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Abstract—This paper proposes an efficient high-performance
detection algorithm for MIMO communication systems that is
based on a sequence of optimal tree approximations of the
Gaussian density of the unconstrained linear system. The finite-
set constraint is then applied to obtain a cycle-free discrete
distribution that is suitable for message-passing algorithms.
The proposed GTA-SIC algorithm is iterative and is based
on first decoding the most reliable symbol, then canceling its
contribution and applying the message-passing decoding to the
smaller system. The computational complexity of the proposed
GTA-SIC algorithm and the MMSE-SIC are comparable. The
significantly improved MIMO decoding performance of the
algorithm proposed here compared to lattice-reduction aided
MMSE-SIC is demonstrated on several examples of large MIMO
systems with high-order QAM constellations.

I. INTRODUCTION

We consider a MIMO communication system with n trans-
mit antennas and m receive antennas. The tap gain from
transmit antenna j to receive antenna i is denoted by Hij .
In each use of the MIMO channel a vector x = (x1, ..., xn)

>

is independently selected from a finite set of complex numbers
A according to the data to be transmitted, so that x ∈ An. We
further assume that in each use of the MIMO channel, x is
uniformly sampled from An. The received vector y is given
by

y = Hx+ ε. (1)

Here, noise is modeled by the random vector ε which is
independent of x and whose components are assumed to
be i.i.d. according to a complex Gaussian distribution with
mean zero and with known variance σ2. The m×n matrix
H comprises i.i.d. elements drawn from a complex normal
distribution of unit variance. The MIMO detection problem
consists of finding the unknown transmitted vector x given
H and y. The task, therefore, boils down to solving a linear
system in which the unknowns are constrained to a discrete
finite set. The maximum likelihood (ML) solution is

x̂ = arg min
x∈An

‖Hx− y‖2. (2)

However, going over all the |A|n vectors is practically un-
feasible when either n or |A| are large. In fact, the MIMO
decoding problem is known to be NP hard [1].

A simple sub-optimal solution, known as the Zero-Forcing
(ZF) algorithm, is based on a linear decision that ignores
the finite-set constraint and then, neglecting the correlation
between the symbols, finding the closest point in A for each

symbol independently. This scheme performs poorly due to
its inability to handle ill-conditioned realizations of matrix
H (if m< n then H

>
H is even singular). Somewhat better

performance can be obtained by using a minimum mean
square error (MMSE) Bayesian estimation for the continuous
linear system. A vast improvement over the linear approaches
described above can be achieved by the MMSE with Succes-
sive Interference Cancelation (MMSE-SIC) algorithm which
is based on sequential decoding with optimal ordering [2].

Many alternative methods have been proposed to approach
the ML detection performance. The sphere decoding (SD)
algorithm finds the exact ML solution by searching for the
nearest lattice point [1], [3]. Although SD reduces computa-
tional complexity compared to the exhaustive search of the
ML solution, sphere decoding is not feasible for high-order
QAM constellations. While SD has been empirically found to
be computationally very fast for small to moderate problem
sizes, the sphere decoding complexity is prohibitive for large
n, higher order QAM and/or low SNRs [4].

A preprocessing step based on lattice reduction (LR) has
been proposed in order to enhance the performance of low-
complexity suboptimal detectors and decrease time complexity
of tree-search sphere decoding [5]. The performance gap of
ML detection and LR based linear decoders increases greatly
for a large number of antennas.

This study attempts to solve the MIMO decoding problem
using the Belief Propagation (BP) paradigm. We provide an al-
gorithm that is both efficient and achieves near-optimal results.
A recent study proposed a modified version of the MMSE al-
gorithm based on Gaussian tree approximations (GTA) [6]. In
this study we take this approach one step further and develop
an iterative version of GTA we call the GTA-SIC, which is
based on successive interference cancelation. We derive the
optimal ordering of symbol decoding and obtain an efficient
version of the BP algorithm that is suitable for our problem.
The GTA-SIC algorithm is both computationally efficient and
achieves better results than state-of-the-art methods that are
based on lattice reduction.

II. THE GAUSSIAN TREE APPROXIMATION ALGORITHM

In this section we briefly review the Gaussian tree approx-
imation (GTA) method for MIMO decoding [6] and develop
an explicit expression for the error covariance matrix of the
GTA method.



