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Abstract. This work investigates the added value of ensem-
bles constructed from seventeen lumped hydrological mod-
els against their simple average counterparts. It is thus hy-
pothesized that there is more information provided by all the
outputs of these models than by their single aggregated pre-
dictors. For all available 1061 catchments, results showed
that the mean continuous ranked probability score of the en-
semble simulations were better than the mean average error
of the aggregated simulations, confirming the added value of
retaining all the components of the model outputs. Relia-
bility of the simulation ensembles is also achieved for about
30% of the catchments, as assessed by rank histograms and
reliability plots. Nonetheless this imperfection, the ensem-
ble simulations were shown to have better skills than the de-
terministic simulations at discriminating between events and
non-events, as confirmed by relative operating characteristic
scores especially for larger streamflows. From 7 to 10 models
are deemed sufficient to construct ensembles with improved
performance, based on a genetic algorithm search optimiz-
ing the continuous ranked probability score. In fact, many
model subsets were found improving the performance of the
reference ensemble. This is thus not essential to implement
as much as seventeen lumped hydrological models. The gain
in performance of the optimized subsets is accompanied by
some improvement of the ensemble reliability in most cases.
Nonetheless, a calibration of the predictive distribution is still
needed for many catchments.
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1 Introduction

In hydrology, traditional approaches focus on a single model
thought to be the best possible for a given application. In op-
position, multimodel combination aims at extracting as much
information as possible from a group of existing models. The
idea is that each model of the group provides specific infor-
mation that might be combined to produce a better overall
simulation. This concept has been widely tested because
no hydrological model could yet be identified as the “best”
model in all circumstances (Oudin et al., 2006).

Indeed, the selection of a “best” model for a given appli-
cation is a complex task. For instance, Marshall et al. (2005)
proposed a method in which hydrological models may be
compared in a Bayesian framework accounting for model
and parameter uncertainty, while Clark et al. (2008) proposed
a Framework for Understanding Structural Errors (FUSE) in
order to diagnose differences in hydrological model struc-
tures. The latter approach allowed the elaboration of 79
different model structures combining components of 4 ex-
isting hydrological models. Results lead the authors con-
cluding that it is unlikely that a single model structure may
provide the best streamflow simulation for basins of differ-
ent climate regimes. A framework called Modular Model-
ing System (MMS) has been developed by the US Geolog-
ical Survey to develop a variety of physical processes mod-
els that can be coupled with management models for a wide
range of operational issues (Leavesley et al., 1996). MMS
uses a library that contains compatible modules for simulat-
ing a variety of water, energy and biochemical processes. In
such framework, a model is created by selectively coupling
the most appropriated process algorithms from the library to
create the “optimal” model for the desired application.
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In multimodel combination, Shamseldin et al. (1997) com-
pared three combinational methods over five rainfall-runoff
models and eleven catchments. The methods were the simple
model average (SMA), the weighted average, and artificial
neural networks. Results showed that the combined outputs
were more accurate than the best single one. Later, Geor-
gakakos et al. (2004) tested a multimodel approach over six
catchments. Combined outputs were constructed with both
calibrated and uncalibrated distributed model simulations,
using the SMA. Results confirmed the better performance of
the combined series over individual ones; furthermore, the
authors claimed that multimodel simulations should be con-
sidered as an operational tool. Ajami et al. (2006) examined
yet another method of combination, namely the multimodel
superensemble of Krishnamurti et al. (1999), using outputs
from seven distributed models. They found that more sophis-
ticated combination techniques may further improve simula-
tion accuracy, that at least four models are required to obtain
consistent multimodel simulations, and that the multimodel
accuracy is related to the accuracy of the individual member
models (longer dataset and more models might then improve
multimodel combination results). Viney et al. (2009) com-
pared predictions for one catchment exploiting ten models
of different model types, covering lumped, semi-distributed,
and fully distributed models combined in many ways. Their
results differ from Ajami et al. (2006) in that the best en-
sembles are not necessarily those containing the best indi-
vidual models. For the same catchment and models as Viney
et al. (2009), Boorman et al. (2007) suggested that a number
of at least 6 models are required for a multimodel ensem-
ble to ensure good model performance and that any number
above six may not considerably improve the performance of
the ensemble.

Other studies have applied the Generalized Likelihood Un-
certainty Estimation (GLUE) methodology (Beven and Bin-
ley, 1992) in order to assess the uncertainty associate with the
predictions. This procedure works with multiple sets of pa-
rameters values and allows differentiating sets of values that
may be equally likely as simulators of a catchment. At the
heart of GLUE is the concept of rejecting non-behavioural
models and weighting the behavioural ones for ensemble
simulations. Recently, Liu et al. (2009) have proposed a
methodology for identifying behavioural models avoiding
the subjective choice of a threshold based on a global good-
ness of fit index, replacing it by a condition for every time
step based on an observation error set prior. An application of
the GLUE methodology to account uncertainty in model pa-
rameter, model structure and data is presented by Krueger et
al. (2010), however, the understanding of data uncertainties
often remains incomplete (e.g. rainfall input). Another mul-
timodel combinational method has been proposed by Oudin
et al. (2006) who resorted to two different parameterizations
of the same model.

