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Improvement of Fingerprint Retrieval by a
Statistical Classifier

K. C. Leung and C. H. Leung

Abstract—The topics of fingerprint classification, indexing,
and retrieval have been studied extensively in the past decades.
One problem faced by researchers is that in all publicly available
fingerprint databases, only a few fingerprint samples from each
individual are available for training and testing, making it inap-
propriate to use sophisticated statistical methods for recognition.
Hence most of the previous works resorted to simple k-nearest
neighbor (k-NN) classification. However, the k-NN classifier has
the drawbacks of being comparatively slow and less accurate. In
this paper, we tackle this problem by first artificially expanding
the set of training samples using our previously proposed spatial
modeling technique. With the expanded training set, we are then
able to employ a more sophisticated classifier such as the Bayes
classifier for recognition. We apply the proposed method to the
problem of one-to-INV fingerprint identification and retrieval. The
accuracy and speed are evaluated using the benchmarking FVC
2000, FVC 2002, and NIST-4 databases, and satisfactory retrieval
performance is achieved.

Index Terms—Distorted sample, fingerprint identification, fin-
gerprint retrieval, FVC database, NIST-4 database.

I. INTRODUCTION

INGERPRINT is the most commonly used biometric
F property in security, commerce, industrial, civilian, and
forensic applications [1]. Over the years, researchers have
proposed different problem formulations to be tackled by their
systems. Those systems can be clustered into three major
categories, namely, fingerprint classification, verification, and
indexing/retrieval [1].
Fingerprint classification refers to the problem of assigning
a given fingerprint into a predefined class (e.g., Henry class)
based on its global structure and singular points [2]-[4]. A fin-
gerprint verification system authenticates a person’s identity by
comparing the captured fingerprint with his/her own previously
enrolled reference template stored in the database [5], [6]. It
conducts a one-to-one comparison to confirm whether or not the
claim of identity by the individual is true.
In fingerprint indexing/retrieval, the problem of one-to-one
matching is extended to one-to-N matching without requiring
the subject’s claim of identity. Given a fingerprint instance of
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unknown identity, the system searches through the entire data-
base of enrolled templates and returns a list of probable fingers
(identifiers of individual) that the fingerprint may belong to [1].
The fingerprint features chosen to train the system should be
reliable enough to distinguish one finger from all the others in
the database. To this aim, some reported works made use of
the orientation field features while some explored the features
on the complex-filtered images. Minutiae features and other
transformed features were also adopted. Details will be given
in Section II.

One common problem in pattern recognition is the lack of
samples in training a classifier. The curse of dimensionality
often prohibits classifiers to be sufficiently trained, especially
in high dimensional space [7]. Unfortunately, the number of
samples per finger that is available for recognition is rather lim-
ited. Many publications about fingerprint retrieval resorted to
k-nearest neighbor (k-NN) classification, in which & was often
set to 1 and the distance metric was often Euclidean. The Fin-
gerprint Verification Competition (FVC) databases (2000, 2002,
and 2004) contain only eight instances per finger in each set
[8]-[10]. Even worse, the National Institute of Standards and
Technology database 4 (NIST-4) contains only two instances
per finger [11]. This poses a big challenge to researchers trying
to solve the problem of fingerprint retrieval or identification.

We have attempted to tackle the problem of insufficient
training samples by generating additional samples, emulating
the genuine samples that would have been captured by the
fingerprint sensing device during fingerprint enrollment [12].
In our previous work, we have tried to produce more training
samples for the NIST-4 database by three kinds of spatial mod-
eling, namely, translational modeling, rotational modeling, and
distorted sample generation. The distortion model employed
in our work has been constructed based on the publications
on plastic deformation of fingerprint images [13]-[15]. We
have concluded that the Euclidean 1-NN retrieval performance
has been greatly improved with the help of these artificial
samples. At the same time, of course, the classification speed
and required storage have been compromised.

The objective of this research is to build a fingerprint retrieval
system that is accurate and efficient, with the goal to raise the
recognition rate for the first few top rank candidates. This is
achieved by extending our previous work in which additional
training samples are generated by spatial modeling. With a lot
more training samples, it becomes possible to train up a more so-
phisticated classifier instead of the 1-NN classifier. In this work,
we adopt the Bayes classifier with the assumption of Gaussian
statistics.

Extensive simulations with the FVC 2000, FVC 2002, and
NIST-4 databases have confirmed the usefulness of our pro-

1556-6013/$26.00 © 2010 IEEE
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posed approach. The first rank identification error has been re-
duced by about 30% to 60%, compared with 1-NN classifica-
tion without additional samples. In most of the time, our system
offers comparable performance among other published works
with similar goal and database under test. The gain in compu-
tational efficiency of Bayes classification (assuming Gaussian
statistics) is also significant when more samples are available.
In Section II, we present a review on the state-of-the-art re-
trieval methods. Section III summarizes the baseline retrieval
system using the Euclidean 1-NN classification. In Section IV,
we describe our proposal to incorporate Bayes classification on
top of the baseline system to improve the recognition perfor-
mance. In Section V, we present our simulation results and com-
pare them with those in the literature, followed by timing anal-
ysis and discussions. We then conclude our paper in Section VI.

