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A B S T R A C T

Over the last few years, the fast-growing energy needs across the world have intensified a central challenge: how
to reduce the generation and operation costs in power systems and, in parallel, to minimize the hydrocarbon
emissions. Moreover, one-quarter of world's population still lacks access to electricity, as the cost of building
conventional power grids is not affordable by third world countries. On the other hand, behind-the-meter
(BTM) energy systems offer cost-effective solutions to aforementioned challenges, as they enable end-users to
satisfy their energy needs with distributed energy generation and storage technologies. To that end, this paper
presents a detailed survey of BTM energy management systems. The paper starts with the classification of the
electrical loads with respect to their physical properties, priority ranking, and sizes. Next, the literature on BTM
energy management systems is systematically classified into three main categories: technology layer, economic
layer, and social layer. The technology layer spans the studies related to power systems including distributed
generation and storage technologies, whereas the economic layer shows how economic incentives along with
optimization and scheduling techniques are employed to shape the energy consumption. The social layer, on the
other hand, presents the recent studies on how to employ social sciences to reduce the energy consumption
without requiring any technological upgrades. This paper also provides an overview of the enabling technologies
and standards for communication, sensing, and monitoring purposes. In the final part, a case study is provided
to illustrate an implementation of the system.

1. Introduction

1.1. Motivation

Over the last decade, the power grid operations have become more
stressed due to growing customer demand and less secure with the
integration of intermittent renewable resources. Moreover, the usage of
fossil fuels in the electricity generation raises environmental concerns
all over the world. Such issues become more intense during peak hours,
as the power grid runs up against its operating limits, hence becomes
more fragile. One effective way to alleviate the challenges mentioned
above is the deployment of smart energy management systems which
integrate communication, control, and sensing technologies to shape
the electricity consumption efficiently [1,2]. To that end, in this paper,
we present a holistic survey on behind meter energy management
systems.

The term behind the meter (BTM) refers to a renewable energy
system located in a single building or at multiple facilities (depicted in
Figs. 1 and 2) owned by a single entity i.e., university campuses, usually
operated with distributed generation and storage units to supply all or

some portion of the end user‘s energy demand [3,4]. Due to the
uncertainties involved in distributed generation units, the critical part
of BTM system is the orchestration of loads through efficient optimiza-
tion and scheduling algorithms. Moreover, BTM systems are usually
not connected to the bulk generation, but typically are connected to end
user's meter allowing the customer to sell energy back to the utility. In
this regard, behind the meter energy management systems refers to a
system which fulfills the end users energy needs while realizing certain
objectives such as reducing operation cost, improving energy efficiency,
balancing demand and supply, and reducing carbon emissions.

1.2. Benefits

The multifaceted benefits of the BTM energy management systems
are ultimately linked to the current power system operations. Power
grids are large complex networks designed to deliver resources from
centralized power generators (e.g., nuclear, hydro, natural gas, coal) to
distributed demand. Since large-scale energy storage is still not a viable
option, the generation should be aligned with the demand at every
instant. To that end, utility operators dispatch their generation assets
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by considering their cost, flexibility, environmental “head-room”, and
distance to load. Traditionally, power system operators plan the system
capacity (e.g., generation portfolio, transmission capacity, transformer
ratings) according to the peak energy demand plus additional reserve
margin which is typically set as 15%. Even though, this approach
enables power grid to serve the customer demand with a very high
reliability, it leads to inefficient use of resources as the peak generation
typically occurs only around 10–12% of the time [5]. Hence, the
adoption of energy management systems is aiming to reduce the usage
of fast start, high cost, and usually environmentally unfriendly peak
generators and promises the following benefits:

(1) Economic Benefits: Today, almost 40% of the residential energy is
wasted due to lack of awareness in the U.S. [6]. By promoting
customer-utility interaction, users can enjoy incentives and differ-

entiated tariffs for shifting peak hour demand and they can even
make a profit by selling excess local generation back to the grid.
Regulators and utilities can benefit from increased utilization of
grid components and lessened investments. Obviously, exact
calculation of benefits depends on the assumptions made. The
work in [7] shows how demand-shaping with energy storage units
leads to monetary savings under different scenarios (e.g., varying
utility tariffs, consumption patterns). Fig. 3 shows the average
residential electricity consumption in 2014. The early adoption of
BTM systems are likely to take place in regions like GCC, North
American, Nordic countries, and Western Europe, as the average
household consumption is relatively high compared to the world
average .

(2) Reduced Green House Gas (GHG) Emissions: The electricity
generation sector in the U.S. accounts for 32% of GHG emissions

Fig. 1. Behind the meter system: case for single household.

Fig. 2. Behind the meter system: case for a campus.
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[8], while the global emission levels from the power sector is
around 42% of entire emissions [9]. Fig. 5 shows the emission
levels 1990 in the US. The results reveal that the steps taken
towards decarbonizing the power grid have started become effec-
tive, as the emission levels have been declining over the last few
years. Moreover, carbon intensity per kWh is an important

indicator of the power sector. Fig. 4 depicts a detailed overview
of carbon intensity in the electricity generation for various
countries. Consequently, nations with high carbon-intensity put
bold renewable integration targets. For instance, China aims to
generate 30% of its electricity from renewables by 2020, while
India seeks to deploy 175 GW of renewables by 2022. Moreover,
GCC members (Qatar UAE, Saudi Arabia) aims to generate 20% of
their electricity by 2030. Energy management systems offer
tremendous opportunities to cut the hydrocarbon emissions as
the most pollutant generation types (see Table 1 for carbon
emission levels) are employed during peak hours when the energy
management is expected to be the most effective.

(3) Deferred Grid Investments: As the BTM energy management
systems aim to reduce the stress on the grid, the required upgrades
to cater for the peak demand will be postponed and occur gradually
over time. This deferral will enable utilities to avoid exhaustive
siting processes. Moreover, globally more than 1.3 billion people
do not have access to electricity. Hence, BTM systems may be the
only option for remote locations such as farms, villages as they are
not connected to the main grid.

(4) Improved Grid Resiliency and Power Quality: Distribution gen-
eration and storage technologies along with intelligent energy
management tools will reduce the mean service interruption
duration and they will further protect loads against short-term
effects (e.g., voltage spikes, dips, and surges). Locally generated
energy user demand will be met locally and the employment of far-

Fig. 3. Average household electricity consumption in 2014.

Fig. 4. Carbon intensity of power sector by country in 2011 [200].

Fig. 5. GHG emissions due to electricity production in the USA.
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off high capacity generator options will be decreased. This way,
congestion on transmission lines will be reduced and the corre-
sponding line losses (in the form heat) will be minimized.
According to EPRI [7], significant monetary savings can be
achieved with storage units and their efficient control [10,11].

(5) Energy Independence and Security: The promotion of distributed
energy generation and its efficient operation with BTM energy
management systems make nations energy independent as the use
of domestic resources reduces the dependency on foreign re-
sources. Over the last decade, countries such as China, Germany,
South Korea, and the U.S. have been expanding their renewable
portfolio. For instance, China produced 30% of its electricity needs
from renewable sources. [12].

Due to all of the benefits mentioned above, this trend is further
supported by regulators and policy-makers, and specific targets are
determined to cut the energy consumption. We present some detailed
analysis in Table 2 and more detailed analysis for other countries can
be found at United Nations Framework Convention on Climate Change
[13].

We start out classification methodology by identifying the compo-
nents of the BTM systems. The first component is defined as the loads
used by consumers. Loads are classified according to their physical
properties (e.g., resistive, inductive, and conductive), job types (e.g.,
essential, deferrable, throttleable, flexibility), and their size (e.g., home,
microgrids, etc.). Next, we classify the literature on energy manage-
ment into three partially overlapping layers. The first layer is the
technology layer which includes distributed generation and storage
technologies and their efficient operation, management, and control.
Since adding new production and storage capacity is very expensive,
the second layer spans how economic incentives can be employed to
shape the energy consumption and the associated carbon emissions.
This layer is named as economic layer, and the topics in this layer
include optimization, scheduling, and control of appliances. The
components of the technology layer often act as constraints in the
problem statement of the economic layer. The third layer includes
studies from social sciences which tries to understand the role of
human behavior in energy consumption and proposes ways to control

human behavior. This layer is relatively young compared to other two
layers, but it has received some attention in the literature. The overview
of literature classification is presented in Fig. 6. Also, we provide an
illustrative example in Fig. 7 to summarize the three-layered approach.
As shown in this figure, the technology layer controls the system
capacity as it depends on the output of the renewable generation and
the state-of-charge level of the storage unit. The economic and the
social, on the other hand, matches the consumption with the system
output by controlling and scheduling load.

1.3. Contributions

A handful of surveys have attempted to discuss demand response
programs from utility company point of view [14] and smart home
activities [14]. Furthermore, several works provide an overview of
smart grid technologies [15,16] and specifically from communication
standpoint [17]. However, the scientific community recently discovered
that energy management for behind the meter systems requires
interdisciplinary research efforts from power systems, communica-
tions, optimization and control, economics, and sociology. Nonetheless,
to the best of the authors' knowledge, this is the first study that focuses
on the technological, economic, and social layers. Thus, in this study
we, comprehensively address and analyze the challenges of behind the
meter energy management systems from technological, economic, and
sociological layers. Moreover, we systematically classify the literature
till mid-2015.

2. Load classification

A typical residential unit consists of tens of electrical loads to meet
the needs of the modern life. In the previous section, we presented

Table 1
Carbon emissions [187] and electricity generation cost [188].

Technology CO2e/GW h $/MW h

(in Tonnes)
Conventional coal 888 95.6
Oil 733 128.4
Natural gas 499 66.3
Solar PV 85 130
Nuclear 29 96.1
Hydroelectric 26 84.6
Wind 26 80.3

Table 2
GHG emissions due to electric power generation by country.

Reduction Mandate/rule

Country % of GHG Source-year Target Res. to Deadline

Australia 33% Australian Dept. of Environ [189]-2014 30% 2000 2020 Kyoto Protocol [189]a

EU 31.10% European Environ. Agency [190]-2008 95% 1990 2050 Roadmap for moving to a low-carbon economy in 2050b

Qatar 22% Qatar Ministry of Environ. [191]-2013 30% 2008 2030 The Qatar National Vision [192].c

USA 32% US Environ. Protection Agency [8]-2012 30% 2005 2030 Clean Power Plant Act [193]d

UK 27% Committee on Climate Change-2013 80% 1990 2050

a This target includes Co2 Emissions from all sectors.
b 95% of the electricity generation will have 0% emissions [194].
c Qatar's carbon emissions per capita are the highest in the world.
d Goal is set solely for a reduction in electricity generation.

Economic Layer:

Optimization

Incentives

Scheduling

Technology Layer

Stability and Reliability

Voltage and Frequency

Regulation

Social Layer

Income, Lifestyle

Family Size

Dwelling Factors

Fig. 6. Three domains determine the operation, control, and management of behind the
meter energy management systems.
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drivers that affect and shape the domestic electricity consumption. This
section, on the other hand, classifies the loads according to their
physical properties, job priorities, and sizes.

