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AbstractÐIn their 1982 paper, Adams and Siegel proposed an Extra Stage Cube

Interconnection Network that tolerates one switch failure with one extra stage. We

extend their results and discover a class of Extra Stage Interconnection Networks

that tolerate multiple switch failures with a minimal number of extra stages.

Adopting the same fault model as Adams and Siegel, the faulty switches can be

bypassed by a pair of demultiplexer/multiplexer combinations. It is easy to show

that, to maintain point to point and broadcast connectivities, there must be at least

f extra stages to tolerate f switch failures. We present the first known construction

of an Extra Stage Interconnection Network that meets this lower-bound. This

n-dimensional Multistage Interconnection Network has n� f stages and tolerates

f switch failures. An n-bit label called mask is used for each stage that indicates

the bit differences between the two inputs coming into a common switch. We

designed the fault-tolerant construction such that it repeatedly uses the singleton

basis of the n-dimensional vector space as the stage mask vectors. This

construction is further generalized and we prove that an n-dimensional Multistage

Interconnection Network is optimally fault-tolerant if and only if the mask vectors of

every n consecutive stages span the n-dimensional vector space.

Index TermsÐMultistage Interconnection Networks (MIN), fault tolerance, extra-

stage, switch faults, stage masks.

æ

1 INTRODUCTION

MULTISTAGE Interconnection Network (MIN) has enjoyed impor-
tant applications in fields such as telecommunications and parallel
computing in the past decades [1], [4], [10], [12], [13]. The fault-
tolerant capabilities of MIN have been widely studied. In 1982,
Adams and Siegel introduced the Extra Stage Cube [2], a
construction that tolerates one switch failure with one additional
switching stage. In this paper, we study how to construct
Multistage Interconnection Networks to tolerate multiple switch
faults with extra stages. The main result of this paper is the
discovery of a class of constructions that tolerates multiple switch
faults with a minimal number of redundant switching stages.

Many types of cube-type Multistage Interconnection Net-

works have been proposed, such as the baseline, delta,

generalized cube, indirect binary n-cube, omega, and shuffle-

exchange. It has been proven that these cube-type MINs are

topologically equivalent [3]. We will focus our attention on one

particular construction, shown in Fig. 1. This MIN allows point-

to-point connection from an input node to any output nodes.

There is only one path between a pair of nodes. When there is

a fault on that path, the communication will fail.
A 2� 2 switch is a common building block of this MIN. For

point to point connections, the 2� 2 switch operates in either the

straight mode or the exchange mode, as illustrated by Fig. 2. Two

additional broadcast modes of operations exist to enable one node

to send a message simultaneously to all other nodes (Fig. 3). Two

connectivity models are considered in this paper, namely, the

point-to-point connectivity between any two nodes and the

broadcast connectivity. In this paper, we will first prove the
results for the point-to-point connections. The results will then be
extended to the broadcast case.

We assume the same fault model as the Adams and Siegel
paper. When a switch is at fault, it is stuck in the straight mode.
This fault model can be implemented by using two demultiplexor/
multiplexor pairs for each 2� 2 switch. The multiplexors and the
demultiplexors are assumed to be fault-free. In the solution
proposed by Adams and Siegel, not all switches need to be
accompanied by these demultiplexor/multiplexor pairs. Only the
switches in the first and last stages need them. Similarly, for the
solutions proposed in this paper, they may not be needed for all
switches. Only the switches in the first and last f stages need them
to tolerate f switch faults.

For the MIN in Fig. 1, there are three stages of 2� 2 switches
that interconnect the eight nodes. Each node is labeled by a binary
vector. The length of this vector, n, is the dimension of the MIN.
Clearly, n � log2N , where N is the number of nodes in the MIN.
Each switch is also characterized by an n-bit vector, called a
ªmask.º The mask indicates the difference between the two input
nodes, BÿA. This difference is obtained by modular-2 vector
subtraction. Notice that all switches in the same stage have the
same masks, therefore we can associate the entire stage with a
single stage mask, shown above each stage in the figure.

In this example, The MIN has the singleton mask set:
fm1 � 001; m2 � 010;m3 � 100g. This mask set forms a basis of
the three-dimensional space, therefore all vectors in this space can
be represented as a linear combination of the masks. In other
words, this mask set spans the three-dimensional vector space.
Consequently, we can find a path between any pair of nodes by
using the following routing algorithm: To route a connection
between node A and node B, we decompose the difference
between A and B into a linear combination of the masks.