II. LITERATURE REVIEW

An early attempt of fingerprint retrieval based on Euclidean
distance measure was done by Lumini et al. [16]. By using ori-
entation field vectors as features, they concluded that their ap-
proach of retrieval had directed to a much better retrieval perfor-
mance on the NIST-4 database than that of the five-class clas-
sification applications. Cappelli and Lumini [17] then extended
the work by using a structural method called dynamic image
partitioning. They utilized cost functions to quantify the effort
of applying different types of dynamic mask and hence the like-
lihood measurement. Improved retrieval performance was ob-
tained, especially in the range of high penetration rates.

Another work with respectable retrieval performance on the
NIST-4 database based on minutiae triplets was done by Bhanu
and Tan [18]. Later on, Li ef al. [19] and Liu et al. [20] pro-
posed the use of complex filter responses in feature vectors for
accurate retrieval. Jiang et al. [21] and Liu er al. [22] then re-
fined the distance metrics and incorporated an auxiliary fea-
ture (dominant ridge distance) to greatly boost the retrieval per-
formance. Recently, Gyaourova and Ross [23] invented a new
index coding scheme by employing reference images and eval-
vated their system on the same database.

Fingerprint indexing/retrieval was also conducted on the FVC
databases, usually on the FVC 2000 Db2, FVC 2000 Db3, and
FVC 2002 Dbl. Cappelli et al. [24] first reported the retrieval
performance on the FVC 2000 Db2 by orientation field fea-
tures with multidimensional K-L transform. Jiang et al. [21]
achieved improved figures on the same database by their pro-
posed weighted distance measure and auxiliary feature, low-
ering the error rates drastically. Besides them, De Boer et al.
[25] combined various fingerprint features and reported the re-
trieval performance on the FVC 2002 Dbl.

While minutiae features were found to be very helpful in
fingerprint matching, Liang et al. [26], [27] showed that they
had also led to remarkable retrieval performance on the FVC
databases. Recently, Feng and Cai [28] and Shuai et al. [29]
implemented ridge invariant features and scale invariant fea-
ture transformation, respectively, for improving the indexing
performance on the FVC 2002 Dbl. Another work that explic-
itly formulated a fingerprint identification task and analyzed the
first rank recognition accuracy attributes to Sujan and Mulqueen
[30]. However, only 15 fingers were used in their experiment.

Due to the relatively low reliability of fingerprint retrieval,
some previous works put emphasis on the overall retrieval per-
formance at certain penetration rates of the database (e.g., from
5% to 30%), omitting the recognition rates of the top rank candi-
dates [16], [17], [20]-[23]. However, it is more interesting to ex-
amine the identification performance for the first rank candidate
and retrieval performance for low penetration rates of the data-
base, as we believe that the top candidates are the most impor-
tant for any recognition process. We set to improve the retrieval
performance on the FVC 2000 Db2a, FVC 2000 Db3a, FVC
2002 Dbla, and the modified NIST-4 database in this work.

III. BASELINE RETRIEVAL SYSTEM

The proposed system is built on top of a baseline system. The
baseline system is implemented according to the baseline de-
scriptions in our recent work focusing on artificial sample gen-
eration [12], unless otherwise specified in Section II-A-III-C
below. The baseline system is built up from a number of
existing algorithms and techniques. It is composed of the
following major modules:

1) orientation field estimation;

2) foreground/background segmentation;

3) registration point detection;

4) image enhancement;

5) feature extraction;

6) retrieval.

A. Registration Point Detection

Registration point detection is a crucial stage in fingerprint
retrieval. Different algorithms for singular or registration point
detection [2], [31]-[33] have been used in the publications con-
cerning fingerprint retrieval, but we do not know how well each
of the algorithms can achieve. For the ease of comparison in
the future, we simply exploit the widely used and well-tested
PCASYS software to locate a reference point on each finger-
print image. Note that the software was originally designed for
working with five-class classification on the NIST-4 database.
However, the embedded R92 algorithm for registration point
detection that renders satisfactory performance on the NIST-4
database can be singled out for the application to the FVC 2000
and FVC 2002 databases. The work by Senior [34] reported the
performance of the PCASYS software.

B. Feature Extraction

The modified FingerCode is employed as features in our
experiments [2]. We filter an enhanced fingerprint image
by Gabor filters in M (= 12) directions to capture finer de-
tails of the ridge structures. The filtering orientations are
(0,7/12,27/12,...,11x/12). Unlike the original Finger-
Code, we define each feature cell as a square sector of size
v X v instead of the shape of radial sector. For the FVC 2000 and
FVC 2002 databases, the center of feature extraction is exactly
at the position of the registration point found by the PCASYS
software, as opposed to shifting downwards by 40 pixels for
the NIST-4 database [2]. This is due to the fact that many
fingerprint images in the FVC databases have their registration
point located close to the lower border of the frame.



