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Abstract. This work investigates the added value of ensem-1 Introduction

bles constructed from seventeen lumped hydrological mod-

els against their simple average counterparts. It is thus hyin hydrology, traditional approaches focus on a single model
pothesized that there is more information provided by all thethought to be the best possible for a given application. In op-
outputs of these models than by their single aggregated preposition, multimodel combination aims at extracting as much
dictors. For all available 1061 catchments, results showednformation as possible from a group of existing models. The
that the mean continuous ranked probability score of the enidea is that each model of the group provides specific infor-
semble simulations were better than the mean average errgnation that might be combined to produce a better overall
of the aggregated simulations, confirming the added value ogimulation. This concept has been widely tested because
retaining all the components of the model outputs. Relia-no hydrological model could yet be identified as the “best”
bility of the simulation ensembles is also achieved for aboutmodel in all circumstances (Oudin et al., 2006).

30% of the catchments, as assessed by rank histograms andindeed, the selection of a “best” model for a given appli-
reliability plots. Nonetheless this imperfection, the ensem-cation is a complex task. For instance, Marshall et al. (2005)
ble simulations were shown to have better skills than the deproposed a method in which hydrological models may be
terministic simulations at discriminating between events andcompared in a Bayesian framework accounting for model
non-events, as confirmed by relative operating characteristignd parameter uncertainty, while Clark et al. (2008) proposed
scores especially for larger streamflows. From 7 to 10 model$, Framework for Understanding Structural Errors (FUSE) in
are deemed sulfficient to construct ensembles with improve@rder to diagnose differences in hydr0|ogica| model struc-
performance, based on a genetic algorithm search optimiztyres. The latter approach allowed the elaboration of 79
ing the continuous ranked probability score. In fact, many different model structures combining components of 4 ex-
model subsets were found improving the performance of thesting hydrological models. Results lead the authors con-
reference ensemble. This is thus not essential to implemendjuding that it is unlikely that a single model structure may
as much as seventeen lumped hydrological models. The gaigrovide the best streamflow simulation for basins of differ-
in performance of the optimized subsets is accompanied bgnt climate regimes. A framework called Modular Model-
some improvement of the ensemble reliability in most casesing System (MMS) has been developed by the US Geolog-
Nonetheless, a calibration of the prediCtive distribution is still ical Survey to deve|op a Variety of physica| processes mod-
needed for many catchments. els that can be coupled with management models for a wide
range of operational issues (Leavesley et al., 1996). MMS
uses a library that contains compatible modules for simulat-
ing a variety of water, energy and biochemical processes. In
such framework, a model is created by selectively coupling
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In multimodel combination, Shamseldin et al. (1997) com- The Ensemble Bayesian Model Averaging (BMA) has
pared three combinational methods over five rainfall-runoffbeen proposed for multimodel combination (Raftery et al.,
models and eleven catchments. The methods were the simpR003, 2005). In this framework, the probability density func-
model average (SMA), the weighted average, and artificialtion (pdf) of the quantity of interest predicted by the BMA is
neural networks. Results showed that the combined outputessentially a weighted average of individual pdf’s predicted
were more accurate than the best single one. Later, Geoby a set of individual models that are centered around their
gakakos et al. (2004) tested a multimodel approach over siforecasts. The weights assigned to each of the models reflect
catchments. Combined outputs were constructed with bothheir contribution to the forecast skill over the training period.
calibrated and uncalibrated distributed model simulations,Typically, the ensemble mean outperforms all or most of the
using the SMA. Results confirmed the better performance oindividual members of the ensemble (Raftery et al., 2005).
the combined series over individual ones; furthermore, theBMA has been successfully applied in streamflow prediction
authors claimed that multimodel simulations should be con-(Duan et al., 2007), groundwater hydrology (Neuman, 2003),
sidered as an operational tool. Ajami et al. (2006) examinedsoil hydraulic (Wbhling and Vrugt, 2008) and surface tem-
yet another method of combination, namely the multimodelperature, and sea level pressure (Vrugt et al., 2008). How-
superensemble of Krishnamurti et al. (1999), using outputsever, Vrugt et al. (2007) report no advantage when comparing
from seven distributed models. They found that more sophismultimodel BMA and Ensemble Kalman filtering (Evensen,
ticated combination techniques may further improve simula-1994).
tion accuracy, that at least four models are required to obtain In meteorology, the DEMETER project aimed developing
consistent multimodel simulations, and that the multimodela multi-model ensemble-based system for seasonal to inter-
accuracy is related to the accuracy of the individual memberannual prediction, which relies on seven global atmosphere
models (longer dataset and more models might then improve- ocean coupled models, each running from an ensemble of
multimodel combination results). Viney et al. (2009) com- initial conditions. The evaluation demonstrates the enhanced
pared predictions for one catchment exploiting ten modelsreliability and skill of the multimodel ensemble over a more
of different model types, covering lumped, semi-distributed, conventional single-model ensemble approach (Palmer et al.,
and fully distributed models combined in many ways. Their 2004; Hagerdon et al., 2005). Output from the DEMETER
results differ from Ajami et al. (2006) in that the best en- multimodel system has been also applied to malaria predic-
sembles are not necessarily those containing the best indtion models (Jones et al., 2010).
vidual models. For the same catchment and models as Viney An alternative idea, which is gaining ground, combines
et al. (2009), Boorman et al. (2007) suggested that a numbemodels through optimization. For example, Devineni et
of at least 6 models are required for a multimodel ensem-al. (2008) proposed an algorithm combining streamflow fore-
ble to ensure good model performance and that any numbegast from individual models based on their skill, as assessed
above six may not considerably improve the performance ofrom the rank probability score. The methodology assigns
the ensemble. larger weights to models leading to better predictability un-

