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Abstract. The soil moisture dataset that is generated via
the Climate Change Initiative (CCI) of the European Space
Agency (ESA) (ESA CCI SM) is a popular research prod-
uct. It is composed of observations from 10 different satel-
lites and aims to exploit the individual strengths of active
(radar) and passive (radiometer) sensors, thereby provid-
ing surface soil moisture estimates at a spatial resolution of
0.25◦. However, the annual updating cycle limits the use of
the ESA CCI SM dataset for operational applications. There-
fore, this study proposes an adaptation of the ESA CCI prod-
uct for daily global updates via satellite-derived near-real-
time (NRT) soil moisture observations. In order to extend
the ESA CCI SM dataset from 1978 to present we use NRT
observations from the Advanced Scatterometer on-board the
two MetOp satellites and the Advanced Microwave Scanning
Radiometer 2 on-board GCOM-W. Since these NRT obser-
vations do not incorporate the latest algorithmic updates, pa-
rameter databases and intercalibration efforts, by nature they
offer a lower quality than reprocessed offline datasets. In ad-
dition to adaptations of the ESA CCI SM processing chain
for NRT datasets, the quality of the NRT datasets is a main
source of uncertainty. Our findings indicate that, despite is-
sues in arid regions, the new CCI NRT dataset shows a good
correlation with ESA CCI SM. The average global correla-
tion coefficient between CCI NRT and ESA CCI SM (Pear-
son’s R) is 0.80. An initial validation with 40 in situ observa-
tions in France, Spain, Senegal and Kenya yields an average
R of 0.58 and 0.49 for ESA CCI SM and CCI NRT, respec-

tively. In summary, the CCI NRT product is nearly as accu-
rate as the existing ESA CCI SM product and, therefore, of
significant value for operational applications such as drought
and flood forecasting, agricultural index insurance or weather
forecasting.

1 Introduction

Soil moisture, the water in the soil’s pore space, is one of very
few environmental variables that directly link atmospheric
processes to land surface conditions (Legates et al., 2010;
Taylor et al., 2012). It is a decisive or even limiting factor in
many processes related to agriculture, climate change, energy
fluxes, hydrology and hydro-climatic extreme events (Brocca
et al., 2010; Greve et al., 2014; Jung et al., 2010; Legates et
al., 2010; Qiu et al., 2014; Seneviratne et al., 2010; Sheffield
and Wood, 2008; Taylor et al., 2012; Trenberth et al., 2014).
Along with temperature and precipitation, soil moisture is
ranked a top priority variable in all societal benefit areas
listed by the Group on Earth Observations (agriculture, bio-
diversity, climate, disasters, ecosystems, energy, health, wa-
ter and weather) (Group on Earth Observations, 2012). Also,
aid organizations or developers of financial instruments (e.g.
weather index insurance), whose potential regions of inter-
est may encompass whole sub-continents, are gradually dis-
covering the importance of soil moisture for assessments of
drought-related food insecurity.
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Traditional measurements of soil moisture relied on di-
rect in situ methods, such as gravimetric samples or time do-
main reflectometry (Dorigo et al., 2011; Wagner et al., 2007).
In situ observations are to date the most accurate localized
measurements of soil moisture, but only models or satel-
lites are able to provide spatially consistent information on
a global scale. However, datasets derived from space-borne
microwave sensors are not yet able to capture variability at
the scale of metres at sub-daily intervals. Hence, the con-
cept of temporal stability (Brocca et al., 2009; Vachaud et al.,
1985), which describes a quasi-linear relationship between
soil moisture variations over time on different spatial scales,
allows using coarse information acquired via satellites to un-
derstand local to regional phenomena.

Satellite instruments capable of retrieving information
about soil moisture have been available since the late 1970s.
However, despite the existence of several individual space-
borne soil moisture products, a harmonized long-term dataset
was missing until the Water Cycle Multi-mission Observa-
tion Strategy (WACMOS) project and the Climate Change
Initiative (CCI) of the European Space Agency (ESA) re-
leased the first multi-sensor soil moisture product (Liu et al.,
2011a, 2012; Wagner et al., 2012). This ESA CCI soil mois-
ture dataset (ESA CCI SM) relies on the merging of differ-
ent active (radar) and passive (radiometer) microwave instru-
ment observations into a single consistent product (Dorigo
et al., 2015) based on uncertainty information of the individ-
ual soil moisture products (Liu et al., 2011a; Dorigo et al.,
2010). The latest official release of the ESA CCI SM product
(CCI SM v02.2) covers a period from 1978 to 2014. Product
updates that extend the temporal coverage are performed ev-
ery year by incorporating new observations from radars and
radiometers.

