
Title CloudMedia: When cloud on demand meets video on demand

Author(s) Wu, Y; Wu, C; Li, B; Qiu, X; Lau, FCM

Citation
The 31st International Conference on Distributed Computing
Systems (ICDCS 2011), Minneapolis, MN., 20-24 June 2011. In
Proceedings of 31st ICDCS, 2011, p. 268-277

Issued Date 2011

URL http://hdl.handle.net/10722/135699

Rights Creative Commons: Attribution 3.0 Hong Kong License



CloudMedia: When Cloud on Demand
Meets Video on Demand

Yu Wu∗, Chuan Wu∗, Bo Li†, Xuanjia Qiu∗, Francis C.M. Lau∗
∗Department of Computer Science, The University of Hong Kong, Email: {ywu,cwu,xjqiu,fcmlau}@cs.hku.hk

†Department of Computer Science and Engineering, Hong Kong University of Science and Technology,
Email: bli@cse.ust.hk

Abstract—Internet-based cloud computing is a new computing
paradigm aiming to provide agile and scalable resource access
in a utility-like fashion. Other than being an ideal platform
for computation-intensive tasks, clouds are believed to be also
suitable to support large-scale applications with periods of
flash crowds by providing elastic amounts of bandwidth and
other resources on the fly. The fundamental question is how to
configure the cloud utility to meet the highly dynamic demands
of such applications at a modest cost. In this paper, we address
this practical issue with solid theoretical analysis and efficient
algorithm design using Video on Demand (VoD) as the example
application. Having intensive bandwidth and storage demands
in real time, VoD applications are purportedly ideal candidates
to be supported on a cloud platform, where the on-demand
resource supply of the cloud meets the dynamic demands of
the VoD applications. We introduce a queueing network based
model to characterize the viewing behaviors of users in a multi-
channel VoD application, and derive the server capacities needed
to support smooth playback in the channels for two popular
streaming models: client-server and P2P. We then propose a
dynamic cloud resource provisioning algorithm which, using
the derived capacities and instantaneous network statistics as
inputs, can effectively support VoD streaming with low cloud
utilization cost. Our analysis and algorithm design are verified
and extensively evaluated using large-scale experiments under
dynamic realistic settings on a home-built cloud platform.

I. INTRODUCTION
Cloud computing has recently emerged as a new com-

puting paradigm for organizing a shared pool of servers in
datacenters into a cloud infrastructure that can provide on-
demand server utilities (CPU, storage, bandwidth, etc.) to users
anywhere anytime. To enable different applications running
on a cloud efficiently, virtualization is often applied, which
allows multiple virtual machines (VMs) to run on the same
physical server; this form of sharing a physical server allows
resources to be rapidly provisioned and released with minimal
management efforts and overheads. Resource provisioning is
typically based on Service Level Agreements (SLAs) between
the cloud provider and the cloud consumer. Different service
models of a cloud infrastructure have been proposed ([1]),
namely Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS), among which
the IaaS model provides the most flexibility where a consumer
can deploy and run any software on its allocated VMs.

The research was supported in part by grants from RGC under the
contracts 718710E and 615608, and by a grant from Huawei Technologies
Co. Ltd. under the contract HUAW18-15L0181011/PN.

The elastic and on-demand nature of resource provisioning
has made cloud computing very promising in various applica-
tions, including many that are computation-intensive [2], [3]
and applications with highly dynamic server resource demands
[4]. In particular, dynamic resource provisioning via a cloud is
best suited for Internet-based applications (e.g. YouTube) that
have to handle frequent surges of user requests. Real-life cloud
implementations have demonstrated that cloud infrastructures
indeed have substantial advantages over private server clusters
or CDNs in terms of system scalability, and they can lead
to significant reduction in operational costs with respect to
machines, bandwidth, and management.
Our work focuses on Internet-based applications that are

to be supported by cloud infrastructures. Little effort so
far has been devoted to understanding and exploring how
these Internet-based applications can fully exploit a cloud
infrastructure. One fundamental question is how to quantify
dynamic user demands, or more precisely, how should an
application provider learn the dynamic demands from users
and relay them to the cloud service accordingly? Our work
as presented in this paper makes the first attempt to address
this problem. Specifically, our solution answers the question
of how an application provider can most effectively configure
the cloud utility to achieve the best application performance
at a reduced cost. We choose Video on Demand (VoD) as the
representative application in this study.
With intensive and dynamic bandwidth/storage demands in

real time, VoD applications present a significant challenge to
resource provisioning in service offering. Although many pop-
ular VoD services (e.g., PPLive, UUSee) have leveraged peer-
to-peer (P2P) technology for cost reduction, existing studies
showed that dedicated servers are still catering for 40−70% of
overall streaming bandwidth demand in these systems [5], [6].
The cloud infrastructure as an alternative to dedicated servers
sets out to meet the challenge by dynamically composing
and optimizing the needed services at reduced costs. Our
contributions in this study are as follows.
First, we investigate by solid theoretical analysis the equi-

librium demand for streaming server capacity in a VoD ap-
plication with multiple video channels. We introduce a new
queueing network model to characterize the dynamic viewing
behaviors of VoD users, and derive the server capacity needed
to support smooth playback in the channels. Both client-server
VoD and P2P VoD are investigated, which are the two most
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representative implementations of VoD applications in today’s
Internet.
Second, by following practical cloud charging models, we

formulate two optimization problems for cloud provisioning,
including VM provisioning and storage rental, in a cloud
infrastructure. We propose a practical algorithm, which can
dynamically configure cloud resources to address the contin-
uous demands for streaming different chunks and videos over
time. With this algorithm and using instantaneous network
statistics as inputs, a VoD application provider periodically
derives the required server resources by approximately solving
the two optimization problems using efficient heuristics, and
communicates the results to the cloud provider using SLAs.
Third, based on a VoD prototype running on a cloud

platform (called CloudMedia) we have built and implemented
using a cluster of machines, we carry out verification of our
analysis and extensive evaluation of our algorithm design in
a dynamic and realistic environment. The results show that
high-performance multi-channel VoD streaming can be im-
plemented with low cloud (server) costs using our algorithm,
and that by engaging a cloud in lieu of dedicated servers, a
P2P VoD application can readily enjoy the benefits of further
reduced costs and improved scalability.
The remainder of this paper is organized as follows. We

discuss related work in Sec. II. In Sec. III, we present the
model of the cloud infrastructure, as well as that of the
multi-channel VoD application. We introduce a new Jackson
queueing network model and derive server capacity demand in
the VoD system in Sec. IV. We formulate the cloud VM provi-
sioning and storage rental optimization problems, and propose
a practical dynamic cloud provisioning algorithm in Sec. V.
Sec. VI presents our extensive experimental evaluations under
realistic settings. Finally, we conclude the paper in Sec. VII.