LEUNG AND LEUNG: IMPROVEMENT OF FINGERPRINT RETRIEVAL BY A STATISTICAL CLASSIFIER 61

Original image

Enhanced, normalized and cropped

Fig. 1. Blocks of interest for feature extraction (68 blocks per Gabor-filtered
image) on an image from the FVC 2000 Db2a.

Plane 1 (0*7/12) Plane 2 (1*1/12) Plane 3 (2*1/12)

Plane 4 (3*1/12)

Plane 10 (9*z/12)  Plane 11 (10*/12)

Fig. 2. Example set of Gabor-filtered fingerprint images (using the same fin-
gerprint as in Fig. 1) in 12 directions.

We do not use any weighted feature as described in our pre-
vious work [12] to attenuate features situating far away from
the registration point [21], mainly because the FVC databases
do not provide enough fingers for accurate estimation of the
weights. Variable transformation that takes the power P, of each
feature value is also not used [12]. A graphical illustration for
defining the blocks of interest for feature extraction is shown in
Fig. 1 and an example set of Gabor-filtered images in 12 direc-
tions is given in Fig. 2.

C. Fingerprint Retrieval

We adhere to the Euclidean 1-NN classification approach
in the baseline system implementation. Given a feature
vector X = (11,%2,...,74)7 for a test sample, a feature
vector y = (y1,%2,...,ya4)" for a sample in the database,
and the two binary vectors z, = (zu1,%s2,-..,%z4). and
zy = (241,2y2,- .., 2ya) " defining the validity of the features
(with value of O for background or missing feature, and 1 for

foreground feature), the distance D, of the two fingerprints is
computed by

d
Dzy = d;zzzkzyk(yk —ZL'k)Q. (1)
Y m=1 ZamZym k=g

A commonly used retrieval method in pattern classification is
the fixed order retrieval. Given a target penetration rate and a
test image from an unknown finger, a list of probable fingers
with the list length proportional to the penetration rate is pro-
duced based on the distance of the test sample to different fin-
gers. It is noted that some other fingerprint retrieval methods
with better nominal performance were proposed [21]. In the cur-
rent work, though, we shall stick to the traditional fixed order
retrieval method which is more technically sound and suitable
for identification and retrieval task.

IV. PROPOSED BAYES CLASSIFICATION FOR
FINGERPRINT RETRIEVAL

As mentioned in Section I, fingerprint retrieval systems
mostly adopt the 1-NN classifier due to the fact that there
are only two and eight samples per finger in the NIST-4 and
FVC databases, respectively, which are far from sufficient for
training up more sophisticated classifiers. Despite its simplicity,
the 1-NN classifier is inferior to many classifiers such as the
Bayes classifier. Cover [35] has proven that the risk of 1-NN
classification is bounded by twice the risk of the Bayes classi-
fier, and it approaches the performance of the Bayes classifier
asymptotically only when there is an infinite number of training
samples.

In this paper, we propose to adopt the Bayes classifier as-
suming Gaussian statistics, and this requires the following is-
sues to be addressed: 1) shortage of training samples; 2) curse
of dimensionality leading to inaccurate statistical estimation and
over-fitting; and 3) remedy of missing feature values. Our re-
cently proposed fingerprint spatial modeling techniques allow
us to generate several tenths of additional training samples from
one genuine sample, directly solving the first issue partly.

Regarding the second issue, it is realized that the original
feature dimension is very high, ranging from a few hundred to
a thousand [12], [16], [17], [19]-[22], [24]. We implement a
variant of the Fisher’s linear discriminant for dimension reduc-
tion and a variant of the quadratic discriminant function (Bayes
decision function assuming Gaussian statistics) for lowering es-
timation errors. Instead of simply adopting the standard for-
mulations, we regularize some of the estimated matrices. In
the Fisher’s linear discriminant, we regularize the within-class
scatter matrix Sy by adding a constant A2 to the diagonal ele-
ments of the matrix, while keeping the between-class scatter ma-
trix Sp intact. In the quadratic discriminant function, we regu-
larize the covariance matrix ) _, in each class 7 (the term “class”
here means the “identity of a finger,” but not Henry class) by
using a class-independent constant k2, for which the technique
is termed modified quadratic discriminant function 1 (MQDF1)
in the literature [36], [37].
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Regularization in both Fisher’s linear discriminant and
quadratic discriminant function may be required with reason-
able constants, or else the identification and retrieval rates could
drop. For optimal performance, these regularization constants
have to be adjusted according to the number of training samples
per finger and feature dimension.

The final issue to be resolved is the treatment of missing
feature values. The segmentation algorithm defines the fore-
ground and background areas of a fingerprint image, and the
background features should not be used in training a classi-
fier. There also exist quite a lot of fingerprint images in the
FVC 2000 and FVC 2002 databases with their registration point
locating very close to the edge of the image frame. In such
cases, almost half of the feature values would be missing when
we extract Gabor features around the registration point. The
missing features can be ignored in distance-based k-NN classi-
fication—only those features available on both the training and
test sample will be included in calculating the distance, as shown
in (1).