Since its release in 2012, the ESA CCI SM dataset has
been used in a wide variety of studies (Dorigo and de Jeu,
2016). Yuan et al. (2015), for instance, analysed the perfor-
mance of ESA CCI SM to detect short-term (monthly to sea-
sonal) droughts in China with respect to in situ observations
and two soil moisture reanalysis datasets, namely the Global
Land Data Assimilation System (GLDAS) (Rodell et al.,
2004) and ERA Interim (Dee et al., 2011). ESA CCI SM cap-
tured less than 60 % of drought months at the scale of in situ
stations. However, comparable to the reanalysis products, it
performed well with regard to the detection of inter-annual
variations of short-term drought on river basin scale, partic-
ularly in sparsely vegetated areas. Nicolai-Shaw et al. (2015)
confirm these findings over North America by comparing
ESA CCI SM with reanalysis products of the European Cen-
tre for Medium Range Weather Forecasting (ECMWF) and
in situ observations. Regarding the spatial representativeness,
ESA CCI SM showed a higher agreement with the in situ
observations than with the reanalysis data. With respect to
the absolute values, however, the agreement between ESA
CCI SM and the reanalysis data were higher. McNally et
al. (2015) showed the superiority of the Water Requirement

Satisfaction Index in Senegal and Niger when fed with ESA
CCI SM instead of a water-balance model output. Finally,
ESA CCI SM was also used to identify global trends in soil
moisture with regard to vegetation (Barichivich et al., 2014;
Dorigo et al., 2012; Muñoz et al., 2014) and to improve the
understanding of the land–atmosphere coupling (Hirschi et
al., 2014).

However, decision makers in various applications and do-
mains (e.g. weather prediction, drought and flood monitor-
ing, index-based agricultural insurance) need more timely
soil moisture product updates at daily or sometimes even sub-
daily intervals. In case of weather prediction, for instance,
satellite-derived soil moisture is usually assimilated via a
nudging scheme or an ensemble Kalman filter approach at
sub-daily (e.g. 6-hourly) increments (Drusch, 2007; Drusch
et al., 2009; Scipal et al., 2008). In case of drought moni-
toring, satellite-derived soil moisture can be used to fill the
gap between satellite-based estimates of rainfall and vege-
tation vigour (Enenkel et al., 2014). However, the current
ESA CCI SM product does not fulfil this requirement with
regard to updates at appropriate time steps. Bridging this gap
requires daily product updates of the ESA CCI SM dataset
by seamlessly integrating near-real-time (NRT) soil mois-
ture observations. Therefore, we use observations from two
space-based sensors. One of these sensors is a radar, the Ad-
vanced Scatterometer (ASCAT) on-board the Meteorologi-
cal Operational satellites MetOp-A and MetOp-B; the other
is one a radiometer, the Advanced Microwave Scanning Ra-
diometer (AMSR2) on-board the Global Change Observation
Mission for Water (GCOM-W1) satellite. NRT means that
both the observations from ASCAT and AMSR2 are avail-
able within 2–3 h after the satellite overpass. The resulting
dataset is called CCI NRT.

This study has two complementary objectives. The first
objective is to describe how the current ESA CCI process-
ing chain is adapted to generate a CCI NRT soil moisture
product by discussing issues related to the resampling of
time series (ASCAT offline) and orbit format data (ASCAT
NRT) to a quarter degree grid, missing surface state flags for
snow-covered or frozen soils in ASCAT NRT or differences
in the masking of radio frequency interference (RFI) in case
of AMSR2 (Sect. 3.1). The second objective is to investigate
how well the CCI NRT dataset compares to ESA CCI SM
on a global scale (Sect. 4). In addition to the adaptations of
the processing chain, we highlight that the difference in the
backscatter and calibration levels of the NRT input datasets
(compared to the offline datasets) naturally leads to differ-
ences in soil moisture estimates. Particularly in the case of
AMSR2, issues related to its calibration resulted in different
product versions, which we try to clarify in Sect. 2.3.1. The
initial sensor calibration of AMSR2 was recently improved
after gathering a sufficiently large overlapping dataset with
its predecessor AMSR-E through a dedicated “slow rotation”
mode. This dataset is used to generate the ESA CCI SM
dataset. However, the AMSR2 NRT dataset does not apply
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this calibration, potentially affecting the level of brightness
temperature. We try to quantify the errors via an initial val-
idation of the CCI NRT and the ESA CCI SM dataset with
respect to 40 in situ stations in France, Senegal, Spain and
Kenya.

2 Datasets used

Depending on the sensor and retrieval approach, space-based
soil moisture retrievals show distinct variations in perfor-
mance on a global scale (e.g. Crow et al., 2010; Dorigo et
al., 2010). In combination with the TU Wien change detec-
tion algorithm, C-band radars (e.g. ASCAT), for instance, are
better suited to retrieve soil moisture over moderate vegeta-
tion cover than radiometers (Al-Yaari et al., 2014; Dorigo et
al., 2010; Gruhier et al., 2010; Rüdiger et al., 2009). Simul-
taneously, radars are facing challenges in arid regions that
are often characterized by sandy soils (Wagner et al., 2003,
2007) due to volume scattering of the microwave beam. The
following section describes the general characteristics of the
reprocessed ESA CCI SM product, as well as the operational
products from ASCAT and AMSR2 that are used to generate
the extension of the ESA CCI SM dataset via daily updates.

