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Robust Joint Design of Linear Relay Precoder
and Destination Equalizer for Dual-Hop

Amplify-and-Forward MIMO Relay Systems
Chengwen Xing, Shaodan Ma, and Yik-Chung Wu

Abstract—This paper addresses the problem of robust linear
relay precoder and destination equalizer design for a dual-hop am-
plify-and-forward (AF) multiple-input multiple-output (MIMO)
relay system, with Gaussian random channel uncertainties in both
hops. By taking the channel uncertainties into account, two robust
design algorithms are proposed to minimize the mean-square error
(MSE) of the output signal at the destination. One is an iterative
algorithm with its convergence proved analytically. The other is an
approximated closed-form solution with much lower complexity
than the iterative algorithm. Although the closed-form solution
involves a minor relaxation for the general case, when the column
covariance matrix of the channel estimation error at the second
hop is proportional to identity matrix, no relaxation is needed
and the proposed closed-form solution is the optimal solution.
Simulation results show that the proposed algorithms reduce the
sensitivity of the AF MIMO relay systems to channel estimation
errors, and perform better than the algorithm using estimated
channels only. Furthermore, the closed-form solution provides a
comparable performance to that of the iterative algorithm.

Index Terms—Amplify-and-forward (AF), equalizer, minimum
mean-square-error (MMSE), multiple-input multiple-output
(MIMO), precoder, relay.

I. INTRODUCTION

R ECENTLY, cooperative communication has gained sig-
nificant research interest, due to its great potential to

improve reliability, coverage and capacity of wireless links [1],
[2]. Generally speaking, there are three kinds of cooperative pro-
tocols: amplify-and-forward (AF), compress-and-forward (CF),
and decode-and-forward (DF). Among these three protocols, AF
is a relatively simple one, in which the relay just scales the signal
received from the source, and then transmits it to the destination.
Because of its simplicity and low implementation complexity,
AF strategy has attracted a lot of researchers’ attention [3]–[6].

On the other hand, it is well known that in fully scattered
environment, multiantenna systems provide substantial spatial
diversity and multiplexing gains [7], [8]. In order to mini-
mize the data estimation error from the received signal, the
mean-square error (MSE) is a very important metric for trans-
ceiver design [9]–[12]. Based on implementation consideration,
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linear minimum mean-square-error (LMMSE) transceiver is
more preferable compared to its nonlinear counterpart which
may have prohibitive complexity. Therefore, linear transceiver
design for point-to-point MIMO systems has been extensively
studied in various scenarios in the past decade [9]–[13].

The benefits of multiple-antenna systems can be directly
introduced into cooperative communications via deployment
of multiple antennas at transmitters and receivers, and such a
system receives a lot of attention lately. In particular, capacity
bounds for AF MIMO relay systems have been derived in
[14] and [15], and optimal power allocation schemes which
maximize the capacity of AF MIMO relay systems have been
studied in [5], [6], and [16]–[18]. Furthermore, for practical
applications (such as Winner project, LTE and IMT-Advanced
[19], [20]), fixed relay stations with multiple antennas are
being considered to be installed at the border of base stations’
coverage area, to enhance the coverage of base stations.

In terms of transceiver design,1 for dual-hop AF MIMO relay
systems with single relay, the optimal closed-form solution for
joint LMMSE transceiver design assuming perfect channel state
information (CSI) has been proposed in [21]. It has also been
shown in [21] that the joint design has a better performance
than the various separate design schemes. In [22], the joint
LMMSE transceiver design for the multiple-relay case has been
discussed. This case is more general and difficult to deal with.
After a relaxation on the constraint of the transmit power at the
relay, a suboptimal closed-form solution has been derived in
[22], and is shown to have a much better performance than the
zero-forcing scheme.

Notice that the existing algorithms on LMMSE transceiver
design for AF MIMO relay systems require the CSI being per-
fectly known. Unfortunately, in practice, CSI is generally ob-
tained through estimation and perfect estimation is very dif-
ficult to achieve. Due to limited length of training sequences
and/or time-varying nature of wireless channels, channel esti-
mation errors inevitably exist, causing substantial system per-
formance degradation. Robust transceiver design, which could
mitigate such performance degradation by taking the channel
estimation errors into account, is therefore of great importance
and highly desirable for practical applications.