Given the constrained linear system y = Hx + ε, and a
uniform prior distribution on x over a finite set of points An,
the probability function of the discrete random vector x given
y is

p(x1, .., xn|y) ∝ exp
(
− 1

2σ2
‖Hx− y‖2

)
, x ∈ An. (3)

It can be easily verified that (3) can be written as follows:

p(x|y) ∝ exp
(
−1

2
(x− z)

>
C−1(x− z)

)
, x ∈ An (4)

where z = (H
>

H)−1H
>
y is the least-squares estimator and

C = σ2(H
>

H)−1 is its variance.
We next look for a good approximation of p(x|y) (4) that

enables a successful implementation of the Belief Propagation
paradigm. Since the BP algorithm is optimal and efficient on
connected cycle-free factor graphs, i.e., on trees, a reasonable
approach is to find an optimal tree approximation of the exact
distribution (3). This problem is, unfortunately, NP hard [6].

To overcome this obstacle, we search for a tree approxi-
mation of the distribution corresponding to the unconstrained
version of the linear system (1):

f(x|y) ∝ exp
(
−1

2
(x− z)

>
C−1(x− z)

)
, x ∈ Rn. (5)

This distribution is Gaussian and therefore, as we show below,
we can find a closed-form expression for the optimal Gaussian
tree approximation. We can then apply the finite-set constraint
and utilize the Gaussian tree distribution to form a discrete
loop-free approximation of p(x|y) (3) which can be efficiently
globally maximized using the BP algorithm.

An n-node tree graph can be represented by the cycle-free
parent relations {p(i)}ni=1 such that p(i) is the parent node of i.
Each node, excluding the tree root, has exactly one parent. To
simplify notation we do not describe the root node separately.
The parent of the root is implicitly assumed to be the empty
set. A distribution g(x1, ..., xn) is aligned with a tree {p(i)}
if it can be written as g(x) =

∏n
i=1 g(xi|xp(i)). The following

theorem provides an explicit formula for the optimal Gaussian
tree approximation of a given Gaussian distribution f(x).

Theorem 1: [6] Let f(x) = f(x1, ..., xn) be a multivariate
Gaussian distribution. The Gaussian tree distribution g(x) =∏n
i=1 g(xi|xp(i)) whose KL divergence KL(f ||g) is minimal

is:

fgta(x) =
n∏
i=1

f(xi|xp(i)), x ∈ Rn (6)

and the tree structure of fgta is the maximum spanning
tree of the weighted n-node graph where the weight of the
ij edge is the square of the correlation coefficient between
xi and xj (based on f(x)). The Gaussian density fgta(x)
with the optimal tree structure is called the Gaussian Tree
Approximation (GTA) of f(x).

A spanning tree of a connected graph is a subgraph that
contains all the vertices and is a tree. Prim’s algorithm [7] is
an efficient and simple greedy approach to find the maximum

spanning tree. It begins with some vertex v in the given graph,
defining the initial set of vertices T . Then, in each iteration,
we choose the edge with maximal weight out of all the edges
(u, v), where u is outside of T and v is in T . Then vertex u
is brought into T . This process is repeated until a spanning
tree is formed. A simple implementation of Prim’s algorithm
based on searching an array of weights to find the maximum
weight edge to add requires O(n2) operations. By applying
the Prim algorithm we obtain the tree structure of the optimal
Gaussian tree approximation.

Given the Gaussian tree approximation (6) of the Gaussian
distribution f(x|y) (5), the next step is applying the finite-set
constraint to form a discrete loop-free approximation of p(x|y)
(3):

pgta(x1, ..., xn|y) ∝
n∏
i=1

f(xi|xp(i)), x ∈ An. (7)

Using the BP algorithm we can efficiently obtain the exact
marginal distributions of pgta(x|y):

pgta(xi = a|y), a ∈ A, i = 1, ..., n (8)

that provide a soft decision result. Taking the most likely
symbol, we obtain the GTA algorithm.

Theorem 2: Let f(x) = f(x1, ..., xn) be a multivariate
Gaussian distribution with mean z and covariance matrix C.
Let

g(x) =
n∏
i=1

f(xi|xp(i)), x ∈ Rn (9)

be a Gaussian tree approximation of f(x) defined by a
spanning tree {p(i)} (not necessarily the optimal tree). Denote
the mean and variance of the Gaussian distribution g(x) by zg
and Cg respectively. Then zg = z and

Cg(i, j) = C(i, i)
k−1∏
s=0

C(vs, vs+1)
C(vs, vs)

(10)

such that i = v0, v1, ..., vk−1, vk = j is the (unique) tree path
from xi to xj .