Other studies have applied the Generalized Likelihood Un-der similar prediction conditions. This multimodel combi-
certainty Estimation (GLUE) methodology (Beven and Bin- nation has been tested over a single catchment, combining
ley, 1992) in order to assess the uncertainty associate with thivo statistical models. Seven multimodel combinations tech-
predictions. This procedure works with multiple sets of pa- niques were tested and results showed that developing opti-
rameters values and allows differentiating sets of values thamal model combinations contingent on the predictor lead to
may be equally likely as simulators of a catchment. At theimprove predictability.
heart of GLUE is the concept of rejecting non-behavioural Multimodel combination has also been applied in an op-
models and weighting the behavioural ones for ensemblesrational context. Loumagne et al. (1995) combined model
simulations. Recently, Liu et al. (2009) have proposed aoutputs using weights adapted to the state of the flood fore-
methodology for identifying behavioural models avoiding casting system. This procedure proved to be more effective
the subjective choice of a threshold based on a global goodthan choosing the best model at each time step.
ness of fit index, replacing it by a condition for every time  Coulibaly et al. (2005) combined three structurally differ-
step based on an observation error set prior. An application oént hydrologic models to improve the accuracy of a daily
the GLUE methodology to account uncertainty in model pa-reservoir inflow forecast based on the weighted average
rameter, model structure and data is presented by Krueger ebethod. They found that model combination can offer an
al. (2010), however, the understanding of data uncertaintiesilternative to the daily operational updating of the mod-
often remains incomplete (e.g. rainfall input). Another mul- els, providing a cost-effective solution to operational hydrol-
timodel combinational method has been proposed by Oudirogy. Marshall et al. (2006, 2007) used a hierarchical mix-
et al. (2006) who resorted to two different parameterizationsture of experts (HME) allowing changes in the model struc-
of the same model. ture, depending on the state of the catchment. The approach

was tested on Australian catchments by combining the re-
sults from two models structures in the first case and two

Hydrol. Earth Syst. Sci., 14, 2303317 2010 www.hydrol-earth-syst-sci.net/14/2303/2010/



J. A. Velazquez et al.: Performance and reliability of multimodel hydrological ensemble simulations 2305

parameterizations of a conceptual model in the second case
Results showed that the HME improves performance over
any model taken alone.

The view shared by the above studies is the production of
improved hydrological simulations through the aggregation
of a group of outputs into a single predictor. The present
study hypothesizes that there is more value exploiting all the
outputs of this group than the single aggregated one, fol-
lowing the philosophy of meteorological ensemble predic-
tion (Schaake et al., 2007). All the members of the ensemble
are then used to fit a probability density function (the pre-
dictive distribution), and are useful to evaluate confidence
intervals for the outputs, the probability of streamflow being
above a certain threshold value, and more. In other words,
an ensemble allows appreciating the simulation uncertainty.
He et al. (2009) used a coupled atmospheric-hydrologic-
hydraulic system driven by the TIGGE (THORPEX Interac- 100 0 100 200 km
tive Grand Global Ensemble) ensemble forecast (seven me: T —
teorological agencies) for flood warning in the River Severn
catchment located in Wales. Another study is presented byig- 1. Location of the 1061 gauging stations and corresponding
He et al. (2010) which used predictions from six meteorolog-ca{chment boundaries (Le Moine, 2008).
ical agencies, for the Huai River catchment in China, to drive
a hydrological model forecasting the July—September 2008rap|e 1. Characteristics of the 1061catchment dataset.
flood event. Their results established the TIGGE multimodel
as a promising tool for discharge forecasts.