The Ensemble Bayesian Model Averaging (BMA) has
been proposed for multimodel combination (Raftery et al.,
2003, 2005). In this framework, the probability density func-
tion (pdf) of the quantity of interest predicted by the BMA is
essentially a weighted average of individual pdf’s predicted
by a set of individual models that are centered around their
forecasts. The weights assigned to each of the models reflect
their contribution to the forecast skill over the training period.
Typically, the ensemble mean outperforms all or most of the
individual members of the ensemble (Raftery et al., 2005).
BMA has been successfully applied in streamflow prediction
(Duan et al., 2007), groundwater hydrology (Neuman, 2003),
soil hydraulic (Ẅohling and Vrugt, 2008) and surface tem-
perature, and sea level pressure (Vrugt et al., 2008). How-
ever, Vrugt et al. (2007) report no advantage when comparing
multimodel BMA and Ensemble Kalman filtering (Evensen,
1994).

In meteorology, the DEMETER project aimed developing
a multi-model ensemble-based system for seasonal to inter-
annual prediction, which relies on seven global atmosphere
– ocean coupled models, each running from an ensemble of
initial conditions. The evaluation demonstrates the enhanced
reliability and skill of the multimodel ensemble over a more
conventional single-model ensemble approach (Palmer et al.,
2004; Hagerdon et al., 2005). Output from the DEMETER
multimodel system has been also applied to malaria predic-
tion models (Jones et al., 2010).

An alternative idea, which is gaining ground, combines
models through optimization. For example, Devineni et
al. (2008) proposed an algorithm combining streamflow fore-
cast from individual models based on their skill, as assessed
from the rank probability score. The methodology assigns
larger weights to models leading to better predictability un-
der similar prediction conditions. This multimodel combi-
nation has been tested over a single catchment, combining
two statistical models. Seven multimodel combinations tech-
niques were tested and results showed that developing opti-
mal model combinations contingent on the predictor lead to
improve predictability.

Multimodel combination has also been applied in an op-
erational context. Loumagne et al. (1995) combined model
outputs using weights adapted to the state of the flood fore-
casting system. This procedure proved to be more effective
than choosing the best model at each time step.

Coulibaly et al. (2005) combined three structurally differ-
ent hydrologic models to improve the accuracy of a daily
reservoir inflow forecast based on the weighted average
method. They found that model combination can offer an
alternative to the daily operational updating of the mod-
els, providing a cost-effective solution to operational hydrol-
ogy. Marshall et al. (2006, 2007) used a hierarchical mix-
ture of experts (HME) allowing changes in the model struc-
ture, depending on the state of the catchment. The approach
was tested on Australian catchments by combining the re-
sults from two models structures in the first case and two
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parameterizations of a conceptual model in the second case.
Results showed that the HME improves performance over
any model taken alone.

The view shared by the above studies is the production of
improved hydrological simulations through the aggregation
of a group of outputs into a single predictor. The present
study hypothesizes that there is more value exploiting all the
outputs of this group than the single aggregated one, fol-
lowing the philosophy of meteorological ensemble predic-
tion (Schaake et al., 2007). All the members of the ensemble
are then used to fit a probability density function (the pre-
dictive distribution), and are useful to evaluate confidence
intervals for the outputs, the probability of streamflow being
above a certain threshold value, and more. In other words,
an ensemble allows appreciating the simulation uncertainty.
He et al. (2009) used a coupled atmospheric-hydrologic-
hydraulic system driven by the TIGGE (THORPEX Interac-
tive Grand Global Ensemble) ensemble forecast (seven me-
teorological agencies) for flood warning in the River Severn
catchment located in Wales. Another study is presented by
He et al. (2010) which used predictions from six meteorolog-
ical agencies, for the Huai River catchment in China, to drive
a hydrological model forecasting the July–September 2008
flood event. Their results established the TIGGE multimodel
as a promising tool for discharge forecasts.

The present study aims assessing the added value of en-
sembles constructed from seventeen lumped hydrological
models (the probabilistic simulations) against their simple
average counterparts (the deterministic simulations). It re-
sorts to 1061 French daily streamflow time series extending
over a ten-year period, in order to generalize conclusions.
The probabilistic performance based on all seventeen outputs
is first compared to the deterministic one. Then the reliabil-
ity of the ensembles is assessed as well as their operational
value in terms of hit rate and false alarm rate. Further en-
semble performance improvement is finally sought through
model selection: subsets of the seventeen lumped hydrologi-
cal model outputs are objectively constructed using a genetic
search algorithm optimizing the Continuous Ranked Proba-
bility Score.