Proof: Assume, without loss of generality, that the tree root
is x1. We prove that f(xi) = g(xi) for every i by induction
on the path length from the root x1 to xi. For the root node
x1, the definition of g(x) implies that g(x1) = f(x1). Let xj
be the parent of xi in the tree representation of g(x), i.e., j =
p(i). The induction assumption implies that g(xj) = f(xj)
and the definition of g(x) implies that g(xi|xj) = f(xi|xj).
Therefore, g(xi, xj) = f(xj , xj) which implies that g(xi) =
f(xi). To prove the covariance formula (10) for Cg(i, j) we
use an induction on the length of the tree path from i to j. For
path lengths that are either zero or one we showed above that
g(xi, xj) = f(xi, xj) and therefore Cg(i, j) = C(i, j). The
triplet of jointly Gaussian random variables xi, xv1 , xj , based
on the density g(x), satisfies:

cov(xi, xj |xv1) = Cg(i, j)−
Cg(i, v1)Cg(v1, j)

Cg(v1, v1)
(11)



Node v1 is part of the tree path from i to j and therefore
cov(xi, xj |xv1) = 0. Since the path from i to j is longer than
the path from v1 to j, we can apply the induction assumption
on Cg(v1, j) in (11) to obtain the covariance expression (10).
�

Applying Theorem 2 to the optimal tree approximation fgta
defined in Theorem 1, we obtain that f(xi, xj) = fgta(xi, xj)
for every xi, xj that are connected by an edge in the tree graph
of fgta. Hence, the ij entry of the covariance matrix of fgta(x)
is equal to the ij entry of the covariance matrix of f(x).

The MMSE is known to be a better MIMO decoding
method than the ZF solution. An MMSE version of the GTA
algorithm can be obtained by finding the optimal Gaussian
tree approximation of:

f(x|y) ∝ exp
(
−1

2
(x−Ex|y)

>
V −1
x|y (x−Ex|y)

)
(12)

such that Ex|y = (H
>
H+ σ2

e I)
−1H

>
y and Vx|y = σ2(H

>
H+

σ2

e I)
−1 where e is the mean symbol energy..

III. THE SUCCESSIVE INTERFERENCE CANCELATION GTA

In this section we develop a successive interference cance-
lation (SIC) version of the GTA algorithm. We dub this algo-
rithm the GTA-SIC. The main idea is similar to MMSE-SIC.
The difference is that instead of applying the MMSE to obtain
a hard decision of one symbol at a time, we apply the GTA
algorithm. Applying a SIC procedure to the GTA is done in the
following way. In each iteration we apply the GTA algorithm
and obtain a hard decision of the single (most reliable) symbol.
We cancel its contribution and obtain a system with a smaller
number of unknown variables. This process is iterated until all
the message symbols are decoded. The MMSE-SIC decoder
is significantly better than the MMSE. The GTA algorithm
can be viewed as an improved version of the MMSE based
on Gauss-Markov density instead of the product of marginal
Gaussian densities. In terms of performance, GTA outperforms
MMSE. It is even better than MMSE-SIC [6]. In this study
we show that a SIC version of the GTA algorithm provides
a significant improvement over MMSE-SIC with only small
increase in computational complexity.

A. Efficient message scheduling

Since at each iteration we are only decoding a single
symbol, we show next that there is no need to apply all the
message-passing steps of the BP algorithm used by the GTA
decoder. An optimal BP schedule, when applied to a tree,
requires passing a message once in each direction of each
edge [8]. The BP messages are first sent from the leaf variables
‘downward’ to the root. Next, BP messages are sent ‘upward’
from the root back to the leaves. After the downward-upward
message passing procedure is completed, we can compute the
‘belief’ at each node.

In our case of GTA combined with successive interference
cancelation, in each round we are only interested in decoding a
single node. Hence, the BP algorithm boils down to an instance
of dynamic-programming. When applying BP to a tree graph

we can consider each vertex as the tree root. Hence, without
any loss of generality we can assume that the single node we
want to decode is the root of the tree. Since we only want to
compute the belief of the root, we can avoid the ‘upward’ part
of the BP scheduling.