When channel uncertainties are considered, both min-max
and stochastic (including both probability-based and Bayesian)
approaches can be employed. If quality-of-service (QoS) re-
quirement is considered (e.g., outage probability level [23],
[24]), min-max or probability-based approach is preferred. On

1In this paper, we use the term transceiver to collectively denote precoder at
the relay and equalizer at destination.
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the other hand, if the goal is to minimize an average objective
function over channel uncertainties, e.g., the total MSE of
multiple data streams, Bayesian approach is more suitable.

In this paper, we consider an AF MIMO relay system with
single relay and address the problem of robust relay precoder
and destination equalizer design under imperfect CSI at both
the relay and destination. With the channel estimation errors
being modeled as Gaussian random variables, we employ the
Bayesian approach, and robustness is incorporated into the op-
timization objective function in the form of MSE averaged over
the channel estimation errors. Two robust design algorithms
are proposed. The first one is an iterative algorithm with its
convergence proved analytically. The other algorithm offers a
closed-form solution with a lower complexity than the iterative
algorithm. Although the closed-form solution involves a minor
relaxation for the general case, when the column covariance ma-
trix of the channel estimation error in the second hop is propor-
tional to identity matrix, no relaxation is needed and the pro-
posed closed-form solution is the optimal solution. Simulation
results show that the two proposed robust transceivers perform
better than the transceiver without taking channel estimation er-
rors into account. Furthermore, the proposed closed-form so-
lution has a comparable performance to the proposed iterative
algorithm, but with a lower complexity.

This paper is organized as follows. System model is presented
in Section II. The optimization problem for minimizing the total
MSE is formulated in Section III. In Section IV, an iterative
algorithm is proposed to solve the optimization problem, while
an approximated closed-form solution is given in Section V. In
Section VI, the iterative and closed-form solutions are further
generalized to the weighted MSE criterion. Finally, simulation
results are given in Section VII, and conclusions are drawn in
Section VIII.

The following notations are used throughout this paper. Bold-
face lowercase letters denote vectors, while boldface uppercase
letters denote matrices. The notations , , and denote
the transpose, Hermitian, and conjugate of the matrix , respec-
tively, and is the trace of the matrix . The symbol
denotes the identity matrix, while denotes the

all zero matrix. The notation is the Hermitian
square root of the positive semidefinite matrix , such that

and is a Hermitian matrix. The symbol rep-
resents the expectation operation. The operation stacks
the columns of the matrix into a single vector and de-
notes the determinant of . The symbol represents the Kro-
necker product. The equation represents that
is a positive semidefinite matrix, while represents that

is a positive-definite matrix.

II. SYSTEM MODEL

In this paper, a dual-hop AF cooperative communication
system is considered. In the considered system, there is one
source with antennas, one relay with receive antennas
and transmit antennas, and one destination with an-
tennas, as shown in Fig. 1. At the first hop, the source transmits
data to the relay. The received signal at the relay is

(1)

Fig. 1. Amplify-and-forward MIMO relay.

where is the data vector transmitted by the source
with the covariance matrix . The matrix is
the MIMO channel matrix between the source and the relay.
Symbol is the additive Gaussian noise with covariance ma-
trix . At the relay, the received signal is multiplied by a
precoder matrix , under a power constraint
where and is the maximum transmit power.
Then the resulting signal is transmitted to the destination. The
received signal at the destination, , can be written as

(2)

where is the MIMO channel matrix between the relay and
the destination, and is the additive Gaussian noise vector at
the second hop with covariance matrix . In order to guar-
antee the transmitted data can be recovered at the destination,
it is assumed that , , and are greater than or equal
to [22].

It is assumed that both the relay and destination have the esti-
mated CSI. When channel estimation errors are considered, we
have

(3)

where and are the estimated CSI, while and
are the corresponding channel estimation errors whose

elements are zero mean Gaussian random variables. In gen-
eral, the matrix can be written as

, where the elements of the ma-
trix are independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and unit variance.
The matrix and matrix are the
row and column covariance matrices of , respectively [7].
It is easy to see that ,
where denotes a complex Gaussian random vector
with mean and covariance . Furthermore, the matrix
is said to have a matrix-variate complex Gaussian distribution,
which can be written as [25]

(4)

with the probability density function (p.d.f.) given by [26]

(5)

Similarly, for the estimation error in the second hop, we have

(6)

where the matrix and matrix
are the row and column covariance matrices of , respec-
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tively. It is assumed that and are estimated indepen-
dently, so the channel estimation errors, and , are
independent.