The methodology is described in the next section. Re-
sults are presented in Sect. 3, while conclusions are given
in Sect. 4.

2 Methodology

Catchments and models are presented along scores and tools
used to evaluate the performance and reliability of the en-
sembles. The genetic search algorithm is described last.

2.1 Catchments and models

Deterministic and probabilistic streamflow simulations from
seventeen hydrological models are analyzed on 1061 French
catchments. The dataset was built by Le Moine (2008) and

Fig. 1. Location of the 1061 gauging stations and corresponding
catchment boundaries (Le Moine, 2008).

Table 1. Characteristics of the 1061catchment dataset.

Area Mean annual Mean annual potential Mean annual
(km2) rainfall evapotranspiration discharge

(mm) (mm) (mm)

Minimum 10 662 339 31
Median 163 980 657 352
Maximum 32400 2182 870 3493

used by Le Moine et al. (2007). Catchments are spread
over the French territory (Fig. 1) in order to representing a
large variety of physical conditions in terms of size, topogra-
phy, geology, soil, land use, and climate, which ranges from
oceanic to Mediterranean to continental (Table 1). Some of
these catchments are headwater catchments while others are
medium to large size catchments. Catchments with impor-
tant snow accumulation are not included, avoiding the need
for a snowmelt module. Temperature, precipitation and flow
data were available at a daily time step over a 10-year period
extending from 1996 to 2005. This period includes a wide
range of conditions (e.g. with large floods in 1999 and 2001
and severe drought in 2003), but not much different from
what can be observed on these catchments on the long term.
Daily streamflows come from the French database Banque
Hydro. Daily precipitation and temperature values over a 8-
km grid originate from the meteorological analysis system
SAFRAN of Mét́eo-France (Durand et al., 1993; Quintana-
Segui et al., 2008). Potential evapotranspiration is estimated
from air temperature, using the radiation-based formulation
proposed by Oudin et al. (2005).
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Table 2. Models identification and characteristics.

ID Model Number of Number Derived from
optimized of
parameters storages

1 GR4J 4 2 Perrin et al. (2003)
2 PDM0 8 4 Moore et al. (1981)
3 MORD 6 4 Garçon (1999)
4 TOPM 8 3 Michel et al. (2003)
5 SACR 13 6 Burnash et al. (1973)
6 SMAR 9 3 O’Connell et al. (1981)
7 NAM0 10 7 Nielsen et al. (1973)
8 TANK 10 5 Sugawara (1979)
9 HBV0 9 3 Bergstr̈om et al. (1973)
10 CREC 8 3 Cormary et al. (1973)
11 WAGE 8 4 Warmerdam et al. (1997)
12 IHAC 6 3 Jakeman et al. (1990)
13 GARD 7 3 Thiery (1982)
14 SIMH 8 3 Chiew et al. (2002)
15 MOHY 7 2 Fortin et al. (2006)
16 CEQU 9 3 Girard et al. (1972)
17 HYM0 6 5 Yadav et al. (2007)

The first half of the time series is used for calibration,
while the second half is used for validation. All results pro-
vided herein concern the validation sub-dataset.

All seventeen hydrological models are of low to moderate
complexity: the number of parameters ranging from 4 to 13.
Table 2 lists the tested model structures along with the num-
ber of optimized parameters and stores for their tested ver-
sion. Most of these models were used by Perrin et al. (2001)
and Mathevet (2005). All model structures were applied
in a lumped mode, which means that catchments were not
split into sub-catchments or grids but considered as a sin-
gle unit. Although some of the test catchments are quite
large, this does not seem to be a real limitation for the ap-
plication of lumped models, as shown by the results by Merz
et al. (2009). Obviously, some specific conditions or events
may be better modelled using semi-distributed or fully dis-
tributed spatial schemes (see e.g. Jaun et al., 2008), but the
modelling scheme proposed here can be applied with other
model types. Further discussion on the impact of the spatial
scheme on model performance can be found in Andréassian
et al. (2004) or Smith et al. (2004).

These lumped models correspond to various conceptual-
izations of the rainfall-runoff transformation at the catchment
scale. They all include a soil moisture accounting procedure
but with various formulations (linear or non linear, possibly
with several soil layers). They also include transfer functions
to account for the travel time and different pathways of water
at the catchment scale. These functions includes from 1 to 5
linear or non linear stores, and unit hydrographs or pure time
delays. Some of the models include a non conservative func-
tion (correction factors of inputs or groundwater exchange
functions) used to adjust the water balance. All the models

were applied in the same conditions, i.e. ran at a daily time
step using the same rainfall and potential evapotranspiration
inputs and calibrated with the same procedure. This single
application framework provides more comparable results be-
tween model structures. This is one of the reasons why the
original model structures were modified as they sometimes
had specificities that did not match this framework. Note that
the objective here was not to evaluate the original structures
but to have a variety of conceptualizations. To avoid confu-
sion with the original models from which they are derived,
only 4 letter acronyms are used in Table 2 and identification
numbers will be used in the text and figures. Model’s struc-
ture description is available from authors.