Assume we are given the following tree distribution rooted
at x1:

pgta(x1, ..., xn|y) ∝
n∏
i=1

f(xi|xp(i)), x ∈ An,

and we want to find the marginal distribution pgta(x1|y). The
‘downward’ BP message from a variable xi to its parent
variable xp(i) is computed based on all the messages xi
received from its children

mi→p(i)(xp(i)) =
∑
xi∈A

f(xi|xp(i))
∏

j|p(j)=i

mj→i(xi). (13)

The ‘belief’ in the root node is:

belief(x1) = f(x1)
∏

j|p(j)=1

mj→1(x1), x1 ∈ A. (14)

To obtain the hard-decision decoding for the next round of the
iterative procedure (see Fig. 1), we choose the symbol value
whose posterior probability is maximal

x̂1 = arg max
a∈A

belief(a). (15)

B. Optimal Ordering

Successive canceling algorithms can suffer from error-
propagation. If a symbol is estimated incorrectly it can have
an adverse effect on estimation of the remaining unknown
symbols. To minimize the effects of error propagation, it is
advantageous to perform interference canceling from the most
reliable to the least reliable transmitted signal. This is the
decoding order proposed by the V-BLAST method [2]. In [2]
it is proved that this greedy local strategy is also globally
optimal.

To perform optimal interference cancelation ordering in the
MMSE-SIC algorithm, we consider the covariance matrix of
the estimation error

C = E((x− x̂)(x− x̂)
>
|y) = σ2(H

>
H +

σ2

e
I)−1. (16)

Matrix C is the variance of the linear estimation ignoring
the finite-set constraint and x̂ = (H

>
H + σ2

e I)
−1H

>
y is

the MMSE unconstrained solution. The most reliable decoded
symbol, is the xi with the smallest error variance, i.e., xi for
which cii is the smallest. The MMSE-SIC is based on hard
decoding of xi and canceling its contribution from the linear
system.

From Theorem 2 we obtain that the variance of the decoded
symbol xi is the same for the two decoding algorithms, MMSE
and GTA (and is equal to the cii diagonal entry of the matrix
σ2(H

>
H+ σ2

e I)
−1. Hence the most reliable symbol for GTA-

SIC is the one with the minimum error variance, i.e, the
symbol xi such that cii is minimal. The same argument which



Input: A constrained linear system: Hx+ ε = y where H
is an m × n matrix, a noise level σ2 and a finite symbol
set A whose mean symbol energy is denoted by e.

Algorithm:
For k = n, n−1, ..., 1
• Compute:

z ← (H
>
H +

σ2

e
I)−1H

>
y

C ← σ2(H
>
H +

σ2

e
I)−1.

• Optimal Ordering: Assume that ckk is the smallest
diagonal element of C (otherwise relabel the vari-
ables).

• Optimal Tree: Compute the maximum spanning tree
(rooted at node xk) of the k-node graph where the
weight of the i-j edge is the square of the correlation
coefficient c2ij/(ciicjj). Denote the parent of node i
by p(i).

• Max Product: Send messages from leaves to root.
The message from i to its parent j = p(i) is:

mi→j(xj) = max
xi∈A

− (xi − zi − cij

cjj
(xj − zj))2

cii −
c2ij

cjj

+
∑

s|p(s)=i

ms→i(xi)

 , xi ∈ A

• Hard decision:

x̂k = arg max
a∈A

(− (a− zk)2

ckk
+

∑
s|p(s)=k

ms→k(a)).

• Interference Cancelation: Assume H = (h1, ..., hk).

y ← y − hkx̂k
H ← (h1, ..., hk−1)

End
Fig. 1. The Gaussian Tree Approximation with Successive Interference
Cancelation (GTA-SIC) Algorithm.

demonstrated that for V-BLAST the greedy local strategy is
also the globally optimal, can be utilized to show that same
is true for GTA-SIC optimal ordering. Therefore, the same
ordering that is optimal for MMSE-SIC is also optimal for
GTA-SIC.

C. Implementation and complexity

The belief-propagation algorithm has two variants, the sum-
product and the max-product [8]. Above we described a sum-
product version of GTA algorithm that computes soft marginal
probabilities pgta(xi|y). We did not observe any significant
performance difference using either the sum-product or the
max-product variants of GTA-SIC for decoding the MIMO

systems that are presented in the experiment section. The
max-product is more computationally efficient since the BP
messages can be entirely computed in the log-domain whereas
the sum-product is based on ‘log-sum-exp’ type operations.
A detailed implementation of the max-product version of the
proposed GTA-SIC algorithm is shown in Fig. 1.