The present study aims assessing the added value of en- Area  Meanannual ~Mean annual potential ~Mean annual

sembles constructed from seventeen lumped hydrological (km®) rz:‘rf)" evapoz;f]‘;s)p'ra""” (z:if:)a'ge

models (the probabilistic simulations) against their simple o " w5 ps o
e . . inmum

average counterparts (the deterministic simulations). It re- o . - 163 980 657 352

sorts to 1061 French daily streamflow time series extending maximum 32400 2182 870 3493
over a ten-year period, in order to generalize conclusions.
The probabilistic performance based on all seventeen outputs
is first compared to the deterministic one. Then the reliabil-
ity of the ensembles is assessed as well as their operationaksed by Le Moine et al. (2007). Catchments are spread
value in terms of hit rate and false alarm rate. Further en-over the French territory (Fig. 1) in order to representing a
semble performance improvement is finally sought throughlarge variety of physical conditions in terms of size, topogra-
model selection: subsets of the seventeen lumped hydrologishy, geology, soil, land use, and climate, which ranges from
cal model outputs are objectively constructed using a genetigceanic to Mediterranean to continental (Table 1). Some of
search algorithm optimizing the Continuous Ranked Probathese catchments are headwater catchments while others are
bility Score. medium to large size catchments. Catchments with impor-
The methodology is described in the next section. Re-tant snow accumulation are not included, avoiding the need
sults are presented in Sect. 3, while conclusions are giveffor a snowmelt module. Temperature, precipitation and flow

in Sect. 4. data were available at a daily time step over a 10-year period
extending from 1996 to 2005. This period includes a wide
2 Methodology range of conditions (e.g. with large floods in 1999 and 2001

and severe drought in 2003), but not much different from
Catchments and models are presented along scores and toeldat can be observed on these catchments on the long term.
used to evaluate the performance and reliability of the en-Daily streamflows come from the French database Banque
sembles. The genetic search algorithm is described last.  Hydro. Daily precipitation and temperature values over a 8-

km grid originate from the meteorological analysis system
2.1 Catchments and models SAFRAN of Méteo-France (Durand et al., 1993; Quintana-

Segui et al., 2008). Potential evapotranspiration is estimated
Deterministic and prObabiliStiC streamflow simulations from from air tempera’[ure, using the radiation-based formulation
seventeen hydrological models are analyzed on 1061 Frencgroposed by Oudin et al. (2005).
catchments. The dataset was built by Le Moine (2008) and
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Table 2. Models identification and characteristics.

were applied in the same conditions, i.e. ran at a daily time
step using the same rainfall and potential evapotranspiration
inputs and calibrated with the same procedure. This single

ID Model Numberof Number Derived from

optimized of application framework provides more comparable results be-

parameters  storages tween model structures. This is one of the reasons why the
1 GR4J 4 2 Perrin et al. (2003) original model structures were modified as they sometimes
2  PDMO 8 4 Moore et al. (1981) had specificities that did not match this framework. Note that
3 MORD 6 4 Gargon (1999) the objective here was not to evaluate the original structures
4 TOPM 8 3 Michel et al. (2003) but to have a variety of conceptualizations. To avoid confu-
5 SACR 13 6 Burnash et al. (1973) . . . . .
6  SMAR 9 3 O'Connell et al. (1981) sion with the original models from which they are derived,
7 NAMO 10 7 Nielsen et al. (1973) only 4 letter acronyms are used in Table 2 and identification
8  TANK 10 5 Sugawara (1979) numbers will be used in the text and figures. Model’s struc-
9  HBVO 9 3 Bergstom et al. (1973) ture description is available from authors.
12 \?VECES(E: 88 43 V%Z:m:%’ae:nae"tg?ggn Calibration was performed using a local search procedure,
12 JHAC 6 3 Jakeman et al. (1990) as described by Edijatno et al. (1999), applied in combination
13 GARD 7 3 Thiery (1982) with a pre-screening of the parameter space as proposed by
14 SIMH 8 3 Chiew et al. (2002) Mathevet (2005). This pre-screening provides a likely start-
15 MOHY 7 2 Fortinetal. (2006) ing point for the search algorithm and limits the risks to be
1? ﬁsﬁg : 53 g&i?;t;'l'((zloggg) trapped in local optima. Mathevet (2005) showed that this

approach is competitive for this type of models, in terms of
efficiency and effectiveness, when compared with more so-
phisticated global search procedures.