2.1 ESA CCI surface soil moisture

The ESA CCI soil moisture product was generated in accor-
dance with the World Meteorological Organization’s 2008
report, “Future Climate Change Research and Observation”.
The report highlights the importance of collecting, harmo-
nizing and validating soil moisture observations from differ-
ent sources to extend the temporal and spatial coverage, to
improve data quality (also for further data assimilation), to
support the understanding of feedback mechanisms and the
prediction of extreme events.

The ESA CCI SM dataset incorporates the measurements
of 10 satellites (Fig. 1). It is available at daily time steps
and on a 0.25◦× 0.25◦ latitude/longitude global array of grid
points (i.e. a global 0.25◦ grid). The quality flags, which are
distributed in combination with the dataset, provide infor-
mation about the sensor and observation frequency that was
used for each soil moisture retrieval, the moment of the mea-
surement, ascending or descending orbit and snow/frozen
soil probability. According to Liu et al. (2011b, 2012), soil
porosity values derived from 1300 global samples are used
in the algorithm developed by the VU University Amster-
dam and the National Aeronautics and Space Administration
(NASA) to generate soil moisture data from passive sensors
via the Land Parameter Retrieval Model (LPRM) (Holmes et
al., 2009; Owe et al., 2008). The same porosity values are
also applied in GLDAS, which is used as a reference dataset
to rescale soil moisture estimates from all active and passive
sensors shown in Fig. 1 via cumulative distribution function
(CDF) matching (Liu et al., 2009; Reichle and Koster, 2004).

2.2 Active microwave measurements from the ASCAT

The ASCAT sensors on-board MetOp-A/B are real aperture
radar sensors. Their soil moisture retrieval is based on the
backscatter of microwaves that are sensitive to the dielec-
tric properties of the water molecule, resulting in a quasi-
linear increase relationship between increasing water con-
tent and microwave backscatter. ASCAT operates in C band
(5.255 GHz), scanning two 550 km swaths with three anten-
nas on each side. Consequently, every location is scanned
from three different angles, enabling corrections for vegeta-
tion cover by analysing measurement differences at different
angles. This principle is exploited by the TU Wien Water Re-
trieval Package (WARP), a change detection algorithm that
results in surface soil moisture observations in relative units
(%). These observations are scaled between the historically
lowest and highest values, corresponding to a completely dry
surface and soil saturation (Bartalis et al., 2005; Wagner et
al., 1999, 2013).

WARP is optimized to estimate model parameters from
multi-year backscatter time series on a discrete global
grid (DGG). These parameters help to understand the charac-
teristics of scattering effects on a global scale, which are af-
fected by surface roughness and vary with land cover. How-
ever, there are large differences between soil moisture de-
rived from ASCAT via the offline WARP processing chain
and its operational version WARP NRT, which result in dif-
ferent backscatter levels. While the offline WARP processor
generates soil moisture on a discrete global grid, the WARP
NRT product is distributed from EUMETSAT (European Or-
ganisation for the Exploitation of Meteorological Satellites)
in orbit geometry. It is available 135 min after the overpass of
the two ASCAT sensors on board the MetOp-A and MetOp-
B satellites. An advantage of WARP NRT is the high robust-
ness and speed of the processing chain (less than a minute for
one ASCAT orbit). However, updates related to algorithmic
improvements and updates in the calibration of the backscat-
ter measurement usually take a lot of time (Wagner et al.,
2013). Several parameters, most importantly a dynamic mask
for snow-covered/frozen soils, are not available in NRT. As a
result, the quality of NRT soil moisture data lags behind the
quality of reprocessed, offline datasets.

Validations of the NRT soil moisture product disseminated
via EUMETCAST (Albergel et al., 2012) yielded an aver-
age root mean squared difference (RMSD) of 0.08 m3 m−3

for more than 200 in situ stations around the globe. While
the global average of all correlations was r = 0.50, the best
correlation (r = 0.80) was achieved for an in situ network in
Australia (OZNET). In general, the correlations were higher
during winter months.
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Figure 1. Satellites and sensors used for generating the offline
ESA CCI SM dataset and the daily continuation via ASCAT and
AMSR2. Dotted lines indicate inactive missions, yellow arrows rep-
resent passive measurements, green arrows represent active mea-
surements. The ESA CCI SM dataset only includes SSM/I data until
2007.

