
SPARQL-ST: Extending SPARQL to Support
Spatiotemporal Queries

Matthew Perry and Prateek Jain and Amit P.Sheth

Abstract Spatial and temporal data is plentiful on the Web, and Semantic Web tech-
nologies have the potential to make this data more accessible and more useful. Se-
mantic Web researchers have consequently made progress towards better handling
of spatial and temporal data.SPARQL, the W3C-recommended query language for
RDF, does not adequately support complex spatial and temporal queries. In this
work, we present the SPARQL-ST query language. SPARQL-ST is an extension of
SPARQL for complex spatiotemporal queries. We present a formal syntax and se-
mantics for SPARQL-ST. In addition, we describe a prototype implementation of
SPARQL-ST and demonstrate the scalability of this implementation with a perfor-
mance study using large real-world and synthetic RDF datasets.

1 Introduction

Nearly all human activity is rooted in space and time, and increasing amounts of
spatial and temporal data are appearing on the Web. Examples include spatial and
temporal data about tracking hurricanes and aquatic animals1 2. We have also seen
increasing amounts of user-generated geospatial metadata created with geotagging
vocabularies such as GeoRSS. The number of Web mashups created with public
map services alone is a testament to the usefulness of maps and spatial data in a
variety of applications. These real-world scenarios motivate us to argue that current

Matthew Perry
Oracle,1 Oracle Drive, Nashua, NH 03062, USA e-mail: matthew.perry@oracle.com

Prateek Jain
Kno.e.sis Center, Wright State University, Dayton, OH 45435 USA e-mail: prateek@knoesis.org

Amit P. Sheth
Kno.e.sis Center, Wright State University, Dayton, OH 45435 USA e-mail: amit@knoesis.org

1 http://weather.unisys.com/hurricane/index.html
2 http://whale.wheelock.edu/whalenet-stuff/stop #cover.html

1

2 Matthew Perry and Prateek Jain and Amit P.Sheth

tools for managing Semantic Web data must be extended to better handle spatial and
temporal data.

Researchers have made initial progress in this direction. Gutierrez, et al. proposed
Temporal RDF Graphs to model temporal aspects of RDF triples [8, 9]. The RDF
statement is extended in this model from a triple to a quad where the fourth element
is the valid time of the RDF statement. There has also been significant research
inspired by the Geospatial Semantic Web vision [6]. An architecture of ontologies
for the Geospatial Semantic Web has been proposed [14], and a variety of tools
and systems to manage spatial data on the Semantic Web have been introduced
[15, 22, 27]. In addition, groups such as the W3C Geospatial Incubator Group [17]
have pursued standard ontologies for geospatial data.

Query language support for spatial and temporal RDF data is currently lack-
ing. SPARQL [23] has recently emerged as the W3C-recommended query language
for RDF data, but, to date, no extensions of SPARQL to support complex spatial
and temporal queries exist. This chapter proposes SPARQL-ST, an extension of
SPARQL that supports queries over spatiotemporal RDF graphs (i.e. temporal RDF
Graphs that contain spatial objects). Consider the SPARQL-ST query below. This
query selects all politicians (and their tenure) that represent a congressional district
that is inside a given polygon.

SELECT ?p, %g, intersect(#t1, #t2, #t3, #t4)
WHERE {
?p usgov:hasRole ?r #t1 .
?r usgov:forOffice ?o #t2 .
?o usgov:represents ?c #t3 .
?c stt:located_at %g #t4 .
SPATIAL FILTER (inside(%g, GEOM(POLYGON ((-75.14 40.88, -70.77 40.88,
-70.77 42.35, -75.14 42.35,-75.14 42.35, -75.14 40.88))))}

In addition to normal SPARQL variables (denoted with a ? prefix), SPARQL-ST
introduces a spatial variable type (denoted with a % prefix) and a temporal variable
type (denoted with a # prefix). Spatial variables represent complex spatial features
rather than a single URI, and the concept of a mapping is extended so that spatial
variables map to a set of triples that represent a spatial feature. The spatial vari-
able %g is used in the query above to represent the spatial extent of a congressional
district. Temporal variables map to time intervals rather than a URI and can ap-
pear in the quad position of what we term a spatiotemporal triple pattern. Temporal
variables are used in the example query to retrieve the valid time of each temporal
RDF statement. In addition, SPARQL-ST allows computation of derived time inter-
vals. For example, the query above computes the interval intersection of four time
intervals to derive the valid time of the entire triple pattern. SPARQL-ST also in-
troduces SPAT IALFILT ER and T EMPORALFILT ER expressions to filter results
using spatial and temporal conditions. The query above applies a filtering condition
to the spatial extent of each congressional district.