The first half of the time series is used for calibration, 2.2  Performance and reliability
while the second half is used for validation. All results pro-
vided herein concern the validation sub-dataset. Deterministic simulations were aggregated using the sim-

All seventeen hydrological models are of low to moderatePle average method (SMA). This is the simplest procedure
Comp|exity: the number of parameters ranging from 4 to 13_f0r Combining outputs from an ensemble of individual mod-
Table 2 lists the tested model structures along with the numéels (Shamseldin et al., 1997). Ensembles were constructed
ber of optimized parameters and stores for their tested verin different forms. First, a simple pooling of all seventeen
sion. Most of these models were used by Perrin et al. (2001ynodel outputs was considered. Then, subsets of the sev-
and Mathevet (2005). All model structures were applied€nteen lumped hydrological model outputs were identified
in a lumped mode, which means that catchments were nobjectively using the genetic search algorithm described in
split into sub-catchments or grids but considered as a sinSect. 2.3 and the Continuous Ranked Probability Score as the

g|e unit. A|though some of the test catchments are quiteObjeCtive function. Finally, subsets of eight models, selected
large, this does not seem to be a real limitation for the ap-according to their deterministic performance, were tested for
plication of lumped models, as shown by the results by MerzComparison.

et al. (2009). Obviously, some specific conditions or events o
may be better modelled using semi-distributed or fully dis- 2-2-1  The Absolute Error criteria
::gggﬁnzp:éﬁé;Zhﬁgiis(zzeh;% g::rl]aeetaarl)lslii?jov?/i)t,hbgttht;[ahe evaluation of the performance of the deterministic sim-

. ) . ._ulations is based on the absolute error (AE), a linear scoring
model types. Further discussion on the impact of the spatia . . .
. ; rule that describes the average magnitude of the errors with-
scheme on model performance can be found in Aadsian

. out considering their direction. The main advantage of the
etal. (2004) or Smith et al. (2004). ) AE over alternative deterministic scores is that it can be di-
~ These lumped models correspond to various conceptualzectly compared to the Continuous Ranked Probability Score
izations of the rainfall-runoff transformation at the catchment_ joscribed next — of the probabilistic simulations (Gneit-
scale. They all include a soil moisture accounting procedure;ng and Raftery, 2007). It thus provides a way to compare
but with various formulations (linear or non linear, possibly o performance of ensemble simulations against the per-

with several soil layers). They also includetransferfunctionsform(,jmce of deterministic simulations, for each individual
to account for the travel time and different pathways of water,chment.

at the catchment scale. These functions includes from 1 to 5

linear or non linear stores, and unit hydrographs or pure timez 2.2 The Continuous Ranked Probability Score

delays. Some of the models include a non conservative func-

tion (correction factors of inputs or groundwater exchangePerformance evaluation of the probabilistic simulations im-
functions) used to adjust the water balance. All the modelsplies the verification of a probability distribution. Therefore
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the simulation error cannot be estimated from a routine com-of 10 on average. On the other hand, the potential CRPS
parison between the model output and a verifying value. Thecorresponds to the best possible CRPS value that could be
performance depends of the correspondence between the prebtained with the database and the particular simulation sys-
dicted probability and the actual frequency of occurrencetem that is used, if the latter were perfectly reliable. Be-
(Atger, 1999). The selected score is the Continuous Rankedause of the complex nature of the CRPS, other means of
Probability Score (CRPS) (Matheson and Winkler 1976),assessing the reliability is often used in parallel, such as the
which is a proper score widely used in atmospheric and hy+ank histogram and the reliability diagram. Unreliable sim-
drologic sciences (e.g. Gneiting et al., 2005; Candille andulations can be misleading and should be used with caution,
Talagrand, 2005; Weber et al., 2006; Boucher et al., 2009)if at all. Many methods for post processing the probabilistic
The CRPS is defined as: forecasts from ensembles have been proposed, such as the
ensemble dressing (i.e., kernel density) approaches (Roul-
ston and Smith, 2003; Wang and Bishop, 2005; Fortin et al.,
2006), Bayesian model averaging (Raftery et al., 2005), non-
- homogeneous Gaussian regression (Gneiting et al., 2005),
where F, is the cumulative predictive distribution function logistic regression techniques (Hamill et al., 2004, 2006),
for the timer, x is the predicted variable (here streamflow) analog techniques (Hamill et al., 2006), forecasting assim-
and x; is the corresponding observed value. The functionilation (Stephenson et al., 2005), statistical postprocess cal-
H{x > x,} is the Heaviside function which equals 1 for sim- ibration approach (Wood and Schaake, 2008), variance in-
ulated values larger than the observed value and 0 for simulation method (Johnson and Bowler, 2009), the simple bin-
lated values lower than the observation. The CRPS is positiv#ing technique (Stensrud and Yussouf, 2007) and several oth-
and a zero value indicates a perfect simulation. An analyti-ers. However, these procedures were not considered in the
cal solution of Eq. (1) exists for normal predictive distriou- Present work.
tions (Gneiting and Raftery, 2007). However, because the The reliability of the predictive distribution can be visually
normality of the predictive distribution is not always true in assessed using the rank histogram (Talagrand et al., 1999;
the present study, a Monte Carlo approximation to Eq. (1)Hamill, 2001). To construct it, the observed valueis
has been used instead &Bely et al., 2003; Gneiting et al., added to the ensemble simulation. That is, if the simula-