Bÿ A �
Xn
i�1

cimi: �1�

The switches in stage i operates in the straight mode if ci � 0
and in the exchange mode if ci 6� 0.

Shown in the bottom half of Fig. 1 is the Bar Diagram [8]
representation of the same MIN. Each node in the MIN is
represented by a horizontal bar in the Bar Diagram and each
switch is represented by a vertical bar. A broken vertical bar in the
diagram indicates a faulty switch in the MIN. Connectivity exists
between two nodes if and only if a path can be found between
these two nodes. Such a path must use at most one switch at each
stage and must not change direction inside the MIN, as shown in
the figure. Tolerating f switch faults in the MIN is equivalent to
tolerating f broken vertical bars in the Bar Diagram.

To tolerate broken vertical bars in the Bar Diagram, we need to
find disjoint paths between any pair of nodes. Two paths are
disjoint in a Bar Diagram if they share no vertical bars. To tolerate
f broken vertical bars, it is sufficient and necessary to find f � 1
mutually disjoint paths between all pairs of nodes. It is sufficient
because f broken vertical bars can at most break f disjoint paths
and there is at least one path left between each pair of nodes. It is
necessary because if only f disjoint paths can be found between
some pair, f broken vertical bars can break all of them, and destroy
the connectivity between that pair.

In the MIN shown in Fig. 1, one and only one path can be found
between any pair of nodes. Therefore, it cannot tolerate switch
faults. To make this MIN single-fault-tolerant, redundant stages
need to be added. This problem of tolerating a single switch fault
with extra stages has been investigated extensively in the past.
Adams and Siegel first proposed a solution, called Extra Stage
Cube (ESC) [2]. Xu and Shen proposed a solution, which can be
viewed as adding an extra stage with an all-1 mask [16]. An
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example of single-fault-tolerant MIN with eight nodes is shown in

Fig. 4.
Adams and Siegel showed that the ESC tolerates one switch

fault by finding two disjoint paths between all pairs of nodes.

There is another simple way to see that ESC is one-fault-tolerant.

After a switch fault occurs, even if we discard the entire stage that

contains the faulty switch, the masks of the remaining three stages

still span the space. Therefore, the difference between any pair of

nodes can still be decomposed into a linear combination of the

remaining three masks and a correct routing is therefore available

by using the three surviving stages. Two disjoint paths between

000 and 110 are outlined in the figure. This scheme, in essence,

tolerates a stage fault, i.e., it tolerates any number of switch faults if

all of them occur in the same stage. The ESC solution does not,

however, tolerate two switch faults when they occur in different

stages.
This is not a unique solution to the single-fault-tolerant

problem. There exist other solutions that tolerate a single switch

fault. We present one of these solutions in Fig. 5. This is also a

one-extra-stage construction and the extra stage is masked 001.

This MIN does not tolerate a stage fault since erasing stage 010 or

stage 100, the masks of the three remaining stages, does not span

the space. But, this MIN can indeed tolerate a single switch fault.

The two disjoint paths between 000 and 110 are outlined in the
figure as an example.

The problem of tolerating stage faults has been investigated in
previous research works [5], [14]. Bruck and Ho correlated the
problem of fault-tolerant MIN to the results in the field of Error-
Correcting Codes and proved that a MIN constructed according to
a (n, k, d) code can tolerate d-1 switch faults, as well as stage faults
[5]. It showed that a fault-tolerant MIN constructed according to an
MDS code uses an optimum number of extra stages to tolerate f
stage faults. Despite extensive research in the field [6], [7], [9], [11],
[12], [15], constructions that use a minimal number of extra stages
to tolerate f switch faults, f > 1, had not been proposed.

The two examples we showed led us to consider the following
questions: Are the existing solutions the best we can do in
tolerating switch faults? If not, what is? Furthermore, if we are able
to find optimal constructions, are those constructions the only
solutions? The answers to all of these questions are the main
contributions of this paper.

In Section 2, we propose a construction of fault-tolerant

Multistage Interconnection Networks that uses an optimal number

of extra stages to tolerate f switch faults. In that section, we first

prove that, to tolerate f switch faults, at least f extra stages must be

added. None of the previously proposed constructions meets this
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Fig. 1. A three-dimensional Multistage Interconnection Network using 2� 2 switches.