II. RELATED WORK

Recently there is an upsurge of interest in the research com-
munity in issues arising from running computation-intensive
and data-intensive applications on clouds [3][7][8][9][10][11].
Many of these applications can now be satisfactorily supported
by commercial cloud services [12][13]. Researchers however
have focused mainly on how a cloud infrastructure can provide
for the quality of service (QoS) as required by the application
and based on the SLA negotiated [7][8], and how user privacy
and content confidentiality can be protected when a user
entrusts a cloud with a task [9][10]. Our work deviates from
these popular topics and focuses instead on the issue of
cloud’s utilization by large-scale Internet-based applications.
Our study is from the viewpoint of a cloud consumer, i.e.,
an Internet application provider in our case. It seems that no
existing work has ever addressed the challenges or proposed
any approach from such an angle.
There have been many theoretical studies on performance

modeling of P2P streaming applications, e.g., on maximum
sustainable streaming rate or smooth streaming probabilities
in P2P live streaming [14][15][16], and on start-up delay
performance in P2P VoD streaming [17]. These work typically

assume a fixed server capacity in the analysis, and none has
conducted their study from the perspective of equilibrium
server capacity which is needed to maintain a set level of
user playback performance in dynamic VoD networks. Wu
et.al [15] leverage Jackson queueing network with infinite-
server queues to model the channel churns, which might not
apply to real systems due to the impractical assumption that
server resources are unlimited. We are only aware of one study
[18] which discusses the minimum server bandwidth required
to support a fixed streaming rate in P2P live streaming for
set top boxes without any dynamics. However, their bounds
are achieved via a tree-based algorithm and are most likely
not applicable to real-world VoD streaming service. To the
best of our knowledge, our study is the first to put forward
a Jackson queueing network model to derive the demand for
server capacity in Internet-based P2P VoD streaming which is
much more challenging than live streaming due to aggravated
chunk availability issues and user dynamics.
As for practical server capacity provisioning, existing stud-

ies either focus on provisioning dedicated private servers
by the application provider [19][20], or scheduling server
resources among multiple applications inside a cloud by a
cloud provider [11]. In this paper, we seek to design a
resource provisioning framework from the viewpoint of a
cloud consumer.

III. SYSTEM MODELS

A. The Cloud Infrastructure
The IaaS cloud system under our investigation consists of a

collection of interconnected computing and storage servers.
The servers are of two categories: NFS storage servers,
organized into a number of NFS clusters by their performance
levels (e.g., storage capacity and I/O speeds), and computing
servers which support the running and provisioning of virtual
machines (VMs). The VM instances generally have different
configuration levels in terms of CPU computing units and I/O
speeds. There are a number of virtual clusters, each consisting
of VMs of the same level of configuration. Cloud applications
run on the VMs and utilize the NFS storage system via the
VMs. We assume each VM can access all the NFS clusters
via high-speed Ethernet switches and LAN buses.
The cloud architecture is illustrated in Fig. 1, with the

following main functional modules:
� Broker is a communicating interface between the cloud
provider and a cloud consumer, via which the consumer
can submit requests to the cloud.

� Request Monitor listens to the requests from the con-
sumers (brokers), and forwards them to the SLA nego-
tiator.

� SLA Negotiator negotiates the Service Level Agree-
ments (SLAs) with the cloud consumers based on the
pricing policy and QoS levels set by the cloud provider.

� VM Scheduler is responsible for VM provisioning to
meet the demands of the applications.

� VM Monitor keeps track of all the VM instances provi-
sioned and monitors their activities and performance.
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Fig. 1. The cloud model.

� NFS scheduler carries out content placement onto the
NFS clusters.

In this cloud model, services are charged by usage time,
following the charging model of leading commercial cloud
providers such as Amazon EC2 [12] and S3[13]. Two types
of charges are levied on a cloud consumer, the rental fees of
the VMs to run the application and the storage cost to use the
NFS clusters, both of which are based on a per time unit rate,
with different VMs (NFS servers) of different configuration
levels requesting different prices.

B. The VoD Application Model

As a cloud consumer, the VoD application possesses a large
collection of videos (each referred to as a video channel). A
user can join any of the channels and watch any portion of a
video at any given time. Suppose the streaming playback rate
of each channel is r bytes/s, and each video stream is divided
into consecutive chunks of size rT0 bytes, corresponding
to T0 seconds of the playback at rate r. The size of the
local playback buffer at each user is sufficient to cache any
one video in the system, and a chunk of a channel once
downloaded will remain available in the buffer until the user
leaves the channel.
We study two models of VoD implementation in this paper,

i.e., the client-server model and the P2P paradigm. In the
client-server model, all users directly obtain the chunks of
their desired videos from the streaming servers, i.e., the cloud
infrastructure in our design. For the P2P VoD model, we
assume a mesh-pull based P2P VoD design, where users
watching the same video channel are organized into a mesh
overlay, exchange video chunks among themselves based on
periodically exchanged buffer availability bitmaps, and resort
to streaming servers only when deemed necessary. In state-
of-the-art P2P VoD systems [21], streaming servers are still
largely indispensable as they are the only persistent sources of
all original videos and needed from time to time to compensate
for insufficient upload bandwidth of some peers. In our design,
such streaming server service will be implemented by the
cloud service.