Remark 1: In general, the expressions of , , ,
and depend on specific channel estimation algorithms. If
the channel estimation algorithm proposed in [27] is used, we
have , , , and

. The matrices and are the
transmit and receive antennas correlation matrices at the source
and the relay, respectively, and is the source-relay channel
estimation error variance. Similarly, , and
are defined for the channel between the relay and the destina-
tion. On the other hand, when the channels are estimated based
on the algorithm proposed in [28], we have ,

, , and
. Notice that for the channel esti-

mation algorithms in [27] and [28], , , , and
are functions of the second-order statistics of CSI, which can
be considered to change very slowly and to be known in prior
[3]. However, in the following, the proposed algorithms are de-
veloped without assuming any specific form of , , ,
and .

III. PROBLEM FORMULATION

At the destination, a linear equalizer is adopted to detect
the transmitted data (see Fig. 1). The problem is how to design
the linear precoder matrix at the relay and the linear equalizer

at the destination to minimize the MSE of the received data
at the destination:

(7)

where the expectation is taken with respect to , , ,
, and .
Since , , and are independent, the MSE expression (7)

can be written as

(8)

Because and are independent, the first term of
MSE is

(9)

For the inner expectation, due to the fact that the distribution of
is matrix-variate complex Gaussian with zero mean, the

following equation holds [25]:

(10)

Applying (10) and the corresponding result for to (9), the
first term of MSE becomes

(11)

Similarly, the second term of MSE in (8) can be simplified as

(12)

Based on (11) and (12), the MSE (8) equals to

(13)

where

(14)

(15)

Notice that the matrix is the autocorrelation matrix of the
receive signal at the relay.

Subject to the transmit power constraint at the relay, the joint
design of equalizer at the destination and precoder at the relay
can be expressed as the following optimization problem

(16)

If the channels are perfectly known without estimation errors,
the problem (16) has been solved in [21]. However, perfect
channel estimation is difficult to achieve in practice, due to
limited training and time-varying nature of wireless channels.
Channel estimation errors generally exist and the formulation
(13) is a very complicated function of and , making the
problem difficult to solve. In this following, we propose two al-
gorithms. One is an iterative algorithm which solves (16) without
any approximation. The other is an approximated closed-form
solution, which can be shown to provide a performance close to
the iterative algorithm, but with a much lower complexity.

IV. THE PROPOSED ITERATIVE ALGORITHM

In this section, we derive an iterative algorithm [29], [30] to
solve for and . In the following, it is shown that given ,
there is a closed-form solution for , and vice versa. Therefore,
the proposed algorithm computes and iteratively, starting
with an initial value.
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A. Updating Given

Suppose the solutions for and at the iteration are
and , respectively. First we update for given .

As the constraint in (16) is independent of , at the
iteration, the optimal for given satisfies the following
condition:

(17)

based on which we have

(18)

where .

B. Updating Given

When is obtained as (18), we can design
based on KKT conditions, which are obtained by differen-
tiating the Lagrangian function of (16),

, with
respect to . The KKT conditions can be shown to be [see
(19a)–(19c) at the bottom of the page], where is the
Lagrange multiplier corresponding to at the
iteration. Notice that when is fixed, the optimization
problem (16) is a convex quadratic programming problem for

, the KKT conditions are the necessary and sufficient
conditions for the optimal [31].

Obviously from (19a), in order to compute the optimal
, the Lagrange multiplier should be calculated first.