2.1. Classification by physical properties

Electrical loads convert electricity into another form of energy (e.g.,
heat, motion) that is useful for end users. Based on their physical
properties, the majority of the loads employed behind-the-meter
systems can be categorized into four groups [18].

(1) Resistive electrical loads are typically the ones that convert electric
energy into heat. Loads, such as incandescent lights, ovens,
toasters, coffee machines, heaters are considered to be resistive
loads. Also, the electrical current of these loads is in phase with the
voltage. Also, the electrical current of such appliances reaches to its
steady-state value quickly.

(2) Inductive electrical loads usually convert electricity into motion
using AC motors. Inductive loads are employed in a variety of
home appliances such as refrigerators, vacuums, air conditioners.
In this group of loads, there is a phase shift between the voltage
and the current (the former waveform lags the latter).

(3) Capacitive electrical loads can be considered as the dual of
inductive loads, where the voltage peaks after the current sine-
wave. In a typical household, it is usually assumed that there is no
significant capacitive load.

(4) Non-linear loads are the ones that the drawn current does not
follow a sinusoidal pattern. The major appliances in this group are
TV sets, computers, fluorescent lights.

(5) Composite loads are the ones in which the device include more
than one type of the properties as mentioned earlier. For instance,
a refrigerator can be composed of inductive (compressor) and
resistive (door lights) loads. In such loads, different load types can
operate sequentially, in parallel, or both at the same time [19].

Classification by electrical properties is important to develop mathe-
matical models that represent the load behavior. According to [18],
resistive loads can be represented by On-Off models, which includes
two states: during On state, the load draws fixed power pOn, and during
Off state, zero or some minimal amount of power pOff is drawn.

Similarly, inductive loads can be represented by On-Off decay
models with the following parameters: p p p, ,On Off peak , and μ p. On and
pOff are the same as the On-Off model, while ppeak shows the level of
electrical current when the appliance starts up and μ represents the
decay rate to the stable pOn level. Suppose that tOn represents the length
of On duration, then the decay model can be represented by,

⎪

⎪⎧⎨
⎩

p t
p p p e t t
p t t

( ) =
+ ( − ) 0 ≤ ≤

≥
.On peak On

t
On

Off On

−μ

(1)

2.2. Classification by job type

The primary objective of energy management systems is to reduce
the electricity generation cost by deferring certain loads to off-peak
hours and by optimally adjusting the power drawn from the grid. It is
noteworthy to mention that the job priorities are mainly shaped by the
customer preferences; hence, the related literature contains different
assumptions on load task priority. In the literature, there are three
main job types, and the details are given below.

(1) Inelastic loads are the ones with the highest priority, as they are
essential for maintaining the user's comfort level. Hence, the
demand of such loads has to be met immediately and the energy
reduction potential of such appliances with shifting/rescheduling
is assumed to be very limited [20]. On the other hand, demands of
inelastic loads can be coupled with the distributed generation and
storage units and the peak hour consumption can be reduced [21].
The appliances considered in this group are lighting, TV, compu-
ters, refrigerators, cooking appliances.

(2) Elastic loads, on the other hand, are flexible loads that can be
deferred and rescheduled to low consumption periods. The defer-
ral period usually depends on the customer preferences and the
loads in this group can be further subcategorized into the follow-
ing. The loads in the first subgroup are delay sensitive, meaning
that there is a hard deadline to meet the demand, i.e., charging the
electric vehicle by 7 a.m. in the morning. The Second group
contains the loads with no hard deadline. Hence, they are
considered to be delay tolerant. For instance, consumers can defer
their clothes washing and drying needs until all other essential jobs
are completed. Hence, there is a trade-off between reducing the
charging cost and potential discomfort of deferring jobs.

(3) Smart loads refer to the types of loads which have a controllable/
adjustable power consumption pattern. Hence, depending on the
energy consumption profile of the household, smart loads can be
adjusted to minimize the charging cost. For instance, electric
vehicle charging current can be adapted depending on the network
conditions [22], or air conditioning system can be controlled
within an allowable comfort range to minimize peaks.

2.3. Classification by size

It is possible to classify the BTM systems according to their sizes as
SmartHome/SmartBuilding and Microgrid. Despite such grouping,
these systems have one critical feature in common: their ability to act
as a model citizen with intelligent control. A model citizen can be
described as a single entity which behaves as a load or a generator with
predictable and acceptable electrical characteristics. For instance,
despite having several houses and distributed generators inside, a
smart grid's overall behavior may be equivalent to a load which draws
constant power. These are discussed individually below.

Fig. 7. Illustration of three-layered approach.
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2.3.1. Smart home/smart building
This term is used for building (residential or office use) which is

equipped with intelligent devices and distributed generators for
advanced control. The end-result expected from such control is to
maximize internal energy consumption during high demand times. On
the other hand, during low demand times, extra energy in a
SmartBuilding can be exported to the grid thereby supporting the
utility as well as generating income for the building owners.

Fig. 8 shows a typical BTM SmartHome set-up. There are some
distributed generators, consumer electronics such as laptops and
lighting as well as hybrid devices which can also be used as storage
(i.e. electric vehicles). Overall coordination is achieved via a
SmartHome interface which can be, at times, SmartMeter itself.
SmartHome control can control distributed generator outputs, charge
speed of EVs, level and number of loads that are currently served.

2.3.2. Microgrids
In this section, a microgrid is used to describe smaller grids which

are equipped with smart devices for intelligent command and control.

As shown in Fig. 9 below, a microgrid is a collection of loads,
distributed generators and equipment required for electrical distribu-
tion, protection, and control. In this setup, circuit breaker 2 acts as a
point of common coupling (PCC) where microgrid is connected to the
utility grid.

A more control-oriented modeling is given in Fig. 10, where the
similar devices are represented as lumped models. As known to power
engineers, such microgrids are expected to proliferate in near future
[23,24]. Therefore, the coupling of such microgrids with the larger
utility grid is becoming a necessity.

Understanding the operation of smart microgrids is very easy if a
parallel is drawn with the SmartHome concept explained above.
Similar to SmartHomes, smart microgrids are controlled so that each
one of them acts as a device with acceptable characteristics, such as
injected harmonics, caused voltage deviation, etc. With this approach,
it is easier to handle the processing load on the entire network, where
distributed generators should be taken into account with bulk genera-
tion sites. In ideal case, a smart microgrid, may act as a BTM system,
PCC can be considered as the meter. Depending on the local generation
and consumption patterns, it appears to the utility grid as a load or a
generator. Furthermore, the existence of communication lines and
intelligent control creates the opportunity for more interaction and
planning such as frequency support for the grid.

3. Technology layer

In traditional power system operation and control, the goal is to
design a set of rules to match the generation resources with the
customer demand, usually with stringent reliability and stability
targets. The system is subject to disturbances causing unwanted
changes in system state and the control actions are applied to bring
back the system to the nominal state. Such operations require
continuous monitoring of power system parameters (data acquisition),
i.e., line voltage, phase, disturbances, etc., and the control actions take
place in microsecond levels. In addition to the load types presented in
the previous section, BTM systems have the following primary compo-
nents: distributed generation resources, distributed energy storage
units, and associated control and operation principles. Hence, in this
section, we classify such actions in technology layer and details are
given next.

3.1. Distributed generation

Distributed generation (DG) refers to the production of electric
power at the point of demand to reduce the cost, complexity, carbon
emissions, and inefficiencies of the main grid. Even though there are
different definitions for DG systems, the commonly accepted definition
states that DG systems are rated less than 10 MW and connected to a
voltage less than or equal to 60 kV. The most common generation types
include solar photovoltaics (PV), wind turbines, small hydro and wave
power, microturbines, diesel generators, and waste-to-energy systems.
DG units can be classified into two categories [25]: (1) based on the
output, DC or AC; and (2) based on dispatchability. For instance, DG

Fig. 8. Smart home design with BTM equipment.

Fig. 9. Microgrid with electrical components.

Fig. 10. Smart home design with BTM equipment.
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units such as PV panels and fuel cells are DC-type sources, thus
requiring DC/AC power converters. On the other hand, generators like
wind turbines and microturbines are AC-type converters, thus require
AC/AC converters. For the second classification category, dispatchable
generators (e.g., diesel) are the ones whose output can be adequately
controlled, while non-dispatchable ones require power electronics tool
to extract the maximum available power (e.g., solar, wind) via max-
imum peak power tracking (MPPT) techniques.

The inverter is a primary component of PV systems, as it affects the
performance of the renewable generation. Typically, the efficiency of
the inverter technology hovers around 95–98%.1 However, a sizable
portion of the appliances such as consumer electronics including
advanced communication technologies, fluorescent lighting, and
brushless DC motors operate on Direct Current [27,28]. Therefore,
there is an additional need to employ AC/DC power converters, and
their efficiencies vary between 85–90% (a typical AC-house configura-
tion is shown on the left side of the Fig. 11). Hence, the system losses
could go up to 20% for the DC equipments. Moreover, studies show
that replacing AC air-conditioning units with the advanced brushless
DC motors can lead to energy savings up to 5–15%, while replacing
variable-speed AC motors for applications like water pumping, ventila-
tion, and refrigerators will reduce the energy consumption by 30–50%
[27].

As given in the introduction section, there is pressing need to
deploy PV panels particularly in the customer premises. Since the
output of PV panels is DC and the usage of DC appliances offer
significant energy savings, several researchers have evaluated the
suitability of DC systems at residential premises [27–29]. Such systems
eliminate the need to convert the power from DC to AC and then AC to
DC for DC load. The system comparison is shown in Fig. 11. The
corresponding energy savings are linked to the PV output, the size and
the temporal usage of DC loads. The work presented in [27] evaluates
the DC-homes for 14 cities in the US with different load profiles and PV
generation profiles. They show that using DC-houses could lead to
savings up to 7–8% and the savings could go up to 13% if the
household employs an energy storage device.

By far, the most common DG type is photovoltaic systems that have
been installed as the solar energy is abundant, accessible, sustainable,
and environmentally friendly. Hence, we will focus on the solar
generation. One critical parameter to evaluate the PV systems is the
breakeven price at which the cost of generating electricity through
photovoltaics equals to the cost of purchasing the same amount from
the grid. The breakeven price is represented by dollars per watt and
depends on factors such as solar irradiance, electricity tariffs, incen-
tives, and the customer load profile. The recent studies conducted by
Lawrence Berkeley National Laboratory and National Renewable
Energy Laboratory reveal that the price of solar photovoltaic (PV)
was reduced by 12–19% in 2013 and the trend continues to fall 3–12%
more by the end of 2014 in the United States [30]. Moreover,
Department of Energy SunShot Initiative aims to reduce PV integration

cost 75% by 2020 [31]. Detailed calculations of cost-benefit analysis
can be found at [32] (Table 3).

Similarly, another important driver for the BTM PV penetration is
the incentives such as net metering policies which enable end-users to
consume the electricity they generate more than their consumption at
certain times to offset their consumption from the grid at other
occasions. The Database of State Incentives for Renewables and
Efficiency (DSIRE) provides details on each State's net metering
policies [33]. Australia is also a leading country in BTM solar PV
installments. According to the Australian Energy Market Operator, the
BTM solar rooftops can meet the one-third of the total demand by 2023
and the trend towards distributed solar generation is expected to grow
exponentially as depicted in Fig. 12.