With the objective of providing better support for spatiotemporal queries over
Semantic Web data, this work makes the following contributions:

1. a formal syntax and semantics for the SPARQL-ST query language,

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 3

2. a prototype implementation of SPARQL-ST built on top of a relational database
management system, and

3. a performance evaluation of the prototype system using both synthetic and real-
world RDF datasets.

The remainder of the chapter is organized as follows. Section 2 presents the RDF
data model and approaches for modeling spatial and temporal data in RDF. Sec-
tion 3 introduces the SPARQL-ST query language by defining its formal syntax and
semantics. Section 4 describes our prototype implementation of SPARQL-ST, and
Section 5 evaluates the scalability of our prototype using synthetic and real-world
RDF datasets. Related work is discussed in Section 6. Finally, Section 7 gives con-
clusions and discusses directions for future work.

2 Modeling Approach

We give details of our approach for modeling spatial and temporal data using
RDF in this section. We incorporate temporal information using Temporal RDF
Graphs [8, 9], and we present an ontology based on the Open Geospatial Consor-
tium (OGC) Geographic Modeling Language (GML) specification to model spatial
features. Temporal RDF triples are encoded using standard RDF reification. Our for-
mal definition of SPARQL-ST depends on this modeling approach, so we present
the specifics of our modeling approach (first described in [21]) as a prerequisite to
our SPARQL-ST definition in the next section. We first formally define the RDF
model and Temporal RDF graphs and then present our ontology for spatial features.
Although SPARQL-ST currently depends on a particular serialization of temporal
RDF and spatial ontology, the concepts of SPARQL-ST are equally applicable to
other temporal RDF serializations and other spatial ontologies.

2.1 RDF

RDF has been adopted by the W3C as a standard for representing metadata on the
Web. The RDF data model is defined as follows. Let U , L and B be pairwise disjoint
sets of URIs, literals and blank nodes, respectively. The union of these sets U∪B∪L
is referred to as the set of RDF Terms RT . An RDF triple is a 3-tuple (s, p,o) ∈
(U∪B)×U×RT where s is the subject, p is the property and o is the object. A set of
RDF triples is referred to as an RDF Graph, as RDF can be represented as a directed,
labeled graph where a directed edge labeled with the property name connects a
vertex labeled with the subject name to a vertex labeled with the object name. RDF
Schema (RDFS) [4] provides a standard vocabulary for describing the classes and
relationships used in RDF graphs and consequently provides the capability to define
ontologies.

4 Matthew Perry and Prateek Jain and Amit P.Sheth

A set of entailment rules are also defined for RDF and RDFS [10]. Conceptually,
these rules specify that an additional triple can be added to an RDF graph if the
graph contains triples of a specific pattern. Such rules describe, for example, the
transitivity of the rdfs:subClassOf property.

2.2 Temporal RDF

In order to analyze the temporal properties of relationships in RDF graphs, we need
a way to record the temporal properties of the statements in those graphs, and we
must account for the effects of those temporal properties on RDFS inferencing rules.
Gutierrez, et al. [8, 9] introduced the notion of temporal RDF graphs for this pur-
pose.

Temporal RDF graphs model linear, discrete, absolute time and are defined as
follows [8]. Given a set of discrete, linearly ordered time points T , a temporal triple
is an RDF triple with a temporal label t ∈ T . A statement’s temporal label represents
its valid time. The notation (s, p,o) : [t] is used to denote a temporal triple. The
expression (s, p,o) : [t1, t2] is a notation for {(s, p,o) : [t] | t1 ≤ t ≤ t2}. A temporal
RDF graph is a set of temporal triples.