However, there is no closed-form solution of simulta-
neously satisfying (19b) and (19c) [30]. Below we propose
a low complexity method to solve (19b) and (19c). First,
notice that in order to have (19b) satisfied, either or

must hold. If also makes
(19c) satisfied, is a solution to (19b) and (19c).
Since given , the optimization problem (16) is a convex
quadratic programming problem of , which has only one
solution for , is the only solution to (19b) and
(19c) in this case. On other hand, if does not make
(19c) satisfied, we have to solve . It is
proved in Appendix I that when is fixed, the function

(20)

is a monotonically decreasing function of . Furthermore, it
has also been proved that

(21)

Based on these results, can be efficiently computed by
a one-dimension search, such as bisection search or golden
search [32]. Since is a stronger
condition than , (19c) is satisfied
automatically in this case. In summary, the proposed procedure
for calculating is given as follows:

Otherwise. (22)

C. Summary and Convergence Analysis

The proposed iterative algorithm proceeds between (18) and
(19a), which can be summarized as Algorithm 1.

Algorithm 1: The Iterative Algorithm for Joint Design of
and

Initialize the algorithm with where the
principal submatrix of being , and

, while the remaining entries of being
zeros.

repeat

Update using (18);

Compute using (22);

Update using (19a);

;

until is smaller than a threshold , where the index
denotes the iteration.

This iterative algorithm can be shown to converge as follows.
It is obvious that when is given, the objective function in
problem (16) is a convex quadratic function of . The so-
lution given by (18) corresponds to the minimum MSE for the
fixed . In other words, .
On the other hand, when is obtained, the optimization
problem (16) is a convex quadratic programming problem
of , and the KKT conditions are the necessary and suf-
ficient condition for the optimal solution [31], so we have

. It follows that each
update on or will decrease the objective function and thus
the iterative algorithm converges.

Although the iterative algorithm results in precoder and
equalizer design that gives satisfactory performances, it re-
quires high complexity because of iterations. Furthermore, in
practice, it is not known in advance how many iterations are
needed for the iterative algorithm to converge. In the next sec-
tion, we propose a closed-form solution, which approximately

(19a)

(19b)

(19c)
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solves (16) in the general case, but exactly when .
In the simulation, we find that the closed-form solution has a
comparable performance to that of the iterative algorithm.

Remark 2: As mentioned previously, when is given, the
optimization problem (16) is a convex quadratic programming
problem for , which can be reformulated as a semidefi-
nite programming (SDP) problem and solved by interior-point
polynomial algorithms [33]. But these algorithms have a much
higher complexity compared to the proposed algorithm based
on KKT conditions (19a)–(19c).

V. THE PROPOSED CLOSED-FORM SOLUTION

Since the constraint in the problem (16) does not involve the
equalizer , the optimal can be directly derived as a function
of , by differentiating the objective function with
respect to and setting the result to zero. This results in

(23)

where was previously defined
in (15). Substituting (23) into the MSE expression (13), the MSE
can be written as

(24)

Since and are both positive definite Hermitian matrices,
exploiting the matrix inversion lemma

[35], we have

(25)

Putting (25) into (24), we have (26), shown at the bottom of the
page, where

(27)

is a constant part independent of . Now, the problem becomes
minimizing (26) with power constraint

. Unfortunately, from (15), it is noticed that
, so in (26) is a high

order function of and the problem of minimizing (26) is very
difficult to solve. In order to proceed, we first derive an upper
bound of .

For any two positive-semidefinite Hermitian matrices
and , the following inequalities hold [36]:

(28)

where denotes the largest eigenvalue of the matrix .
It is also obvious that

(29)

where represents the maximum eigenvalue of . Com-
bining (28) and (29), we have

(30)

Substituting and , we have an upper
bound for

(31)

When in (26) is replaced by its upper bound , the resultant
is shown in (32) at the bottom of the page. It is show

in Appendix II that is an upper bound of
(i.e., ) and when

. By replacing the objective function with
its upper bound , the optimization problem (16) can
be relaxed as

(33)

In the following, we derive the optimal solution for the re-
laxed optimization problem (33). For the optimization problem
(33), the optimal solution should satisfy .
This can be proved by contradiction. Supposing that we have
an optimal precoder matrix with , we can

(26)

(32)



2278 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 4, APRIL 2010

find another precoder matrix with , such that
. Furthermore, the corresponding objective

function in (33) for is shown in (34) at the bottom of the
page, where

(35)

Since the expression of in (32) is the same as that
of in (34) except with replaced by , with
similar arguments given in Appendix II, it can be shown that