3.2. Distributed storage

Behind the meter storage units are critical technologies as they
promote and aid renewable generation penetration. Over the last few
years, the political mandates and incentives have boosted the interest
in distributed storage units. For instance, California Public Utilities
Commission (CPUC) is targeting to procure 1.3. GW of energy storage
units by 2020 and 195 MW of this goal will be located at customer
premises for BTM energy management applications. Similarly, the U.S.
energy storage monitor report [34] shows that, the storage installations
increase from 44.2 MW in 2013 to 61.9 MW in 2014, with an increase
of 40% in over year. The same report predicts that the deployment
pattern will continue to rise with an estimated 220.3 MW total storage
capacity. Moreover, almost each state in the U.S. offers incentives for
storage units. Just to name a few, the State of California and the State
of New York offer $1.62 and $2.1 per watt installed storage units [35].
The increasing deployment pattern in the U.S. is depicted in Fig. 13
and a comprehensive list of policies and incentives can be found at
North Carolina Clean Energy Center [33]. Furthermore, the monetary
benefits of storage units can be enumerated as:

(1) Improved power quality refers to the voltage outages and sags
experienced by end-users, which is, in most cases remains
unnoticed, but if they occur for a sufficiently large duration, they
may damage customers' appliances. Based on a survey study
conducted in [36] the average of momentary outage costs for
residential customers is 0.10$/kW and 0.42$/kW for small
commercial and industrial customers.

(2) Improved power reliability refers to the usage of storage units
during outages and blackouts. The work in [37] reports that the
average 2 h outage cost for residential customers is 3.94$/kW.

(3) Reduced Time of Use (TOU) charges include the monetary savings
occurred by eliminating the usage of peak hour electricity, and
using storage instead. “Time Of Use” tariffs may vary in different
territories and for different seasons.

(4) Energy Trading Storage units can also store renewable energy and
enable the users to sell it back to the grid to make extra profit.

(5) Demand charges is a considerable portion of the commercial and
industrial customers' bill. Some electric utilities also apply these
charges to residential customers. It is usually computed by the
amount and the duration of the peak usage [38]. Demand charges
usually apply to commercial and industrial customers. For in-
stance, according to [38] the average demand charge for small
commercial and industrial customer is 15.00$/kW.

An overview of current BTM storage projects and commercial products
are presented in Table 4.

3.3. Control and operation

Reliable operation of BTM systems requires coordination among
the renewable generation sources and the energy storage units. BTM

Fig. 11. AC and DC house power system configuration [27].

1 A detailed list of Inverters approved by California Energy Commission can be found
in [26]
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system can operate in the grid-connected mode and stand-alone
(islanded) mode with the ability to switch from one mode to another
[39]. The main difference between the two operating modes is that in
grid-connected mode power exchange between the BTM system and
the main grid is allowed through the Point of Common Coupling (PCC).
In the stand-alone mode, the generated real and active power should be
in balance with the local demand, hence, there is no PCC in this mode
of operation [25]. The integration of distributed generation and storage
units introduce an array of operational challenges that need to be
addressed to enjoy the benefits of the BTM systems. Therefore, the
issues arising in the control and operation phases vary and the most
common challenges include [25]:

(1) Stability issues: There can be local oscillations arising from the
interaction of the distributed generation control systems.
Therefore, small disturbance stability analysis is required.
Moreover, if the BTM system is capable of switching between the
grid-connected and islanded modes, transient stability analysis are

Table 3
Classification of load types for behind the meter applications.

Load type Priority type

Load Restve Indctve N-linear Comb. Elastic Inelastic Autoa Manuala Meas. Ref.c Shareb EMS¡

Delay T. Delay S.
Lighting ✓ ✓ ✓ [18] 14% L
Toaster ✓ ✓ ✓ [18] 2d L
Kettle ✓ ✓ ✓ [18] L
Sandwich Maker ✓ ✓ ✓ [18] L
Microwave ✓ ✓ ✓ [18,195] L
Oven ✓ ✓ ✓ [18,20,195] M
Coffee Maker ✓ ✓ ✓ [18] L
Refrigerator ✓ ✓ ✓ [18,195] 8% M
Freezer ✓ ✓ ✓ [18,195] 2% M
Central A/C ✓ ✓ ✓ [18,20] 18% H
Dish Washer ✓ ✓ ✓ [18,20,195] 2% H
Wash. Machine1 ✓ ✓ ✓ [18,20,195] 1% H
Dryer ✓ ✓ ✓ [18,20,195] 4% H
TV2 ✓ ✓ ✓ [18] 7% L
PC3 ✓ ✓ ✓ [18] 3% L
Sp. Heating ✓ ✓ ✓ [18,20] 6% H
Wtr Heating ✓ ✓ [18,20,195] 9% H
Other 24%
EV ✓ ✓ ✓ H

a Refers to the automatically/manually operated appliances.
b Aggregated sum of cooking activities (includes all related appliances).
c This column refers to the measurement based studies of actual appliances. Different brands are used in measurements, see the references for details.
d Based on U.S. residential electricity consumption survey in 2012. Available at U.S. Energy Information Agency [188]. EMS potential classification (H)igh, (M)edium, (L)ow.
1 It does not include water heating portion.
2 Includes TVs, set-top boxes, home theater systems, game consoles, and DVD players.
3 Includes laptops, desktops, monitors, networking equipment.

Fig. 12. Solar PV deployment in South Australia [201].

Fig. 13. BTM energy storage deployment in the U.S.

Table 4
Behind-the-meter system deployments.

State Details

California CPUC has provided incentives to 6.8 MW BTM storage
units.

Arizona Arizona Public Service to deploy 2 MW of distributed
storage and solar.

Illinois ComEd to invest $300 million for microgrid projects.
New York 2 MW behind-the-meter storage contracted by Con

Edison.
New Jersey Board of Public Utilities has awarded $2.9 million

storage projects.
Texas ERCOT provides incentives for utility-controlled

distributed storage units.
Commercial products ZBB [196], Gexpro [197], Tesla [198], SolarWatt [199].
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crucial for seamless transitions.
(2) Bidirectional power flows: Traditional distribution feeders are

designed for unidirectional power flow. Hence, in the grid-con-
nected operation mode reserve power transfers can lead to
complications in the protection of the system.

(3) Uncertainty: The high uncertainty associated with the load profiles
and renewable generation units poses challenges in reliable
operation of BTM systems. The uncertainty is a bigger problem
in islanded mode of operation, as the supply-demand balance is
affected by high component failure rates.

(4) Low inertia: As the BTM systems expected to employ a low
number of distributed generators, low-inertia characteristics,
which can lead to frequency deviations, are likely to be experi-
enced.

In order to attack the issues given above, the BTM system controller
should be able to (1) control the output of the generation units, (2)
ensure power balance and keep voltage and frequency deviations
within predefined standards, (3) adjust and shift some portion of the
loads (smart and/or flexible loads), and (4) switch between the two
operation modes if required. Therefore, the primary control variables
are voltage, frequency, and active/reactive power (Table 5).

The control techniques can be classified into two groups: centra-
lized and decentralized control. In the first one, a central controller
gathers data from all units and decides control action for the entire
system. In decentralized control systems, decisions are taken at each
control unit with the available local information. In typical BTM
systems, hybrid models are used because (1) central control units
require extensive data communications and (2) decentralized control-
ler may fail to stabilize the system as there is a strong coupling between
physically dispersed generation units. Such hierarchical control tech-
niques typically have three control layers: (1) primary, (2) secondary,
and (3) tertiary. Three control levels are differentiated according to
their response time; primary control being the fastest and tertiary
control has the slowest response time. Moreover, primary control is
employed at single power electronics level, while secondary control is
responsible for a group of distributed generators, and tertiary control
level is responsible for a group of interacting BTM systems. Next, we
provide details on each control level.

3.3.1. Primary control
Primary control uses only local information. Hence, it has the

fastest response time. The control techniques in this category include
power sharing, inverter output control and islanding detection [39]. In
power sharing, the goal of the control action is to adequate share of
active and reactive power imbalances, which if not controlled leads to
frequency deviations [40]. The most common power sharing techni-
ques are divided into two [39,40]: (1) droop-based [41,42] and (2) non-
droop-based techniques [43,44] and a detailed comparison can be

found in [25].
The control of the inverter output has been extensively discussed in

the literature [25,45,46]. Overall, controllers in this category are
classified into three with respect to their reference frame. The first
one is the synchronous reference frame, which is related to DC
variables and Proportional Integral (PI) controllers. The second
reference frame is called stationary frame and it is linked to sinusoidal
variables and Proportional Resonant (PR) controllers. The last group is
the natural reference frame which employs PI, PR, and hysteresis based
controllers.

3.3.2. Secondary control
Secondary control techniques aim to provide secure, reliable, and

economical operations. This task is more challenging in islanding mode
because the unit dispatch of the highly variable energy resources
should follow sudden changes in the demand. The secondary control
is the highest level in the islanding-mode and it operates in a slower
time frame as performing complex decisions takes more time. Also,
secondary control handles economic dispatch of generation and storage
units [25].

There are two main secondary control approaches. The first one is
the centralized approach, in which a central operation point gathers all
relevant information and performs online optimization routines. The
second method is decentralized, which takes optimization decisions in
a distributed manner. Overall, centralized approaches are suitable for
BTM systems operating in stand-alone mode, as this system often
experience supple-demand mismatch. On the other hand, distributed
approaches are more appropriate for grid-connected BTM systems
[25].

3.3.3. Tertiary control
Tertiary control is the highest level in the control hierarchy and it

only exists in the grid-connected mode. The main objective of tertiary
control is to coordinate multiple BTM systems and the main grid. This
control level is the slowest compared with the other two levels (typically
in the order of minutes). The main reason is that the signaling between
the secondary level and the time to take control actions take time.
Typically, tertiary control is considered to be part of the main grid [25].

4. Economic layer

The conventional power system operations have been successful in
terms of grid stability and reliability, but the principle of matching the
resources to the customer load leads to underutilized assets. Moreover,
with the deployment of distributed generation and storage technolo-
gies, the power grid operations become more complicated and costly,
and hence new tools are required to maintain demand-supply match.
Considering the fact that the user behavior has an enormous impact on
how the network is utilized, many aspects of the power grids are

Table 5
Literature Analysis on Optimization.

Load types Objective

Refs. Wet appl. HVAC EV Elec. cost PAR Loss Mn. Comfort Target cur. Soc. welf. GHG
[85,86] ✓ ✓
[87–89] ✓ ✓ ✓
[53] ✓ ✓ ✓ ✓
[91] ✓ ✓ ✓ ✓
[22] ✓ ✓ ✓
[47] ✓ ✓ ✓ ✓
[49] ✓ ✓ ✓ ✓ ✓
[50] ✓ ✓ ✓ ✓ ✓
[51] ✓ ✓ ✓ ✓
[82,83] ✓ ✓ ✓
[69,71] ✓ ✓ ✓
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governed by the economic incentives than by technology layer pre-
sented in the previous section. Hence, one effective way to shape the
load profile is through economic incentives to optimize and schedule
customer demand both in time and quantity. In such problems, the
idea is to minimize a cost function (or maximize benefits) that is
usually subject to several technological and economic constraints. The
methods that are presented next constitute the economic layer and an
overview of this section is presented in Fig. 14.