TABLE I
NOTATION TABLE

Symbol Definition
r The streaming playback rate of each video channel
R The allocated bandwidth of each VM
T0 The playback time of a video chunk
J (c) Number of chunks that channel c is divided into
Q

(c)
i The i-th queue in channel c

s
(c)
i The upload bandwidth to serve chunk i in channel c
m

(c)
i The number of (queueing theoretical) servers in queue Q(c)

i

∆
(c)
i The capacity provisioned from the cloud for chunk i in channel c

P
(c)
ij The probability that users in Q(c)

i switch to Q(c)
j

Λ(c) The external arrival rate to channel c
λ
(c)
i The aggregate arrival rate to Q(c)

i in channel c
µ The service rate of each server in a multiple-servers queue
α The fraction of peers who enter the first chunk queue upon joining

a channel
p
(c)
i (k) The probability that Q(c)

i has k peers.
n
(c)
i The number of peers in Q(c)

i

ν
(c)
i The total number of chunk i of channel c in the P2P overlay

(equivalently the number of peers in the overlay who own chunk i)
ν
(c)
ij The number of peers in Q(c)

j who own chunk i
Γ
(c)
i The capacity contributed to upload chunk i in channel c from the

P2P overlay

C. Interplay between Cloud and VoD Application
As a cloud consumer, the VoD application provider places

the video contents onto the NFS clusters and deploys the
VoD server application onto the VMs, eliminating the need
for traditional streaming servers. To support such a content
distribution application, each VM in the cloud is assumed to
be assigned a guaranteed amount of bandwidth based on QoS
provisioning; the bandwidth provisioned to each VM is R,
which is the same for all VMs and satisfies R > r, without
loss of generality. Over time, the VoD application provider
requests different numbers of VMs and different amounts of
storage capacity from the cloud via the broker. The requests are
based on the current demand from the VoD users, as well as the
operational budget and the SLA with the cloud provider. The
cloud processes the requests received via the request monitor
and adjusts VM and NFS storage allocations via the VM and
NFS schedulers.
Our objective in this paper is to study how a VoD appli-

cation provider can meticulously configure its usage of the
cloud infrastructure to achieve the best performance of the
application with a modest cost over time. Issues regarding
the implementation of the function modules and the QoS
provisioning (e.g., allocating bandwidths to the VMs) in the
cloud infrastructure represent orthogonal research problems,
which are out of the scope of the current paper.
We summarize important notations used in the paper in

Table I for ease of reference. We refer to the VoD system
using the cloud infrastructure to implement streaming servers
as CloudMedia hereinafter.

IV. SERVER CAPACITY DEMAND ANALYSIS:
A QUEUEING NETWORK APPROACH

We first study the equilibrium demand for streaming server
capacity in a VoD application in both the client-server and the
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P2P mode, the results of which can translate into guidelines
for the VoD provider to configure its cloud usage.

A. Queueing Network Modeling
We introduce a Jackson queueing network based model to

characterize the viewing behaviors of VoD users inside each
channel in the VoD system. The model facilitates our study of
the server capacity needed to support smooth playback in the
channels.
A Jackson Network [22] is a network of queues where the

arrivals at each queue form a Poisson process, and the job
service times are exponentially distributed. An open Jackson
Network is one with external job arrivals into or departures
from the system. For each video channel c, let J(c) be the
number of chunks the video is divided into. The viewing
behavior of users in channel c can be modeled as an open
Jackson queueing network.
We model each chunk i in channel c as a queue Q(c)

i , i =

1, . . . , J(c). A user downloading a chunk is a job in the
corresponding queue. The user arrival to download a chunk
equals the job arrival at the queue, and finishing downloading a
chunk maps to completing a job in the queueing. The queueing
time of a job in the queue corresponds to the waiting time of
the user for available bandwidth for the download. The service
time of a job in a queue maps to the actual chunk download
time of a user.
There are m(c)

i servers1 in queue Q(c)
i with service rate µ

each, and the service time of a job in a server is assumed to
be exponentially distributed with an average of 1

µ
. The service

rate µ of each server maps to the bandwidth R of each VM
in the cloud infrastructure (to simplify later computation of
the number of VMs serving each chunk) with R = µ × rT0

(recall rT0 is the size of each chunk in bytes). As assumed
in the previous section, R should be larger than the streaming
playback rate r, to make it possible that the retrieval of a
chunk (of playback time T0) can be completed within time
T0 considering both waiting and actual download times. The
total service rate of m(c)

i servers in queue Q(c)
i maps to the

overall available bandwidth to upload chunk i in the network,
which is s(c)i = µm

(c)
i × rT0 = Rm

(c)
i . The sojourn time of a

job, i.e., the sum of queueing and service times, corresponds
to the total time a user spends on the retrieval of a chunk.
Let P

(c) denote the chunk transfer probability matrix of
channel c, with entries P (c)

ij representing the probability that
a user downloading chunk i will move on to download
chunk j (j may or may not be consecutive to i). The
transfer probabilities reflect viewing behaviors of the VoD
users. They satisfy �J(c)

j=1 P
(c)
ij ≤ 1, ∀i, and 1 −

�J(c)

j=1 P
(c)
ij is

the probability that a user downloading chunk i leaves the
channel. Correspondingly, all queues in the Jackson network
are interconnected, with job transition probability indicated by
P

(c).
External user arrival into the channel and departure from

the channel map to the external arrival and departure in the
1Note that servers in a multiple-server queue in queueing theory is different

from servers in a VoD application or a cloud.
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Fig. 2. Channel-level queueing network model.

open Jackson network. Without loss of generality, we assume
a fraction α of the arrived users start watching the channel
from the beginning, i.e., they go into queue Q(c)

1 , and the rest
1−α of the arrived users choose to start with the other chunks
with a uniform probability.
We assume the external arrival of users to the channel

follows a Poisson process with an average arrival rate of
Λ(c).2 Together with the assumption that the service time
in each chunk queue is exponentially distributed, we can
derive that the arrival to each queue is Poisson, since sub-
flows resulting from stochastically splitting a Poisson flow are
still Poisson, and the aggregation of multiple Poisson flows
is still a Poisson flow. Therefore, the queueing network we
have modeled is an open Jackson queueing network with a
number J(c) of M/M/m

(c)
i /∞ queues. An illustration of the

queueing network is given in Fig. 2, where λ(c)
i is the arrival

rate to queue Q(c)
i , and n

(c)
i is the number of users currently

in the queue (including both waiting and downloading ones),
∀i = 1, . . . , J(c).