In Bayes classification along with Fisher’s linear discrimi-
nant, however, all features must be present in all training sam-
ples for the calculation of class statistics and feature projection,
and in all test samples for feature projection and Bayes classi-
fication. We take the mean imputation approach to get around
this pitfall in our current attempt [38]. Given a set of ¢ training
samples {y},y?,...,y?} of class 4, with each feature vector
specified by y¥* = (y°,y2",...,y2*)" and validity of feature
specified by z7° = (21°,22°, ..., 2°)T, we construct a relaxed
class mean vector m;

. . T
— i i i
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q
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We further define for the training samples a global relaxed mean
vector m over all mﬁlo # oo by
m = (my,ma,...,ma)"
S —\T
= (m’l,mé,...,mfi) . 3
In the case where >, zflo = 0, we simply set the mean value
of the feature (my, ) to be m4, which is the global mean feature
value over all classes in the database. With the relaxed mean
vector m;, for all y?° with zero(s) in (2%, 23°,..., 297, the
value of g’ for any feature with 27’ = 0 is substituted by the
corresponding value of my; . By this substitution, we can apply
on the training samples the Fisher’s linear discriminant, feature
projection and train the Bayes classifier as usual.

Given a test sample x = (r1,72,...,74)7 with validity
specified by z = (21, 22, ..., 24)T, if any of the z4,’s is zero,
then the corresponding 4, is assumed to be m 4, . This substitu-
tion is inevitable since we do not know what finger the unknown
sample belongs to prior to classification.

It should be pointed out that substituting a mean class feature
value to the missing feature on training samples would flatten

Training Samples

Test Samples

[ Registration Point!
from PCASYS

Modeling

Translational
Modeling 5

Orientation Estimation;;

Segmentation;
Image Enhancement

Training Path
Rotational Gabor Feature —— Recognition Path
Modeling Extraction Optional Path

Distorted Sample

’

Generation

CDiscrminantN
nalysis,(MQDFL),

. Retrieval
Bayes Classifier

Fig. 3. Recognition flowchart of the newly proposed fingerprint retrieval
system featuring Fisher’s linear discriminant and the Bayes classifier.

the shape of the cluster for that class in the feature space. In
particular, the variance along the dimension of missing feature,
hence the related eigenvalues, would be smaller than what is ex-
pected when the “real” feature value is available. Other sophis-
ticated imputation methods may be adopted to diminish such
errors.

Our proposed retrieval system is made possible after solving
the above issues. The new recognition flowchart with Fisher’s
linear discriminant and Bayes classification is drawn in Fig. 3.

V. PERFORMANCE EVALUATION

A. System Setup

We evaluate the performance of our proposed system on the
FVC 2000 Db2a, FVC 2000 Db3a, FVC 2002 Dbla, and the
NIST-4 database with reduced cardinality. A set of the FVC
2000 or FVC 2002 database contains 800 images taken from
100 fingers (eight instances per finger), while a set of the mod-
ified NIST-4 database contains 2366 images taken from 1183
fingers (two instances per finger) extracted from a predefined
manner [12] that follows the natural proportion of Henry class
distribution.

The small number of samples per finger limits the size of
the training set. It is a normal practice in machine learning that
the number of training samples should be more than that of, or
at least comparable to, the test samples, especially for Bayes
classification where a large amount of samples should be used
for training. We, therefore, adjust the partitioning scheme on the
FVC 2000 and FVC 2002 databases in our experiments.

The retrieval rate, defined as the percentage of test finger-
prints whose actual identities are retrieved successfully, is re-
ported together with a penetration rate, the average portion of
fingers in the database that has been retrieved. The retrieval error
rate is defined as (100%—retrieval rate). The identification rate
is the percentage of test fingerprints which are correctly classi-
fied as their nominal finger from the classifier’s first rank output.
We are interested in the identification/retrieval performance at
low penetration rates by employing the traditional fixed order
retrieval method.
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TABLE I
GENERAL PARAMETERS ADOPTED IN EXPERIMENT 14
Parameter FVC 2000 FVC 2000 FVC 2002 Modified
Db2a Db3a Dbla NIST-4
w 256 448 388 512
364 478 374 480
c 100 1,183
d 68x12=2816
d, 99 | 99,200 or 816
M 12
y 15 | 17 | 39
R 4
P, 1.0
a, Random number i[0.01,0.40]
a, Random number i[0.01,0.40]
T, 0.05

TABLE II
MODELING PARAMETERS FOR THE ARTIFICIAL TRAINING SAMPLES
GENERATED PER GENUINE SAMPLE IN EXPERIMENT 1-4

Sample Translational change Rotational Plastic distortion
number (number of pixels) change (angle) model
1 -4 [(25.0).(0.5) ] No Not applied
5-8 [(215.0).(0.215) | No Not applied
9-12 | [(£10,+10),(+10,-10)] No Not applied
13-14 No [+7/12] Not applied
15-16 No [+7/6] Not applied
17-24 No No Applied

We define c as the number of fingers, d as the original feature
dimension, and d, as the reduced dimension. The parameters
discussed in Sections III and IV and in [12] which will be used
in all of the following experiments are given in Table 1. Other
parameters that are not mentioned in this paper have been kept
unchanged and can be found in [12]. When artificial samples
are produced, the modeling types and parameters are defined in
Table II and the total number of generated samples is always 24.
It should be mentioned that for the FVC databases, the number
of fingers c to be used is always 100, so the maximum number
of projection planes in Fisher’s linear discriminant is 99. For the
NIST-4 database, as c is very large, both the within-class scatter
matrix Sy and the between-class scatter matrix Sp should prac-
tically be of full rank.