, which is in contradiction with
the fact that is the optimal precoder corresponding to the
minimum . This result also shows that the relaxation
does not change the physical meaning of traditional precoder
design. Therefore, for the optimal precoder, in (33) is

(36)

which is independent of .
Based on eigendecompostion, we have

(37)

(38)

where has been defined in (33), and is given in (36). The
matrices and consist of the eigenvectors of and ,
respectively, while the diagonal matrices and contains
the eigenvalues of and , respectively. Without loss of gen-
erality, it is assumed that the diagonal elements of and
are in decreasing order. Substituting (37) and (38) into (33) and
defining

(39)

the optimization problem can be written in a compact form as

(40)

where the constant is neglected, which does not affect
the optimization problem.

Notice that for any positive semidefinite Hermitian matrix ,

(41)

In (41), the equality holds when the matrix is diagonal with
diagonal elements in increasing order [36, 9.H.1.h]. Therefore,
applying this result to the objective function of (40), for the op-
timal solution, we have must be diagonal

with diagonal elements in increasing order. The optimization
problem (40) can be rewritten as

(42)

where denotes the vector formed from the main diagonal
of . Based on the fact that the elements of are in increasing
order and the diagonal elements of are in decreasing order,
the function is a Schur-concave function of [36, 3.H.3].
Based on [10, Theorem 1], it has been proved in Appendix III
that the optimal has the following structure

(43)

where , and are un-
knowns to be determined. With (43), the optimization problem
(42) can be rewritten as

(44)

Obviously, the solution to the problem (44) is modified water-
filling [37], and based on the KKT conditions of (44), we have
[38]

(45)

where is the Lagrange multiplier such that
holds.

From the definition of in (39), together with the results in
(43) and (45), we can write the optimal compactly as

(46)

where . The matrices and
are respectively the principal submatrices of and with di-
mensions of , while the matrices and are the
first columns of and , respectively. It is obvious that
the matrix only contains the CSI in the first hop, while only
relates to the channel in the second hop. From (46), it can be seen
that the precoder at the relay in effect simultaneously diagonal-
izes the source-relay and relay-destination channels and pairs

(34)
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the eigenchannels of the two hops based on a “best-to-best” cri-
terion. Then a water-filling algorithm is used to allocate power
on different eigenchannels.

Finally, applying (46) into (23), the optimal equalizer at the
destination is given by

(47)

where . Notice that
when the source-relay link is noiseless and the first hop channel

is an identity matrix, (46) reduces to the point-to-point
MIMO robust LMMSE transceiver [39]. If both source-relay
and relay-destination channels are perfectly known, we have

, and after simplifying and , (46) is exactly the
solution in [21].

Remark 3: If the relay is a fixed station (such as in Winner
project, LTE and IMT-Advanced [19], [20]), the distance be-
tween adjacent transmit antennas at the relay is large, and it is
possible that . In that case, the proposed closed-form
solution is exactly the optimal solution.

VI. EXTENSION TO WEIGHTED MSE CRITERION

Previously, we focus on the unweighted MSE minimization.
The proposed algorithms given in Sections IV and V can be
easily extended to the weighted MSE criterion. Weighted MSE
criterion is important, because it is known that based on careful
design of weighting matrix, fairness between different data
streams can be achieved [9].

Suppose is the weighting matrix, which is generally a pos-
itive definite Hermitian matrix [9]. The weighted MSE is

(48)

where and . Furthermore, the re-
ceived signal at the destination in (2) can be rewritten as

(49)

Putting (49) into (48), can be written as

(50)

which has exactly the same form as the first expression in
(8). Based on this fact, the solutions for unweighted MSE in
Sections IV and V can be directly extended to the weighted
MSE case, via the following simple substitutions

(51a)

(51b)

(51c)

(51d)

In particular, when the source-relay link is noiseless
, the source-relay channel is an identity matrix

, and the relay-destination channel is perfectly known, after
the substitutions in (51), the optimal solution given in (46) and
(47) reduces to the optimal solution for point-to-point MIMO
systems based on weighted MSE criterion [9].