B. Client-Server VoD
Based on the queueing network model, we now study the

amount of upload capacity needed to support smooth playback
in each channel. We first consider the case that the VoD
application is implemented in the client-server mode.
We study the upload capacity needed to serve each chunk in

channel c, such that a smooth playback can be achieved at the
users in the stable state of the VoD system. Mapping it into
the Jackson network, we derive the required number of servers
m

(c)
i of each queue Q

(c)
i , i = 1, . . . , J

(c)
i , in the equilibrium

state, such that the expected sojourn time of each user in each
chunk queue is T0. Recall that T0 is the playback time of each
chunk at the streaming playback rate r in the VoD system. To
guarantee smooth playback at each user, the average time of
retrieving each chunk (waiting plus downloading) should be
no longer than the playback time of the chunk. By setting
the expected sojourn time of each queue to T0, we seek to
derive the necessary amount of upload bandwidth to serve
each chunk.
The equilibrium of a Jackson network is characterized by

the conditions in (1), when the individual queues achieve their

2Note that the average Poisson arrival rate is fixed only at one time, to
derive the server capacity demand in one time interval. In our practical cloud
provisioning algorithm in Sec. V-B, the average arrival rate is dynamically
learned and varying over time, in order to capture the burstiness of user
arrivals at different times.
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respective equilibrium.














λ
(c)
1 = α · Λ(c) +

�J(c)

j=1 λ
(c)
j · P

(c)
j1 ,

λ
(c)
i = 1−α

J(c)−1
· Λ(c) +

�J(c)

j=1 λ
(c)
j · P

(c)
ji , i = 2, . . . , J(c),

ρ
(c)
i =

λ
(c)
i

µ
< m

(c)
i .

(1)Here ρ(c)i =
λ
(c)
i

µ
is the server utilization in queue Q(c)

i .
To derive the required service rates of the queues for smooth

playback, we first derive the expected number of users in each
queue in equilibrium, and then apply Little’s law.
Let p(c)i (k) denote the probability that k users are in chunk

queue Q
(c)
i . Using the standard queuing analysis together

with Erlang’s C-Formula [23], we derive the equilibrium
distribution of users in the queues as

p
(c)
i (0) = (

m
(c)
i

−1
�

k=0

ρ
(c)
i

k

k!
+

m
(c)
i · ρ

(c)
i

m
(c)
i

m
(c)
i !(m

(c)
i − ρ

(c)
i )

)

−1

,

p
(c)
i (k) =











p
(c)
i (0) ·

ρ
(c)
i

k

k!
, (0 ≤ k ≤ m

(c)
i )

p
(c)
i (0) ·

ρ
(c)
i

k

m
(c)
i

!·m
(c)
i

k−m
(c)
i

(k > m
(c)
i )

,

i = 1, . . . , J
(c)
i . (2)

Then, we can derive the expected number of users in queue
Q

(c)
i as

E(n
(c)
i ) =

�∞

k=0 k · p
(c)
i (k)

= p
(c)
i (0) · [

�m
(c)
i

k=0 k ·
ρ
(c)
i

k

k!

+
m

(c)
i

m
(c)
i

m
(c)
i

!
·Wm

(c)
i

+1 · (m
(c)
i + 1 + W

1−W
)],

(3)

where W =
ρ
(c)
i

m
(c)
i

, i = 1, . . . , J
(c)
i .

If the average sojourn time in each queue Q
(c)
i is T0,

we have E(n
(c)
i ) = λ

(c)
i T0, according to Little’s Law. Given

λ
(c)
i and T0, based on this equation and Eqn. (3), we can
derive the expected number of servers, m(c)

i , in queue Q
(c)
i ,

which guarantees smooth playback. In particular, m(c)
i ’s are

calculated as follows. We first derive λ(c)
i ’s using Eqn. (1) and

then λ
(c)
i T0 is known. We then derive m

(c)
i ’s in an iterative

fashion: we initialize m
(c)
i to 1, and increase its value each

step until E(n(c)
i ) becomes equal to λ(c)

i T0.
The total upload bandwidth needed to serve chunk i is there-

fore s(c)i = Rm
(c)
i . With the client-server implementation, this

is the amount of upload capacity,∆(c)
i , the cloud infrastructure

needs to supply to serve chunk i, for i = 1, . . . , J
(c)
i .

C. P2P VoD
In a P2P VoD application, the required upload bandwidth

to serve each chunk i (i.e., s(c)i = Rm
(c)
i ), comes from two

sources: upload capacity ∆
(c)
i provisioned by the cloud, and

upload bandwidth Γ
(c)
i from peers in the channel who own

chunk i. We have Rm(c)
i = ∆

(c)
i +Γ

(c)
i . To derive the capacity

needed from the cloud, we study the total upload bandwidth
that can be provided from the peers, in a P2P VoD system
based on a typical rarest-first scheduling scheme.
The P2P VoD scheme: A tracker server maintains lists of

peers in each video channel and the chunks they buffer. A
peer obtains the list of peers from the tracker who have the
chunks it wishes to download, and requests the chunks from

these peers. In response to the requests, a peer always serves
chunks according to their rareness, i.e., requests for the rarest
chunk are served first, and then those for the less rare chunk,
and so on, as many as its upload bandwidth can accommodate.
The rareness of chunks is provided by the tracker, based on
the number of peers currently owning each chunk.
Based on the above scheme, we first derive the expected

number of peers who buffer chunk i (i = 1, . . . , J
(c)
i ) in the

equilibrium state, and then study the bandwidth supplied by
those peers for uploading the chunk.
Let ν(c)

i denote the number of peers in channel c that have
chunk i in their buffers. It is the sum of the numbers of
peers who have previously downloaded the chunk and are
currently in other chunk queues. The peers in queue Q(c)

i are
still downloading chunk i, and we do not consider them as
suppliers of the chunk.
Let ν(c)

ij (j �= i) denote the number of peers in chunk queue
Q

(c)
j that have buffered chunk i. We use ν

(c)
ii to denote the

number of peers in queue Q(c)
i (who can supply chunk i upon

departure from the queue), and thus E(ν(c)
ii ) = E(n

(c)
i ).