The experiments are conducted on a PC equipped with an
Intel Core2Duo E8400 CPU and 4-GB random access memory.
The simulator is written in Matlab language and is executed
under the provided run-time environment. In Experiment 1, we
generate additional samples to train both the 1-NN classifier
and the Bayes classifier, and observe the performance gain on
top of the baseline system without extra samples. The effect of
the number of genuine training samples and test samples on the
accuracy of the Bayes classifier is examined in Experiment 2.

In Experiment 3, we compare the retrieval performance of our
baseline and proposed systems with other reported figures in
the literature for all databases under test. In Experiment 4, the
degree of dimension reduction to the retrieval performance is
evaluated on the modified NIST-4 database.

In Experiments 1 and 2, the retrieval error rates are reported
by averaging two sets of simulation results to smooth out the
instability caused by relatively small number of classes in the
databases. For instance, when four samples are used for training,
the first simulation exploits fingerprint instances 1—4 as training
samples and instances 5-8 as test samples. The second simu-
lation rotates the two sample sets for cross-validation. Refer to
Table III for other combinations of samples.

B. Experimental Results

Experiment 1: The first experiment concerns with the im-
provement on retrieval rates by applying artificial sample gen-
eration, comparing between 1-NN and Bayes classification. Ex-
periments are conducted on the FVC 2000 Db2a, FVC 2000
Db3a, and FVC 2002 Dbla with four genuine training samples
and four test samples per finger. In the experiment, h2, is fixed

at the 600th eigenvalue of the matrix Sy and h? is iteratively
searched for a near-optimal value. We compare the identification
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TABLE III
INSTANCE NUMBER OF TRAINING AND TEST SAMPLES BEING USED IN DIFFERENT SETS OF SIMULATION
1 training 4 training 6 training
sample; samples; samples;
7 test samples | 4 test samples | 2 test samples
Training sample instance number
. . 1-4 1-6
(first simulation)
Test sample instance number
. : 2-8 5-8 7-8
(first simulation)
Training sample instance number
. . 8 5-8 3-8
(second simulation)
Test sample instance number 17 14 1-2
(second simulation)
L Ist eigenvalue of | 600th eigenvalue
Regularization constant / ? & s & 0
w - of S,
TABLE 1V

COMPARISON ON AVERAGE RETRIEVAL ERROR RATES AT VARIOUS PENETRATION RATES OF THE FVC 2000 Db2a, FVC 2000 Db3a,
AND FVC 2002 Dbla BY 1-NN AND BAYES CLASSIFICATIONS

Rank 1-NN classification |1-NN classification Bayes classification
Database (Penetration rate) without extra |with extra samples with extra samples
samples (Error reduction) | (Error reduction)
1 (1%) 8.0% 6.0% (-25.0%) 4.9% (-39.1%)
Fvgbggoo 1-22%) 6.0% 4.6% (-22.9%) 4.1% (-31.3%)
1-5(5%) 3.4% 2.5% (-25.9%) 3.1% (-7.4%)
1 (1%) 22.1% 17.2% (-22.0%) 15.1% (-31.6%)
FV&égOO 1-2(2%) 16.1% 13.5% (-16.3%) 11.9% (-26.4%)
1-5(5%) 10.9% 9.0% (-17.2%) 9.9% (-9.2%)
1 (1%) 17.4% 10.2% (-41.0%) 7.1% (-59.0%)
Fchbzlgoz 1-2(2%) 14.5% 7.4% (-49.1%) 5.5% (-62.1%)
1-5(5%) 10.4% 5.0% (-51.8%) 4.5% (-56.6%)

and retrieval performance on the databases at first rank output,
first and second rank output, and 5% penetration rate from the
1-NN classifier and Bayes classifier. Table IV reports the simu-
lation results obtained.

With four genuine training and test samples, the identifica-
tion rate of the 1-NN classifier without extra samples are about
92%, 78%, and 83% on the FVC 2000 Db2a, FVC 2000 Db3a,
and FVC 2002 Dbl a, respectively. The error rates for first rank
output have been reduced by about 22% to 41% by generating
additional samples to train the 1-NN classifier, while they have
been reduced by about 32% to 59% by our proposed Bayes clas-
sification scheme. The quality of fingerprint images in the three
databases is different, leading to very different retrieval error
rates. Having said that, a similar trend of error reduction after
applying artificial sample generation and Bayes classification
can be clearly perceived for all three databases, edging the cor-
responding 1-NN classification.