VII. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setup

In this section, we will investigate the performance of the pro-
posed two algorithms: the iterative and closed-form solutions.
For the purpose of comparison, the algorithm based on the es-
timated channel only (without taking the channel estimation er-
rors into account) [21] is also simulated. In the following, we
consider an AF MIMO relay system where the source, relay and
destination are equipped with same number of antennas, i.e.,

. The widely used exponential
model [27], [28] is chosen for the channel estimation error co-
variance matrices. This corresponds to the channel estimation
method in [27]. More specifically, the covariance matrices are
represented by

(52)

where and are the correlation coefficients, and denotes
the estimation error variance.

We define the signal-to-noise ratio for the source-relay
link as , and is fixed
as . At the source, four independent data
streams are transmitted by four antennas at the same power.
For each data stream, 1000 independent QPSK symbols are
transmitted and is normalized to 1. The signal-to-noise
ratio for the relay-destination link is defined as

. The estimated channels, and ,
are generated based on the following distributions:

such that channel realizations and
have unit variance.

In the following figures, MSE is referred to as the simulated
MSE of the equalized signal at the destination. Each point in the
following figures is an average of 10 000 independent channel
realizations.

B. Convergence Performance of Iterative Algorithm

Fig. 2 shows the MSE performances of the iterative algo-
rithm as a function of iteration index with 10 dB and

30 dB. The correlation coefficients are set as
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Fig. 2. Convergence performance of the iterative algorithm with � � �, � �

���, and � � �����.

Fig. 3. The MSEs for the closed-form solution and the iterative algorithm for
different � and � , when � � � and � � �����.

(i.e., ), and . The threshold, ,
for terminating the iterative algorithm is . No-
tice that when , the proposed closed-form solution
given by (46) and (47) is exactly the global optimal solution and
it is also shown here as reference. From the figure, it can be seen
that the iterative algorithm converges to the global optimal so-
lution after around 15 iterations regardless of .

Fig. 3 further shows the MSE performances of the iterative
algorithm and the closed-form solution as a function of
with different , when and . In this
case, the proposed closed-form solution is the global optimal
solution. From Fig. 3, it can also be seen that the iterative al-
gorithm always provides the same performance as the proposed
closed-form solution, meaning that the iterative algorithm al-
ways converges to the global optimal solution, at least when

.
Fig. 4 shows the effects of different initializations on con-

vergence behaviors of the proposed iterative algorithm, when
, , and . In addition to initializing the

Fig. 4. Convergence behaviors of the iterative algorithm with different initial-
izations, when � � ���, � � ���, and � � �����.

Fig. 5. The MSEs for the closed-form solution, the iterative algorithm and the
algorithm based on estimated channels only for different � , when � � ���

and � � ����.

iterative algorithm with , we also simulated the case when
elements of the initial are generated as independent Gaussian
random variables. It is found that the convergence speed is sim-
ilar to the case when initializing with . Furthermore, when
the iterative algorithm is initialized with (instead of ) whose
elements are generated as independent Gaussian random vari-
ables, the convergence performance is again basically the same.

C. Effect of Estimation Error

Fig. 5 shows the MSE performances of the different algo-
rithms as a function of with different estimation errors

when and . It can be seen that when de-
creases, MSE performances improve for all algorithms. Further-
more, when decreases, the performance gap between the iter-
ative algorithm and the closed-form solution becomes smaller.
On the other hand, the performance of the algorithm based on
estimated channels only shows degradation compared to that of
the two proposed algorithms, except when .
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Fig. 6. The MSEs for the two proposed solutions and the algorithm based on
estimated channels only for different �, when � � ���� and � � �����.

Fig. 7. The MSEs for the two proposed solutions and the algorithm based on
estimated channels only for different �, when � � ���� and � � �����.

D. Effect of Correlation Coefficients, and

Fig. 6 shows the MSE performances of the three algorithms as
a function of with different . From Fig. 6, it can be seen
that when decreases, the performances of all three algorithms
improve, while the gap between the iterative algorithm and the
closed-form solution decreases.

On the other hand, Fig. 7 shows the corresponding MSE per-
formances with different . From this figure, it is clear that when
the correlation coefficient varies, the difference between the
closed-form solution and the iterative solution does not change.
It is because the relaxation involved in the closed-form solution
is not related to . Furthermore, from Figs. 6 and 7, the two pro-
posed algorithms show consistent performance improvements
with respect to the algorithm based on estimated channels only.