2.3 Passive microwave measurements from the AMSR2
radiometer

Passive soil moisture retrievals are based on the dielectric
contrast between dry and wet soil that leads to changes in
emissivity from 0.96 for dry soils to below 0.60 for wet
soils (Njoku and Li, 1999; Schmugge and Jackson, 1994).
Being very similar to its predecessor AMSR-E, AMSR2 on-
board the GCOM-W1 satellite measures brightness temper-
ature at six different bands with vertical and horizontal po-
larizations at each frequency. In addition, the vertically po-
larized Ka-band (36.5 GHz) observations are used to simul-
taneously estimate land surface temperature (Holmes et al.,
2009). In contrast to ASCAT, the AMSR sensors have a
fixed observation angle at 55 degrees, resulting in a coni-
cally shaped footprint and a swath width of 1445 km. Both
radiometer observations in the ESA CCI SM dataset and its
NRT equivalent only use nighttime measurements (Liu et
al., 2011), because a smaller temperature gradient between
the soil and vegetation facilitates higher quality soil mois-
ture retrievals (de Jeu et al., 2009). The LPRM transforms
information about the dielectric constant into volumetric soil
moisture by applying an empirical dielectric mixing model
(Wang and Schmugge, 1980). Similar to ASCAT, reliable
measurements over frozen or snow-covered soils are not pos-
sible due to the immovability of the water molecules. Several
studies compared the performance of soil moisture products
from the AMSR sensors and ASCAT (Brocca et al., 2011;
Dorigo et al., 2010; Gruber et al., 2016), leading to over-
all comparable and complementary performance. An inter-
comparison over 17 European sites (Brocca et al., 2011), for

Figure 2. Location of the networks used for validation in this study
(SMOSMANIA, France, green dots; REMEDHUS, Spain, red rect-
angle; Dahra, Senegal, blue dot; Cosmos, Kenya, orange dot).

instance, resulted in comparable correlation values with ob-
served (modelled) data of 0.71 (0.74) for ASCAT and 0.62
(0.72) for AMSR-E. The AMSR2 NRT dataset is distributed
from NASA and the Japan Aerospace Exploration Agency
(JAXA). It is available at NASA’s Global Change Master Di-
rectory: http://gcmd.gsfc.nasa.gov/r/d/[GCMD]GES_DISC_
LPRM_AMSR2_SOILM2_V001.

2.3.1 Issues related to the intercalibration of AMSR-E
and AMSR2

The consistency of brightness temperature observations from
AMSR-E to AMSR2, hence also soil moisture retrievals, is
challenging due to the lack of an operational overlapping pe-
riod between both sensors. AMSR-E was shut down in Oc-
tober 2011 while the AMSR2 soil moisture dataset started
with July 2012. As a result, the first version of AMSR2
data was not perfectly intercalibrated with AMSR-E. In De-
cember 2012, AMSR-E was switched on again in a spe-
cial slow rotation mode to get simultaneous observations of
the sensors. Afterwards, the overlapping dataset between the
operational AMSR2 and slow rotation AMSR-E was suffi-
ciently large to re-calibrate AMSR2 and align those measure-
ments based on this overlapping period (http://global.jaxa.jp/
press/2015/12/20151207_amsr-e.html). Before JAXA cor-
rected for these subtle differences, a preliminary solution was
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developed by Parinussa et al. (2015). This preliminary prod-
uct was used to generate the ESA CCI dataset.

As a consequence, the AMSR2 soil moisture product that
was used to create the ESA CCI SM dataset is a different
version than the current operational product that we use to
develop the CCI NRT product, but both products are gener-
ally comparable (Parinussa et al., 2015). Just like its prede-
cessor AMSR-E, AMSR2 needs to cope with RFI which is
capable of jeopardizing whole satellite missions (Oliva et al.,
2012). Currently, the RFI masking is based on a decision-
tree that selects the passive microwave observations in the
lowest available frequency that is free of RFI for each indi-
vidual grid point (Fig. A7). AMSR2 offers an important ad-
vantage through additional observations at 7.3 GHz, which is
a frequency that significantly improves the detection of RFI.
However, in most cases the 6.9 GHz channel can be used.

2.4 In situ networks

All in situ measurements used for this study were obtained
via the International Soil Moisture Network (Dorigo et al.,
2011, 2013). The single probes/networks (Fig. 2) were se-
lected to cover regions in which either the active, passive
and merged component of the CCI NRT dataset (explained
in Sect. 3) are used.

Accordingly, we extracted measurements from the SMOS-
MANIA network (Albergel et al., 2008) in the south of
France to validate the active component of the daily ESA
CCI surface soil moisture updates, from the REMEDHUS
network (Sanchez et al., 2012) in the west of Spain to vali-
date the merged active–passive component, from the Dahra
network in Senegal and the Cosmos network in Kenya to val-
idate the passive component. The SMOSMANIA (Albergel
et al., 2008) and Dahra networks are equipped with the same
type of probes (ThetaProbe ML2X), while the REMEDHUS
network that covers the Duero Basin relies on Stevens Hy-
draProbes. The Cosmos station in Kenya relies on a cosmic-
ray probe. All in situ observations were filtered for stations
that measure the soil moisture content up to a depth of 5 cm
(respectively, 10 cm for the Cosmos station) to ensure the
comparability with the satellite-derived surface soil moisture
datasets.

3 Methods

The following section is divided into two parts. Section 3.1
concentrates on the adaptation of the ESA CCI SM process-
ing chain for daily updates. Section 3.2 explains the corre-
sponding validation of the new dataset on a global scale.

3.1 Integrating NRT ASCAT and AMRS2 into the ESA
CCI SM dataset

The integration of NRT ASCAT and AMSR2 observations
into the ESA CCI SM builds on the procedures used to gen-

erate the standard ESA CCI SM products (Liu et al., 2011a,
2012; Wagner et al., 2012). Figure 3 illustrates the main pro-
cessing steps for the integration of NRT soil moisture obser-
vation in a flow chart. The most recent official ESA CCI SM
product covers the years 1978–2014. The CCI NRT dataset
extends this temporal coverage to the present with an overlap
for 2013–2014.