Experiment 2: This experiment focuses on the retrieval per-
formance of the Bayes classifier by using variable amount of
training samples. The experiment is carried out on the FVC 2000
Db2a with the following combinations of training and test sam-
ples: 1) one training/seven test samples; 2) four training/four test
samples; and 3) six training/two test samples.

It has been mentioned in Section IV that different regulariza-
tion constants 42 and h? should be specified for different num-
bers of training samples. Generally speaking, the more training

samples available, the smaller the constants can be as we are
more confident about the overall class statistics. The constants
h?2, for combinations 1), 2), and 3) are given in Table III, while
h? is iteratively searched for a near-optimal value. We do not
consider the necessity to adjust the regularization constants a
problem in real-life situation, because we would have already
known the actual number of training samples per finger in most
applications, such that the regularization constants can be rea-
sonably determined prior to the training stage of the system.
Table V presents the averaged results for the three groups of
sample set by Bayes classification, with reference to the results
obtained by 1-NN classification with the same amount of addi-
tional samples.

From Table V, the greater number of (genuine) training sam-
ples available, the lower the retrieval error rates at all penetration
rates. Moreover, Bayes classification outperforms 1-NN classi-
fication when more genuine training samples are available, but
not in the case of only one genuine sample. This is an expected
result because we do not formally deal with the missing fea-
tures, thereby slightly sacrificing the power of the Bayes clas-
sifier. The problem of missing features diminishes when more
training samples are available because the substitution of global
mean feature value would be less frequent than that with only
one genuine training sample. Although Bayes classification with
one genuine training sample together with the artificially gen-
erated samples is inferior to 1-NN classification with the same
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Rank 1 training sample: 4 training 6 training
Classifier | (Penetration 7 test s%lm ) eps ’ samples; samples;
rate) P 4 test samples 2 test samples
Number of artificial 24
samples per genuine sample
1 (1%) 15.0% 4.9% 2.7%
Bayes 1-22%) 12.3% 4.1% 2.0%
1-5(5%) 8.8% 3.1% 1.7%
1 (1%) 12.6% 6.0% 3.0%
1-NN 1-212%) 9.9% 4.6% 2.2%
1 -5 (5%) 7.0% 2.5% 2.0%

number of training samples, the former one may still be a good
trade-off between speed and accuracy, as will be revealed in
Section V-C on timing analysis.

Experiment 3: It is informative to compare the retrieval per-
formance of our system on the FVC 2000 Db2a, FVC 2000
Db3a, FVC 2002 Db1a, and the modified NIST-4 databases with
those reported in the literature. In this experiment, the first in-
stance of the fingerprints forms the training set while the rest
form the test set (without rotation of sample set) for the case
of one genuine training sample to facilitate comparisons. Fig. 4
depicts the retrieval performance of the baseline method (the
Euclidean 1-NN fixed-order retrieval without generating addi-
tional samples) and the proposed Bayes classification method,
compared with some reported retrieval error rates. Note that the
results may not be directly comparable with each other. In par-
ticular, the work by Bhanu and Tan [18], Liang et al. [26], [27],
Feng and Cai [28], and Shuai et al. [29] were based on minutiae
matching or its variants, and some results were obtained by the
extended FVC and NIST-4 databases.

From Fig. 4(a) and (c), it is shown that Bayes classification
performs better under low penetration rates in the FVC 2000
Db2a and under all penetration rates in the FVC 2002 Dbla
compared with the baseline system. From Fig. 4(b), Bayes clas-
sification is still slightly better than the baseline in the FVC 2000
Db3a, but not as good as the results obtained by Jiang et al. [21].
From Fig. 4(d) for the NIST-4 database, our Bayes approach
performs the second best among all published results between
0.0845% (first rank) to 20% penetration rate [16]-[19], [22],
[23], verifying that the technique is scalable to large databases.

Experiment 4: The final experiment concerns with the degree
of dimension reduction to the actual retrieval error rates attained
by the Bayes classifier. The experiment is done on the modified
NIST-4 database only, with the first instance of the fingerprints
forming the training set. We report the retrieval error rates for
99-D classification, 200-D classification and 816-D classifica-
tion (without Fisher’s linear discriminant), as drawn in Fig. 5.
No significant change of retrieval performance can be noticed
over a wide range of reduced dimensional space.

C. Timing Analysis
Besides offering better retrieval performance in most of
the simulation environments, another major advantage of

employing Bayes classification is to reduce the lengthy clas-
sification time incurred by the 1-NN classifier, especially
when the total number of training samples is large. Let the
number of genuine training samples in each class ¢ be n;.
Since ny = ny = --- = n.(=n) for all of the experiments
in this paper, assuming that g samples are generated per gen-
uine training sample, the total number of training samples is
(g + 1)cn. In terms of timing complexity of classification of a
single test sample, the 1-NN classifier is of the order O(gend)
while the Bayes classifier, following the formulation in (4), is
of the order O(cd?)