CRPSF,,x;) = / (F(x)— H{x > x,})%dx 1)

2007): tion hasn members, the new set consistsmof 1 values.
Then, the rank associated with the observed value is deter-
CRPS=E|X —x,|-05E|X - X'| (2)  mined. This operation is repeated for all simulations and cor-

. - responding observations in the archive. The rank histogram
WhereX andX’ are independent vectors consisting of 1000 P 9 g

d lues f distributi diusted to th is obtained by constructing the histogram of the resulfihg
random values froma gamma distribution agjusted o the prey, . - e interpretation of the rank histogram is based on
dictive function F;. As already mentioned, an interesting

’_the assumptions that all the members of the ensemble simu-

!{ohroperty mfc thg ?RPS.'S{ th"%‘t It lre;fjucecs; to_tt_he AEd sF;:ofrte "Nation along with the observations are independent and iden-
€ case of a deterministic simulation (Gneiting and Ra ery’ticaIIy distributed; under these hypotheses, if the predictive

2007). Howevgr, because_thg score for a specn‘m lcorecaStélistribution is well calibrated, then the rank histogram should
observation pair, at a certain time, cannot be interpreted, W&o close to uniformity (equally distributed). An asymmetri-
rather consider for each station the average of all individualcaI histogram is usually an indication of a bias in the mean
Scores as a measure of the quality of the simulation SYS®Myt the simulations. If the rank histogram is symmetric and
thu.s comparing mean AE (MAE) gnd mean CRMES’ “U” shaped, it may indicate that the predictive distribution is
which values are directly proportional to the magnitude Ofunder-dis:persed. If it has an arch form, the predictive distri-

th(\a/\(/?ebeslir(\)/ae;[ilr?wnfc; evaluate the performance gain in terms otb ution may be over-dispersed.
b g Because it is not practical to present all 1061 rank his-

CRPS that may bring the optimization procedure. Based OIﬁfograms, results will be synthesised using the réatioetric

tmhgrikg:/:;;?;i (rz;‘ge.rgxlclzl(esi'slsaisz E)h? percentage of ImproVe_proposed by Candille and Talagrand (2005): a numerical in-
9 y: dicator reflecting the squared deviation from flatness in indi-

CRPS vidual rank histograms. Itis given b
gain%) = ( 1— x 100 @3) g genby
CRPSet
5= 2 @
2.2.3 Reliability Ao

Reliability refers to the statistical consistency between sim-where:
ulations and observations. For instance, a reliable 90% con- ntd 5
fidence interval calculated using the predictive distribution , _ N
A= Z Sk (5)

function should contain the observed value in 9 cases out = n+1
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andsy is the number of elements in theh interval of the  simulation not to occur and did not occur) (e.g. Wilks, 1995).
rank histogram. For a reliable systesp,has an expectation The area under the ROC curve characterizes the quality of a
of N/(n+1). Then,Ag is the ratio that would be obtained simulation system’s ability to correctly anticipate the occur-

by a perfectly reliable system: rence or non occurrence of the events. In constructing a ROC
curve, simulations are expressed in binary as “warnings” or
Nn 13 H ” o H H .
Ao= (6) not warnings” indicating whether or not the defined event
n+1 is expected to occur. The ROC area ranges from0to 1, 0.5