The aim is to keep the processing chain of the NRT
datasets as similar as possible to the ESA CCI SM pro-
cessing chain. However, several adaptations are unavoidable
with regard to the resampling and the masking of snow-
covered/frozen soils. In contrast to the offline soil moisture
observations from ASCAT that were resampled to a quarter
degree as time series to generate the ESA CCI, the NRT AS-
CAT data from EUMETSAT have to be resampled from orbit
geometry. Also, the masking of snow-covered/frozen soils
needed to be adapted. While a surface state flag for snow-
covered/frozen soils is available for the ASCAT observations
in the ESA CCI dataset, the NRT ASCAT product from EU-
METSAT is based on an older algorithm that is incapable of
generating a surface state flag. As a consequence, we apply
a mask based on a daily climatology (probability) for snow-
covered/frozen soils. In addition to the snow flag, a second
mask is applied to the ASCAT data based on vegetation op-
tical depth (VOD). VOD is a dimensionless variable linked
to the vegetation water content and above ground biomass
(Liu et al., 2015). VOD has previously been used as an ad-
ditional indicator for long-term vegetation dynamics (Liu et
al., 2011b) and is retrieved simultaneously to soil moisture
through the LPRM. Retrievals with VOD values > 0.8 (dense
vegetation) are masked. The AMSR2 data are masked for soil
skin temperature below freezing (Holmes et al., 2009), RFI
and VOD. After the spatial resampling via a regular hamming
window to a 0.25◦ grid, we apply the temporal resampling
to 00:00 UTC reference time via nearest neighbour search to
both datasets. While we use both ascending and descending
orbits in case of ASCAT, we only use the descending (night-
time) observations from AMSR2 (de Jeu et al., 2009; Lei et
al., 2015).

Before the active and the passive datasets can be merged,
it is vital to allow for different observation frequencies, ob-
servation principles and retrieval techniques. Consequently,
we rescale both datasets to a reference soil moisture dataset
(GLDAS-Noah) via piecewise CDF matching (Liu et al.,
2011a; Reichle et al., 2004). The rescaling is carried out for
each grid point individually. Also, values outside the range
of the CDF curves can be rescaled by using the linear CDF
equation of the closest value. The uncertainty (noise) of the
rescaled soil moisture dataset is estimated by multiplying
the ratio of the rescaled and the non-rescaled soil moisture
value with the original noise. Due to the unavailability of the
GLDAS dataset in NRT, we apply the scaling functions that
were used to generate the original ESA CCI SM dataset. This
way it is possible to preserve the datasets’ original, relative
dynamics, while adjusting them to the same range and distri-
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Figure 3. Schematic flowchart illustrating the methodology for extending the ESA CCI SM dataset via NRT observations from ASCAT and
AMSR2. The GLDAS-Noah dataset is used as a scaling reference.

bution. Once this step is completed, the active and the passive
datasets can be merged.

Figure 4 illustrates the coverage of active, passive and
merged data on a global scale. The passive LPRM soil mois-
ture product is used in regions with low vegetation density
(VOD < 0.24), whereas the TU Wien ASCAT product is ap-
plied in regions with moderate to high vegetation density
(VOD 0.60). So-called transition zones between dry and hu-
mid climates are characterized by VOD values between 0.24
and 0.60. In these regions the active and the passive prod-
ucts agree well (R > 0.65). Therefore, both products can be
merged (green areas in Fig. 4).

3.2 Performance metrics and validation

According to Wagner et al. (2013), the validation of satellite
data via in situ observations can be critical due to different
issues, such as the high spatio-temporal variability of soil
moisture (Western et al., 2002) or a lack of adequate refer-
ence datasets (Crow et al., 2012). There are no reference data
that represent exactly the same physical quantity as the satel-
lite observation. Acknowledging these limitations, this study
concentrates on the following comparative assessments:

– calculating the Pearson’s correlation coefficient (R) be-
tween ESA CCI SM and CCI NRT for an overlapping
year (2013) on a global scale;

– calculating the absolute differences in volumetric soil
moisture between both datasets for the entire year 2013
(including individual calculations for all seasons) on a
global scale;

– individual validation for ESA CCI SM and CCI NRT
for 2013 over 40 in situ soil moisture stations in France,
Kenya, Senegal and Spain.

For each in situ observation a nearest neighbour search se-
lects the closest grid point in the satellite-derived datasets.
The performance metrics include

– Pearson correlation (R), indicating a linear relationship
between two variables,

– Spearman correlation (S), a non-parametric test that
does not rely on any assumption about the distribution
of the data,

– the absolute bias in m3 m−3, and

– unbiased root mean squared difference (ubRMSD)
in m3 m−3.

Equation (1) shows that the bias E is expressed as the
difference between the time series’ f and reference r , cor-
responding to the mean values of CCI NRT and ESA CCI
SM/in situ observations, respectively.