Fig. 2. The modes of operation for point to point connection on a 2� 2 switch.



lower bound when f is greater than 1. We then propose a new

construction that meets this lower bound. The routing algorithm is

also given in that section. We will also show that this construction

is easy to implement in practice. In Section 3, we generalize the

construction proposed in Section 2 and prove a necessary and

sufficient condition for MINs to tolerate any given number of

switch faults with an optimal number of extra stages. While we

focus on the MINs that use 2� 2 switches under the point to point

connection model in Section 2 and Section 3, we extend the results

to the Mulstistage Interconnection Networks that use t� t switches

and MINs under the broadcast model in Section 4. In Section 5, we

conclude.
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Fig. 3. The modes of operation for broadcast connection on a 2� 2 switch.

Fig. 4. Three-dimensional one-extra-stage Extra Stage Cube (ESC) Network.

Fig. 5. Three-dimensional one-extra-stage Cyclic Multistage Interconnection Network.



2 AN OPTIMAL CONSTRUCTION

We first present the following theorem which states the lower
bound on the number of extra stages required to tolerate f switch
faults for MINs with t� t switches.

Theorem 1. To tolerate f switch faults in an n-dimensional Multistage
Interconnection Network with t� t switches, at least f extra stages
must be added.

Proof. (by contradiction) Suppose only f ÿ 1 extra stages were
added. When f failures occur at the switches that are connected
to node 0 in the first f stages, the first f stages are completely
paralyzed in connecting node 0 to other nodes. Only nÿ 1
stages can be used to connect node 0 to the other tn ÿ 1 nodes. It
is clearly not possibl, since, with nÿ 1 stages, at most tnÿ1 nodes
can be reached. tu

None of the previously proposed MINs meets this lower bound
for any given f . For example, the ESC solution only works for
f � 1 [2]; the number of switch faults that the Error-Correcting
Code solutions tolerate is in general less than the redundant stages
required [5].

Now, we present a new construction of MINs with 2� 2
switches that meets this lower bound.

Definition 1 (Cyclic Multistage Interconnection Networks). An
�n; f� Cyclic Multistage Interconnection Network is an n-dimen-
sional f-extra-stage MIN which has the singleton basis of the
n-dimensional binary vector space as the masks of its first n stages
and mn�i � mi for 1 � i � f , where mi is the mask vector of stage i.

A (3, 4) cyclic Multistage Interconnection Network is illustrated
in Fig. 6. The following theorem implies that this MIN tolerates
four faults, therefore meets the lower bound stated in Theorem 1.
The five mutually disjoint paths can be found between any pair of
nodes. In the figure, the paths between node 000 and node 110 are
outlined.

Theorem 2. An �n; f� Cyclic Multistage Interconnection Network with
2� 2 switches tolerates f switch faults.

Proof. We will prove the theorem by explicitly showing that
between any two nodes, A and B, A 6� B, there are f � 1
mutually disjoint paths in the Bar Diagram. Two paths are
disjoint if they share no vertical bars in the Bar diagram. In
other words, there is a conflict if and only if one switch operates
in the exchange mode in two different paths. Please note that, in
this proof, the nodes A and B and the masks fm1;m2; . . . ;mn�fg
are n-bit binary vectors and all arithmatic operations between
them are bitwise mod-2 additions.

We construct the f � 1 paths as follows: In path i, 1 � i � f ,
the switch in stage i operates in the exchange mode. Stages i� 1
through i� n are used to route the path to destination B. This is
possible because every n consecutive masks in the Cyclic MIN

span the n-dimensional binary vector space by definition. The
switches in all other stages operate in the straight mode.

In the last path, path f � 1, the switches in stages 1 through
f operate in the straight mode and the switches in stages f � 1
through n� f route the path from node A to node B. Fig. 7
illustrates this construction.

Now, we need to show that these paths are mutually disjoint
from each other. To prove that, we will prove that path i,
1 � i � f � 1, is disjoint from path j, 1 � j < i. Three cases are
considered:

Case 1: j < iÿ n, there are no common stages in which both
paths operate in the exchange mode. Therefore, path i and path j
are disjoint.

Case 2: j � iÿ n, the only stage of possible conflict is in
stage i if both path j and path i perform the exchange operation
on the same switch in this stage. We know that, in stage i, by
construction, path i is switching from node A to some node and
path j is switching from some node to node B. Given A 6� B, the
only possibility of conflict is that both paths are switching from
A to B. It is not possible. Path j switches from A to some other
node at stage j and, because of the fact that n consecutive masks
in a Cyclic MIN are linearly independant, path j will not reach
A until after stage i. Therefore, path i and path j are disjoint.

For iÿ n < j < i, the two paths are disjoint until stage j� n
since path j exchanges at stage j while path i goes straight and
they differ at bit �jmod n�. After stage j� n, they must agree on
bit �jmod n� since they must reach the same destination B.
Therefore, only one of the two paths will use the switch at stage
j� n. Consequently, path i and path j are disjoint.

