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ABSTRACT:  

An effective approach based on the Minimum Spanning Forest (MSF), grown from automatically selected markers using Support 

Vector Machines (SVM), has been proposed for spectral-spatial classification of hyperspectral images by Tarabalka et al. This paper 

aims at improving this approach by using image segmentation to integrate the spatial information into marker selection process. In 

this study, the markers are extracted from the classification maps, obtained by both SVM and segmentation algorithms, and then are 

used to build the MSF. The segmentation algorithms are the watershed, expectation maximization (EM) and hierarchical clustering. 

These algorithms are used in parallel and independently to segment the image. Moreover, the pixels of each class, with the largest 

population in the classification map, are kept for each region of the segmentation map. Lastly, the most reliable classified pixels are 

chosen from among the exiting pixels as markers. Two benchmark urban hyperspectral datasets are used for evaluation: Washington 

DC Mall and Berlin. The results of our experiments indicate that, compared to the original MSF approach, the marker selection using 

segmentation algorithms leads in more accurate classification maps. 

 

 

1. INTRODUCTION   

Imaging spectroscopy, also known as hyperspectral imaging, is 

concerned with the measurement, analysis, and interpretation of 

spectra acquired from either a given scene or a specific object at 

a short, medium, or long distance by a satellite sensor over the 

visible to infrared and sometime thermal spectral regions 

(Shippert, 2004). Recent technological improvements in spatial, 

spectral, and radiometric resolution of spectroscopy imagers 

beget the need of developing new methods for information 

extraction form this data. The information provided by 

hyperspectral data, make landcover classification a very 

promising application. There are two major approaches for 

classification of hyperspectral images:  the spectral or pixel-

based and the spectral-spatial or object-based approaches. While 

the pixel-based techniques, such as the classic Maximum 

Likelihood or Support Vector Machines (SVM) classifiers, use 

only the spectral information of the pixels, the objected-based 

frameworks such as Geographic Object-Based Image Analysis 

(GEOBIA) (Blaschke et al., 2014) or Minimum Spanning 

Forest (MSF) (Tarabalka et al., 2010a) classifiers employ both 

spectral characteristics and spatial context of the pixels. Many 

researchers have demonstrated that the use of spectral-spatial 

information, rather than only spectral information, improves the 

classification efficiency of hyperspectral data (Plaza et al., 

2009; Li et al., 2010; Fauvel et al., 2012; Xu et al., 2014; Heras 

et al., 2014).  

  

In the early studies on spectral-spatial image classification, the 

spectral information extracted from neighborhoods, defined by 

either fixed windows (Camps-Valls et al., 2006) or 

morphological profiles (Fauvel et al., 2008), was used to 

classify and label each pixel. Segmentation techniques are the 

powerful tools for defining the spatial dependences among the 

pixels and finding the homogeneous regions in the image 

(Gonzalez and Woods, 2002; Chen et al., 2012). The advantages 

of using segmentation for distinguishing spatial structures from 

one another are also discussed in (Tarabalka et al., 2010; Bitam 

and Ameur, 2013). An alternative way to achieve the accurate 

segmentations of image is marker-controlled segmentation 

(Soille, 2003; Tarabalka et al., 2010). The idea behind this 

approach is selecting of one or several pixels for every spatial 

object as the seed or a marker of the corresponding region. The 

marker-based segmentation significantly reduced the over-

segmentation problem and led to better accuracy rate (Soille, 

2003).  

 

Automatic marker selection has been previously used in the 

literature mostly for the greyscale and color images. Markers 

are often chosen by searching the flat zones (i.e. the connected 

components of pixels with a constant grey level value) or the 

zones of homogeneous texture (Soille, 2003). Gómez et al. 

(2007) used histogram analysis to obtain a set of representative 

pixel values, and the markers were generated with all the image 

pixels having representative grey values. Jalba et al. (2004) used 

connected operators filtering on the gradient image, in order to 

select the markers for a greyscale diatom image. Noyel et al. 

(2007; 2008) performed classification of hyperspectral image 

using different methods, such as Clara (Kaufman and 

Rousseeuw, 1990) and linear discriminate analysis (Duda et al., 

2001) and then filtered the classification maps, using 

mathematical morphology operators, for selecting large spatial 

regions as markers. Random balls, which connect pixels of 

randomly selected sizes, have been also extracted from large 

regions and employed as the markers (Jalba et al., 2004; Noyel 

et al., 2007; Noyel, 2008). 