Let us consider the politician Bill Clinton who was governor of Arkansas from
11 January 1983 until 12 December 1992 and president of the United States from
20 January 1993 until 20 January 2001. This would yield the following triples:
(Bill Clinton, holds office, AR Governor) : [01:11:1983, 12:12:1992], (Bill Clinton,
holds office, US President) : [01:20:1993, 01:20:2001].

We must also account for the effects of temporal labels on RDFS inferencing
rules. To incorporate inferencing into temporal RDF graphs, a basic arithmetic of
intervals is needed to derive the temporal label for inferred statements. For example,
interval intersection would be needed for rdfs:subClassOf (e.g., (x, rdfs:subClassOf,
y) : [1,4] ∧ (y, rdfs:subClassOf, z) : [3,5]⇒ (x, rdfs:subClassOf, z) : [3,4]).

We use RDF reification to associate time intervals with RDF statements to realize
temporal RDF graphs. RDF reification is a construct in RDF that allows one to
make statements about statements, so we can assert that a given RDF statement has
a given valid time. We use a portion of the OWL-Time ontology [12] to model the
time intervals, and a new property temporal asserts that the reified statement is valid
during the given time interval. Figure 1 illustrates this approach.

2.3 Spatial Ontology

Spatial features are complex types that need to be fully modeled with a spatial on-
tology. Fortunately, there is movement towards standard ontologies for spatial ge-
ometries, for example work done as part of the OGC Semantic Web Interoperability
Experiment [18] and the W3C geo incubator group [17]. The existing OGC GML

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 5

Fig. 1 Temporal reification of the RDF statement (A B C). Constructs from the Owl-Time ontology
are shown in gray.

Fig. 2 GeoRSS GML-based ontology modeling basic spatial geometries. Note that Geometric Ag-
gregates contain collections of their respective Geometric Primitives (e.g., MultiPolygon contains a
collection of Polygons). These relations and attributes of Coordinate Reference System have been
left out of the figure for clarity.

specification serves as an excellent basis for these ontologies as discussed in [1]
and [14]. We propose a spatial ontology based on the GeoRSS GML specification
[26]. The ontology models 2-dimensional spatial geometries and associated spatial
reference system information. Figure 2 illustrates the RDFS representation of this
ontology.

3 The SPARQL-ST Query Language

This section presents the SPARQL-ST query language. We first give a formal syntax
for SPARQL-ST and present a formal semantics for SPARQL-ST queries. We then
illustrate the concrete syntax of SPARQL-ST with a series of examples. At the end
of this section, we present motivations for various aspects of the SPARQL-ST design
and discuss possible alternatives.

6 Matthew Perry and Prateek Jain and Amit P.Sheth

3.1 Formal Syntax for SPARQL-ST

In this section, we give a formalization of the SPARQL-ST syntax that is based on
the formalization of the SPARQL syntax given by [19]. We introduce spatial vari-
ables and temporal variables, which are used to form spatiotemporal graph patterns.
We also introduce spatial built-in conditions and temporal built-in conditions.

3.1.1 Spatiotemporal Graph Patterns

Let UL denote the union U ∪L (recall that U is the set of URIs and L is the set of
Literals) and let VN be a set of variables. Let VS be a set of spatial variables, and
let VT be a set of temporal variables. VN , VS, VT , and RT (the set of RDF terms) are
pairwise disjoint. A spatial triple pattern is a 3-tuple from (UL∪VN ∪VS)× (U ∪
VN)× (UL∪VN ∪VS). A spatiotemporal triple pattern is a 4-tuple from (UL∪VN ∪
VS)× (U ∪VN)× (UL∪VN ∪VS)× (VT). A spatiotemporal graph pattern is defined
recursively as follows:

