2

T 0.0

1860
Year

Anna Brownell Jameson

1800

1820

1840

1860

0.8

; *

— 0.6

— 0.4

1840

1860
Year

Marcel Proust

1840

0.0
1860

0.8

| B ——

— 0.6

— 0.4

— 0.2

0.0

1880

1900

1920
Year
H. G. Wells

1880

1900

1920

0.8

| S— Y

— 0.6

— 0.4

— 0.2

0.0

1900

1920

1940
Year
Carl Sandburg

1900

1920

1940

0.8

— 0.6

— 0.4

— 0.2

1900

1920

1940

1960 1900
Year

19

1920

1940

1960

0.0

2 ‘Aupgeqoud

2 ‘Aupgeqoud

2 ‘Alpgeqoud

2 ‘Aupgeqoud

2 ‘Aupgeqoud



Rate, p, [d 1]

Rate, p, [d'l] Rate, p, [d'l] Rate, p, [d'l]

Rate, p, [d'l]

T T T T T T
10° ' I
10'F -
i a Al ﬂrHU\'Lq
10° L0 . | . | . | I — J‘F] . |
1900 1920 1940 1960 1900 1920 1940 1960
Year
Henry Irving
0 T T I I T T
10 3 L
10'F -
107 g L
10° 0 . | . | i | 1 — [ ﬂﬂn.ﬂr\J-LIrlh r
1860 1880 1900 1860 1880 1900
Year
Arnold Schoenberg
0 T T T T T
10 E L
10'F -
107 g L
10-3 i | 1 | 1 i n | 1 | 1
1900 1920 1940 1900 1920 1940
Year
Stan Laurel
0 T T T T
10 E L
10»1 E_ -
107 g L
10-3 i | | | | 1 ,_l | | ﬂ-"rd_l_‘_
1920 1940 1960 1920 1940 1960
Year
Francis Bacon
0 T T I I T T
10 3 L
10»1 E_ -
107 g L
10-3 i T | 1 | | 1 Ll | 1 |_L|J-I_ i
1580 1600 1620 1580 1600 1620

Ernest Hemingway

Year

20

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

— 0.2

2 ‘Aupgeqoud

2 ‘Aupgeqoud

2 ‘Alpgeqoud

2 ‘Aupgeqoud

2 ‘Aupgeqoud



Rate, p, [dY] Rate, p, [dY] Rate, p, [dY] Rate, p. [d 4

Rate, p, [d'l]

Fredrich Engels

0.8

T T T T T T
10" L ' i
E — — 0.6
10t - T
E — — 0.4
10_2 ?W - 14,
Y . | . | . N i N s [ Lo g,
1840 1860 1880 1900 1840 1860 1880 1900
Year
Robert E. Lee
0 T T I T T 08
10°F L ]
E — —0.6
10»1 = L i
F — — 0.4
10° - — 0.2
10-3 L 1 | 1 i | 1 ,_\—|—| |-L,_L’J|_ i 00
1840 1860 1880 1840 1860 1880
Year
Karl Marx
0 T T T 08
10°F L ]
E — —0.6
10t - T
E = — 04
10° - — 0.2
10° 0 | . | . | i | Joo
1840 1860 1880 1840 1860 1880
Year
Charles Darwin
0 T T T I T T T 08
10°F L ]
E — — 0.6
10t - T
F — — 0.4
10° - - — 0.2
) | . | ; | = ﬁmﬂnﬂrnlﬂﬂ'iﬂr Joo
1820 1840 1860 1880 1820 1840 1860 1880
Year
Sigmund Freud
0 T T I T T T 08
10" F L ]
E — — 0.6
10" E - T
F = — 0.4
i R T W
JY . | . | . I o [ I . | oo
1880 1900 1920 1940 1880 1900 1920 1940
Year

21

2 ‘Aupgeqoud

2 ‘Aupgeqoud

2 ‘Alpgeqoud

2 ‘Aupgeqoud

2 ‘Aupgeqoud



Albert Einstein
T T T I T T T 08

(O

FI|'_| 10 ; | | g
o : - i
o 0'F i i 8
o _ —Ho04 T
U [ s ] =
T 0F - —Ho2 <
o Y . | . | . | I e . | L g o