 

Recently, Tarabalka et al. have proposed an efficient approach 

for spectral-spatial classification using the MSF, grown from 

automatically selected markers  (Tarabalka et al., 2010a). They 

used a pixel-wise SVM classification in order to select the most 

reliable classified pixels as markers. In their framework, a 

connected components labelling is applied on the classification 

map. Then, if a region is large enough, its marker is determined 

as the P% of pixels within this region with the highest 

probability estimates. Otherwise, it should lead to a marker only 
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if it is very reliable. A potential marker is formed by pixels with 

estimated probability higher than a defined threshold.  

 

It should be noted that, none of the above mentioned methods 

do not use the spatial information in marker selection process. 

In this paper, a modified marker selection method is proposed to 

improve the classification of hyperspectral images. This method 

benefits from segmentation algorithms to integrate the spatial 

information into marker selection process. In the proposed 

method, the pixels related to a given class with the largest 

population, are kept for each region of segmentation map. 

Afterwards, the most reliable classified pixels are chosen among 

the exiting pixels for each region as the markers. The markers 

obtained are then used in MSF approach to classify the 

hyperspectral images. 

 

 

2. MSF-BASED FRAMEWORK    

The MSF framework grown of markers is used in this paper for 

classification of hyperspectral image. In MSF, each pixel is 

considered as a vertex νϵV of an undirected graph G =
(V, E, W), where V and E are sets of vertices and edges, 

respectively, and W is a mapping of the edges E into R+. Each 

edge ei,j ∈ E of this graph connects a couple of vertices i and j 

corresponding to the neighboring pixels. Furthermore, a weight 

wi,j is assigned to each edge ei,j, which indicates the degree of 

dissimilarity between two vertices (i.e., two corresponding 

pixels) connected by this edge. We used an eight neighborhood 

and the spectral angle dissimilarity measure for computing the 

weights of edges, as described in (Van Der Meer, 2006). Given 

a graph G = (V, E, W), the MSF rooted on a set of 𝑚 distinct 

vertices {𝑡1, … , 𝑡𝑚} consists in finding a spanning forest 𝐹∗ =
(𝑉, 𝐸𝐹∗) of 𝐺, such that each distinct tree of 𝐹∗is grown from 

one root 𝑡𝑖, and the sum of the edges' weights of 𝐹∗ is minimal 

(Stawiaski, 2008). 

 

In order to obtain the MSF rooted on markers, m additional 

vertices (i.e. ti, i = 1, … , m) are introduced. Each extra vertex ti 

is connected by the edge with a null weight to the pixels 

representing a marker 𝑖. Furthermore, an additional root vertex 

𝑟 is added and is connected by the null-weight edges to the 

vertices ti (see Figure 1). The minimal spanning tree of the 

constructed graph induces a MSF in G, where each tree is 

grown on a vertex ti. Finally, a spectral-spatial classification 

map is obtained by assigning the class of each marker to all the 

pixels grown from this marker. 

  

 
Figure 1. An example of addition of extra vertices 𝐭𝟏, 𝐭𝟐 and r to 

the image graph for the construction of an MSF rooted on 

markers 1 and 2; non-marker pixels are denoted by “0.” 

 

 

3. THE PROPOSED METHOD  

The flowchart of the proposed method is presented in Figure 2. 

In this method, the SVM and the segmentation algorithms, such 

as watershed, expectation maximization (EM) and hierarchical 

segmentation are first used, in parallel, to classify and to 

segment the hyperspectral images, respectively. Afterwards, all 

the pixels, related to class, with the largest population, are kept 

for each region of segmentation map (see Figure 3). Lastly, the 

most reliable classified pixels are chosen among the exiting 

pixels for each region as markers. Then the markers are used to 

build the MSF. 

 

 
Figure 2.  Schema of the proposed method. 

 

 
Figure 3. An example of the interference segmentation map in 

SVM classification map. 

 

In the following, the hyperspectral image segmentation 

techniques are introduced described. 