leading to a target value éf= 1. Of course, a perfectly reli- indicating no skill and 1 being the perfect score. ROC mea-
able system is a theoretical concept. In practice, a system isures the ability of the simulation to discriminate between
declared unreliable whenever &tsalue is quite larger than 1 two alternative outcomes, thus measuring resolution. It is not
(Candille et al., 2005). However, the exddhreshold, above — sensitive to bias in the simulation, so says nothing about re-
which a system may be declared unreliable, has to be estaliiability. A biased simulation may still have good resolution
lished for each investigation, notably because &hmetric ~ and produce a good ROC curve, which means that it may
is proportional to the length of the time series (the thresh-be possible to improve the simulation through calibration.
old value adopted here will be discussed later on). Somelhe ROC is thus a basic decision-making criterion that can
applications of thé metric include evaluating the degree of be considered as a measure of potential usefulness (WMO,
reliability of meteorological ensembles by comparihgal- ~ 2002).
ues according to their series lengths (e.g. Jiang et al. 2009). ) )
Alternatives to the rank histogram exist, such as the QQplog-3 Genetic algorithm
(e.g. Thyer etal. 2009). They remained unexplored here. Genetic algorithm is a technique for optimization of prob-
The reliability diagram is another approach used to graph-I gt It is inspi (é P b'pl b i
ically represent the performance of probability simulations ems or sysiems. 11 IS Inspired from Dbiology, more Specifl

of dichotomous events. A reliability diagram consists of the :2!3& %Sg.ﬁ]e;'rc ggggs’ txheriﬁglu;gﬁ i;eot{chgllyofr?gi
plot of observed relative frequency as a function of simula- ' inary sting. S pu solutl

tion probability and the 1:1 diagonal represents the perfecfS regu!ated by rule.s based on Darwin's theory on the_ survival
reliability line (Wilks, 1995). In the present study, ten con- of the flttest,_by Whlch the _strmgs are allowed to survive from
fidence intervals have been calculated with nominal confi-o"'< generation (i.e. iteration) to another and to trade part of

dence level of 5% to 95%, with an increment of 5% for eachthf)Ir %enenc rr:jatfrla(;vt;/ltfshothﬁ_r Sttf'”gfs detpendlng Xf tkﬁlrt
emitted simulation. Then, for each simulation and for each' 0PUStNess as defined by the objective function (.. Anctil e

confidence interval, it was established whether or not eaclﬁal" 2006).

confidence interval covered the observation. This is repeate(rjln oT dheel s%rt?sS:tr;towtﬁ)rz:izmsefheggrc];ttlicn uﬂggrggrkgg Plfggglf))ill-
for all simulation-observation pairs and its mean is then plot- P 9

ted (Boucher et al., 2009). Verification results can be quiteity Score. The rules of reproduction, crossover and mutation

sensitive to sampling variability in some cases (Bradley eterr}r;]lgyce: dgzrzt?;e V\étzli['g.es ?;:rcl)?esdeIlnetggr?z:grgwlsnig)ér osi-
al., 2003; Clark et al., 2006). To assess this situation, we Ing : v posi

assigned confidence limits to the reliability diagram using a::%n;:(?éz (t)r?;[ raerzr?]i?nl}'sneg da;ﬁﬁg'ffvg% (lil:ige\ﬁilfuyerilc?(in-
bootstrap technique. '

els that are retained. A total of 131054 combinations of
224 Hit over threshold criteria at least two models can be generated from a pool of sev-
enteen candidates. The processes of reproduction, crossover
The relative operating characteristic (ROC) curve (Petersorfnd mutations regulate the search in the domain of all these
et al., 1954; Mason, 1982) plots the probability of detec- Possible combinations, where the objective function is the

tion (POD) versus the probability of false detection (POFD), inverse squared CRPS. At each generation, 50 combinations
which are given by: are thus investigated. From the initial generation, 20 others
are created, leading to the consideration of 1000 model sub-

POD= L 7) sets. This search is repeated over all 1061 catchments.
hits+ misses As already mentioned, the first half of the time series is
false alarms used for optimization, while the second half is used for val-
POFD= (8) idation. All results provided herein concern strictly the vali-

~ correct negatives false alarms dation sub-dataset

The four combinations of simulations (yes or no) and obser-
vations (yes or no), called the joint distribution, are: hit (the

event simulation to occur and did occur), miss (the event sim-
ulation not to occur, but did occur), false alarm (event simu-
lation to occur, but did not occur) and correct negative (event

Hydrol. Earth Syst. Sci., 14, 2303317 2010 www.hydrol-earth-syst-sci.net/14/2303/2010/
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3.1 Individual model performance Catchments are ordered according to their MAE value.