4.1. Objective functions

The main thrust of an energy management system is to reduce the
power grid operation cost while maintaining a good level of customer
comfort. The major components of such costs are represented by
following objective functions: (i) electricity cost; (ii) distribution system
loses; (iii) customer comfort cost; (iv) carbon emission related costs;
(v) reaching a target load profile; and (vi) social welfare. It is
noteworthy that, the optimization problems are usually represented
by utility functions that may have one or more of the enumerated
objectives. Next, we present the details of the optimization objectives,
the constraints, and the solution methods.

4.1.1. Electricity cost
Electricity cost is the first major component of the cost function.

The electricity price is usually considered as an exogenous variable
given by the utility, which depends partially or entirely on varying the
retail prices. The works presented in [21,47–50] employ real-time
electricity prices in their objective functions and the goal is to minimize
the total consumption cost.

4.1.2. Peak-to-average load ratio minimization
The peak-to-average load ratio is a way of measuring the efficient

utilization of the grid resources. For instance, if this ratio is close to
one, the load profile is almost flat and the resources are highly utilized.
On the other hand, if this ratio is low, then there is a significant unused
system capacity, which translates into higher operational cost. Over the
last two decades, peak-to-average demand ratio has been steadily
increasing in the U.S., which translates into reducing utilization of
grid assets and increasing power grid operations. Hence, series of
papers propose methodologies to reduce the peak-to-average load ratio
through energy management systems [51–54] and [55].

4.1.3. Energy loss minimization
During the delivery of the power from the central power plants to

the end-use site, some portion of the electricity is lost, mostly in the
form of heat due to the resistance of the lines and other equipments
that the electricity passes through. For instance, according to the U.S.

Energy Information Administration, 6.1% of the net electricity genera-
tion was lost in T &D network. By considering the average electricity
price, this accounts approximately for $19.5 billion. Similarly, energy
losses at house level are documented in [56] for EU countries. To that
end, several literature on energy management systems focused on
minimizing the energy loss by deploying distributed generation op-
tions. Since reducing losses is related to using local production, the
majority of the studies in this area aims to find the optimal dispatch
strategy [22,56–59]. For instance, authors in [22] propose an optimi-
zation problem to minimize the energy losses for electric vehicle
charging. Similarly, authors of [58] develop an intelligent scheme to
minimize the energy losses to improve voltage profile. In [59], authors
propose aim to reduce the distribution system losses.

4.1.4. Customer comfort
Even though energy management systems offer a wide range of

energy savings options, consumers are likely to face with conflicting
decisions between the cost and user comfort. Therefore, minimizing the
customer discomfort or keeping the comfort within a certain range is
one of the important objectives of BTM systems. In [60], authors
develop a control framework considering the discomfort experienced
by users. The weight of the discomfort component increases in studies
that consider the management of cooling units or water heaters, as the
usage of such appliances is highly coupled with user comfort [61–68].
The discomfort cost is usually modeled with piece-wise linear function.
For instance, if the temperature of the house is within an allowable
interval that is bounded some upper and lower thresholds
(22 °C ± 4 °C), then the cost increases as the linearly within this range.
On the other hand, a huge penalty is incurred in representing the
discomfort cost. Furthermore, the study in [49] couples charging
electric vehicles with home energy scheduling to jointly minimize the
charging cost and maximize the user comfort.

4.1.5. Target load curve
The peak hour power system operation cost are incurred due to

stochasticities involved with the human activity. Hence, another
profound optimization objective is to incentivize customers to achieve
a particular load profile that is suitable for the utility [69–74]. For
instance, the work presented in [74] proposes a bidding strategy for a
user so that a target load profile can be achieved. On the other hand,
this approach requires consumers to reveal their usage profile so that
energy management system can compute optimal scheduling policy for
each appliance, which may not be the case in an actual implementation
of the system. This approach is also employed for energy management
in electric vehicle charging stations, where the goal is to keep
aggregated customer demand below a certain bound with statistical
guarantees [75–78].

4.1.6. Social welfare maximization
Social welfare (or social surplus) represents the sum of all con-

sumers' net benefits, i.e. the sum of aforementioned benefits minus the
associated costs. Hence, the primary objective is to be able to solve
individual energy management problems in such a way that the social
welfare is maximized in the global scale (through all consumers). For
instance the works in [50,66,79–81] present energy management
formulation to maximize the social welfare.

4.1.7. GHG emission minimization
The last objective of the energy management systems is to reduce

the GHG emissions related to electricity generation mainly by increas-
ing the utilization of clean energy options. For instance, the work in
[82] presents an optimization framework to reduce carbon emissions in
the presence of renewable generation. In [83], authors aim to minimize
the carbon emissions resulting from electricity generation in a group of
buildings.

Fig. 14. Economic layer components.
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4.2. Constraints

The formulation of energy management problems is usually subject
to one or more constraints that are explained as below.

(1) Load constraints determine the lower and the upper bound power
consumption level (e.g., appliance i p t p t p t( ) ≤ ( ) ≤ , ∀i

min
i i

max ). For
instance, clothes dryer or electric vehicle can reduce its consump-
tion to aid critical loads. These loads are usually considered as
smart loads as they improve energy management capabilities.

(2) Comfort constraints capture the occurred inconveniences due to
deferred/scheduled loads. It is noteworthy that comfort prefer-
ences could both be a constraint and an objective function.

(3) Storage unit constraints are an important set of technological
limitations that the management systems are subject to (e.g.,
energy and power rating, efficiency, etc.).

(4) Job constraints represent the priority of the jobs. High priority
loads are usually delay sensitive and have very stringent deadlines
while low priority loads can have loose delay constraints. The
performance metric could either be individual deadlines or the
average delay constraint for all jobs.

(5) Distributed generation constraints, similar to storage limitations,
are technical restrictions that determine that amount of generated
power, which is usually a probabilistic variable.

(6) If the available generation is scarce (e.g., coupling deferrable loads
with renewables [84]), then another significant constraint is the
supply-demand match. The energy management scheme must
make sure that supply meets demand at all times.

4.3. Solution methods

The solution method of an optimization problem depends on the
assumptions of the decision maker and the properties of the objective
functions and the constraints. There are two main assumptions on
policy makers. In the first one, a central authority such as utility
operator, dictates the schedule of appliance operations aiming to
maximize the system-wide objective function. In the second strategy,
on the other hand, individuals take their own decisions and the goal is
to maximize individual goals. Hence, the problem is solved in a
distributed manner.

The existing works in the literature are further classified into two
groups. The first one is related whether the problem is solved at one-
shot or the problem is transformed into a sequence of simpler problems
and solved in multi-stages. For instance, users can schedule their
appliance usage at the beginning of the day or the same procedure can
be updated every 15 min depending on varying conditions (e.g., prices,
renewable generation etc.). The second classification parameter in-
cludes whether the problem contains random variables to represent the
uncertainty introduced by the decision variables or the constraints.
Such problems are referred as stochastic programming the goal is to
maximize the expected outcome. On the other hand, if all parameters
are known with certainty, then this group of problems falls into
deterministic programming. Overview of the classification methods
is presented in Fig. 15.

4.3.1. Centralized solutions
The most common centralized solution method is direct load

control (DLC), which is a contract between the utility and the
customers. According to this agreement, the utility may control the
operations of residential appliances during critical times. In such
strategies, the goal is to maximize a single objective function and
solution method depends on the properties of the functions. Depending
on the structure of the energy management system, the problem
formulation falls into the groups given below.

(1) Linear programming (LP) is a type of optimization problem where
the objective function and all of the constraints are linear and
deterministic. The optimization problem can be solved with well-
established algorithms such as simplex, revised simplex, or interior
point method. The works presented in [85–88] and [89] employs
LP in their energy management problem. Since there is no
uncertainty in LP problem formulations, such approaches fail to
capture distributed generation dynamics and price and demand
uncertainty.

(2) Heuristic optimization is a powerful tool to solve intractable
problems that usually include uncertainty by nature [90]. In
heuristic optimization, there is no need to have global properties
of the objective functions and its derivatives. For instance, genetic
algorithm (GA) is a widely used method in heuristic optimization
that use mechanisms inspired from the evaluation of biological
processes (e.g., natural genetics and selection) and computes the
optimal value by searching through the solution space. The works
presented in [53,61,91] employs such an optimization method.
The work presented in [92] employs particle swarm optimization,
which is an iterative search algorithm that aims to improve the
candidate solution in a search-space following a simple predefined
set of rules. Heuristic optimization can also be used to solve Mixed
Integer Linear Programming (MILP) problems, which arise if some
of the objective or the constraints are integers. For instance,
branch and bound search algorithms are used solve the problems
presented [93–96]. This can also be applied when the problem is
non-linear. The work presented in [57] formulates the energy
losses minimization problem with mixed integer nonlinear pro-
gramming (MINLP) and aims to find the best generation portfolio.
Moreover, the study in [96] proposes an energy management
controller aiming to minimize electricity bill while considering the
comfort level. The problem is MINLP and the solved by iterative
algorithms.

(3) Convex optimization problems include convex objectives and
constraints. Mathematically, convex optimization problem is de-
fined as f xmin ( )x 0 subject to f x b i m( ) ≥ , = 1, …,i i . and

 f f, …, : →m
n

0 . If the problem includes convex functions,
thanks to recent improvements in optimization and computing
theory, the solution is as straightforward as linear programming.
Some solution methods include least squares, conic programming,
Lagrange multiple methods, geometric optimization [97]. For
instance, the works presented in [51,98] employs convex optimiza-
tion methods.

(4) Dynamic programming is a powerful optimization technique that
structures the problem in multiple stages, and the problem is
solved one stage sequentially at a time. Usually, customer energy
demand is time-correlated, meaning that energy requirements and
constraints (e.g., comfort level) vary over time. In such cases,
energy management problem cannot be optimized independently
at each time interval. Hence, dynamic programming approaches
are heavily employed. For instance, Markov decision process can
be applied to solve dynamic programming problems in which the
goal is to find a policy that maximizes the rewards of the actions
taken at each step. The necessary condition for optimality of such
problems is associated with the Bellman's principle of optimality
equation [99]. The works presented in [100] and [101] usesFig. 15. Classification of optimization problems.
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dynamic programming for energy management systems.
(5) Stochastic optimization problems are mostly used to capture the

uncertainties introduced by energy management system compo-
nents like renewable resources, electricity prices, and human
activity. In general, stochastic optimization can be used to repre-
sent both one-shot or multi-stage problems. Since the latter one is
predominantly used, we focus on the multi-stage decision-making
case. In stochastic optimization problems, the system is repre-
sented by a probabilistic scenario tree that represents the available
steps at each time (similar to dynamic programming). However,
the state of the scheduling tree increases exponentially at each time
slot, hence multi-stage stochastic optimization can suffer from the
curse of dimensionality. To overcome this issue, two-stage sto-
chastic programming approach is used in which decisions are
taken based on the available data, and they do not depend on
future observations [102]. Other powerful techniques to solve
stochastic problems are Markov decision process (MDP),
Lyapunov optimization, and model predictive control (MPC).
Overall, the goal is to find a policy that performs well on average
while it is feasible for all parameters. For instance, the studies in
[103,104] use MDP to solve the stochastic optimization problems.
Furthermore, the works presented in [21,105,106] use Lyapunov
optimization models, while the works in [49,107–109] use MPC
for residential energy management systems.