E = f − r (1)

As the name suggests, the unbiased RMSD considers the
overall bias related to the quadratic difference in observa-
tions (Taylor, 2001). Consequently, the unbiased RMSD E′

in Eq. (2) relates the individual bias for each time series to the
corresponding observation values, whereas fn and rn again
correspond to observations of ESA CCI SM and CCI NRT.

E′ =

{
1
N

N∑
n=1

[(
fn− f

)
− (rn− r)

]2}1/2

(2)

4 Results

The Pearson correlation coefficient (R) yields an average cor-
relation of 0.80 for ESA CCI SM and CCI NRT on a global
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Figure 4. Global blending map illustrating where active sensors (red), passive sensors (yellow) and the average of both (green) is used to
generate the ESA CCI SM product (modified from Liu et al., 2012).

scale (Fig. 5). Regions in which the NRT dataset does not
correspond well with the offline dataset include parts of north
Africa and the Sahara, the west coast of the United States
and several large mountain ranges (e.g. the Andes in South
America). Tropical forests are masked, because they are im-
penetrable to radars at the applied frequencies and block the
soil moisture emission for radiometers.

Since the good agreement of the ESA CCI SM and the
CCI NRT dataset is only meaningful if it represents actual
surface soil moisture conditions on the ground, we calcu-
late the performance metrics for both datasets related to daily
in situ observations (Table 1). The average Pearson correla-
tion coefficient for all in situ stations is 0.58 (ESA CCI SM)
and 0.49 (CCI NRT), respectively. The statistical scores for
the SMOSMANIA and the REMEDHUS network are com-
parable to the findings of Albergel et al. (2012) or Dorigo
et al. (2015). The bias and the unbiased RMSD are slightly
higher for CCI NRT.

The validation results for the corresponding anomalies,
which were calculated based on a moving average with a
window size of 35 days, are in line with the findings of Al-
bergel et al. (2013). Table 2 lists the Pearson correlation coef-
ficient, which is on average lower for the anomalies than for
their normal time series and also lower for CCI NRT than for
ESA CCI SM. Again, both the bias and the unbiased RMSD
are higher for CCI NRT.

The Pearson (R) and Spearman (S) correlation coefficients
between ESA CCI SM and CCI NRT over the locations of the
in situ stations confirm the global picture with an average R

of 0.80 and an S of 0.82. The best correlation is observed
over the location of the Urgons station in the SMOSMANIA
network, which is located in a cultivated area in the south of
France. The corresponding Fig. 6 shows an R of 0.93 and
a S of 0.96. However, in the same network we also observe

the worst agreement (R= 0.62, S= 65) at a station named
Savenes (not shown).

Global maps of the absolute differences between both
datasets for 2013 (Fig. B8) and the four seasons (Figs. B9–
B12) show a systematic positive bias in CCI NRT of up to
0.30 m3 m−3 in regions like east Africa or Pakistan. This ef-
fect is stronger in spring and summer than in autumn and
winter. In the central United States, large parts of Aus-
tralia and southern Africa the bias overestimation is smaller.
Since the overestimation mainly appears in regions where the
AMSR2 dataset is used (Fig. 4) and to understand the bias of
soil moisture over Europe during winter 2013, we also anal-
yse the absolute difference between the offline and the NRT
ASCAT and AMSR2 datasets (Figs. C13 and C14). Com-
pared to the offline product, AMSR2 NRT tends to overesti-
mate on a global scale, mainly in parts of the Horn of Africa,
the Arabic peninsula, parts of Australia, South America and
southern Africa. The strong overestimation in the Horn of
Africa is also clearly visible in the CCI NRT dataset. On the
contrary, ASCAT NRT tends to underestimate, mainly over
Europe with the strongest signal over the winter season, parts
of the western United States as well as areas north and east
of the Black Sea. In summary, our validation results indi-
cate that, with some exceptions, the new CCI NRT dataset
performs well on a global scale in comparison to its offline
counterpart.

5 Discussion and conclusions

The global daily update of the ESA CCI SM surface soil
moisture dataset is motivated by an increasing interest in soil
moisture products that offer long (> 30 years) reference peri-
ods for a wide range of applications. The need for improved
and more timely soil moisture representations in agricultural
drought monitoring is one of the strongest motivations (An-
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Table 1. Statistical scores for ESA CCI SM/CCI NRT and in situ stations/networks (maximum depth 0.1 m) in Spain, France, Kenya and
Senegal for 2013 (for the REMEDHUS and SMOSMANIA networks the table includes the bias range from minimum to maximum).