Calibration was performed using a local search procedure,
as described by Edijatno et al. (1999), applied in combination
with a pre-screening of the parameter space as proposed by
Mathevet (2005). This pre-screening provides a likely start-
ing point for the search algorithm and limits the risks to be
trapped in local optima. Mathevet (2005) showed that this
approach is competitive for this type of models, in terms of
efficiency and effectiveness, when compared with more so-
phisticated global search procedures.

2.2 Performance and reliability

Deterministic simulations were aggregated using the sim-
ple average method (SMA). This is the simplest procedure
for combining outputs from an ensemble of individual mod-
els (Shamseldin et al., 1997). Ensembles were constructed
in different forms. First, a simple pooling of all seventeen
model outputs was considered. Then, subsets of the sev-
enteen lumped hydrological model outputs were identified
objectively using the genetic search algorithm described in
Sect. 2.3 and the Continuous Ranked Probability Score as the
objective function. Finally, subsets of eight models, selected
according to their deterministic performance, were tested for
comparison.

2.2.1 The Absolute Error criteria

The evaluation of the performance of the deterministic sim-
ulations is based on the absolute error (AE), a linear scoring
rule that describes the average magnitude of the errors with-
out considering their direction. The main advantage of the
AE over alternative deterministic scores is that it can be di-
rectly compared to the Continuous Ranked Probability Score
– described next – of the probabilistic simulations (Gneit-
ing and Raftery, 2007). It thus provides a way to compare
the performance of ensemble simulations against the per-
formance of deterministic simulations, for each individual
catchment.

2.2.2 The Continuous Ranked Probability Score

Performance evaluation of the probabilistic simulations im-
plies the verification of a probability distribution. Therefore
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the simulation error cannot be estimated from a routine com-
parison between the model output and a verifying value. The
performance depends of the correspondence between the pre-
dicted probability and the actual frequency of occurrence
(Atger, 1999). The selected score is the Continuous Ranked
Probability Score (CRPS) (Matheson and Winkler 1976),
which is a proper score widely used in atmospheric and hy-
drologic sciences (e.g. Gneiting et al., 2005; Candille and
Talagrand, 2005; Weber et al., 2006; Boucher et al., 2009).
The CRPS is defined as:

CRPS(Ft ,xt ) =

∞∫
−∞

(Ft (x)−H {x ≥ xt })
2dx (1)

whereFt is the cumulative predictive distribution function
for the timet , x is the predicted variable (here streamflow)
and xt is the corresponding observed value. The function
H {x ≥ xt } is the Heaviside function which equals 1 for sim-
ulated values larger than the observed value and 0 for simu-
lated values lower than the observation. The CRPS is positive
and a zero value indicates a perfect simulation. An analyti-
cal solution of Eq. (1) exists for normal predictive distribu-
tions (Gneiting and Raftery, 2007). However, because the
normality of the predictive distribution is not always true in
the present study, a Monte Carlo approximation to Eq. (1)
has been used instead (Székely et al., 2003; Gneiting et al.,
2007):

CRPS= E |X−xt |−0.5E
∣∣X−X′

∣∣ (2)

WhereX andX′ are independent vectors consisting of 1000
random values from a gamma distribution adjusted to the pre-
dictive functionFt . As already mentioned, an interesting
property of the CRPS is that it reduces to the AE score in
the case of a deterministic simulation (Gneiting and Raftery,
2007). However, because the score for a specific forecast-
observation pair, at a certain time, cannot be interpreted, we
rather consider for each station the average of all individual
scores as a measure of the quality of the simulation system,
thus comparing mean AE (MAE) and mean CRPS (CRPS),
which values are directly proportional to the magnitude of
the observations.

We also aim to evaluate the performance gain in terms of
CRPS that may bring the optimization procedure. Based on
the skill score (e.g. Wilks, 1995), the percentage of improve-
ment over the reference is given by:

gain(%) =

(
1−

CRPS

CRPSref

)
×100 (3)