 

1) Watershed segmentation: Watershed transformation is a 

powerful morphological approach for image segmentation. It 

combines region growing and edge detection. The watershed 

lines divide an image into the catchment basins, so that each 

basin is associated with one minimum in the image (Vincent 

and Soille, 1991). Using watershed segmentation, an image can 

be partitioned into a set of regions and one subset of watershed 

pixels, i.e., pixels situated on the borders between regions. 
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Finally, each watershed pixel is assigned to the neighboring 

region with the “closest” median. In other words, the distance 

between the vector median of this region and the watershed 

pixel should be minimum (Vincent and Soille, 1991).  

 

2) EM segmentation: The EM method is indeed a Gaussian 

mixture solution. It belongs to the group of partitioning-

clustering techniques (Tarabalka et al., 2009). Clustering aims 

at finding the groups of spectrally similar pixels. Normally, the 

assumption of belonging all pixels of a given cluster are drawn 

from a multivariate Gaussian probability distribution. The 

distribution’s parameters are then estimated by the EM 

algorithm. When the algorithm converges, the outputs are the 

clusters. However, as no spatial information is used during the 

clustering procedure, pixels with the same cluster label can 

either form a connected spatial region or belong to disjointed 

regions. The pixels in the latter group are the isolated pixels. In 

order to obtain the segmentation map, a connected components 

labelling algorithm (Shapiro and Stockman, 2002) is applied to 

the output image partitioning obtained by clustering. 

 

3) Hierarchical segmentation: The hierarchical algorithm is a 

segmentation technique based on the iterative hierarchical 

stepwise optimization (HSWO) region-growing method. It 

integrates the spatial and spectral information in a two-step 

procedure. In the first step, the homogenous areas are 

segmented at their maximum details, and then, by grouping the 

spectrally similar but spatially disjointed regions, larger and 

more uniform objects are created (Tilton, 1998). 

 

 

4. EXPERIMENTAL RESULTS  

4.1 Datasets 

Two hyperspectral images, with different characteristics, are 

used for our experiments. First dataset is collected by HYDICE 

sensor over Washington DC Mall. The second hyperspectral 

image covers the Berlin urban area and has been acquired by 

HyMap. Table 1 describes the main characteristics of these 

datasets. 

 

Dataset Washington DC Mall Berlin 
Sensor HYDICE HyMap 
Spectral range (um) 0.4-2.4 0.4-2.5 
Spatial coverage 1208×307 300×300 
Spatial resolution (m) 1.5 3.5 
Number of bands 191 114 
Number of classes 7 5 

Table 1. The main characteristics of the datasets used. 

 

For each class in each dataset, we randomly chose 10% of the 

labelled samples for training and the rest (i.e. 90%) were used 

for testing. 

 

4.2 Pre-processing 

In this study, the Gaussian radial basis function (RBF), as 

kernel, is used for the SVM classifier (Camps-Valls and 

Bruzzone, 2005). The RBF kernel’s parameters, i.e. C and  , 

are chosen by a five-fold cross validation. They are C=128 

and  γ = 0.1 for Washington DC Mall dataset and C = 256 

and  γ = 0.01 for Berlin dataset respectively.  

 

To create a map of markers in the proposed method, for each 

region of segmentation map with number of pixels equal to 

class's pixels with a maximum population, if it contains more 

than 40 pixels, 9% of its pixels with the highest estimated 

probability are selected as the marker. Otherwise, the region 

marker is formed by the pixels with estimated probability higher 

than a threshold 𝜏. The threshold 𝜏 is equal to the lowest 

probability within the highest 6% of the probabilities for the 

whole image. In the next step, the image pixels are grouped into 

the MSF using the spectral angle dissimilarity measure, built 

from the selected markers (Van Der Meer, 2006).  

 

In order to compare the results of the proposed method, we have 

implemented MSF algorithm on the markers obtained based on 

the labelling of connected components, i.e. original MSF 

approach (Tarabalka et al., 2010a). In this approach, the 

labelling of connected components is performed using the eight-

neighborhood connectivity. For each connected component, if it 

contains more than 20 pixels, 5% of its pixels with the highest 

estimated probability are selected as the marker for this 

component. Otherwise, the region marker is formed by the 

pixels with estimated probability higher than 2%. 

 

4.3 Classification results 

Figure 4 shows the color composite image, reference data and 

the classification maps obtained by the original MSF algorithm, 

as well as, by different proposed marker sets for Washington 

DC Mall dataset. As can be seen, the classification maps 

obtained by the proposed method contain much more 

homogeneous regions compared to those obtained by Original-

MSF. These results prove the importance of the use of spatial 

information throughout the marker selection procedure. 