Proposition 1: The expected number of peers in chunk
queueQ(c)

j in the equilibrium state, which have buffered chunk
i, is

E(ν
(c)
ij ) =

J(c)
�

l=1

E(ν
(c)
il ) · P

(c)
lj , ∀i = 1, . . . , J(c),∀j �= i.

Due to space constraint, interested readers are referred to our
technical report [24] for the detailed proof of the proposition.
Since E(n

(c)
i ) can be derived using Eqn. (3), we can derive

E(ν
(c)
ii ) = E(n

(c)
i ), based on which E(ν

(c)
ij ),∀j �= i, can be

calculated using Proposition 1. Then the expected total number
of peers in channel c who have chunk i is derived as

E(ν
(c)
i ) =

�J(c)

j=1,j �=i E(ν
(c)
ij ). (4)

We next study the amount of upload bandwidth supplied
by those peers with chunk i to serve the chunk, denoted
as Γ

(c)
i , i = 1, . . . , J

(c)
i . In the following analysis, each peer

is assumed to have the same upload bandwidth of u (the
analysis can be readily extended to cases with heterogeneous
bandwidths).
We sort the chunks in increasing order of E(ν

(c)
i ), i.e.,

decreasing order of chunk rareness, and denote the ordered
chunk sequence as {π1, . . . ,πJ(c)}, where π1 represents the
rarest chunk. Let Ψ(πj ,πk) denote the probability that a peer
simultaneously owns chunks πj and πk. Based on a simplified
assumption that each of the E(ν

(c)
πk

) peers that own chunk πk

supplies an equal share of the total upload bandwidth Γ
(c)
πk

for the chunk, we derive the expected amount of peer upload
bandwidth contribution as

E(Γ(c)
πk

) =























min{m
(c)
π1 × r,E(ν

(c)
π1 )× u}, k = 1,

min{m
(c)
πk

× r,E(ν
(c)
πk

)× u−
�k−1

j=1 [Ψ(πj ,πk)×
�J(c)

l=1 E(n
(c)
l )×

E(Γ
(c)
πj

)

E(ν
(c)
πj

)
]},

k = 2, . . . , J(c).
(5)

The rationale behind the above formula is as follows.
For the rarest chunk π1, all peers with the chunk will

maximally allocate bandwidth to serve it, and thus the overall

272



peer bandwidth contribution E(Γ
(c)
π1 ) is the minimal between

the total upload bandwidth from those peers, E(ν
(c)
π1 ) × u,

and the bandwidth demand to address its download requests,
m

(c)
π1 × r.
For another chunk πk, the upload capacity that can be

supplied from peers that own the chunk, equals the total upload
bandwidth from those peers, E(ν(c)

πk
)×u, minus their bandwidth

already allocated to other rarer chunks. The deduction part is
calculated as follows: for each chunk πj which is rarer than πk

(j < k), Ψ(πj ,πk)×
�J(c)

l=1 E(n
(c)
l ) is the number of peers in the

channel who concurrently own both chunks, and the bandwidth
each of them contributes to serve chunk πj is

E(Γ
(c)
πj

)

E(ν
(c)
πj

)
, based

on the simplified assumption above.
The probability that a peer simultaneously owns two chunks

πj and πk, i.e., Ψ(πj ,πk), can be calculated by summing up
the probabilities of all possible sequences of chunk queue
transitions, which include queue Q(c)

πj
and queue Q(c)

πk
. Due to

space constraint, interested readers are referred to our technical
report [24] for the detailed steps.

With the amount of peer bandwidth contribution computed
using Eqn. (5), we can eventually derive the expected upload
capacity that the cloud needs to supplement for uploading
chunk i, as E(∆

(c)
i ) = Rm

(c)
i − E(Γ

(c)
i ), for i = 1, . . . , J

(c)
i .

V. CLOUD PROVISIONING ALGORITHM
We now design a dynamic provisioning algorithm which the

VoD provider would execute when requesting the needed cloud
resources. The algorithm makes use of the demand derived
in the previous section. We first formulate two optimization
problems to characterize optimal VM request and storage
rental, and then design the cloud provisioning algorithm.

A. Optimal VM and Storage Rental
To deploy a VoD server application on the cloud infrastruc-

ture presented in Sec. III, the VoD provider needs to request
a certain amount of storage to store its videos, as well as a
number of VMs to serve the chunks from the storage. Based on
the equilibrium demand E(∆

(c)
i ), i = 1, . . . , J(c), c = 1, . . . , C,

derived in Sec. IV and the VoD provider’s budget, the VM and
storage configuration can be formulated into two optimization
problems. Our discussion in this subsection apply to both
client-server-based and P2P VoD applications.
1) Storage Rental: Let constant vector {u1, . . . , uF} rep-

resent the performance factors for NFS cluster 1, . . . , F ,
respectively, where a larger uf for a cluster means a higher
performance level (e.g. larger I/O throughput). Binary variable
x
(c)
if indicates that chunk i in channel c is to be deployed in
NFS cluster f with x

(c)
if = 1, and not with x

(c)
if = 0. Let

Sf be the available storage capacity of cluster f in bytes,
and pf be the storage cost per byte per unit time on f . BS

denotes the storage budget per unit time the VoD provider
is willing to afford. Recall the size of each chunk is rT0.
The optimal storage rental problem, to decide which NFS
cluster each chunk in each video should be deployed onto,
is formulated as:

max
�C

c=1

�J(c)

i=1

�F

f=1 uf∆
(c)
i x

(c)
if

s.t.































�F

f=1 x
(c)
if = 1, ∀i = 1, . . . , J(c), c = 1, . . . , C,

�C

c=1

�J(c)

i=1 x
(c)
if ≤

Sf

rT0
, ∀f = 1, 2, . . . , F,

�C

c=1

�J(c)

i=1

�F

f=1 pfrT0x
(c)
if ≤ BS,

x
(c)
if = {0, 1}, ∀i = 1, . . . , J(c),

∀c = 1, . . . , C, f = 1, . . . , F.