4.3.2. Decentralized solutions
The aforementioned centralized optimization methods can be

powerful, however, such approaches raise concerns about consumers'
privacy and comfort, as the centralized methods require complete
knowledge of the appliance usage. As an alternative to direct load
control decentralized control techniques that do not violate user
privacy and comfort, as individual users take their decisions to
maximize the aforementioned objectives. One effective way of such
schemes is the smart pricing methods provide consumers economic
incentives to influence their electricity consumption.

4.3.3. Smart pricing
Over the last decade, the differentiated pricing schemes have

become popular. In such schemes, utilities compute electricity tariffs
for different periods of the day to shape the consumer demand profile.
Next, we elaborate the details of the pricing schemes employed in the
literature and an illustrative example is presented in Fig. 16.

(1) All-in-rate refers to static electricity rates that remain unchanged
throughout the day. It is calculated as follows. First, utilities compute
the cost of electricity for different consumption levels and then, by
further considering the length of such intervals, the weighted average

cost for one day is calculated. In the final step, the electricity delivery
cost and the basic charge is added on top of the average cost of
electricity. For instance, there are five tiers in California, namely,
(Baseline) × {(0 − 100)%, (101 − 130)%, (131 − 200)%, (201 − 300)%, %(301 − above},
with a unit cost of {0.045,0.065,0.151,0.186,0.221}$/kWh respec-
tively. According to [110], the average price becomes $0.092/kWh
and this cost is added to the average delivery cost ($0.072/kWh) and
the basic charge ($0.020/day), and the all-in summer electricity cost
is calculated as $0.165/kWh.

(2) Time-of-Use (TOU) rates, typically divide the days into several
periods (e.g., peak, mid-peak, peak, etc.) and compute a rate for
each period. Such periods, hence the prices, depend on the season
(e.g., spring vs. summer), the day of the week (e.g., weekends,
weekdays, etc.). TOU rates are held constant throughout every
period. Therefore, they do not fall into dynamic prices. The very
first step in designing the TOU is to set the off-peak electricity price
to utility's marginal cost. Then the peak hour rate is computed to
be revenue-neutral to the all-in-rate by considering the average
residential load profile. In California, summer season off-peak and
peak hour prices are ¢12.6/kW h and ¢36.1/kW h respectively [110].
More rates for other states can be found in [111].

(3) Critical-Peak Pricing (CPP) rates are usually employed with TOU
rates, meaning that during critically loaded periods, customers pay
a peak rate that is higher than any other rate. During the rest of the
times, CPP acts exactly as TOU pricing. In order to compute the
residential critical-peak price, utilities consider the cost of a typical
combustion turbine and de-rate this cost by 30% since there is a
cost associated with the uncertainties of time the of the dispatch
and the availability of the rate. Next, the de-rated amount is
divided by the number of critically loaded hours, and in the final
step the result is added to the existing all-in rate critical rate. A
simple example will clarify the matters. A typical cost of a
combustion engine in California is $75/kW-year and the all-in-
rate for summer is ¢16.5/kW h. Considering 100 h of critical load
during a typical summer season, the corresponding critical-peak
rate would be $75 × 0.7 ÷ 100 + ¢16.5 = $1.04/kW h.

(4) Real-Time Pricing (RTP) refers to the tariffs that are computed
either hourly basis and this information is delivered to end-users
either on hour-ahead or day-ahead basis. For instance, in the State
of Illinois two utility companies employ such programs. Customers
of Ameren Illinois, who are enrolled in “Power Smart Pricing”
program, receive hourly prices that are set the night before, and
they adjust their usage accordingly [112]. Another Illinois utility
company Commonwealth Edison (ComEd), on the other hand,
offers an RTP program and broadcasts their prices hour-ahead
[113]. The computation of RTP for ComEd is calculated according
to the following formula. p h P C PI( ) = + −d DA D , where p h( )d is the
electricity price at hour h on day d P, DA s the day-ahead wholesale
market price, CD is the distribution cost (¢5.0/kW h), and PI is the
participation incentive (¢1.4/kW h) [114].

(5) Inclining block rates (IBR) is a powerful pricing mechanism to
avoid peak demand. Under this rate structure, the unit price of
electricity increases with the usage in blocks of several hundred
kWh. Hence, this provides incentives to distribute the usage over
time. According to [115], the prices are {0.0469, 0.0502, 0.0621,
0.0717} ¢/kW h for the consumption blocks of {(0–50), (52–350),
(351–600), (600-above)}, respectively. The works presented in
[47,53,55] use IBR in their optimization schemes and the work in
[116] discusses the results of an implementation in Canada.

4.3.4. Game-theoretic approaches
Even though smart pricing schemes have been on the market for

many years, according to a measurement-based study in [117], if
employed alone, they provide limited energy shaping capabilities. The
main reason is that customers do not likely to follow price variations
and manually adjust their appliances. Also, individual customer usageFig. 16. Comparison of smart pricing schemes.
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should be harmonized in order to improve the savings. To that end,
recent studies [118,119] and [51] show that instead of considering only
on the individuals, i.e. smart pricing, direct load control, developing an
energy management system for a set of users leads to better savings,
mainly by allowing consumers to adjust and coordinate their usage.

Hence, we proceed to explain distributed control techniques, which
employ game theoretic tools to model and study the complex interac-
tions among the independent rational player. A game is defined in its
strategic form as X U= {{ , { }, { }}i i∈ ∈ . In game theory, each
player i ∈ chooses a strategy x ∈i i to maximize his/her utility
function (payoff) U x x( , )i i i− , which depends both on his/her strategy xi
and all other players' strategies x i− .

The player setting can be single user – single utility, multiple users
– single utility, or multiple users – multiple utilities. Furthermore,
games can be classified into two main branches: cooperative games and
non-cooperative games. Next, we provide more details on the modeling
and solution methods presented in the literature.

(1) In cooperative games, players (e.g., customers) can communicate
with each other so that the entire group of users can act as one
super entity to further reduce the energy consumption. For
instance, the work presented in [69] propose a cooperative game
between users in order to achieve the desired load profile that is
suitable for grid conditions and utility company. They show that as
people cooperate, the cost of electricity consumption further
reduces. In [120], authors propose cooperative and coalition game
to in a group of energy users to minimize their usage. A similar
methodology is applied in [119,121,122]. A common objective of
the group of users is to maximize the social welfare [123,124]. In
this type of approaches, when users reach their optimal usage, they
do not have any incentive to move from this point. Hence, these set
of points leads to nash equilibrium.

(2) Non-cooperative games examine decision-making processes of a
self-interested set of consumers who do not have any communica-
tion with each other. In several cases, there can be cooperation
among customers due to self-enforcing reasons. The non-coopera-
tive game theory has been extensively used in the literature, as
there is usually a conflict between the consumers in terms of
maximizing the comfort level while aiming to maintain a certain
degree of comfort. The works fall into this group contain [80,125–
129]. For instance, the work in [80] proposes an aggregative game
for selfish consumers to manage the energy consumption behavior
of users. They show the existence Nash equilibrium. Moreover, the
work in [125], proposes a stochastic differential game-based
energy management system with smart/controllable loads e.g.,
water heater, A/C, etc.

5. Social layer

The fundamental shift towards the smart grids requires customer
engagement, which has been ignored for many years. According to the
U.S. Department of Energy, the role of consumer preferences, choices,
and behavior is as important as technical requirements [130]. The
literature in psychology and sociology shows that moral payoffs and
moral norms have a significant impact of the household energy
consumption [131]. Therefore, the main premise of employing social
sciences in energy studies is to shape the energy consumption and
achieve reasonable carbon emission reductions without requiring any
technological upgrades behave.

The successful deployment of EMS is ultimately related to modeling
and understanding of the actual consumption patterns, which depend
on socio-economic factors, dwelling related factors, and appliance-
related factors [19,132,133]. According to the study conducted in [19],
there are 13 socio-economic, 12 dwelling-related, and 37 appliance-
related existing factors. Obviously, only a few of them are dominant in
the domestic electricity use. For instance, [133] states that age, the

number of residents and employment status are the most influential
parameters in Belgium. Next, we span some of the most important
factors that affect and determine the domestic electricity consumption.
Then, we will show the recent literature on social studies that use these
elements to reduce energy consumption and promote energy conserva-
tion. In Fig. 17, we present the overview of social layer components.

5.1. Socio-economic factors

The widely accepted socio-economic factors on domestic electricity
consumption are listed below.

(1) Active occupancy refers the number of people, who are using the
appliances. This number is likely to vary during the day. The
relationship between active occupancy and the domestic electricity
usage has been extensively studied in the literature and the
common conclusion reveals that there is a significant positive
correlation between them [134–138]. A comprehensive overview is
presented in [19].

(2) Household income is another strong determinant of the energy
consumption. From microeconomics, it is known that electricity
consumption per capita (kWh per person) is highly correlated with
household income that determines the comfort level. Similarly,
series of studies [134,136,137,139] have concluded that electricity
usage increases as the household income grows. For instance,
according to [140] top 1% of the households with high income
consume four times more electricity than the average user.

(3) Age of residents and family composition also play a useful role in
the energy consumption. For example, authors in [135] shows that
if the responsible household person is above 55 or between 19 and
50, the electricity consumption is likely to be less than other age
groups. The impact of family structure, the number of kids and
their ages, depends on the society. For instance, in Denmark and
Belgium, consumption reduces corollary with the number of
infants/toddlers; however the opposite is true for Portugal [19].

5.1.1. Dwelling factors
There has been an increasing body of literature on investigating the

effects of dwelling's physical structure on domestic electricity usage.
Very detailed analysis can be found in residential energy consumption
survey conducted U.S. Energy Information Administration [141]. The
primary factors are enumerated as below.

(1) Total floor area is the most significant factor in this group, as it
determines the demand for space cooling/heating, the number of
appliances and occupants, etc. up to an important extent [19,142].

Fig. 17. Social layer components.
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For instance, in the U.S. 85% of the new homes built in the last two
decade employ central A/C units and this trend has lead to a
dramatic increase in energy consumption. Also, in the US accord-
ing to [140] an average-sized household, that is 1600 square feet,
consumes around 9500 kW h/year, whereas top the largest 1% of
the homes, that is 6400 square feet, consumes 2.5 time as much
electricity.

(2) Dwelling age is an important criterion in domestic electric power
consumption. According to the analysis presented in [141],
although dwellings built in year 2000 and later are 30% larger
than the ones built before that date, these homes consume only 2%
more electricity than the older ones. This is due to better
insulation, improved efficiency of appliances such as air condition-
ing, lighting, etc.