MAE values are used to compare individual model perfor-

mance, based on their frequency of occurrence in the top 5 The next question concerns the reliability of the ensem-
ranking for each catchment (Fig. 2). There are clear differ-pje simulations, as assessed by the rank histograms and the
ences between models. Some of them are more frequently ifgjiapility plots. Figure 5 presents some examples of rank
the top five, such as models 1, 2 and 3, while others are rarelyjistograms in order to interpret their corresponding ratio
present, such as model 17 and 16 — note that Fig. 2 justifiegajues. As mentioned earlier, a threshélgalue has to be

the model ordering in Table 2. The selected seventeen modastablished for each experimental set-up because this metric

els thus offer a wide range of individual performance. is proportional to the length of the time series. From Fig. 5,
it is assessed that, for the simulation system and series length
3.2 Comparison of deterministic and probabilistic at hand, a ratié value of about 20 may be used as a practical
simulations upper limit of reliability (Fig. 5¢), while value of about 100 is

without a doubt under-dispersed (Fig. 5f). This is confirmed
The main scope of the present study is to answer the folby the corresponding reliability diagrams presented for three
lowing question: is there more valuable information in the discharge thresholds, larger than 0 (Fig. 6), than quantile 50
ensemble simulations than in the deterministic ones? Thi€Fig. 7) and than quantile 75 (Fig. 8) of the observation time
question is first tackled by comparing ti@RPS and the series. Itis noted that, for some catchments (e.g. catchments
MAE values for the CO reference ensemble formed by all224 and 292), there is an improvement in the reliability of the
seventeen models. In Fig. 3, all 1061 catchments lead to @nsembles for larger discharges. Now considering the entire
CRPS value lower than the MAE ones, confirming the addeddatabase, the cumulative frequency of the ratio Fig. 9
value of retaining all the components of the ensembles oveghows that reliability is achieved for about one third of the
their average deterministic values. Note that simulations forcatchmentsy values below 20) and that the system is clearly
each catchment have been standardized by their correspondnreliable for at least 20% of the catchmerdtsdlues larger
ing mean streamflow observation to facilitate comparison bethan 100), the other cases being debatable. An operating sim-
tween them. ulation system based on the CO reference ensembles would

However, it remains possible that some individual modelsthus need to include the calibration of the predictive distri-
surpass in performance the CO reference ensemble. Indedtion for an important number of catchments, in order to
such situations occur quite frequently when relying on de-improve their reliability.
terministic simulations, which provides the lowest MAE for  Nonetheless the reliability imperfection of our simulation
only 38% of the catchments; while for example model 1 sur-system, its ability to discriminating between events and non-
passes the performance of all the other models including thevents is next confronted to the same ability of the deter-
deterministic simulation in 21% of the catchments (Fig. 4a). ministic simulations. For that purpose, ROC scores were
The performance gain following the usage of the SMA ag- calculated for threshold values respectively corresponding to
gregating multiple model outputs is thus not as universalquantiles 10, 25, 50, 75 and 90 of the observation time se-
as proposed by Shamseldin et al. (1997) or Georgakakos etes. Results are shown in Fig. 10. It can be noted that
al. (2004). However, the situation gets considerably bettetthe probabilistic ROC scores are superior to the deterministic
when using the probabilistic ensemble simulations (i.e. keepones in almost all cases. This proves again the superiority of
ing all individuals model outputs), which improves on the the ensemble philosophy over the aggregation philosophy, at
performance of all individual models in 96% of the catch- least for better event detections, even if the produced ensem-
ments (Fig. 4b). These striking results confirm the superior-ble could in many cases be further improved by the appli-
ity of the probabilistic approach over the deterministic one. cation of a calibration procedure. It is also noteworthy that
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the predictive distributions are skilled for the large major- performance through optimization come at the cost of a loss
ity of the catchments (ROC values superior to 0.5) and thabof reliability?

the system is better at detecting larger events such as quan- The optimization procedure described in Sect. 2.3 was ap-
tiles 50 or higher, than low flow events such as quantile 10.plied to all catchments. Many model subsets showed im-
For the latter case, the probabilistic simulations largely im- proved performance over the CO reference ensemble. More
prove over the deterministic ones that prove to be unskilledspecifically, improvements were found for 1057 out of the
for many catchments. 1061 catchments, which represent 99.6% of the database.
The gainin terms o€RPS resulting from the performed opti-
mization is shown in Fig. 11 (see Eq. (3) where the reference
value is C0). The gain varies from 0.3% to 93% with a me-

Could the system performance be further improved throughdia” value of 5.5%. There is also a gain in the quality of the
model selection? A genetic search algorithm is used to an€nsemble’s reliability as seen in Fig. 12 that draws the ini-
swer that question, objectively optimizing ti&RPS value tial ratio 6 values against the ones of the optimized subsets:
for each catchment. Such analysis will also help answe@n improvement was obtained in 86% of the cases. However,
some other subsidiary questions like: Are seventeen modthose gains are not large enough to solve the under dispersion
els enough or too many to produce an operational ensembld8sue of the produced ensembles. A calibration procedure is
Are all models equally useful to the ensemble subsets or onlfhus still needed for most catchments.