2.2.3 Reliability

Reliability refers to the statistical consistency between sim-
ulations and observations. For instance, a reliable 90% con-
fidence interval calculated using the predictive distribution
function should contain the observed value in 9 cases out

of 10 on average. On the other hand, the potential CRPS
corresponds to the best possible CRPS value that could be
obtained with the database and the particular simulation sys-
tem that is used, if the latter were perfectly reliable. Be-
cause of the complex nature of the CRPS, other means of
assessing the reliability is often used in parallel, such as the
rank histogram and the reliability diagram. Unreliable sim-
ulations can be misleading and should be used with caution,
if at all. Many methods for post processing the probabilistic
forecasts from ensembles have been proposed, such as the
ensemble dressing (i.e., kernel density) approaches (Roul-
ston and Smith, 2003; Wang and Bishop, 2005; Fortin et al.,
2006), Bayesian model averaging (Raftery et al., 2005), non-
homogeneous Gaussian regression (Gneiting et al., 2005),
logistic regression techniques (Hamill et al., 2004, 2006),
analog techniques (Hamill et al., 2006), forecasting assim-
ilation (Stephenson et al., 2005), statistical postprocess cal-
ibration approach (Wood and Schaake, 2008), variance in-
flation method (Johnson and Bowler, 2009), the simple bin-
ning technique (Stensrud and Yussouf, 2007) and several oth-
ers. However, these procedures were not considered in the
present work.

The reliability of the predictive distribution can be visually
assessed using the rank histogram (Talagrand et al., 1999;
Hamill, 2001). To construct it, the observed valuext is
added to the ensemble simulation. That is, if the simula-
tion hasn members, the new set consists ofn+ 1 values.
Then, the rank associated with the observed value is deter-
mined. This operation is repeated for all simulations and cor-
responding observations in the archive. The rank histogram
is obtained by constructing the histogram of the resultingN

ranks. The interpretation of the rank histogram is based on
the assumptions that all the members of the ensemble simu-
lation along with the observations are independent and iden-
tically distributed; under these hypotheses, if the predictive
distribution is well calibrated, then the rank histogram should
be close to uniformity (equally distributed). An asymmetri-
cal histogram is usually an indication of a bias in the mean
of the simulations. If the rank histogram is symmetric and
“U” shaped, it may indicate that the predictive distribution is
under-dispersed. If it has an arch form, the predictive distri-
bution may be over-dispersed.

Because it is not practical to present all 1061 rank his-
tograms, results will be synthesised using the ratioδ metric
proposed by Candille and Talagrand (2005): a numerical in-
dicator reflecting the squared deviation from flatness in indi-
vidual rank histograms. It is given by

δ =
1

10
(4)

where:

1 =

n+1∑
k=1

(
sk −

N

n+1

)2

(5)
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and sk is the number of elements in thekth interval of the
rank histogram. For a reliable system,sk has an expectation
of N/(n+1). Then,10 is the ratio that would be obtained
by a perfectly reliable system:

10 =
Nn

n+1
(6)

leading to a target value ofδ = 1. Of course, a perfectly reli-
able system is a theoretical concept. In practice, a system is
declared unreliable whenever itsδ value is quite larger than 1
(Candille et al., 2005). However, the exactδ threshold, above
which a system may be declared unreliable, has to be estab-
lished for each investigation, notably because theδ metric
is proportional to the length of the time series (the thresh-
old value adopted here will be discussed later on). Some
applications of theδ metric include evaluating the degree of
reliability of meteorological ensembles by comparingδ val-
ues according to their series lengths (e.g. Jiang et al. 2009).
Alternatives to the rank histogram exist, such as the QQplot
(e.g. Thyer et al. 2009). They remained unexplored here.

The reliability diagram is another approach used to graph-
ically represent the performance of probability simulations
of dichotomous events. A reliability diagram consists of the
plot of observed relative frequency as a function of simula-
tion probability and the 1:1 diagonal represents the perfect
reliability line (Wilks, 1995). In the present study, ten con-
fidence intervals have been calculated with nominal confi-
dence level of 5% to 95%, with an increment of 5% for each
emitted simulation. Then, for each simulation and for each
confidence interval, it was established whether or not each
confidence interval covered the observation. This is repeated
for all simulation-observation pairs and its mean is then plot-
ted (Boucher et al., 2009). Verification results can be quite
sensitive to sampling variability in some cases (Bradley et
al., 2003; Clark et al., 2006). To assess this situation, we
assigned confidence limits to the reliability diagram using a
bootstrap technique.

2.2.4 Hit over threshold criteria

The relative operating characteristic (ROC) curve (Peterson
et al., 1954; Mason, 1982) plots the probability of detec-
tion (POD) versus the probability of false detection (POFD),
which are given by:

POD=
hits

hits+misses
(7)

POFD=
false alarms

correct negatives+ false alarms
(8)

The four combinations of simulations (yes or no) and obser-
vations (yes or no), called the joint distribution, are: hit (the
event simulation to occur and did occur), miss (the event sim-
ulation not to occur, but did occur), false alarm (event simu-
lation to occur, but did not occur) and correct negative (event

simulation not to occur and did not occur) (e.g. Wilks, 1995).
The area under the ROC curve characterizes the quality of a
simulation system’s ability to correctly anticipate the occur-
rence or non occurrence of the events. In constructing a ROC
curve, simulations are expressed in binary as “warnings” or
“not warnings” indicating whether or not the defined event
is expected to occur. The ROC area ranges from 0 to 1, 0.5
indicating no skill and 1 being the perfect score. ROC mea-
sures the ability of the simulation to discriminate between
two alternative outcomes, thus measuring resolution. It is not
sensitive to bias in the simulation, so says nothing about re-
liability. A biased simulation may still have good resolution
and produce a good ROC curve, which means that it may
be possible to improve the simulation through calibration.
The ROC is thus a basic decision-making criterion that can
be considered as a measure of potential usefulness (WMO,
2002).