 

  
             (a)                                         (b)    

  
                     (c)                                         (d) 

  
                     (e)                                         (f)  

 
Figure 4.  Washington DC Mall image, (a) color composite 

image, (b) Reference data: shadow, trees, grass, water, road, 

roofs and trail, (c) Original-MSF classification map, (d) 

Watershed-MSF classification map, (e) EM-MSF classification 

map, (f) Hierarchical-MSF classification map. 

 

Figure 5 shows the color composite image, reference data and 

the classification maps of the Original-MSF, as well as the 

proposed methods for the Berlin dataset. We can see from 

Figure 5 that by incorporating the spatial information, the 

proposed algorithm leads to much smoother classification maps 

than the Original-MSF algorithm. 

 

The accuracy of the classification results is generally assessed 

by the overall accuracy (OA), the Kappa coefficient of 

agreement (κ), and the class-specific producer's accuracy (PA). 

The OA is the percentage of correctly classified pixels, the κ is 
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the percentage of agreement corrected by the amount of 

agreement that could be expected due to chance alone, and the 

PA is the percentage of correctly classified samples for a given 

class. 

 

  
(a)                                (b) 

  
(c)                               (d) 

  
(e)                                (f) 

 
Figure 5.  Berlin image, (a) color composite image, (b) 

Reference data: vegetation, build-up, impervious, soil and 

water. (c) Original-MSF classification map, (d) Watershed-MSF 

classification map, (e) EM-MSF classification map, (f) 

Hierarchical-MSF classification map. 

 

Table 2 shows the global (κ and OA) accuracy values estimated 

for different methods and datasets. In this table, for the 

Washington DC Mall dataset, the OA of Hierarchical-MSF 

method is approximately 4% higher than the Original-MSF 

method. Moreover, for the Berlin dataset, however, the 

Watershed-MSF has an increase of about 5% OA, higher than 

the Original-MSF; these results are slightly different from 

Hierarchical segmentation. As can be seen in this table, in all 

three cases, the segmentation methods have improved the 

accuracy of MSF classification. Therefore it can be stated that; 

in marker selection process combining the spatial information 

obtained by segmentation maps with the SVM classification 

improves substantially the classification accuracies. 

 

Dataset Washington 

DC Mall 

Berlin 

Accuracies OA (%) κ OA (%) κ 

Original-MSF 87.2 0.83 86.1 0.81 

Watershed-MSF 90.0 0.87 91.5 0.88 

EM-MSF 88.8 0.86 89.3 0.86 

Hierarchical-MSF 91.4 0.88 91.3 0.87 

Table 2. The global accuracy values obtained for the datasets 

used. 

 

Figure 6 shows the per class producer's accuracies obtained for 

the two datasets. As can be seen in these charts, while in Berlin 

dataset, Watershed-MSF method achieves the best accuracy for 

most of the classes, in Washington DC Mall dataset, 

Hierarchical-MSF improves all the class-specific accuracies 

compared to the Original-MSF.  

 

 
(a) 

 
(b) 

Figure 6. The producer’s accuracy of the landcover classes for 

(a) Washington DC Mall and (b) Berlin. 

 

 

5. CONCLUSION 

In this paper, a comparison study of different marker selection 

methods for spectral-spatial classification of hyperspectral 

images was accomplished. The hyperspectral images are first 

classified using SVM and a segmentation algorithm. Then, the 

corresponding pixels of each class with the largest population 

for each region of segmentation map are kept. Lastly, the most 

reliable classified pixels are chosen as markers and used to build 

the MSF. The segmentation algorithms used in this study were 

the watershed, EM and hierarchical algorithms. Experimental 

results show that compared to Original-MSF approach, the 

proposed marker selection method improves the classification 

accuracies and provide classification maps with homogeneous 

regions.  

 

The proposed methodology succeeded in taking advantage of 

the spatial and spectral information simultaneously for accurate 

hyperspectral image classification. While performing 

particularly well for classification of homogeneous regions, the 

proposed approach has a drawback common to most of 

spectral–spatial techniques. It produces a smoother 

classification map when compared with pixel-wise ones. 

Therefore, it risks impairing results near the borders between 

regions (where mixed pixels are often encountered) or in 

textured areas. Spectral unmixing techniques can be used for 
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accurate analysis of border regions, while segmentation can be 

applied for textured regions. 
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