(6)

The objective function maximizes the aggregate perfor-
mance for retrieving all chunks in all videos from the NFS
storage system, where ∆

(c)
i x

(c)
if represents the aggregate de-

mand of chunk i in channel c from cluster f . With the first
constraint, we restrict that only one copy of each chunk is to
be deployed in the storage system, since all VMs can access
all NFS servers. The second and third constraints represent
the storage capacity and budget constraints, respectively. The
optimization problem in (6) is a Knapsack-like problem [25].
We design an efficient heuristic to derive the approximation
solution:
Storage rental heuristic: Sort all chunks in all channels in

decreasing order of ∆(c)
i , i = 1, . . . , J(c), c = 1, . . . , C, and sort

the NFS clusters in decreasing order of the marginal utility
per unit cost uf

pf
, f = 1, . . . , F . Starting with the chunk with

the highest demand, we store it in the best NFS cluster (with
the largest uf

pf
) as long as the cluster is not full, or move on

to the second best cluster otherwise. This process repeats for
all the chunks in the ordered list, as long as the total storage
budget spent does not exceed BS .
With this heuristic, we seek to place the most popular

chunks on the NFS clusters at the highest performance level
with the most economic budget expenditure. We note that if the
budget runs out when not all the chunks have been stored, the
optimization problem does not have a feasible solution, which
signals to the VoD provider that their set budget is not feasible
given the current storage prices, which should be increased.

2) VM Configuration: Let constant vector {ũ1, . . . , ũV }
represent the performance factors for VMs in virtual cluster
1, . . . , V , respectively, where a larger ũv for a cluster means a
higher-grade configuration (e.g., CPU, I/O). We define variable
z
(c)
iv as the number of VMs to request from virtual cluster v,
to serve chunk i in channel c. Let Nv be the maximal number
of available VMs cluster v can provision, and p̃v be the rental
cost per unit time of one VM from cluster v. BM denotes the
VM rental budget per unit time from the VoD provider. Recall
R is the bandwidth each VM is allocated. The optimal VM
configuration problem, to decide how many VMs per virtual
cluster the VoD provider should request, is formulated as:

max
�C

c=1

�J(c)

i=1

�V

v=1 ũvz
(c)
iv

s.t.















�V

v=1 z
(c)
iv =

∆
(c)
i

R
, ∀i = 1, 2, . . . , J(c), c = 1, . . . , C,

�C

c=1

�J(c)

i=1 z
(c)
iv ≤ Nv , ∀v = 1, . . . , V,

�C

c=1

�J(c)

i=1

�V

v=1 p̃vz
(c)
iv ≤ BM .

(7)

The objective function maximizes the aggregate perfor-
mance for serving all chunks of all videos from the VMs
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requested. The first constraint states that the total upload band-
width of VMs requested for each chunk should be sufficient
to serve the demand for the chunk. The second and third
constraints represent the VM number and budget constraints.
We design the following heuristic to solve the optimization
problem in (7):

VM configuration heuristic: Sort VM clusters in decreasing
order of the marginal utility per unit cot ũv

p̃v
, v = 1, . . . , V . For

any chunk i in channel c, the total number of VMs it needs is
∆

(c)
i

R
, and we allocate as many VMs as possible to serve this

demand from the best virtual cluster (with the largest ũv

p̃v
) if

it still has available VMs, or move on to the second best VM
cluster otherwise. This process repeats for all chunks, as long
as the total VM rental budget BM is not exceeded.
With this heuristic, we seek to maximally place chunks

on the virtual clusters with the best configurations at the
modest budget. Note that z(c)iv can be fractional: its integer
part corresponds to the number of VMs which will be entirely
used to serve chunk i, and the fractional part indicates the
fraction of bandwidth used to serve chunk i at a shared VM,
which may concurrently serve multiple chunks. If one VM is
used to serve more than one chunk, we will maximally allow
consecutive chunks in one channel to be served by the VM.
Similarly, if the VM rental budget is exceeded when not all the
chunk demand has been served, the optimization problem is
not feasible, and the VoD provider should increase the budget
accordingly.

B. Dynamic Cloud Provisioning Algorithm

We now propose a practical algorithm through which the
cloud and VoD providers would cooperate to implement our
VoD-on-cloud system, CloudMedia. We illustrate our algo-
rithm with the case of a P2P VoD application, and the algo-
rithm can be easily adapted to client-server VoD applications.
To start, the VoD provider deploys its videos to the NFS

cluster and the server application to VMs in the cloud in-
frastructure, where the amount of storage and the number of
VMs are estimated using the storage and VM rental heuristics
presented in Sec. V-A, and based on the application’s empirical
user scale and viewing pattern information and the equilibrium
demand derived. Overtime, the VoD provider dynamically ad-
justs its cloud resource requests based on the current demand.
As hourly resource rental is commonly supported in state-
of-the-art cloud systems [12], we assume our provisioning
algorithm below is periodically run every interval of T = 1
hour. Key modules in the algorithm are illustrated in Fig. 3.
The tracking server maintains peer lists for each video and

the chunks they are caching, as well as the IP addresses and
ports of the entry points to the cloud infrastructure (i.e., public
access addresses of the cloud). When a peer first joins or seeks
to a new playback position in a channel, it asks for neighbors
from the tracking server which returns a list of peers who
have the required chunks. If there is insufficient peer supply,
the tracking server will return a 3-tuple, i.e., <IP address of
a cloud entry point, a list of port numbers, a ticket> to the

( )c
J

( )c

i

ij
P

( )c

( )c

Fig. 3. CloudMedia: an illustration of the key modules.

peer. Then the peer can send its chunk requests to the cloud.
Once the ticket is verified at the entry point, the requests will
be forwarded to the VMs in the cloud which will then serve
the requested chunks using the port-forwarding technique. A
VM will send a required chunk directly to the peer.
During each interval T , the tracking server summarizes the

average user arrival rate Λ(c) to each channel c = 1, . . . , C,
as well as the viewing patterns P (c)

ij for each channel. It then
sends these statistics to the controller at the end of the interval.
Using the collected arrival rates and viewing patterns, the

controller estimates the equilibrium demand for upload capac-
ity to serve each chunk, i.e, s(c)i = Rm

(c)
i , i = 1, . . . , J(c), c =

1, . . . , C, using the analytical method in Sec. IV-B, and the
expected amount of peer upload bandwidth contribution for
each chunk, E(Γ(c)

i ), based on the method in Sec. IV-C. The
expected amount of upload capacity to be provisioned from
the cloud is therefore E(∆

(c)
i ) = Rm

(c)
i − E(Γ

(c)
i ).