• if st is a spatial triple pattern, then st is a spatiotemporal graph pattern
• if stt is a spatiotemporal triple pattern, then stt is a spatiotemporal graph pattern
• if SP1 and SP2 are spatiotemporal graph patterns, then (SP1 AND SP2) is a spa-

tiotemporal graph pattern
• if SP is a spatiotemporal graph pattern and R is a SPARQL built-in condition,

then the expression (SP FILTER R) is a spatiotemporal graph pattern
• if SP is a spatiotemporal graph pattern and SR is a spatial built-in condition, then

the expression (SP SPATIAL FILTER SR) is a spatiotemporal graph pattern
• if SP is a spatiotemporal graph pattern and T R is a temporal built-in condition,

then the expression (SP TEMPORAL FILTER T R) is a spatiotemporal graph
pattern

The syntax for SPARQL built-in conditions is given in [19] and remains un-
changed. Spatial built-in conditions and temporal built-in conditions are described
below.

3.1.2 Spatial Built-in Conditions

SPARQL-ST requires that we express spatial constraints on spatial variables. We
introduce spatial built-in conditions for this purpose. Spatial built-in conditions are
built from qualitative spatial expressions and metric spatial expressions.

A qualitative spatial function is a Boolean function qs f : S×S→ B, where S is
the set of all possible spatial geometries as defined by the ontology in Figure 2. Any
of the following topological spatial relations identified by Egenhofer and Herring
[7] may be used as qualitative spatial functions in our formalization: disjoint, touch,
overlap boundary disjoint, overlap boundary intersect, equal, contains, covers, in-

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 7

side, covered by. We define a qualitative spatial expression, qse, as follows, where
s1,s2 ∈ S∪VS.

〈qse〉 ::= qs f (s1,s2)

A metric spatial function is a function ms f : S× S → R. We use one metric
spatial function distance : S×S→R, which returns the distance between two spatial
geometries. We define a metric spatial expression, mse, as follows, where s1,s2 ∈
S∪VS and r ∈ R.

〈mse〉 ::= 〈ms f (s1,s2)〉 〈comp〉 r
〈comp〉 ::=< |> | ≤ | ≥ |=

A spatial built-in condition s f evaluates to a Boolean value for a given graph and
is defined in terms of metric spatial expressions and qualitative spatial expressions.
A spatial built-in condition takes the following form.

〈s f 〉 ::= 〈mse〉 | 〈qse〉 | 〈s f 〉 AND 〈s f 〉 | 〈s f 〉 OR 〈s f 〉 | NOT 〈s f 〉

3.1.3 Temporal Built-in Conditions

To express constraints on temporal variables in SPARQL-ST, we introduce tempo-
ral built-in conditions. Temporal built-in conditions are built from qualitative and
metric temporal expressions. For a given temporal RDF graph Gt over time domain
T , let I denote the set of all time intervals over T .

As a prerequisite, we define a temporal primitive t p as follows, where V ′T ⊆ VT ,
vt ∈VT and i ∈ I.

〈t p〉 ::= intersect(V ′T) | range(V ′T) | vt | i
A qualitative temporal function is a Boolean function qt f : I× I→ B. Any of the

thirteen interval relations identified by Allen [2] can be used in qualitative temporal
functions in our formalization. We define a qualitative temporal expression, qte, as
follows.

〈qte〉 ::= qt f (〈t p〉,〈t p〉)
A metric temporal function is a function mt f : I× I → Z. We use one metric

temporal function elapsed time : I× I→ Z, which is defined for two disjoint time
intervals as the duration of time between the end of the earliest interval and the start
of the latest interval. The function returns zero if the intervals are not disjoint. We
define a metric temporal expression, mte, as follows, where z ∈ Z.

〈mte〉 ::= 〈mt f (〈t p〉,〈t p〉)〉 〈comp〉 z
〈comp〉 ::=< |> | ≤ | ≥ |=

A temporal built-in condition t f evaluates to a Boolean value for a given graph
and is constructed from qualitative temporal expressions and metric temporal ex-
pressions as follows:

〈t f 〉 ::= 〈mte〉 | 〈qte〉 | 〈t f 〉 AND 〈t f 〉 | 〈t f 〉 OR 〈t f 〉 | NOT 〈t f 〉

8 Matthew Perry and Prateek Jain and Amit P.Sheth

3.2 Formal Semantics for SPARQL-ST

We first give some initial definitions and then present the formal semantics of
SPARQL-ST.