Fig. 2. Results for a 12× 12, QPSK, MIMO system.

Fig. 3. Results for a 12× 12, 16-QAM, MIMO system.

The computational complexities of both MMSE-SIC and
GTA-SIC are dominated by the complexity of solving the un-
derlying unconstrained least-squares problem, i.e., calculating
the inverse of (H

>
H + σ2

e I) at each step of the algorithm.
When m = n, (i.e. same numbers of transmit and received
antenna) we need to evaluate the inverse of a series of matrices
with dimensions k× k, where k = n, n−1, ..., 1. The compu-
tational complexity of performing this series of operations is
clearly of the fourth order, i.e., O(n4). In the GTA-SIC there
are two additional operations that do not exist in MMSE-SIC,



Fig. 4. Results for a 16× 16, 16-QAM, MIMO system.

namely finding the optimal tree and applying the BP algorithm
in each iteration. The computational complexity of applying
Prim’s algorithm to find n optimal trees is O(n3). It can be
easily verified from Fig. 1 that the dynamic programming
performed by the BP algorithm takes k|A2| operations. When
applying the BP algorithm on graphs of sizes k = n, n−1, ..., 1.
the computational complexity of the BP step in the GTA-SIC
algorithm is O(n2|A2|). Hence the complexity of the GTA-
SIC algorithm is dominated by the factor O(n4) which is the
same complexity as MMSE-SIC. By applying the square-root
algorithm proposed by Hassibi [9] for efficient computation of
error covariance matrices, the computational complexity can
be reduced from O(n4) to O(n3).

IV. EXPERIMENTAL RESULTS

In this section we provide simulation results for the pro-
posed GTA-SIC detector over various MIMO systems. We
assume a frame length of 100, i.e., channel matrix H is
constant for 100 channel uses. The channel matrix comprised
iid elements drawn from a zero-mean normal distribution of
unit variance. We used 10,000 realizations of the channel
matrix. This resulted in 106 vector messages. The performance
of the proposed algorithm is shown as a function of the
variance of the additive noise σ2. The signal-to-noise ratio
(SNR) is defined as 10 log10(Es/N0) where Es/N0 = ne

σ2 (n
is the number of variables, e = 1

|A|
∑
a∈A a

2 and σ2 is the
variance of the Gaussian additive noise).

Here we show the performance of the proposed GTA-SIC
approach based on successive Gaussian tree approximations.
The GTA-SIC is first compared to MMSE, GTA [6] and
MMSE-LLL which is a MMSE combined with lattice reduc-
tion [5] based on the Lenstra-Lenstra-Lovasz (LLL) algorithm
(with δ=3/4) [10] that is applied to the extended channel matrix
[11]. Then, GTA-SIC is compared to MMSE-SIC and its lattice
reduction variant (using optimal ordering) denoted by MMSE-
SIC-LLL [11]. This method achieves the best results among

LR based MIMO detection methods [5]. Finally, GTA-SIC is
compared to maximum-likelihood (ML) detection. The ML
score was implemented using the Schnorr-Euchner variant of
sphere decoding (SD-SE) [12], [3].

Fig. 2 shows the symbol error rate (SER) versus SNR for
a 12 × 12 QPSK MIMO system. Figures 3-4 show SER vs.
SNR results for several other system sizes and constellations.
First, we can revalidate the results reported in [6] that the GTA
algorithm is much better than MMSE and is comparable and
slightly better than MMSE-SIC. The results also show that the
MMSE-LLL is better than MMSE in high SNR, however it
is worse than MMSE-SIC. This already indicates the potential
of the GTA-SIC algorithm. In all experiment results shown
above the GTA-SIC performed significantly better than the
MMSE-SIC. The GTA-SIC was also found to be better than
the MMSE-SIC-LLL. Note that even in the case of high QAM
constellation and a large number of antennas (Fig. 4), the
improvement of GTA-SIC over MMSE-SIC and MMSE-SIC-
LLL is significant.

To summarize, we showed that our approach is more
suitable to MIMO detection than the state-of-the-art lattice
reduction aided algorithms. We showed that using a compa-
rable computational complexity we can achieve significantly
improved MIMO decoding performance especially in large
MIMO systems with high-order QAM constellations.
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