In situ Number of R for R for Bias for Bias for Unbiased RMSD Unbiased RMSD
network stations ESA CCI CCI NRT ESA CCI CCI NRT for ESA CCI for CCI NRT

REMEDHUS 19 0.60 0.52 −0.079/0.214 −0.075/0.207 0.002 0.003
SMOSMANIA 19 0.54 0.46 −0.129/0.170 −0.135/0.147 0.006 0.012
Cosmos 1 0.66 0.59 0.040 0.028 0.002 0.003
Dahra 1 0.65 0.61 0.128 0.155 0.003 0.003

Average of all 0.58 0.49 NA NA 0.004 0.008
observations

Table 2. Statistical scores for ESA CCI SM/CCI NRT anomalies and in situ stations/networks (maximum depth 0.1 m) in Spain, France,
Kenya and Senegal for 2013 (for the REMEDHUS and SMOSMANIA networks the table includes the bias range from minimum to maxi-
mum).

In situ Number of R for R for Bias for Bias for Unbiased RMSD Unbiased RMSD
network stations ESA CCI CCI NRT ESA CCI CCI NRT for ESA CCI for CCI NRT

REMEDHUS 19 0.42 0.39 0.000/0.003 0.000/0.005 0.001 0.002
SMOSMANIA 19 0.46 0.39 −0.002/0.005 −0.001/0.008 0.002 0.003
Cosmos 1 0.46 0.32 −0.004 −0.003 0.001 0.002
Dahra 1 0.54 0.29 0.000 0.004 0.001 0.001

Average of all 0.38 NA NA 0.002 0.002
observations

derson et al., 2012; Bolten and Crow, 2012; Enenkel et al.,
2014; Hirschi et al., 2014). Hence, this study concentrated
on three main topics. First, we analyse the challenges related
to the adaptation of the ESA CCI SM processing chain for
NRT soil moisture observations from ASCAT and AMSR2.
Just like in the case of ESA CCI SM, the CCI NRT merging
scheme considers each sensor’s individual strengths and lim-
itations. ASCAT, for instance, performs better than AMSR2
at higher vegetation densities, while one strength of AMSR2
is the retrieval over semi-arid and arid regions (Liu et al.,
2011a). The challenges are mainly related to the resampling
of the NRT data to a common quarter degree grid and a qual-
ity flag for snow-covered/frozen soils, which does not exist
for the NRT ASCAT dataset. Second, we identify the im-
pact of NRT soil moisture algorithms and intercalibration
issues of AMSR-E/AMSR2 on the final merged CCI NRT
product. Third, we perform an initial validation on a global
scale as well as based on in situ soil moisture observations
that were selected based on their reliability, temporal cov-
erage and ability to reflect the individual components (ac-
tive/passive/combined) of the CCI NRT dataset. Finally, we
also examine the agreement of the ESA CCI SM/CCI NRT/in
situ anomalies and the absolute differences between ESA
CCI SM and CCI NRT on a global scale.

Our main findings are as follows:

– There is a high agreement between the CCI NRT dataset
and the ESA CCI SM dataset on a global scale for the

entire year 2013 (average R= 0.80). This finding also
indicates a good performance of NRT soil moisture ob-
servations from ASCAT and AMSR2 and therefore the
operational readiness of the CCI NRT algorithm. Low
correlations are, for instance, observed in areas that per-
manently show low levels of soil moisture, e.g. the arid
zones of northern Africa. The error sources in the CCI
NRT product are likely due to the predominant use of
AMSR2 in the merged dataset for these regions: calibra-
tion differences exist between the AMSR2 dataset used
in ESA CCI SM and the latest AMSR2 NRT dataset
used in CCI NRT, causing differences between the two
merged products. Also, the challenging issue on align-
ing the brightness temperatures of both AMSR sen-
sors was only recently solved through a slow rotation
mode of AMSR-E that was dedicated to intercalibration
(Sect. 2.3.1.).

– The validation with in situ observations in Spain,
France, Senegal and Kenya yields less accurate results
for the CCI NRT dataset than for ESA CCI SM. The av-
erage Pearson correlation coefficient (R) for all in situ
stations is 0.49 (0.58 for ESA CCI SM). The unbiased
RMSD for CCI NRT is 0.008 m3 m−3 (0.004 m3 m−3

for ESA CCI SM). We observe hardly any difference in
the overall bias (0.05 m3 m−3 for both datasets).
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Figure 5. Global correlation (Pearson’s R) for ESA CCI SM and CCI NRT for 2013 (no negative correlations were observed). The white
triangles illustrate the location of the in situ stations/networks.

Figure 6. Illustration of ESA CCI SM and CCI NRT over the Urgons station of the SMOSMANIA network (R= 0.93; S= 0.96).

– The performance metrics for the corresponding anoma-
lies result in an average correlation coefficient (Pearson)
of 0.44 for ESA CCI SM and 0.38 for CCI NRT, respec-
tively. Also, with regard to absolute difference the gen-
eral agreement between CCI NRT and ESA CCI SM
is satisfying. A comparison of both datasets for 2013
reveals a bias of CCI NRT over Europe during winter
2013 (Fig. C13) and a bias over several dry areas, e.g.
over parts of Africa and Australia (Fig. C14; Appendix),
which is likely related to intercalibration issues between
AMSR2 and its predecessor AMSR-E (Okuyama and
Imaoka, 2015; Parinussa et al., 2015).