The controller then negotiates with the cloud provider via
the broker, for prices of VM and storage rental and QoS
of the resources. When the SLA is set and information on
the virtual and NFS clusters is provided (e.g., prices, current
availability), the controller computes in details its VM requests
for each chunk, applying the heuristics in Sec. V-A2, according
to its VM rental budget. If there are new videos to deploy or
if the demand for chunks has changed significantly since last
interval, the controller may also recompute the NFS storage
rental using the heuristic in Sec. V-A1. Then, it sends the
change requests to the cloud via the broker.
After the requests are received by the request monitor in

the cloud infrastructure (shown in Fig.1), the VM scheduler
and the NFS scheduler adjust their VM and NFS server
provisioning accordingly.
In our dynamic provisioning algorithm, user arrival patterns

in the previous time interval (hour) are used to predict the
capacity demand in the next interval. This design achieves
implementation simplicity, and has been validated by our
evaluation results, the cloud resources provisioned based on
the predicted equilibrium demand serve the actual demand
quite well. Nevertheless, more accurate prediction method
based on historical data collected over more intervals can be
applied for better performance, which however is not the focus
of the current paper and can be treated in our future work.
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Fig. 4. Cloud capacity provisioning vs. usage.

VI. PERFORMANCE EVALUATION

We verify our analytical results and evaluate the perfor-
mance of the dynamic cloud provisioning algorithm, based on
large-scale experiments using a cloud system and a prototype
VoD application we have implemented and deployed on a
cluster of machines.

A. Prototype Implementation and Experimental Settings
We have built a cloud infrastructure and a VoD system

using 100+ commodity computers (Intel(R) Pentium(R) 4
CPU 2.80GHz, 1G RAM, and 80G hard drive), obsoleted
from student laboratories in the Computer Science Depart-
ment at the University of Hong Kong. The computers are
interconnected via a collection of IBM 8275 Ethernet switches
(Model 324). We divide the computers into 3 groups, one for
constructing the cloud infrastructure (about 50 computers), one
for emulating the VoD user network (about 50 computers),
and the other with 3 computers for implementing control
mechanisms (e.g., tracking server and the controller module).
The computers allocated for cloud services are further di-

vided into virtual clusters and NFS clusters. On each physical
machine in a virtual cluster, we install Xen hypervisor VMs
[26] with Fedora 8 as the hosting operating system. On each
Xen VM, we install CentOS 5.4 as the guest operating system
and a modified Apache server (based on version 2.2.17) to
provide the streaming server service. A light-weighted cloud
management system to achieve the functional modules in
Sec. III-A is implemented using Java, which features a user-
friendly management GUI, rapid launch, allocation, and shut-
down of VMs based on user demands, real-time performance
monitoring and load balancing among VMs, etc.
On each of the computers allocated for VoD network, we

run tens of concurrent VoD clients (users). Each VoD client is
implemented in Java and executed as one process. In the client-
server mode of the VoD application, the users directly connect
to server services in the cloud; in the P2P mode, the peers in
each channel interconnect into a mesh overlay and resort to
the cloud only when necessary. Media chunks are delivered
over TCP connections among the cloud and the users.
We create 3 VM clusters and 2 NFS clusters with different

configurations given in Table II and Table III, respectively.
Each VM in the VM clusters is allocated a fixed bandwidth
of 10Mbps. The prices are set based on the charging model
of Amazon EC2 [12] and S3 [13]. The VM and storage rental
budgets are BM = $100 per hour and BS = $1 per hour,
respectively.

We deploy 20 video channels with different popularities
following a Zipf-like distribution with the total number of
concurrent online peers around 2500. The streaming playback
rate of each channel is r = 50 Kbytes/s (400 Kbps) and
the length of each video is 100 minutes. The size of each
chunk is 15 Mbytes, corresponding to a playback time of
T0 = 5 minutes.3 To emulate realistic VoD user dynamics, we
have generated a synthetic trace, following the measured user
dynamics and other characteristics in PPLive VoD as discussed
in [21]. Specifically, user population in each channel follows
a daily pattern with two flash crowds around noon and in
the evening, respectively. The interval between two playback
jumps made by a VoD user follows an exponential distribution
with an expected length of 15 minutes. The upload capacity
of users follows a Pareto distribution within range [180Kbps,
10Mbps] with shape parameter k = 3, which is implemented
via bandwidth control in VoD client processes.

B. Streaming Performance
We emulate the execution of user swarms together with

CloudMedia system over one week’s time, and plot in Fig. 4
the provisioned upload capacity from the cloud infrastructure
and the actually used cloud upload capacity by the users, in
both the cases of client-server and P2P VoD implementations.
We observe that in the majority of time, provisioned bandwidth
is larger than the used, showing the effectiveness of our server
demand prediction: even if simplified assumptions have been
made in our modeling, experimental results under realistic
settings have exhibited good matching between user demand
and cloud supply, even at times of flash crowds. In addition,
the amount of cloud capacity needed in P2P VoD is much
smaller than that in client-server VoD, showing that peer-
assisted implementation can further significantly alleviate the
operational cost of VoD providers, who have already exploited
the cost-efficient cloud paradigm.
Fig. 5 shows the average streaming quality in the 20

streaming channels, computed as the percentage of users in
all the channels with smooth playback in the past 5 minutes.
The streaming quality in P2P VoD is slightly worse than that
in client-server VoD (but still achieves an average of 0.95),
which represents a minor tradeoff between streaming quality
and server (cloud) cost with a peer-assisted implementation.
We next take a closer look at the streaming performance in

each of the streaming channels. In Fig. 6, we plot the streaming
quality vs. the number of users in each channel in client-server
VoD. The samples plotted are sizes of the 20 channels during
one day’s period of time (note that the size of each channel
varies over time). We see that the streaming quality is generally
good regardless of channel sizes. The results for P2P VoD
are slightly worse, which we omit from the figure, as they
significantly overlap with the results of client-server VoD.