3.2.1 Initial Definitions

Let T be a set of totally ordered time points. Let Gt be a temporal RDF graph defined
over T . T RIPLES(Gt) denotes the set {(s, p,o) | ∃ t ∈ T with (s, p,o) : [t] ∈ Gt}.
For each statement e = (s, p,o) ∈ T RIPLES(Gt), let temporal(e) = {t | (s, p,o) :
[t] ∈ Gt}. For a set of time points T ′ ⊆ T , let contig intervals(T ′) = {[ti, t j] | ∀ t ∈
T : (if ti ≤ t and t ≤ t j then t ∈ T ′) and ti−1 /∈ T ′ and t j+1 /∈ T ′}. Consider the
following example: suppose T = {1,2,3,4,5,6,7,8,9,10} and T ′ = {2,3,4,7,8},
then contig intervals(T ′) = {[2,4], [7,8]}.

Given a set of time intervals I = {(s1, t1), (s2, t2), ..., (sn, tn)} defined over T ,
let smin = min1≤i≤n si, smax = max1≤i≤n si, tmin = min1≤i≤n ti, and tmax = max1≤i≤n ti.
We define two values, intersect and range, as follows: intersect(I) = [smax, tmin] if
smax ≤ tmin, else null, range(I) = [smin, tmax] if smin ≤ tmax, else null. Conceptually,
intersect(I) is the largest time interval that intersects each interval in I, and range(I)
is the smallest interval that contains each interval in I.

3.2.2 SPARQL-ST Semantics

The semantics of a SPARQL-ST spatiotemporal graph pattern query are based on
the concept of a mapping introduced by Perez, et al. in [19] to provide a formal
semantics for SPARQL. Here, we extend this mapping concept to also include spa-
tial and temporal variables. Conceptually, our extension maps spatial variables to a
set of RDF triples rather than a single URI and maps temporal variables to a time
interval rather than a single URI. Recall that for a set A, 2A denotes the powerset of
A. A mapping µ is a function from (VN ∪VS∪VT) to (RT ∪2((U∪B)×U×RT)∪ I) such
that:

• if vn ∈VN then µ(vn) = rt ∈ RT
• if vs ∈VS then µ(vs) = g ∈ 2((U∪B)×U×RT)

and g forms a valid Geometry instance
• if vt ∈VT then µ(vt) = i ∈ I

For a mapping µ , the subset of (VN ∪VS∪VT) where it is defined is called its domain
dom(µ). Two mappings µ1 and µ2 are compatible if, for all x∈ dom(µ1)∩dom(µ2),
it is the case that µ1(x) = µ2(x). In other words, the union µ1∪µ2 is also a mapping.

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 9

In addition, for two sets of mappings M1 and M2, the join is defined as:

M1 ./ M2 = {µ1∪µ2 | µ1 ∈M1 and µ2 ∈M2
and µ1 and µ2 are compatible mappings}

The semantics of a spatiotemporal graph pattern are defined in terms of a func-
tion [[·]], which takes a spatiotemporal graph pattern and returns a set of mappings.
Before we can define this function, we need to introduce some additional constructs
to handle spatial and temporal aspects of graph patterns. Because a spatial variable
maps to a collection of triples, we introduce a function, head, that reduces this set
of triples to a single URI. We also define functions, triple and t triple, which allow
us to go from a mapping to a single RDF triple or temporal RDF triple. These single
triples are used to formally define the function [[·]].

We will first define the function head : (RT ∪2((U∪B)×U×RT))→ RT . This func-
tion is defined as follows:

• if t ∈ RT then head(t) = t
• if t ∈ 2((U∪B)×U×RT) then head(t) = s ∈ RT

such that (s,rd f : type,Geometry) ∈ t

Conceptually, if t is a single URI, head(t) returns this single URI, and if t is a
collection of triples representing a Geometry instance, head(t) returns the top level
URI of the Geometry instance. For the example in Figure 3, the top level URI is
geo : polygon 123.