Hence, the f � 1 paths from A to B are mutually disjoint and
a �n; f� Cyclic Multistage Interconnection Networks tolerates f
switch faults. tu

Theorem 2 shows that the performance of Cyclic Multistage

Interconnection Networks meets the lower bound stated in

Theorem 1. In other words, this construction is optimal in the

number of extra stages used to tolerate any given number of switch

faults.
Notice that, in the construction of the Cyclic Multistage

Interconnection Networks, the f � 1 paths share horizontal lines

only in the first f and last f stages. This indicates that the

demultiplexor/multiplexor pairs that enable the stuck in straight

fault model are only needed for those stages.
Routing in the Cyclic Multistage Interconnection Network is

performed by routing tags. [2]. The routing tag is a binary vector

composed of the coefficients obatained by decomposing the

difference between the source and destination into the linear

combinations of the stage masks. The tag is computed at the source

node only once and is attached to each message. The ith bit in the

tag in turn determines whether the switch in ith stage operates in

the exchange or the straight mode. The proof for Theorem 2
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Fig. 6. Three-dimensional four-extra-stage Cyclic Multistage Interconnection Network.



explicitly gives the construction of f � 1 disjoint paths between

any two nodes. Therefore, for a source node in a failure-free

situation, there are f � 1 sets of routing tags to each destination. A

message can be sent by selecting any one out of the f � 1 tags.

When a switch failure occurs, it should be detected by the source

node and the route that uses the faulty switch is eliminated from

the tag selections. This tag elimination process only occurs once for

each failure, thus it is not computationally intensive for the source

node.
In practice, it is easy to use the advantage of the Cyclic

Multistage Interconnection Networks. For example, the manufac-

turer can build demultiplexor/multiplexor pairs around each 2� 2

switch for the n-dimensional MIN, then, by putting two of them

together head-to-tail, you have an n-fault-tolerant MIN.

3 A NECESSARY AND SUFFICIENT CONDITION FOR

OPTIMAL FAULT TOLERANCE

In Section 2, we introduced the Cyclic Multistage Interconnection

Network that demonstrates optimal performance in tolerating any

number of switch faults. The construction, however, is not unique.

In this section, we extend the results to a more general class of

fault-tolerant Multistage Interconnection Networks, named Gen-

eralized Cyclic Multistage Interconnection Networks.

Definition 2 (The Generalized Cyclic Multistage Interconnection

Network). An �n; f� Generalized Cyclic Multistage Interconnection

Network is an n-dimensional f-extra-stage Multistage Interconnection

Network which has the property that the masks of every n

consecutive stages span the n-dimensional vector space.

Fig. 8 illustrates a (3, 4) generalized cyclic MIN using a

nonsingleton and nonrepetitive mask set. The five disjoint paths

between node 000 and node 110 are shown in the illustration.
Clearly, the Cyclic MINs is a subclass of the Generalized Cyclic

MINs. We will prove that the Generalized Cyclic MINs have the

same fault tolerance capabilities as the Cyclic MINs, namely, they

tolerate f faults with f extra stages. In addition, it is the necessary

condition for a Multistage Interconnection Networks to demon-

strate the optimal fault-tolerance capability.

Theorem 3. An n-dimensional f-extra-stage Multistage Interconnection

Network with 2� 2 switches tolerates f switch faults if and only if the

masks of every n consecutive stages span the n-dimensional vector

space.

Proof. We prove the forward direction of the theorem by

contradiction. Suppose an n-dimensional f-extra-stage Multi-

stage Interconnection Network does not have the property that

the masks of any n consecutive stages span the space. There

exists n consecutive stages in the MIN whose masks do not

span the n-dimensional space. We can find node A and B,

between which a path cannot be found in the nonspanning n

stages. Suppose the faults happen on the switches of the

remaining f stages at both sides of these n nonspanning stages

in such a way that all the faults before the n stages happen at

switches connected to node A and all the faults after the n stages
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Fig. 8. Three-dimensional 4-extra-stage Generalized Cyclic Multistage Interconnection Network.

Fig. 7. Construction of f � 1 disjoint paths.



happen at switches connected to node B. The communication

between A and B fails. Therefore, an n-dimensional f-extra-

stage MIN tolerates f switch faults only if the masks of every n

consecutive stages span the n-dimensional vector space.