(3) Dwelling type also determines the electricity consumption because
the degree of detachment determines the energy savings especially
due to space heating [19]. Multi-dwelling apartments are usually
more energy efficient than the detached houses [134–136].

5.1.2. Appliance factors
Appliance level factors are also of paramount importance as they

determine the significant portion of the electricity consumption. The
major ones are listed as below.

(1) Appliance ownership is an important determinant of the aggre-
gated consumption. This category can be further divided into
subgroups such as total number of ownership (wet appliances,
entertainment sets, HVAC, electric vehicle ownership etc.), power
demand and efficiency of such devices, and the frequency of usage
[19].

(2) Appliance usage refers to the daily activity patterns and the
frequency of appliance usage. Therefore, appliance usage is an
influential element that shapes the peak usage.

(3) Power demand and efficiency of appliances are also crucial factors,
as, for instance, certified energy efficient appliances consumes less
power compared to older appliances. Moreover, weather is one of
the most critical factors affecting electricity consumption. In most
parts of the world, the highest electricity demands occur in the
summer time as end-users increase their air conditioning use to
deal with the high temperatures and humidity.

5.1.3. Psychological factors
Another important but often-neglected factors affecting the energy

consumption are the psychological drivers. Some of such factors
include value priorities, personal norms, self-efficacy, outcome expec-
tations, and attitudes [143]. For instance, the work in [144] shows that
the motivation to save energy is related to attitudes towards saving
energy. Moreover [143] suggests that the effort required to save energy
is proportional to the perceived private benefits. Moreover, social
norms and self-expectations are the other two important driving
factors. Next, we present the recent social studies that shape the end
user energy consumption.

5.2. Integrating social sciences

The previous two layers of energy management systems require
costly system upgrades and complex system architectures. However,
the majority of the time electrical appliances will be used by end-users.
To that end there has been a recently growing body of literature in
integrating social sciences into the picture [130,143–147].

The work presented in [147] uses behavioral approach to estimate
the national reasonable achievable emissions reductions. They categor-
ized different household actions into 5 groups, namely weatherization,
efficient equipment, equipment maintenance, equipment adjustments,
and daily user behavior, that can help to reduce the household energy
consumption by 20%.

The work in [143] presents a social cognitive approach to energy
savings. They employ the tools given in Section 5.1.3, and conclude that
in order to boost the savings through behavioral approach, utilities
need to improve the feedback about user's electricity consumption,
social market norms, and communicate social expectations.

Moreover, according to [148], peer pressure is one of the most
effective methods of reducing electricity consumption. An application
in California tries to motivate customers to reduce their consumption
by comparing the individual bills with the average consumption of their
neighbors. This method enables customers to reduce their consump-
tion by 1.5–3.5%.

The behavioral theory could also become a powerful tool in energy
conservation. For instance, the work presented in [131], researchers
provide a health and environment-based messaging strategy to lower
the energy consumption in the homes. The study shows that health and
environment-based information lead to 8% of energy conservation.

6. Enabling technologies

The successful deployment of BTM energy management systems
requires enabling communication, sensing, and control technologies to
ensure timely information dissemination. Overall, the communication
networks for the smart grid can be divided into three categories,
namely Home Area Network (HAN), Neighborhood Area Network
(NAN), and Wide Area Network (WAN) [149]. HAN usually consists
of tens of appliances in the customer premises for BTM energy
management applications. Usually, HAN contains a central controller,
which is connected to a smart meter to interface with the power grid.
NAN, on the other hand, aggregates data from multiple NANs, which
typically represents a few hundred meters, and forwards a data
concentrator. WAN delivers the aggregated information from NANs
to the utility company to take central decisions on pricing, load control,
forecasting, etc. Since BTM systems can be a single house and group
houses owned by a single entity, both HAN and NAN technologies are
considered in this study. A detailed survey of communication technol-
ogies and protocols for smart meter (automatic meter reading)
applications can be found in [150] and more general communication
survey can be found in [151].

6.1. Communication technologies for customer premises

Suitable communication technologies for HAN applications can be
classified into two categories based on the communications media. The
first group of technologies uses wired media and the candidate
technologies include Power Line Communications (PLC), and
Ethernet. The second group, on the other hand, uses wireless media
for communications and The most common communication technol-
ogies are IEEE 802.15.4 based technologies (e.g., ZigBee) and Wi-Fi.
The advantage of the first group is that these technologies can provide
fast and more robust communication medium. However, wireless
communications can provide low-cost infrastructure and ease of
connection to unreachable areas.

6.1.1. Wired communications
• Power line communications (PLC) use the existing powerlines as a

communication medium to transmit information between appliances
and the energy management unit. Depending on the used frequency
band and the data rate, PLC technologies can transmit up to 4–
10 Mbps. The advantage of PLC is that the deployment cost is
comparable with its wireless counterparts. On the other hand, the
main disadvantage is the harsh and noisy channel environment. In
order to support usage of PLC and to provide a standard, HomePlug
Alliance has been established to provide affordable smart grid solu-
tions. To that end, the work in [152] proposes a channel model for
indoor PLC. Moreover, the works presented in [153] and [154] uses
PLC as a communication technology for energy management systems.
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A detailed analysis of the PLC can be found in [155].
• Ethernet communications is another possible, but less preferred

communication option. Even though it can provide very reliable and
fast communication medium, the physical cabling and the related cost
becomes an obstacle.

6.1.2. Wireless communications
• IEEE 802.15.4 standard defines physical layer and media access

layer specifications for low-rate wireless personal area networks. Since
the sensing and the monitoring devices run for long duration and
requires low bit rate technologies, IEEE 802.15.4 based technologies
are widely accepted in energy management applications. Zigbee is the
most popular and suitable wireless communication technology for
energy management systems due to its simplicity, mobility support,
low deployment cost, its usage of unlicensed spectrum [17]. In fact,
many smart meter vendors, i.e., Itron, Elster, etc. and major home
appliance manufacturers, i.e., General Electric, LG, etc., have started to
embed ZigBee in their products. To that end, there has been a growing
body of literature on the use of ZigBee in energy management systems
[156–159]. The technical details of Zigbee can be found in [160].

• Wi-Fi based Wireless Mesh Networks (WMNs) can also provide
required connectivity and data transfer for energy management
applications. WMNs could play a critical role if the generation, storage,
and the loads are physically separated in distance, which is the case for
microgrids and campus networks, and thus requires wider area net-
work coverage. Moreover, WMNs are highly scalable, self-organizing,
and their low implementation cost makes them a good option [17,151].

• Femto cells are often deployed as access points of cellular
networks. Femtocells use customer's broadband, DSL, or any other
related technology to connect to the wireless carrier's core network.
This way, femtocells offer required indoor coverage and capacity for
BTM energy management systems. Femtocell also employs mature
security systems and the details are given in [161].

• Wireless Wide are Networks could provide required connectivity
to BTM energy management systems if it is located in a wider region
such as a microgrid or a campus [14,15,162]. The main advantage is
that customers can use public cellular carriers and there is no need to
built a communications infrastructure. On the other hand, since the
existing networks are not built for a machine to machine communica-
tions, hence modifications might be required. On strong candidate
technology is Worldwide interoperability for microwave access
(WiMAX). WiMAX can provide high capacity, wide coverage, low
latency, low per-bit cost, and required quality of service capabilities.

6.2. Communication technologies for distributed energy generation

Communication systems are the essential components for the
integration of distributed generation assets. Applications such as
supervisory control and data acquisition (SCADA), protective relaying
and feeder automation are crucial for the proper operation of system
[163].

6.2.1. Communication systems for wind generation
Communication of measured information and control signals

between the small scale wind generators and the central controller is
crucial as a deficiency in communication could have negative impact on
system security, reliability, and safety. Depending on the size of the
wind generation, SCADA systems are employed for remote monitoring,
data acquisition, and open and closed loop control for the wind
tribunes. For instance, in a real implementation in Canada, SCADA
systems enable users to tune system parameters like wind energy
converter and voltage control system to achieve desired generation
output [163].

6.2.2. Communication systems for photovoltaic systems
Similar to the previous case, communication system gets the

information from power inverters deliver this information for connec-
tion status, real and reactive power generation, and voltage. Advanced
systems can provide more information such as solar irradiance,
ambient temperatures, etc. The most common protocol between the
inverters and the data logger is RS-485. Moreover, the performance of
the solar generation can easily be degraded by shading, dust, or tree
limbs. Hence, for fault diagnosis at the individual panel level, Zigbee
communications is widely used [163].

6.3. Communication standards

A fully functional smart grid needs a large number of protection,
control and monitoring devices located across a large geographic area
to perform various distributed energy management (DEM) operations
such as wide-area situational awareness, distribution automation and
demand response. Hence, the corresponding communications system
needs to operate in different propagation and deployment scenarios at
different parts of the grid. Moreover, allocation of network resources
(i.e. signaling and traffic) and guarantee of QoS (quality-of-service)
among multiple DEM applications pose additional challenges. In such a
paradigm, multi-domain resource allocation and QoS control function-
alities such as hierarchical data aggregation and group resource
allocation can significantly enhance the performance of the overall
network and optimize its available resources.

With a view to meet the aforementioned challenges, a multi-tier
heterogeneous network (Hetnet) architecture has been developed
which is comprised of a primary network based on a long-range
wireless technology such as UMTS/LTE/WiMAX and one or more
secondary network based on short/medium range wireless technologies
such as IEEE 802.15.4 based ZigBee and IEEE 802.11 based WLAN
(Wireless Local Area Network) networks. A conceptual model of this
network architecture is shown in Fig. 18.

A resource management entity is the key enabler of this architecture
that adaptively and opportunistically varies radio resources, i.e.
signaling and traffic channels among the transmission links to meet
the QoS requirements of each active connection. There are several
advantages of this architecture, such as:

(1) The architecture provides physical separation between the home
area network (HAN) and the wide area network (WAN) of the
smart grid communications system which improves security,
resolves ownership issues, and encourages development of new
independent HAN and WAN applications.

(2) The access points/coordinators of the secondary network can act
as Hetnet relays for the primary network which can extend the
range, improve link quality, and eliminate dead spots of the overall
wireless network.

(3) The end-devices may considerably save the transmit power due to
improved SNR (signal-to-noise ratio) values. The improved link
margin will also allow the primary network links to operate on a
higher modulation and coding scheme (MCS) which can signifi-
cantly increase the overall data rate of the network.

(4) The hybrid network can use spectrums from both licensed and
licensed-exempt bands which could increase the spectrum effi-
ciency of the system without raising the interference margin.

(5) The end devices can use relatively less expensive WLAN, ZigBee
chips which may reduce the overall cost of the network deployment

(6) The secondary networks can aggregate the traffic from multiple
nodes into a single data burst which will reduce the amount of
network access in the primary network which in turn will improve
its data transmission efficiency by reducing the amount of signal-
ing and protocol overheads.

6.4. Sensor technologies

The proliferation of sensor and monitoring technologies are key
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enabling technologies for the behind the meter energy management
systems. In its current state, the demand response programs depend on
the manual load shifting. Hence they have limited applicability.
Therefore, there is a tremendous potential for sensor networks
applications. Furthermore, traditional power system monitoring and
fault diagnostics systems employ wired communications, which are
very costly and hard to maintain. To that end, wireless sensor networks
(WSN) have significant benefits over their wired counterparts. The
work in [164] explores the applications of presents the statistical
characterization of the WSN for smart grid measurement and diag-
nostics applications. On the other hand studies in [165] and [166]
employ WSNs for residential home energy management systems.