1900 1920 1940 1960 1900 1920 1940 1960

Year
Fig. S4: Parameter estimates for a cascading Poisson prémeall 16 writers, performers,
politicians, and scientists under consideration. We esténthe paramete®;, = {p;, ¢} during
each time segmeft;, 7; ) for a cascading Poisson process by maximum likelihood. Gneged
regions denote time segments during which a cascadingdPqisecess is rejected by Monte Carlo
hypothesis testing.
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Number of sent letters

Before After Number of Letters per

Individual (Reference) processing processing recipients year
Francis Bacon%l) 673 443 174 8.36
James H. Leigh Hunt) 604 408 219 5.83
Charles Darwin £3) 7,595 6,785 661 111
Anna Brownell Jamesor$f) 302 119 58 4.25
Friedrich Engels$5) 413 369 70 5.86
Robert E. Lee ) 285 282 213 7.83
Karl Marx (S5) 491 469 72 10.2
Henry Irving (S7) 1,621 1,205 15 22.3
Sigmund Freud$8) 3,162 3,130 168 46.0
Marcel Proust$9) 670 668 135 15.2
H. G. Wells &) 1,088 422 1,041 8.12
Albert Einstein §10) 14,512 10,319 5,207 172
Carl Sandburg11) 2,971 1,894 2,771 27.4
Arnold Schoenberg) 7,925 6,899 1,848 138
Ernest Hemingway$12) 2,363 1,934 532 36.5
Stan Laurel $13) 693 685 157 16.7

Tbl. S1: Summary of the letter correspondence records gl éindividuals under consideration.
For each individual, we note the total number of sent lettefere and after processing, the number
of recipients and the average number of letters per year.
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Fraction Number of Number of
of letters segments 95% Cl rejections

1.0 47 [0, 5] 3
0.9 47 [0, 5] 3
0.8 47 [0, 5] 3
0.7 45 [0, 5] 1
0.6 45 [0, 5] 2
0.5 44 [0, 5] 5
0.4 44 [0, 5] 1
0.3 42 [0, 5] 0
0.2 40 [0, 4] 1
0.1 32 [0, 4] 1

Thl. S2: Summary of the hypothesis testing results for Adrdthoenberg when only a fraction
of the in the centralized data base are considered. As thedineof letters considered decreases,
more time segments must be merged such that at least 10 eeentswithin each time segment.
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Number of Number of rejections

Individual segments 95% ClI PP NHPP CPP CNHPP
Francis Bacon 19 [0, 3] 4 4 3 3
James H. Leigh Hunt 25 [0, 3] 2 3 1 1
Charles Darwin 52 [0, 5] 7 7 4 4
Anna Brownell Jameson 8 [0, 2] 1 1 1 1
Friedrich Engels 24 [0, 3] 1 2 1 2
Robert E. Lee 10 [0, 2] 1 1 0 1
Karl Marx 25 [0, 3] 1 1 1 0
Henry Irving 35 [0, 4] 1 1 0 1
Sigmund Freud 49 [0, 5] 2 2 2 3
Marcel Proust 25 [0, 3] 2 2 2 1
H. G. Wells 16 [0, 2] 3 1 0 0
Albert Einstein 54 [0, 6] 21 22 2 4
Carl Sandburg 37 [0, 4] 15 15 2 2
Arnold Schoenberg A7 [0, 5] 23 23 3 3
Ernest Hemingway 42 [0, 5] 7 7 5 4
Stan Laurel 17 [0, 3] 2 2 1 1

Tbl. S3: Summary of the letter correspondence records apathgsis testing results for the
16 individuals. For each individual, we note the number wfetisegment§l;, 7,11 ) with at least
10 letters per time segment, the 95% confidence interval §@inds on a binomial model with
p = 0.05, and the number of rejections based on our Monte Carlo hgsighesting procedure
for each of the models we test: a homogeneous Poisson pii@iss non-homogeneous Poisson
process (NHPP), a cascading Poisson process (CPP), andaaicgsnon-homogeneous Poisson
process (CNHPP). The number of rejections is highlighteldailal if the model is not consistent
with the data.
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