Fig. 3 Set of triples representing a polygon.

For a mapping µ and a spatial triple pattern sp, we denote the triple obtained
by replacing the variables v in sp with the value head(µ(v)) as triple(µ,sp). For
a mapping µ and a spatiotemporal triple pattern st p, we denote the temporal triple
obtained by replacing the variables v∈VN ∪VS in st p with the value head(µ(v)) and
the variables t ∈VT in st p with the value µ(t) as t triple(µ,st p).

Let Gt be a temporal RDF graph, sp a spatial triple pattern, st p a spatiotempo-
ral triple pattern and SP1, SP2 spatiotemporal graph patterns. The evaluation of a
spatiotemporal graph pattern over Gt , denoted [[·]]Gt , is defined recursively as:

10 Matthew Perry and Prateek Jain and Amit P.Sheth

• [[sp]]Gt = {µ | dom(µ) = var(sp) and
triple(µ,sp) ∈ T RIPLES(Gt)}

• [[st p]]Gt = {µ | dom(µ) = var(sp) and for
(s, p,o) : [t1, t2] = t triple(µ,st p)
it is the case that (s, p,o) ∈ T RIPLES(Gt) and
[t1, t2] ∈ contig intervals(temporal((s, p,o)))}

• [[SP1 AND SP2]]Gt = [[SP1]]Gt ./ [[SP2]]Gt

The semantics of spatial built-in conditions and temporal built-in conditions are
defined as follows. A mapping µ satisfies a spatial built-in condition s f written
µ |= s f if var(s f)⊆ dom(µ) and s f evaluates to true when each variable vs ∈VS in
s f is replaced with geom(µ(vs)). Note that the function geom : 2((U∪B)×U×RT)→R2

maps the RDF serialization of a Geometry to an actual point, line or polygon. A
mapping µ satisfies a temporal built-in condition t f written µ |= t f if var(t f) ⊆
dom(µ) and t f evaluates to true when each variable vt ∈ VT in t f is replaced with
µ(vt).

Given a temporal RDF graph Gt , a spatiotemporal graph pattern SP, a spatial
built-in condition SR and a temporal built-in condition T R,

• [[SP SPATIAL FILTER SR]]Gt = {µ ∈ [[SP]]Gt |
µ |= SR}

• [[SP TEMPORAL FILTER T R]]Gt = {µ ∈ [[SP]]Gt |
µ |= T R}

3.3 SPARQL-ST by Example

This section presents the concrete syntax of SPARQL-ST using examples. Temporal
variables are identified using a ’#’ prefix, and spatial variables are identified using
a ’%’ prefix. The constructs intersect() and range() refer to the intersect and range
intervals defined in Section 3.2.2.

(Temporal Filter Query) Find all house members who sponsored a bill after April
2, 2008. This query returns each representative and the intersect interval represent-
ing the time the bill was sponsored. This query uses the T EMPORALFILT ER con-
struct to ensure that the bill was sponsored after April 2, 2008.

SELECT ?p, intersect(#t1, #t2, #t3, #t4)
WHERE {
?p usgov:hasRole ?r #t1 .
?r usgov:forOffice ?o #t2 .
?o usgov:isPartOf usgov:congress/house #t3 .
?p usgov:sponsor ?b #t4 .
TEMPORAL FILTER
(
after(intersect(#t1, #t2, #t3, #t4),

interval(04:02:2008, 04:02:2008,
MM:DD:YYYY)))}}

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 11

(Basic Spatial Query) Find the congressional district spatial geometries for all politi-
cians who voted ”Aye” for bill number 88. This query simply selects the spatial
variable representing the appropriate Geometry instance.

SELECT ?p, %g
WHERE {

?v usgov:hasBallot ?b .
?v usgov:billNo "88" .
?b usgov:voter ?p .
?b usgov:hasOption "Aye" .
?p usgov:hasRole ?r .
?r usgov:forOffice ?o .
?o usgov:represents ?c .
?c stt:located_at %g }}

:Filtered Spatiotemporal Query) Find all politicians representing congressional dis-
tricts within a given bounding box and return the times that those politicians repre-
sented those areas. This query uses a SPAT IALFILT ER involving the inside func-
tion to ensure each returned congressional district falls within the given geograph-
ical area.The intersect interval of several temporal variables is used to select the
desired temporal intervals.