6.5. Smart plugs

Smart Plugs embed the sensing, communication, and control
technologies to provide real-time electricity usage information to users
or an automated end-user. There are three basic functionalities of
smart plugs: (i) Perform current and basic power quality measure-
ments; (ii) Communication the measured data with the user via Zigbee,
WiFi, HomePlug, etc.; (iii) Control the power usage of the appliances by
turning On/Off. To this end, there has been an enormous interest in
developing new solutions by the electronics manufacturers [167–170].

6.6. Cyber-security

The operations of the BTM system rely heavily on the communica-
tion technologies. The integration of information systems transforms
the power grid into a massive cyber-physical system. Because the
access to electric power is vital to human life, if not secured, the
malicious adversary can harm the physical infrastructure. Potential
cybersecurity threats include RF jamming, wireless scrambling, proto-
col failures, eavesdropping, and message modification and injection
[161]. Another concern is related to protecting the personal consump-
tion information of users. If there is an eavesdropping attack,
customer's lifestyle, when the customer is at home or not, which
appliances is being used, etc. can be used by criminals. [171].

6.7. Behind-the-meter (BTM) EV-smarthome integration with IEC
61850 standard

Establishing a common language that can be understood by every
equipment in BTM systems holds key importance for a successful
implementation. Considering that numerous power equipment com-
panies exist, and each uses its modeling for communication and
control, it is inevitable that a network of electrical devices (such as
SmartHouse or smart grid) turns into a pile of nodes that cannot
communicate. Such interfacing problem as well as established standard
language in BTMs is illustrated in Fig. 19. To tackle this, IEC 61850, a
substation communication standard has been published [172]. Soon
after its publication, IEC 61850 received much attention in power
engineering circles as it addressed a vital aspect of communication
lines in power systems. In an effort to encourage its utilization in
microgrids, which have more DG deployments, the International
Electrotechnical Commission formed Workgroup (WG17) to publish
an extension of IEC 61850-7-4: Compatible logical node (LN) classes
and data classes. This extension aimed at developing LNs and data
classes to standardize the modeling of DER systems. The overall
generic system is given in Fig. 20 is used as a template for modeling
the DER systems such as Diesel Generators, Solar panels (PV), Fuel
Cells, and Combined Heat and Power. In addition to function of
switching DERs on and off, DER systems also involve:

(1) Management of the interconnection between the DER units and
the power systems they connect to, including local power systems,
switches and circuit breakers, and protection.

(2) Monitoring and controlling the DER units as producers of elec-
trical energy.

(3) Monitoring and controlling the individual generators, excitation
systems, and inverters/converters.

(4) Monitoring and controlling the energy conversion systems, such as
reciprocating engines (e.g., diesel engines), fuel cells, photovoltaic
systems, and combined heat and power systems.

(5) Monitoring and controlling the auxiliary systems, such as interval
meters, fuel systems, and batteries.

Fig. 18. Smart home design with BTM equipment.
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(6) Monitoring the physical characteristics of equipment, such as
temperature, pressure, heat, vibration, flow, emissions, and me-
teorological information.

The system assumes a holistic sense in which the DER systems are
modeled starting from their internal parameters (e.g., fuel type for
diesel generators, battery test results for solar panels or hydrogen levels
for fuel cells) to their grid connection types and parameters and even
microgrid operator commands and control units. Having detailed
characteristic variables and measurement values entrenched inside;
this modeling system serves for a rigorous communication system. To
give a better insight about DER systems modeling, the new LN classes
and data classes shall be explained in four groups; DER unit controller,
internal parameters, grid connection and network operator units
[173,174]. This extension to IEC 61850 standard enables power system

engineers to model entire BTMs that are as large as full smart grids,
with IEC 61850 and IEC 61850-7-420 standards [175].

The large acceptance of EVs will have impacts on electrical net-
works. It is expected that V2G shall be one of the key technologies in
smart grid strategies [75,77,176,177]. By making use of V2G technol-
ogy, EVs not only draw power from the network but also act as
distributed storage devices and support it during peak-load times.
Through demand side management and demand response, the charge
and discharge times of EVs can be scheduled by the load profile
[76,178]. In this manner, EV owners can sell the stored energy in their
vehicles' batteries during peak times and recharge them once the peak
hour expires and the price reduces. It is possible to pool several EVs
together and provide larger support to the networks where owners can
obtain incentive costs. In order to achieve all of these advantages there
shall be communication and synchronization between the components

Fig. 19. Challenge of unique languages vs. standard language in BTM systems.

Fig. 20. Generic DER system in IEC 61850-7-420, modeling is done beyond MMTR which represents the meter [?].
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of smart grids. Similar to other electrical network components, EVs
should also be modeled in communication systems. This is important
to receive crucial information such as the battery size of the vehicle,
amount of the stored energy, time period when V2G is allowed by the
owner and the time when EV is required to be fully charged. If these
data are provided, network operators can exercise more precise
planning and smart grids can be used more effectively and efficiently.

IEC 61850-7-420 standard focuses on DER modeling. However, it
does not cover EVs and the functions related to EVs. It is possible to
model EVs as distributed storage systems with a smart charging and
discharging control. Although EVs could be mostly considered as load
elements on the system consuming electrical power, they could also act
as a resource at times of peak demand for example when most EVs
would be parked in garages and hence could be used to support peak
demand load. Thus, it makes sense that a Logical Node (LN) model gets
included in the IEC 61850-7-420 to cover EVs.

A Logical Node (LN) is a sub-function located in a physical node,
which exchanges data with other separate logical entities. LNs are
virtual representations of real devices. In IEC 61850-7-420, the
standardized name of the LN implementing the task of a DER
controller is DRCT. The DER controller (DRCT) LN defines the control
characteristics and capabilities of one DER unit or aggregations of one
type of DER device with a single controller.

In IEC 61850-7-420, the battery and its charger are modeled with
ZBAT and ZBCT classes. The grid connection of the EV is realized
through a dc switch, modeled with CSWI and XSWI, and an inverter,
modeled with ZCRT and ZINV. Fig. 21 shows the block diagram
representation of EV model in data communication world. ZBAT,
ZBTC, CSWI, XSWI, ZRCT, and ZINV all represent application-view
data models that represent some aspect of the charging/discharging of
the EV. These models could be aggregated together to represent the
overall function of charging/discharging of an EV. As per the IEC
61850 syntax, such an aggregation is called forming a Logical Device
(LD) model. LD models represent information about the resources of
the host itself including real equipment connected and the common
communication aspects applicable to a number of LNs. What is missing
in Fig. 21, which represents the device-view model of an EV charging/
discharging function, is a sub-function (LN) that controls the charging
and discharging process and the interaction of individual elements.
Hence, a new LN class called Electric Vehicle Control (EVCT) has been
developed as shown in Table 3 to reflect the sub-function required for
monitoring the critical functions and states of the V2G process [179].
The EVCT LN node will hold the answers to the following questions:

(1) When to start the vehicle-to-grid (discharge) process?
(2) At what time during the day or night should the battery be fully

charged?
(3) When to charge the car?
(4) Is demand side response in operation? Is Economy charging out of

peak-hours or immediate charging at the time of connection?
(5) How much power has been supplied to the grid? How much

imported?

In other words, the EVCT class defines the data about the V2G process
under four categories, i.e., Settings, Status In-formation, Controls, and
Measured Values. The class model is shown in Table 6 is self-
explanatory. However, specific data items could be further explained
below.

The settings section includes five items. Through these, in relation
to load profiles and peak times, the owner or the network operator can
assign V2G start and end times. “ChrgReady” indicates the time when
the owner desires EV to be fully charged and ready to move. The “Alim”

and “Vlim” denote the input and voltage current limits for the charging
process. These current and voltage values shall be in compliance with
the standard IEC 61851-22: AC electric vehicle charging station [180].
This standard stipulates upper and lower limits for voltage, current,
and frequency for different countries. This way it is ensured that the
proposed EVCT class can be used worldwide. ChrgMode parameter
holds the value for the selected charging mode among the modes
defined by IEC 61851-1: Electric Vehicle Conductive Charging System,
General Requirements [181]. This parameter is vital for providing a
standard LN for EVs since different countries have different grid
parameters and grid codes. For instance, Mode 1 Charging can be
used with standardized socket-outlets not exceeding 16 A and not
exceeding 250 V AC single-phase or 480 V AC three-phase [181]. AnFig. 21. Modeling EVs with IEC 61850-7-420.

Table 6
EVCT class developed in [179].

EVCT class

Data name CDC Explanation T M/O/C
LN name Shall be inherited from logical-

node class (see IEC 61850-7-2)
Data
System logical node data

LN shall inherit all mandotary data
from common logical node class

M

Data from LLN0 may optionally be
used

O

Settings
V2GStart ASG V2G-Allowed Period Start Time O
V2GEnd ASG V2G-Allowed Period End Time O
ChrgReady ASG Time when EV should be fully

charged
O

Alim ASG Input current limit O
Vlim ASG Input voltage limit O
ChrgMode ING Charging Mode (see IEC 61851-1) M
Status information
ConnCount INS Count of Grid Connection M
V2GStatus SPS True: V2G Participation is ON

False: V2G Participation is OFF
M

EconStatus SPS True: Economic Charging is
selected False: Immediate
Charging is Selected

M

Charging-Signal SPS True: Charging Indicator is ON
False: Charging Indicator is OFF

O

BattFullAudibleSignal SPS True: Battery Full Audible Signal is
ON False: Battery Full Audible
Signal is OFF

O

Controls
V2GEnable DPC Switch On/Off V2G participation,

On=True, Off=False
M

EconCharge DPC Toggle between Economic and
Immediate Charging,
Economy=True, Immediate=False

M

Measured values
Supplied-Power MV The amount of power supplied to

Grid through V2G scheme
O

Received-Power MV Power received for charging the
batteries

O
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additional earth conductor is also required for these outlets. However,
mode one charging is prohibited in the United States by national codes
while Japan and Sweden allow it for domestic use. In this fashion, IEC
61851 is utilized to overcome the varying nature of grids around the
world. It is a great advantage that both of the standards used in EVCT
LN, i.e., IEC 61851 and IEC 61850, are prepared by the IEC. This
means they are compatible and complementary with each other. First,
three items in status information section are mandatory. ConnCount
keeps the grid connection count for lifetime estimation and main-
tenance purposes. “V2GStatus” indicates whether the EV under con-
sideration participates in V2G while “EconStatus” indicates whether
the owner opts for economic charging during non-peak times or
immediate charging regardless of the cost. Last two variables show
the status of visible and audible signals. ChargingSignal relates to the
visual indicator which shows that charging is in progress while
BattFullAudibleSignal represents.

There are two control inputs to control V2G participation and
economic charging, “V2GEnable” and “EconCharge”. These can be
toggled either locally by the owner for demand response or by the
central network control for demand side management. The optional
measurements are aimed at keeping record of energy transfer between
the grid and the EV. However, measurement can also be performed
through smart meters and in that case separate modeling would be
required.