The proof of the backward direction is similar to the proof of

Theorem 2. The construction of the f � 1 paths from node A to

node B are the same. We need to show that these paths are all

mutually disjoint from each other. Again, we prove that path i,

i � f � 1, is disjoint from path j, j < i, by considering three

cases:

Case 1: j < iÿ n, there are no common stages that the switch

in the stage operates in exchange mode for both paths. Therefore,

path i and path j are disjoint.
Case 2: j � iÿ n, the two paths share stage i. We know that

path j exchanges at stage j, while path i goes straight. Since any n
consecutive masks are linearly independent, mj cannot be
represented by a linear combination of mj�1 through miÿ1.
Therefore, the two paths are disjoint until stage i and the only
way that the two paths conflict is that, at stage i, path j
exchanges from Aÿmi to A while path i exchanges from A to

Aÿmi. But, it is not possible since path j must reach B after ith
stage and A 6� B. Therefore path i and path j are disjoint.

For iÿ n < j < i, since path j exchanges at stage j while path
i goes straight, the two paths are disjoint until stage j� n with
the same reasoning as the previous case. At stage j� n, only
one of the two paths exchanges since they must reach the same
destination. Therefore, path i and path j are disjoint. tu

4 EXTENSIONS

In this section, we will make two extensions to the results

presented in the previous sections. First, instead of looking at

Multistage Interconnection Networks with 2� 2 Switching Ele-

ments, we will show that the theorems presented in the previous

sections also apply to the MINs consisting of t� t Switching

Elements. Following that, we will show that the results are also

valid if we are to guarantee the broadcast capabilities of the

network.
Let us look at a 9-node 3-extra stage �2; 3� generalized cyclic

Multistage Interconnection Network consisting of 3� 3 switches.
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Fig. 9. Extension to the MINs with 3� 3 Switching Elements.

Fig. 10. Survived broadcast tree in the presence of four faults in a (3,4) Cyclic MIN.



Fig. 9 shows the four mutually disjoint paths from node 00 to
node 20.

Theorem 4. An n-dimensional f-extra-stage Multistage Interconnection
Network with t� t switches tolerates f switch faults if and only if the
masks of every n consecutive stages span the n-dimensional vector
space.

Proof. The proof of the forward direction is the same as the proof
for the 2� 2 case. To prove the backward direction, we
similarly construct f � 1 paths from node A to node B and
prove that they are disjoint. The difference lies in the
construction of the first f paths. The reason for the modification
is that a 2� 2 switch can only go straight or exchange, while a
t� t switch has t ways of switching. We say a switch is in mode
s if, for that switch:

output � input� s�mask 0 � s � tÿ 1: �2�
In this proof, all vector operations are mod-t. In the

construction of path i, i � f , we decompose the n-dimensional
vector BÿA into a linear combinations of the masks
fmi;mi�1; . . . ; mi�nÿ1g:

BÿA �
Xi�nÿ1

j�i
cjmj: �3�

Since fmi;mi�1; . . . ;mi�nÿ1g span the space, such a
decomposition is always possible. If the coefficient ci 6� 0,
the switches in stage i are forced to be in mode ci, i.e.,
output � input� ci �mi; if ci � 0, we only need to make sure
that the switches in stage i exchange to some output, as long as
they do not go straight. The path i will reach the destination B
by a regular routing in the next n stages, i.e., stages i� 1
through i� n. The construction of path f � 1 and the proof that
these f � 1 paths are disjoint to each other are the same as the
proof for the 2� 2 case. tu

In the previous sections, we have shown that, in an f-extra-
stage Cyclic MIN, there exist f � 1 disjoint paths between any pair
of nodes. It follows that, in the presense of f faults, at least one
path remains intact between any pair of nodes. The broadcast from
any node A is achieved by picking a survived path between node A
and every other node. If a switch is used by more than one path
and the two paths enter the switch from two different inputs, we
collapse the part of the two paths before the switch so that the
switch will operate in one of the legal modes. It is obvious that,
after such collapses, the connections between the node pairs
remain. Therefore, an f-extra-stage Cyclic Multistage Interconnec-
tion Network guarantees broadcast connectivity in the presense of
f switch faults. As an example, Fig. 10 shows the survived
broadcast switch faults.

5 CONCLUSION

In this paper, we studied the fault tolerance capabilities of
Multistage Interconnection Networks. The fault model we used
is the stuck-in straight model and the fault tolerance criterion is to
guarantee point-to-point and broadcast connections. We con-
structed the first known fault-tolerant Multistage Interconnection
Network that is optimal in the number of redundant stages. In
addition, we proved the general condition that is both sufficient
and necessary for MINs to achieve this optimal performance in
tolerating switch faults.
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