SELECT ?p, intersect(#t1, #t2, #t3, #t4)
WHERE {

?p usgov:hasRole ?r #t1 .
?r usgov:forOffice ?o #t2 .
?o usgov:represents ?c #t3 .
?c stt:located_at %g #t4 .
SPATIAL FILTER (inside(%g, GEOM(POLYGON ((
-75.14 40.88, -70.77 40.88, -70.77 42.35,
-70.77 42.35, -75.14 42.35,
-75.14 42.35, -75.14 40.88))))}}

3.4 Design Decisions

The introduction of spatial variables is a major component of our SPARQL exten-
sion. These variables represent complex spatial objects and map to a set of RDF
triples. Two possible alternatives to introducing a new variable type are (1) specify-
ing all parts of the spatial object in a graph pattern and (2) utilizing the concept of
named graphs to represent spatial objects.

The example below illustrates the first alternative where the relevant parts of a
spatial object are specified in a graph pattern.

SELECT ?positions
WHERE {
<http://house/106/nh> usgov:represents ?x .
?x stt:located_at ?sr .
?sr geo:exterior ?lr .
?lr geo:lrPosList ?positions }

We see the following problems with this approach. First, the relevant portions of a
spatial object that need to be returned from the query will vary. For example, if one

12 Matthew Perry and Prateek Jain and Amit P.Sheth

is selecting the position lists of a multipolygon, it is unclear how to specify this in
a graph pattern, as the number of polygons making up each multipolygon will vary.
Second, it is unclear how to reference a spatial object in a spatial filter expression.
That is, what parts of the graph pattern should be passed to a spatial function in the
spatial filter expression? A special variable type solves both of these problems.

Another alternative is to use named graphs to represent spatial objects. A named
graph is created by associating a set of RDF triples with some URI u. This set of
triples can then be collectively referred to by the identifier u. A query using this
approach is shown in the example below. This query returns all triples making up
each named graph (geometry) in the result.

SELECT ?g, ?s, ?p, ?o
WHERE {
<http://house/106/nh> usgov:represents ?x .
?x stt:located_at ?g .
GRAPH ?g {?s, ?p, ?o} }

We feel that this approach makes the semantics of our STT modeling approach
less clear because it hides the fact that the query is dealing with spatial objects. In
addition, using a named graph as input to a spatial function could lead to unexpected
errors if the input named graph did not represent a spatial geometry.

Another key aspect of our approach is using temporal variables to specify a quad
to represent a temporal triple pattern. An alternative would be to use SPARQL as it
is and use the RDF reification triples to extract valid times for triples. This approach
is problematic for the following reasons. First, it is extremely verbose, as it would
take eight triple patterns to retrieve the valid times for each statement. Second, the
semantics of temporal RDF are lost because the query will simply match triples in
the RDF dataset, and the concepts of temporal RDFS inferencing (see Section 4.1)
are lost. In addition, special temporal variables make it clear that one is querying a
temporal RDF graph rather than a plain RDF graph.

4 Implementation Framework

We have implemented SPARQL-ST by extending a commercial relational database
that supports spatial objects 3. We provide a single SQL table function, sparql st,
that inputs a valid SPARQL-ST query and returns a table of the resulting variable
mappings. Our prototype implementation supports qualitative spatial and temporal
relationships and spatial and temporal filter expressions involving conjunctions of
filtering conditions.

3 License restrictions related to publication of timing results prevent us from disclosing the name
of the database vendor.

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 13

Fig. 4 Table structures used for our SPARQL-ST implementation.