Pﬁ(xo) = XoTAiXo + biTxo + ¢; 4)

where X is the projected feature vector with dimension d,. and
A;, by, ¢; are constants in each class 7.

Bayes classification involves application of (4) ¢ times for
classifying one test sample which, unlike 1-NN classification
that requires invoking (1) gen times. With the Bayes classi-
fier, the number of training samples per finger does not affect
the timing complexity in classification as the class statistics are
represented by a cluster with mean and variance in the feature
space. Furthermore, the dimension reduction by Fisher’s linear
discriminant implies that the vector computation time can be re-
duced since the new feature dimension d,. in our experiments on
the FVC databases is just about one eighth of the original fea-
ture dimension d.

Table VI presents the timing complexity of our simulation
platform to classify one unknown sample in the FVC database,
averaged over 1200 samples to smooth out the variations. Re-
sults are compared among 1-NN classifier without extra sam-
ples, 1-NN classifier with extra samples (24 artificial samples
per genuine sample) and Bayes classifier with extra samples.
The number of genuine training samples is four per finger, with
atotal of 100 fingers. We also estimate the total number of math-
ematical operations (additions and multiplications) required by
the two classifiers following the implementation of (1) and (4).
For the Bayes classifier, the number of operations for projecting
the original feature vector of the test sample to the reduced fea-
ture space should also be included.
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Fig. 4. Retrieval performance curves for 1-NN and Bayes classifications, compared with other published results. The abbreviation “tr.s.” denotes the term “training
sample(s)”. (a) Results for the FVC 2000 Db2a. (b) Results for the FVC 2000 Db3a. (c) Results for the FVC 2002 Dbla. (d) Results for the modified NIST-4

database.

In this example, the Bayes classifier, with the advantage of
additional samples, runs twice faster than the 1-NN classifier
without any additional samples. From the results in Tables IV
and VI, we are in fact taking the best of both worlds, accuracy
and time, at no extra cost. The 1-NN classifier with extra sam-
ples, as expected, requires the largest amount of time to classify
an unknown sample, directly proportional to the number of extra
samples being generated. The estimation of mathematical oper-
ations and CPU time are only for brief reference, as the actual
programmed instructions together with the Matlab’s data struc-
tures and functional abstractions can greatly affect the number
of operations executed and the simulation time.

Nevertheless, Table VI only shows the speed improvement
from 1-NN to Bayes classification under our simulation frame-
work. The actual “speed of retrieval” is also dependent on other
factors, such as feature dimension, method of feature extraction,

and whether database clustering is applied. Hence, our approach
may not necessarily be working faster than other reported tech-
niques. Although a direct comparison of retrieval speed is not
possible, Table VII compares our work with two other proposals
that aim at high retrieval efficiencies.

It can be realized that retrieval efficiency can also be enhanced
by reducing the feature dimension drastically (as in Cappelli
et al. [24]) or by implementing database clustering (as in Jiang
et al. [22]). With database clustering, a query fingerprint is only
compared with cluster prototypes prior to the computation of the
similarity to the fingers inside the selected clusters. Eventually,
the lower the penetration rate, the smaller is the required search
space which would be much smaller than the entire database.
Our Bayes classification approach is thus only focusing on one
of the aspects (feature dimension) where retrieval speed can po-
tentially be improved.



LEUNG AND LEUNG: IMPROVEMENT OF FINGERPRINT RETRIEVAL BY A STATISTICAL CLASSIFIER 67

TABLE VI
COMPLEXITY AND TIMING ANALYSIS FOR CLASSIFYING ONE TEST SAMPLE IN THE FVC DATABASE BY 1-NN AND BAYES CLASSIFICATIONS
(TAKE g = 24,¢ = 100,n = 4,d = 816 AND d,, = 99)

1.- NN . 1-NN Bayes
classification . . . . . .
. classification with | classification with
without extra
extra samples extra samples
samples
Complexity 0(cnd) O(gcnd) O(Cdrz)
Number f’f qddltlons 0 0 80,685
(projection)
Number of additions 978,400 24,460,000 990,000
(classification)
Number of mu!t1p11cat10ns 0 0 80,784
(projection)
Number of multiplications 1,306,400 32,660,000 999,900
(classification)
Number of mathematical 2,284,800 57,120,000 2,151,369
operations
CPU time required for
projection and 18.3 ms 454.3 ms 7.2 ms
classification instructions

D. Discussions and Elaborations on Experimental Results

From the results in Sections V-B and V-C, it can be con-
cluded that, when the Bayes classifier is only trained with one
genuine sample and the associated artificial samples, then it de-
livers better retrieval performance (especially at low penetration
rates) than the 1-NN classifier without artificial samples, but
with comparable execution time. If efficiency is not a major con-
sideration, then one can simply train the 1-NN classifier with the
artificial samples to achieve better performance than the Bayes
classifier. However, when the Bayes classifier is trained with
more genuine samples together with the artificial samples, then
it delivers higher accuracy in shorter execution time than the
1-NN counterpart. Therefore, Bayes classification should be the
choice over 1-NN when more training samples are available in
a given database.