3The selection of chunk size should aim to minimize the unnecessary
number of times of VM switching during users’ playback, while considering
the average length of continuous playback between two VCR operations as
well as the actual transmission efficiency. We have experimented with different
chunk sizes and identified the one presented here as the best.
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TABLE II
VIRTUAL CLUSTER CONFIGURATIONS

Type Utility (ũv) Memory CPU Hard Disk Price (p̃v) per hour No. of VMs per cluster (Nv)
Standard 0.6 128 MB 500MHz 5GB $0.450 75
Medium 0.8 192 MB 500MHz 5GB $0.700 30
Advanced 1 256 MB 500MHz 5GB $0.800 45

TABLE III
NFS CLUSTER CONFIGURATIONS

Type Utility(uf ) Rotation Speed Price(pf ) (per GB per hour) Capacity(Sf )
Standard 0.8 7200 RPM $1.11× 10−4 20 GB
High 1 10800 RPM $2.08× 10−4 20 GB

In the companion figure of Fig. 7, we plot the bandwidth
provisioned to each channel (from the cloud) against the
current size of the channel. We observe that bandwidth demand
linearly increases with the number of users in a channel in
client-server VoD, but scales very well with P2P VoD.
C. VM and Storage Usage
We next investigate the efficiency of VM startup and shut-

down, the effectiveness of our storage and VM configuration
heuristics, as well as the costs involved in operating the cloud.
In our implementation, VM instances are pre-deployed (and

in “off” state) in the physical machines in the cloud infras-
tructure, corresponding to 3 different configurations given in
Table II. When the CloudMedia system is in operation, VMs
are launched and shut down by the cloud management system
according to real-time VoD users’ demand, using the dynamic
provisioning algorithm in Sec. V. It takes around 25 seconds
to turn on a VM, and even less time to shut it down. As VMs
can be launched (or shut down) in parallel, latency involved in
VM provisioning is small (at seconds), which enables timely
service provisioning for a VoD application.
To evaluate the effectiveness of our storage rental and VM

configuration heuristics, we select 4 channels with different av-
erage user numbers of 10, 60, 200, 600, respectively, and com-
pute the aggregate storage utility (

�J(c)

i=1

�F

f=1 uf∆
(c)
i x

(c)
if )

and aggregate VM utility (
�J(c)

i=1

�V

v=1 ũvz
(c)
iv ) in each chan-

nel at different times, in the case of P2P VoD. In our experi-
ments, the performance factors ũv and uf reflect the different
memory allocation and hard disk speeds of different VM and
storage clusters, respectively. Therefore, the aggregate utilities
represent overall I/O performance at the allocated VMs and
storage servers, respectively. The evolution of the utility values
in Fig. 8 and 9 shows the adaptiveness of our heuristics, which
always strives to achieve the best storage and VM allocation
for chunks (and channels) according to their current popularity.
Fig. 10 gives the total VM rental cost to support the VoD

system in one day’s period of time, in the cases of P2P
VoD and client-server VoD, respectively. We observe that the
average cost of VM rental with P2P VoD is about $4.27 per
hour, and that for client-server VoD is much larger at an
average of $48 per hour, which also varies significantly over
time due to the dynamics of user population. This illustrates
the great potential of using a hybrid P2P and cloud paradigm
in providing high-performance streaming with low cost.

On the other hand, the storage cost for NFS rental can
almost be ignored, at around $0.018 per day. Since our costs
are derived based on practical pricing models from [12] [13],
this verifies that the cost of deploying a large-scale VoD
application on a cloud infrastructure largely lies at the VM
rentals, instead of storing the many videos onto the cloud
storage.

D. Impact of Peer Bandwidth Sufficiency
We have also evaluated the impact of peers’ upload band-

width availability on cloud capacity provisioning and stream-
ing quality, in the case of P2P VoD implementation. With
different experiments, we vary the ratio of average upload
capacity per peer over the streaming rate r. As expected, less
cloud resource is needed when peer average upload capacity
is larger, whose plots we omit as the results are quite intuitive.
We plot in Fig. 11 the evolution of average streaming quality

in the system at different peer average bandwidth levels. The
streaming qualities are satisfactory in all cases, showing that
our cloud capacity provisioning can well absorb different
bandwidth demand from the P2P overlay over time, no matter
whether the peer bandwidth contribution is sufficient or not.

VII. CONCLUDING REMARKS
This paper introduces the paradigm of utilizing cloud ser-

vices to support large-scale Internet-based applications. Using
the example of video-on-demand applications, we demonstrate
how on-demand cloud resource provisioning can desirably
meet the dynamic and intensive resource demands of VoD over
the Internet. Our main contributions are: First, we propose a
novel queueing network model to characterize users’ viewing
behaviors, with which we derive the equilibrium demand of
upload bandwidth for smooth playback for both client-server
and P2P VoD implementations. Second, taking practical cloud
parameters into account, we formulate two optimization prob-
lems related to VM provisioning and storage rental, for which
we propose some efficient solutions. Third, a practical dynamic
cloud provisioning algorithm is designed and implemented,
by which a VoD provider can effectively configure the cloud
services to meet its demands.
Our extensive performance evaluations based on real system

implementations adopt practical user dynamics observed in
real-world VoD systems, and the results confirmed the adapt-
ability and effectiveness of CloudMedia in handling time-
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Fig. 5. Average streaming quality in the VoD
system.
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Fig. 10. Evolution of overall VM rental cost.
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Fig. 11. Average streaming quality with P2P VoD implementation, at different ratios of peer average upload capacity over the streaming rate: (1) 0.9, (2)
1, (3) 1.2.

varying demands and guaranteeing smooth playback at any
time. It can be observed that the combination of cloud and the
P2P paradigm can achieve ultimate scalability for Internet-
based applications with minimum operational costs. In our
ongoing work, we are expanding to cloud systems spanning
different geographic locations, as well as more extensive
evaluations with Internet-wide deployment.
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