2.3 Genetic algorithm

Genetic algorithm is a technique for optimization of prob-
lems or systems. It is inspired from biology, more specifi-
cally by genetic codes, where solutions are typically trans-
lated into binary code string. The search of optimal solution
is regulated by rules based on Darwin’s theory on the survival
of the fittest, by which the strings are allowed to survive from
one generation (i.e. iteration) to another and to trade part of
their genetic material with other strings depending of their
robustness as defined by the objective function (e.g. Anctil et
al., 2006).

The present work uses genetic algorithm to identify
model subsets optimizing the Continuous Ranked Probabil-
ity Score. The rules of reproduction, crossover and mutation
employed here are well described in Goldberg (1989).

The coded string consists of seventeen elements or posi-
tions, each one representing a specific model: 0 values iden-
tify models that are not used, while 1 values identify mod-
els that are retained. A total of 131 054 combinations of
at least two models can be generated from a pool of sev-
enteen candidates. The processes of reproduction, crossover
and mutations regulate the search in the domain of all these
possible combinations, where the objective function is the
inverse squared CRPS. At each generation, 50 combinations
are thus investigated. From the initial generation, 20 others
are created, leading to the consideration of 1000 model sub-
sets. This search is repeated over all 1061 catchments.

As already mentioned, the first half of the time series is
used for optimization, while the second half is used for val-
idation. All results provided herein concern strictly the vali-
dation sub-dataset.
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Fig. 2. Relative frequency of occurrence in the top 5 ranking, based
on individual MAE values for all catchments.

3 Results

3.1 Individual model performance

MAE values are used to compare individual model perfor-
mance, based on their frequency of occurrence in the top 5
ranking for each catchment (Fig. 2). There are clear differ-
ences between models. Some of them are more frequently in
the top five, such as models 1, 2 and 3, while others are rarely
present, such as model 17 and 16 – note that Fig. 2 justifies
the model ordering in Table 2. The selected seventeen mod-
els thus offer a wide range of individual performance.

3.2 Comparison of deterministic and probabilistic
simulations

The main scope of the present study is to answer the fol-
lowing question: is there more valuable information in the
ensemble simulations than in the deterministic ones? This
question is first tackled by comparing theCRPS and the
MAE values for the C0 reference ensemble formed by all
seventeen models. In Fig. 3, all 1061 catchments lead to a
CRPS value lower than the MAE ones, confirming the added
value of retaining all the components of the ensembles over
their average deterministic values. Note that simulations for
each catchment have been standardized by their correspond-
ing mean streamflow observation to facilitate comparison be-
tween them.

However, it remains possible that some individual models
surpass in performance the C0 reference ensemble. Indeed
such situations occur quite frequently when relying on de-
terministic simulations, which provides the lowest MAE for
only 38% of the catchments; while for example model 1 sur-
passes the performance of all the other models including the
deterministic simulation in 21% of the catchments (Fig. 4a).
The performance gain following the usage of the SMA ag-
gregating multiple model outputs is thus not as universal
as proposed by Shamseldin et al. (1997) or Georgakakos et
al. (2004). However, the situation gets considerably better
when using the probabilistic ensemble simulations (i.e. keep-
ing all individuals model outputs), which improves on the
performance of all individual models in 96% of the catch-
ments (Fig. 4b). These striking results confirm the superior-
ity of the probabilistic approach over the deterministic one.
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Fig. 3. Mean probabilistic and deterministic scores comparison.
Catchments are ordered according to their MAE value.

The next question concerns the reliability of the ensem-
ble simulations, as assessed by the rank histograms and the
reliability plots. Figure 5 presents some examples of rank
histograms in order to interpret their corresponding ratioδ

values. As mentioned earlier, a thresholdδ value has to be
established for each experimental set-up because this metric
is proportional to the length of the time series. From Fig. 5,
it is assessed that, for the simulation system and series length
at hand, a ratioδ value of about 20 may be used as a practical
upper limit of reliability (Fig. 5c), while value of about 100 is
without a doubt under-dispersed (Fig. 5f). This is confirmed
by the corresponding reliability diagrams presented for three
discharge thresholds, larger than 0 (Fig. 6), than quantile 50
(Fig. 7) and than quantile 75 (Fig. 8) of the observation time
series. It is noted that, for some catchments (e.g. catchments
224 and 292), there is an improvement in the reliability of the
ensembles for larger discharges. Now considering the entire
database, the cumulative frequency of the ratioδ in Fig. 9
shows that reliability is achieved for about one third of the
catchments (δ values below 20) and that the system is clearly
unreliable for at least 20% of the catchments (δ values larger
than 100), the other cases being debatable. An operating sim-
ulation system based on the C0 reference ensembles would
thus need to include the calibration of the predictive distri-
bution for an important number of catchments, in order to
improve their reliability.