In our implementation, the 1-NN classifier works on feature
vectors with an original dimension of 816, while the Bayes clas-
sifier works with a reduced dimension of 99 in most of the cases.
It can be argued that if the 1-NN classifier also worked on a
99-D feature space, its speed would be much higher than the
Bayes classifier. However, the problem is that if we directly ex-
tract a 99-D feature vector from the raw image, its discrimina-
tion power would be less than that of an 816-D feature vector.
From our observation, the retrieval rates drop by about 10% for
the first few top rank candidates when we train the 1-NN clas-
sifier with a feature dimension of approximately 100.

In practical application, it is possible that new fingers are
added into the database incrementally. This is not a problem for
the 1-NN classifier, but with the Bayes approach, it is unlikely
that the training can be performed each time a new record is in-
serted. In this case, the first option is to discard the dimension
reduction stage in operating the Bayes classifier. Then inserting
a new record is nothing more than calculating the mean vector
and covariance matrix for that record and appending them to the
classifier. From the results of Experiment 4 (Fig. 5), such ap-
proach would not degrade the classification performance with
regularizations in place, but the computational efficiency would

—— Proposed (Bayes 99-D)
-~ Proposed (Bayes 200-D)
-<--Proposed (Bayes 816-D)

Error Rate (%)

0 H H H L 1

1 11 21
Penetration Rate (%)

Fig. 5. Retrieval performance on the modified NIST-4 database by Bayes clas-
sification with different reduced dimensions. The 2:-axis is drawn in log scale
for better visual quality.

be compromised. The second option is to fix the projection vec-
tors from Fisher’s linear discriminant after a complete training
process, assuming that adding an extra record would not se-
verely affect the output of linear discriminant. The Bayes clas-
sifier can then be trained normally without retouching the old
records. When too many new records are inserted since the last
complete training, Fisher’s linear discriminant and subsequent
classifier training should be carried out again by using the stored
mean vector and covariance matrix of each class.

VI. CONCLUDING REMARKS

The retrieval performance of the baseline system is satisfac-
tory compared with other published results on the FVC and
NIST-4 databases. When compared with orientation field fea-
tures and complex-filtered features, it is evident from Experi-
ment 3 that Gabor features give better results as far as finger-
print retrieval is concerned.
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TABLE VII

TOGETHER WITH OTHER EXISTING APPROACHES

1-NN 1-NN Bayes Cappelli et al
classification | classification | classification | Jiang et al. pp[2 4] )
without extra | with extra with extra | [22] (NIST-4)
(FVC 2000)
samples samples samples
Method to . - .
enhance the N/A N/A F1§her. s }mear Databqse Multi-space K-L
. discriminant clustering transform
efficiency
Orientation
Feature Gabor feature | Gabor feature | Gabor feature feature e%nd Orientation
extracted average ridge feature
distance

Original feature| g6 1, 816-D 816-D 156-D+1-D |  1,680-D

dimension

99-D for FVC;
Final feature | ¢, ¢ ) sig-p |70 200Dorl 4561y p 9-D
dimension 816-D for
NIST-4
Search space at Approximatel
5% penetration c ( g+ l)c c pp Y c
0.15¢
rate
Search space at .
20% ¢ (g + l)c ¢ Approximately ¢
. 033¢

penetration rate

Our previously proposed spatial modeling techniques have
made the retrieval process more reliable. We tackle the problem
of speed by proposing the use of Fisher’s linear discriminant
and Bayes classification with the methods for regularization and
handling of missing features. Moreover, the timing analysis in
Section V-C shows that Bayes classification with any number
of training samples per finger runs faster than 1-NN classifica-
tion with four training samples per finger. The execution time
of 1-NN classification increases linearly with the number of
training samples per finger, but remains the same for Bayes clas-
sification. As the speed of Bayes classification does not depend
on the number of training samples per finger, one can capture
many instances of the same finger for building up a large but
comprehensive database without the fear of lowering the re-
trieval speed and accuracy.

The experimental results also show that regularizing the co-
variance matrices in the Fisher’s linear discriminant and Bayes
classifier is a useful strategy. Taking half of the samples for
training and the remaining half for testing, Bayes classification,
compared with the baseline system, has helped reduce the first
rank error rates by 39.1%, 31.6%, and 59.0% in the FVC 2000
Db2a, FVC 2000 Db3a, and FVC 2002 Dbl a, respectively. The
retrieval rates for all four databases under test are very satisfac-
tory compared with other published figures, such that the pro-
posed techniques could be of practical uses in security, civilian,
and forensic applications.

Nevertheless, the weakness of the proposed Bayes approach
with Gaussian statistics is that it does not perform particularly
well with a single genuine sample per finger. It is probably an
excellent choice only when more training samples are available.

Moreover, when a large number of features is missing, the per-
formance of the quadratic classifier also degrades, and further
research is needed for improvement.
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