We expect that, apart from solving the AMSR2 intercali-
bration issues and a dynamic snow map for ASCAT, which
should improve the performance during winter, two improve-
ments in the processing chain could lead to considerable im-
provements in data quality. First, there are differences in the
temporal coverage of the MetOp-A ASCAT data used to de-
rive soil moisture model parameters for the offline ASCAT

(2007–2014) and ASCAT NRT (2007–2012) products. The
offline and the NRT ASCAT product used in this study differ
in their absolute calibration level affecting the soil moisture
values. Despite the good correlation between both products
it is likely that their consistency can be improved by repro-
cessing the rescaling parameters in the CCI NRT processing
chain, which are currently based on parameters that had been
developed for the offline ASCAT product. Second, the cur-
rently static RFI map for AMSR2 could be replaced by a
dynamic map that is based on the average RFI values for the
previous 6 months via a moving average. In a recent study
(de Nijs et al., 2015), an improved algorithm to detect RFI
at the global scale for 6.9 and 7.3 GHz AMSR2 observations
was proposed, but remains to be tested for the specific imple-
mentation in the CCI NRT product. This is the first method
that takes the additional 7.3 GHz channel into account, which
was specifically added to the AMSR-E sensor constellation
and proved to mitigate issues related to RFI.
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Despite these issues, the development of an operational
processing chain that allows daily soil moisture updates is
particularly promising with regard to applications that aim at
the confirmation of satellite-based rainfall estimates (Brocca
et al., 2013) or at closing the gap between rainfall estimates
and the response of vegetation (Enenkel et al., 2014). In this
regard, the integration of the latest generation of soil mois-
ture sensors, such as Sentinel-1 of the ESA and the Euro-
pean Commission (EC) or NASA’s SMAP (Soil Moisture
Active/Passive), whose L-band radiometer is still active af-
ter the failure of the radar, could lead to further improve-
ments. These new sensors are able to retrieve soil moisture
at a far higher resolution than ASCAT or AMSR2: in case
of Sentinel-1, around 1 km for operational products and be-
low 100 m for research products. Of course the higher spatial
resolution has a drawback, which is a decrease in temporal
resolution. While ASCAT on MetOp-A alone covers more
than 80 % of the globe every day, the two Sentinel-1 satel-
lites will take 6–12 days to scan the total global land mass in
the default interferometric wide swath (IWS) mode (World
Meteorological Organization, 2013). Despite the differences
in spatial resolution, it is possible to increase the temporal
resolution of the CCI NRT dataset to fit various applications.

In the face of the latest generation of space-based soil
moisture sensors, it seems to be the most promising approach
to exploit each sensor’s individual strength to generate the
most accurate and complete soil moisture dataset. However,
developing a user-friendly dataset means more than data ac-
cess. As a consequence, software packages such as Python
Open Earth Observation Tools (Mistelbauer et al., 2014) are
necessary to enable automated updates, the visualization of
images/time series/anomalies and the analysis of critical soil
moisture thresholds. A pre-operational CCI NRT dataset will
soon be available via the remote sensing research group of
TU Wien (http://rs.geo.tuwien.ac.at/). The global dataset will
be provided in NetCDF file format. Updates are planned for
every 10th, 20th and last day of every month, resulting in a
quasi-decadal (10 daily) dataset.

6 Data availability

For this study we used the official ESA CCI soil mois-
ture product (CCI SM v02.2), which is available at
http://www.esa-soilmoisture-cci.org/node/145. The ASCAT
NRT dataset is available via EUMETSAT at http://www.
eumetsat.int/website/home/Data/Products/Land/index.html.
The AMSR2 NRT dataset is distributed from NASA and
the Japan Aerospace Exploration Agency (JAXA). It is
available at NASA’s Global Change Master Directory at
http://gcmd.gsfc.nasa.gov/r/d/[GCMD]GES_DISC_LPRM_
AMSR2_SOILM2_V001.

In situ observations were accessed via the the International
Soil Moisture Network (http://ismn.geo.tuwien.ac.at/).
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Appendix A

Figure A1. Global map illustrating which frequency used by AMSR2 is the least affected by RFI.

Appendix B

Figure B1. Absolute differences in soil moisture (ESA CCI SM minus CCI NRT) for the entire year 2013.
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Figure B2. Absolute differences in soil moisture (ESA CCI SM minus CCI NRT) for winter 2013.

Figure B3. Absolute differences in soil moisture (ESA CCI SM minus CCI NRT) for spring 2013.
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Figure B4. Absolute differences in soil moisture (ESA CCI SM minus CCI NRT) for summer 2013.

Figure B5. Absolute differences in soil moisture (ESA CCI SM minus CCI NRT) for autumn 2013.
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Appendix C

Figure C1. Absolute differences in soil moisture for ASCAT (ASCAT NRT minus ASCAT offline) for the entire year 2013 (masked according
to the blending map in Fig. 4).

Figure C2. Absolute differences in soil moisture for AMSR2 (AMSR2 NRT minus AMSR2 offline) for the entire year 2013 (masked
according to the blending map in Fig. 4).
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The Supplement related to this article is available online
at doi:10.5194/hess-20-4191-2016-supplement.
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