Nonetheless the reliability imperfection of our simulation
system, its ability to discriminating between events and non-
events is next confronted to the same ability of the deter-
ministic simulations. For that purpose, ROC scores were
calculated for threshold values respectively corresponding to
quantiles 10, 25, 50, 75 and 90 of the observation time se-
ries. Results are shown in Fig. 10. It can be noted that
the probabilistic ROC scores are superior to the deterministic
ones in almost all cases. This proves again the superiority of
the ensemble philosophy over the aggregation philosophy, at
least for better event detections, even if the produced ensem-
ble could in many cases be further improved by the appli-
cation of a calibration procedure. It is also noteworthy that
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Fig. 4. Relative frequency of occurrence as the best model or ensemble:(a) deterministic (MAE) and(b) probabilistic (CRPS).
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Fig. 5. Six examples of rank histograms with their ratioδ values.

the predictive distributions are skilled for the large major-
ity of the catchments (ROC values superior to 0.5) and that
the system is better at detecting larger events such as quan-
tiles 50 or higher, than low flow events such as quantile 10.
For the latter case, the probabilistic simulations largely im-
prove over the deterministic ones that prove to be unskilled
for many catchments.

3.3 Looking for optimized model ensembles

Could the system performance be further improved through
model selection? A genetic search algorithm is used to an-
swer that question, objectively optimizing theCRPS value
for each catchment. Such analysis will also help answer
some other subsidiary questions like: Are seventeen mod-
els enough or too many to produce an operational ensemble?
Are all models equally useful to the ensemble subsets or only
the ones that perform better individually? Does any gain in

performance through optimization come at the cost of a loss
of reliability?

The optimization procedure described in Sect. 2.3 was ap-
plied to all catchments. Many model subsets showed im-
proved performance over the C0 reference ensemble. More
specifically, improvements were found for 1057 out of the
1061 catchments, which represent 99.6% of the database.
The gain in terms ofCRPS resulting from the performed opti-
mization is shown in Fig. 11 (see Eq. (3) where the reference
value is C0). The gain varies from 0.3% to 93% with a me-
dian value of 5.5%. There is also a gain in the quality of the
ensemble’s reliability as seen in Fig. 12 that draws the ini-
tial ratio δ values against the ones of the optimized subsets:
an improvement was obtained in 86% of the cases. However,
those gains are not large enough to solve the under dispersion
issue of the produced ensembles. A calibration procedure is
thus still needed for most catchments.
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f) Watershed 450

Fig. 6. Reliability plots for the same catchments as in Fig. 5, for all time series. Dashed lines depict the 95% confidence interval.
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Fig. 7. Reliability plots for the same catchments as in Fig. 5, for discharge larger than quantile 50 of the observation time series. Dashed
lines depict the 95% confidence interval.

Figure 13a shows the relative frequency of selection of
the models in the best subset ensemble of each catchment.
When compared to Fig. 2, which showed the frequency of
occurrence in the top five ranking, it may be deduced that
all models are useful contributors to subset ensembles that
outperform the C0 reference ensemble. Nonetheless, the op-
timization procedure does somehow favour models that lead
to the best individual performance, namely 1, 2, 3, 4 and 5,

then 7, 8 and 9. Furthermore, no links could be established
between the level of complexity of the models (number of
optimized parameters and storages) and their usefulness for
the optimized subsets.

Figure 13b presents the relative frequency of the number
of models in these subsets over all catchments. From 7 to
10 models are deemed sufficient to construct ensembles with
improved performance.
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Fig. 8. Reliability plots for the same catchments as in Fig. 5, for discharge larger than quantile 75 of the observation time series. Dashed
lines depict the 95% confidence interval.
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Fig. 9. Cumulative frequency of ratioδ for the C0 reference ensem-
bles.

Figure 14 provides yet another view of the optimized sub-
sets, where they are categorized by number of models, which
varies from 2 to 16. Boxplots were produced in order to illus-
trate the variability of the 1061CRPS values (standardized
with their corresponding mean streamflow observation as in
Fig. 3). In general, results show that there exist many subset
sizes that improve on the C0 reference performance obtained
by pooling all seventeen lumped model outputs (the median
for the best optimized combination is 0.1850 and the median
for C0 is 0.1976). Furthermore, these subsets are superior
to the ones constructed with the best eight individual models
(C1 with a median of 0.1965) and with the worst 8 individ-
ual models (C2 with a median value of 0.2240). This latter
result supports the finding of Viney et al. (2009) that the best
ensembles are not necessarily those containing the best indi-
vidual models, but it seems that the inclusion of some good
models is essential. Figure 15 shows an example of rank his-
tograms of one catchment for different ensembles of models
(C0, C1, C2 and the optimized subset Coptim). It illustrates
the improvement of the spread after the optimization proce-
dure.