The overall modeling of EV with IEC 61850-7-420 for SmartHome
integration in BTM is shown in Fig. 22. EVCT class is the interface
between battery system and grid connection. ZBAT and ZBTC classes
can be fully adopted as it has very comprehensive battery and charging
information [173]. Similar to fuel cells and solar panels, EVs are
connected to grid over a dc switch and an inverter. These models can be
used for an individual EV as well as aggregated V2G pools which
consist of several EVs. The generic nature of EVCT class makes the
proposed model very versatile. Various EVs produced by different
manufacturers can be conveniently modeled and used separately or in a
pool. The integration between car manufacturers, SmartHome con-
trollers and the network operators becomes trivial thanks to the
developed method of presenting EV parameters in a standard fashion.
In short, using a standard communication for smart devices in BTM is
of great importance for smooth operation and easy integration. There
are several standards which can be used for different purposes. IEC
61850 is a promising standard that is always developing and expand-
ing. As shown in this section, holistic BTM systems, i.e., SmartHomes
with EVs, can be modeled with this standard. Further investigation is
required to create a universally accepted standard language for BTM

communication and control.

7. Case study: smart farm-smart grid integration with BTM

Precision Agriculture (PA) is a farm management approach that
uses information technology, satellite positioning data, remote sensing
and proximal data gathering to optimize returns on inputs while
potentially reducing environmental impacts [182]. It uses ubiquitous
sensing technologies, smart Decision Support Systems (DSS) and
location aware actuators to implement selective field interventions at
specified locations using information obtained from the field sensors
and analyzed using DSS. Being deployed with smart systems, Smart
Farms offer attractive opportunities for Smart Grid Integration [183].
Simply put, Smart Farm-Smart Grid integration can be used to
maximize Smart Grid availability with the support from Smart Farm.
On the other hand, Smart Farm owners may enjoy generous incentives
for their grid-support. The biggest benefit from such integration is the
ability to report possible events in Smart Farm to the Smart Grid
operator. For instance, during harvest time, when it is determined that
the crops are ready for harvest, Smart Grid can be notified of a certain
amount of biomass availability after a certain amount of time, i.e.
harvesting and collection time.

7.1. Sensors

Sensors collect information about field conditions enabling a
mapping of field conditions and differentiation of variability.
Information is collected about crop factors such as disease infestation,
nutrient, water stress and soil factors such as fertility moisture,
electrical conductivity and environmental conditions such as air
temperature [184]. Information is collected using spectroscopic means
and directly through physical and chemical measurements. Smart Farm
employs different categories of sensors; the first and perhaps most
important category are in-field sensors. These have been enabled by
integration with and even reliable communication technologies such as
ZigBee, Wi-Fi, and GSM. These sensors combine the sensor suite with
wireless communication device into a single device which can take
measurements and relay them at any time. These are deployed
optimally in the field to ensure an optimal coverage of the field
enabling efficient and accurate mapping [185] Aerial borne sensors
are also used in agriculture, in particular unmanned aerial vehicles
[184] which are replacing the use of satellites due to the latter's
temporal limitations and reliance on open skies for accurate sensing.
Finally, sensors can be mounted on location aware mobile platforms.

Fig. 22. Developed EVCT class used in SmartHome integration for BTM.
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7.2. Decision support systems (DSSs)

Generally, geographical information system (GIS) database types
such as POST-GIS are used in precision agriculture [186]. GIS
applications provide methods for analysis and interpolation of data
such as if Krigging analysis to convert point data into spatial data. The
information obtained from sensors is converted into a format consis-
tent with the specific parameters of interest using given benchmarks
from knowledge databases. An example is the NDVI index calculation
from the spectral reflectance of points in the field. These analyzed data
sets are then interpolated (where necessary) to create a continuous
spatial map of the parameters of interest. The decision support
interface provides platforms for exporting the data to variable rate
actuators which enable execution of implementations.

7.3. Actuators

Implementation of actuators requires, in general, location knowl-
edge which is provided by embedded GPS devices. These devices need
to be augmented to increase their accuracy to the centimeter level. The
actuators also have software to allow loading of maps and hardware to
implement variable interventions basing on the maps. Examples
include; auto-steer agricultural machinery powered using real-time
kinematics (RTK), light bar guidance systems where drivers are guided
using the horizontal display of lights. Differential GPS systems are also
used to implement actuators where a reference point with a known GPS
coordinate within the farm is used to increase the accuracy of the GPS
readings. Before an intervention, the relevant encoded treatments are
loaded onto the vehicles (variable rate applicators). The variable rate
applicators as they move through the field, read the current GPS
location (corrected) and using this information and information loaded
onto their drives to apply differential treatments to the given location.

The developed BTM model shown in Fig. 23 [183] considers an
integration of a Smart Farm and Smart Grid. The Smart Farm has in-
field sensors with a gateway node. The Sensors connect to a database
through a gateway using ZigBee standard. The database has connec-
tions to a local weather station for weather prediction and a knowledge
database. The local weather station provides local weather forecasting.
A DSS available through a computer terminal helps in analyzing and
presenting information to the user for decision making. In order to
support the integration, the DSS will be modified to be able to perform
the energy computations relating to load estimation and energy
generation estimation as specified above. The model also includes a
CHP for power generation. This is supported by a storage facility for
agricultural residue sufficient to provide material for up to one season.
Actuators help implement corrective measures. There is also a proces-
sing facility for crop production.

Fig. 24 shows a comparison of the conventional and developed DSS
models for Smart Farms [183]. As shown, the proposed model
incorporates connections to the Smart Grid and utility providers. The
model operates as follows; a Smart Farm having sensor devices
captures relevant information such as reflectance metrics periodically
and sends it through the gateway to the data center. Using relevant

Fig. 23. Deployment of a smart farm integrated with smart grid.

Fig. 24. Conventional and developed models of smart farm DSS.
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algorithms which are specific to different scenarios and information
from cloud about the specific crops, it is decided if the data presented
necessitates intervention. In the event that there is a need for
intervention, information from the weather station is used to make
predictions on the suitability of weather conditions for intervention.
The weather data could nullify the need for intervention in some cases
such as in the case of irrigation. In the case of application of fertilizers
and or pesticides, the occurrence of rain after application would result
in leaching. This is not only wasteful but also harmful for the
environment.

If the conditions are right and an intervention will be made, Smart
Farm communicates with utility agents who can help reduce storage
costs for farms. Smart Farm requests for an amount of utility relevant
to the intervention. After getting availability assurance from the utility
agent, Smart Farm talks to the Smart Grid requesting the cost and
availability of the required quantity of power. This process is illustrated
in the sequence diagram given Fig. 25 [183]. Smart Grid relays the
energy cost. Smart Farm can then makes a decision to either buy power
or to generate from its reserves for the intervention by comparing this
power cost with the cost of production from its residue storage.
Consideration is also made for the smart grid to obtain energy from
Smartfarm and for Smartfarm to sell energy to the Smart grid, if
possible.

The Smart Grid advertises for a specific amount of energy at a
specific cost at a specific time at which it will require energy from Smart
Farm based on its estimated load. Smart Farm compares the cost being
offered with its cost of producing power. If the electricity being offered
is greater than its cost, it then determines the amount of residue it can
use for generating power considering availability of residue and the
time it will take before residue can be obtained again. This is calculated
as shown in Eq. (2) below

RU TR MBR= − (2)

where RU is the residue available for combustion, TR is the total
volume of residue available and MBR is the Minimum buffer residue
that can be allowed in the system. MBR is a function of the time until
next residue can be obtained, e.g., from the harvest and the average
consumption of residue per unit time being considered, as in (3).

MBR = Daily Usage × Time until next harvest (3)

The energy available can then be calculated as

EA RAxE= (4)

where EA is the energy available, RA is the residue available and E is
the energy per unit of residue. The Smart Farm then communicates to
the Smart Grid on the amount of energy it can provide using its
reserves enabling a contract to be made.

With the help of BTM Smart Farm operations, Smart Farms act as a
single smart entity through its interface with Smart Grid. During times
of energy demand, Smart Farm acts as a smart load which notifies
Smart Grid its demand and approximate time. At times of excess
energy, Smart Farm acts as a smart generator which supports Smart
Grid by going online, whenever such support is required.

Due to isolated, or rural, nature of Smart Farms, this integration
can be used as a backbone for rural electrification endeavors. For
instance, if the excess energy permits it, some residential houses
around Smart Farm can be included in BTM system as loads, and
much-needed electrification can be achieved. As the time progresses,
such Smart Farm-Smart Grid integration may help span the entire
country and increase rural electrification rate.

Fig. 25. Communication between SmartFarm. Smart grid and utilities.
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8. Conclusions

BTM systems are gaining more acceptance as they are addressing
challenges posed by the changing paradigms of power systems such as
renewable energy penetration, environmental concerns as well as the
introduction of new technologies and business models. As discussed in
the manuscript, the impacts of BTMs span different domains, namely
technology, economy, and society.

On the technology front, it is a well-acknowledged fact that power
systems are becoming more heterogeneous and unorthodox with
different mixes of generation and consumption technologies. BTM
systems have the ability to facilitate inclusion and integration of them
with smart and enhanced control. Smart algorithms implemented in a
BTM system can reduce the impact of intermittency posed by renew-
able energy based distributed generators. Local consumption may be
matched with the renewable energy available and this supply-demand
arrangement achieved before the meter helps mitigate its effect on the
large-scale interconnected grid.

As far as the economy is concerned, novel developments in the
power system field require more granular control of the power flow at
the distribution level and fine-grained accounting of the generation and
consumption. In contrast to traditional power system operation that is
based on bulk-energy trading between large companies, microgrids
require monitoring generation and consumption of a single household
and calculation of balances based on a complicated mix of tariffs. BTM
systems offer the necessary communication, standardization and auto-
mation required to achieve all of these tasks.

Finally, new-age grids require supply of power in a more consumer-
based approach. It is required to study the consumer behavior, its
underlying reasons and the resultant load-profiles. Detection of con-
sumption patterns may ease grid-planning and, if possible, necessary
interventions may be utilized to change them. BTM systems can collect
and report data, implement different charging schemes for demand-
side response purposes and analyze the effectiveness of the scheme
which is currently implemented.

Furthermore, BTM systems can be utilized for integration of smart
grids with other components such as SmartFarms. Such an integration
will maximize the energy efficiency in farms, reduce their energy bills
and increase their crop yield while the grid operators will benefit from
increased grid-support and reliability. This is not limited to farms and
different integration models including shopping centers, commercial
buildings and schools can be investigated. In all of these cases, BTM
systems are required to have a distributed control on the consumer side
for coordination and control.

In short, power systems are experiencing unprecedented changes.
The bulky, centrally-controlled, interconnected systems are being
replaced with microgrids that include distributed generators, often
renewable energy based. These microgrids include ubiquitous monitor-
ing and more distributed control. In order to address these new
requirements, BTM systems are developed and deployed. They offer
numerous advantages on different fronts such as technology and
economy, and facilitate the transition to the grid of the future.
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