the ones that perform better individually? Does any gain in

3.3 Looking for optimized model ensembles

Hydrol. Earth Syst. Sci., 14, 2303317 2010 www.hydrol-earth-syst-sci.net/14/2303/2010/
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Fig. 7. Reliability plots for the same catchments as in Fig. 5, for discharge larger than quantile 50 of the observation time series. Dashed

lines depict the 95% confidence interval.

Figure 13a shows the relative frequency of selection ofthen 7, 8 and 9. Furthermore, no links could be established
the models in the best subset ensemble of each catchmerietween the level of complexity of the models (number of
When compared to Fig. 2, which showed the frequency ofoptimized parameters and storages) and their usefulness for

occurrence in the top five ranking, it may be deduced thathe optimized subsets.

all models are useful contributors to subset ensembles that Figure 13b presents the relative frequency of the number
outperform the CO reference ensemble. Nonetheless, the opf models in these subsets over all catchments. From 7 to
timization procedure does somehow favour models that lead 0 models are deemed sufficient to construct ensembles with

to the best individual performance, namely 1, 2, 3, 4 and 5,mproved performance.
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4 Conclusions

N

o
3
a

The main scope of this work was to compare the added value
of ensembles constructed from seventeen lumped hydrolog-
ical models against their simple average counterparts. En-
sembles are probabilistic simulations that allow appreciating
the uncertainty according to the spread of their predictive dis-
tribution at each time step. For example, they may be used
to evaluate confidence intervals for the outputs or probabili-
ties of the streamflow being above a certain threshold value.
Figure 14 provides yet another view of the optimized sub-Conversely, the simple average of the seventeen lumped out-
sets, where they are categorized by number of models, whicRyts leads to a single aggregated predictor, which provides
varies from 2 to 16. Boxplots were produced in order to illus- ng specific information about its uncertainty.
trate the Varlablllty of the 106 CRPS values (Standardized For all 1061 catchments, results showed thatGRPS of
with their corresponding mean streamflow observation as inhe ensembles were lower than the MAE of the aggregated
Fig. 3). In general, results show that there exist many subse$imulations, confirming the added value of retaining all the
sizes that improve on the CO reference performance obtainegomponents of the ensembles over their aggregated deter-
by pooling all seventeen lumped model outputs (the mediamministic values. Furthermore, the probabilistic simulations
for the best optimized combination is 0.1850 and the mediarbutperfom all individual models in 96% of the catchments,

for CO is 0.1976). Furthermore, these subsets are superigfhile the same occurs for only 38% of the catchments in the
to the ones constructed with the best elght individual mOdel%ase of the aggregated deterministic simulations.

(C1 with a median of 0.1965) and with the worst 8 individ-  Reliability of the simulation ensembles is achieved for
ual models (C2 with a median value of 02240) This latter about 30% of the catchments. An Operating simulation sys-
result supports the finding of Viney et al. (2009) that the besttem would thus need to include a calibration of the predictive
ensembles are not necessarily those containing the best indistributions in order to improve their reliability. In spite of
vidual models, but it seems that the inclusion of some goodthis imperfection, the ensembles were shown to be skilled
models is essential. Figure 15 shows an example of rank hisat discriminating between events and non-events, based on
tograms of one catchment for different ensembles of modelshe ROC scores, especially for larger streamflows. Again,

(CO, C1, C2 and the optimized subset Coptim). It illustratesthe comparison between probabilistic and deterministic skills
the improvement of the spread after the optimization proceyas favorable to the probabilistic approach.
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perior to the ones constructed with the best eight individual
models, which means that the best ensembles are not neces-
sarily those containing the best individual models. The gain
in performance of the optimized subsets is accompanied by

Genetic algorithm was next used to identify model subsetsan improvement of the ensemble reliability in 86% of the
optimizing the CRPS. Many model subsets were found im-cases. Nonetheless, a calibration procedure is still needed

proving the performance of the reference ensemble. In mostor many catchments.
cases, from 7 to 10 models selected among the 17 available More sophisticated aggregation methods may also have

models were deemed sufficient to construct ensembles witlbeen tested, as discussed in the introduction.

They may

improved performance. However, even if an important dis-have improved the performance (MAE) of our deterministic
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simulations, as suggested by the results of previous studies.
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