4 Conclusions

The main scope of this work was to compare the added value
of ensembles constructed from seventeen lumped hydrolog-
ical models against their simple average counterparts. En-
sembles are probabilistic simulations that allow appreciating
the uncertainty according to the spread of their predictive dis-
tribution at each time step. For example, they may be used
to evaluate confidence intervals for the outputs or probabili-
ties of the streamflow being above a certain threshold value.
Conversely, the simple average of the seventeen lumped out-
puts leads to a single aggregated predictor, which provides
no specific information about its uncertainty.

For all 1061 catchments, results showed that theCRPS of
the ensembles were lower than the MAE of the aggregated
simulations, confirming the added value of retaining all the
components of the ensembles over their aggregated deter-
ministic values. Furthermore, the probabilistic simulations
outperfom all individual models in 96% of the catchments,
while the same occurs for only 38% of the catchments in the
case of the aggregated deterministic simulations.

Reliability of the simulation ensembles is achieved for
about 30% of the catchments. An operating simulation sys-
tem would thus need to include a calibration of the predictive
distributions in order to improve their reliability. In spite of
this imperfection, the ensembles were shown to be skilled
at discriminating between events and non-events, based on
the ROC scores, especially for larger streamflows. Again,
the comparison between probabilistic and deterministic skills
was favorable to the probabilistic approach.
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Fig. 10. Probabilistic and deterministic ROC scores for quantiles 10, 25, 50, 75 and 90.
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Fig. 11.Cumulative frequency of theCRPS gain after optimization.
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Genetic algorithm was next used to identify model subsets
optimizing the CRPS. Many model subsets were found im-
proving the performance of the reference ensemble. In most
cases, from 7 to 10 models selected among the 17 available
models were deemed sufficient to construct ensembles with
improved performance. However, even if an important dis-
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Fig. 13.Relative frequency of(a) the presence of each model in the
optimized subset, and(b) the number of models in these subsets,
for all 1061 catchments.

parity was noticed between the individual performances of
the available models, all of them appeared in many optimized
subsets. Furthermore, the optimized subsets were found su-
perior to the ones constructed with the best eight individual
models, which means that the best ensembles are not neces-
sarily those containing the best individual models. The gain
in performance of the optimized subsets is accompanied by
an improvement of the ensemble reliability in 86% of the
cases. Nonetheless, a calibration procedure is still needed
for many catchments.

More sophisticated aggregation methods may also have
been tested, as discussed in the introduction. They may
have improved the performance (MAE) of our deterministic
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Fig. 14.Box plot of theCRPS over the 1061 catchments, as a func-
tion of the number of models per optimized subsets.

simulations, as suggested by the results of previous studies.
However, the calibration of the predictive distribution should
also improve the performance (CRPS) of the probabilistic
simulation.

All in all, this work advocates the increased usage of mul-
tiple hydrological models for performance improvement and
for uncertainty assessment. However, more work is needed
concerning model selection and the sought after diversity that
brings the essence of model ensembles: reliability. Some sci-
entific questions remain unanswered and need to be investi-
gated in the future:

1. How much model selection influences multimodel per-
formance and reliability? We suggest constructing mul-
timodel ensembles by using different types of models
(e.g. distributed, lumped and even neuronal network
models). We theorize that such variety may also im-
prove multimodel ensembles, as the results obtained
with different lumped model structures of this study.

2. How uncertainty in initial conditions, meteorological
data, and model structure propagates during hydrolog-
ical forecasting? More research assessing all sources
of uncertainty should be carried and emergent tools like
particle filtering (e.g. Moradkhani et al., 2005) may help
identify the uncertainty sources that should be dealt with
in priority.
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Fig. 15. Examples of rank histograms for a given catchment with
ensembles C0, C1, C2 and the optimized subset Coptim.
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Le Moine, N., Andŕeassian, V., Perrin, C., and Michel, C.: How can
rainfall-runoff model handle intercatchment groundwater flows?
Theoretical study based on 1040 French catchments, Water Re-
sour. Res., 43, W06428, doi:10.1029/2006WR005608, 2007.

Le Moine, N.: Le bassin versant de surface vu par le souterrain : une
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www.hydrol-earth-syst-sci.net/14/2303/2010/ Hydrol. Earth Syst. Sci., 14, 2303–2317, 2010
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Perrin, C., Michel, C., and Andréassian, V.: Does a large number
of parameters enhance model performance? Comparative assess-
ment of common catchment model structures on 429 catchments,
J. Hydrol., 242(3–4), 275–301, 2001.
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