E. BER Performance

Fig. 8 compares the bit error rates (BERs) of the two pro-
posed algorithms and the algorithm based on estimated channel

Fig. 8. The BERs for the proposed closed-form solution, iterative algorithm
and the algorithm based on estimated channels only for different � , when � �

���� and � � ����.

only as a function of , when and .
It can be seen that the BER performances improve when de-
creases, which are consistent with the MSE performances. It can
also be seen that for different , the proposed closed-form so-
lution has almost the same performance as the proposed iterative
algorithm, which are better than that of the algorithm based on
estimated channels only.

VIII. CONCLUSION

In this paper, the joint design of linear relay precoder and des-
tination equalizer for dual-hop AF MIMO relay systems with
Gaussian random channel uncertainties in both hops was con-
sidered. The data MSE expression at the destination averaged
over the random channel uncertainties was first derived. Then
two robust design algorithms were proposed to minimize the
average MSE. The first one is an iterative algorithm with its con-
vergence established analytically. The second one is a closed-
form solution with much lower complexity compared to the it-
erative algorithm. Although a mild relaxation is required for the
general case, the closed-form solution was shown to be optimal
when . Several existing transceiver design algo-
rithms for point-to-point systems or relay systems under perfect
CSI have been shown to be special cases of the proposed al-
gorithms. Simulation results showed that both of the proposed
algorithms perform better than the existing algorithm without
taking the channel uncertainties into account. Furthermore, the
performance gap between the proposed closed-form solution
and iterative algorithm has been shown to be small in most cases.

APPENDIX I
PROOF OF IS MONOTONICALLY DECREASING AND

UPPER BOUND ON

First, we note the following two well-known results for ma-
trix.

Property 1: For any two positive definite Hermitian ma-
trices, and , if and only if [34,
7.7.4].
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Property 2: For any two positive-semidefinite Hermitian
matrices, and , .

For notational simplicity, define

(53)

(54)

Notice that is a positive-definite Hermitian matrix and
is a positive-semidefinite Hermitian matrix. Putting (53)

and (54) into the definition of in (20), we have

(55)

For any two values and , with ,

(56)

Below we will show that . Because is
a positive semidefinite Hermitian matrix and ,

, and with property 1, we have

(57)

Together with the fact that is a positive semidefinite Her-
mitian matrix, based on property 2, we have

(58)

therefore,

(59)

and is a monotonically decreasing function of .
With regard to the upper bound of , it is obvious that

(60)

As mentioned in the proposed procedure (22) for computing
, the bisection algorithm is only needed when .

So we can invert both side of (60), multiply from the right
and take the trace of the both sides, and it follows that

(61)

Notice that based on (19b), if ,
and then

(62)

which is exactly the expression given in (21).

APPENDIX II
PROOF OF

First, we notice the following result for matrix.
Property 3: For any two Hermitian matrices, and ,

if , then , where is an arbitrary
matrix [34, 7.7.2.a].

Defining and , we
have

(63)

(64)

It is straightforward to show that

(65)

Below we will show that
. Since and are Hermi-

tian matrices and , based on property 1 given in
Appendix I, we have . Furthermore, based on
property 3, we have the following inequality:

(66)

Adding an identity matrix on both sides of (66), the inequality
sign does not change. Applying the property 1 in Appendix I
again, we have

(67)

With property 3, we have the following inequality:

(68)

Taking the trace on both sides of (68), we finally have

(69)

Based on the definition of in (31), it is obvious that when
is true, and in this case,

.

APPENDIX III
DERIVATION OF OPTIMAL

First, we introduce a permutation matrix with dimension of
as

. .
.

(70)

and the optimization problem (42) can be reformulated as

(71)

where and are
and with diagonal elements in reverse order, and

. Notice that because of the permutation matrices,
the order of is the reverse to that of (i.e., the elements of
are in decreasing order). Based on [10, Theorem 1], the optimal

for the problem (71) has zero elements except
along the rightmost main diagonal. Reversing the permutations
to , we have the solution given in (43).
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