4.1 Storage and Indexing Scheme

Our storage scheme for spatiotemporal RDF is shown in Figure 4. RDF triples are
stored using the schema-oblivious storage scheme [28]. A URIID table maps full
URIs to numeric ids, and a Triples table stores subject, predicate and object ids.
This basic scheme is augmented with additonal structures for efficient processing
of spatial and temporal data. A TemporalTriples table stores subject, predicate and
object ids along with two datetime columns that represent the start and end of the
triple’s valid time interval. A SpatialData table maps Geometry URIs with their
representation in the native spatial object type of the database. This table also stores
the RDF/XML serialization of the Geometry (e.g., the triples in Figure 3) to al-
low for efficient retrieval of spatial variable mappings. The TemporalTriples and
SpatialData tables are constructed during a post processing step after all asserted
triples are loaded into the URIID and Triples tables.

The complete set of asserted and inferred temporal triples is stored in the
TemporalTriples table. A post processing step performs RDF/S inferencing and
computes the valid time intervals for inferred statements. For example, given the as-
serted temporal triples (x, p, y) : [1,5],(p, rdfs:domain, a) : [0,10], we would infer
(x, rdf:type, a) : [1,5] through rule rdfs2 (refer to [10] for the complete set of RDFS
inferencing rules). In each case, the computed valid time interval is the intersection
of the valid time intervals of the set of triples used to make the inference. Temporal
evolution of ontology schemas is beyond the scope of this work, so we therefore
limit temporal RDFS inferencing to instance-level statements. That is, we assume
schema-level statements are valid during the interval [0,∞], and we compute valid
times for all rdf:type statements inferred through rules rdfs2, rdfs3 and rdfs9 and all
instance-level statements inferred from rdfs:subPropertyOf (i.e. rule rdfs7). We en-
sure that the final valid times recorded for each statement are stored as the minimal
set of contiguous intervals as described in Section 3.2.1. The algorithm for this post
processing step is given in our earlier work [22].

14 Matthew Perry and Prateek Jain and Amit P.Sheth

4.2 Query Evaluation Procedure

The evaluation of a SPARQL-ST query proceeds in two basic steps. First, the
SPARQL-ST query is translated into a SQL query against the table structures de-
scribed in Section 4.1. This initial query is referred to as the base query. Second,
further processing of the results of the base query is done on a row-by-row basis,
and the appropriate result set is constructed and returned.

The first step in our query evaluation procedure is construction of the base SQL
query for a given SPARQL-ST query. We first translate the graph pattern into a
multi-way join over the TemporalTriples, URIID, and SpatialData tables. If an
appropriate SPATIAL FILTER or TEMPORAL FILTER condition is present (i.e., a
condition involving a variable and a constant spatial geometry or temporal interval),
we augment this multi-way join query with a spatial or temporal predicate that uti-
lizes the built-in spatial and temporal indexes of the DBMS. We only push down a
single filter condition to the base query, and spatial conditions are given preference
over temporal conditions. Spatial conditions are favored due to their better perfor-
mance in our previous experiments [22].

The second step in our query evaluation procedure performs additional process-
ing on the results of the base query on a row-by-row basis. In this step, we evaluate
any filter conditions that were not pushed down to the base query, and we construct
any intersect or range intervals that need to be returned from the table function. We
also construct and return a result row of the table function in this step.

5 Performance Evaluation

The experimental evaluation of our implementation is described in this section. All
experiments were run on a Sun Fire V490 server with four 1.8 GHz Ultra Sparc
IV processors and 8GB of main memory. The operating system used was 64-bit
Solaris 9. The database used an 8 KB block size and was configured with a 512
MB buffer cache and a sort area size of 512 MB. The times reported for each query
were obtained as follows. The query was run once initially to warm up the database
buffers and then timed for 5 consecutive executions. We report the mean execution
time over these 5 consecutive executions.

For testing, B+-Tree indexes were created on each column of the TemporalTriples
table and on the value id column of the SpatialData table, and an R-Tree index
was created on the shape column of SpatialData. We also created four composite
B+-Tree indexes on the TemporalTriples table to allow for efficient index-based
joins: (prop id, subj id, obj id) and (prop id, obj id, subj id) for spatial operators
and (prop id, subj id, obj id, start, end) and (prop id, obj id, subj id, start, end) for
temporal operators.

Testing details (e.g., queries used and datasets) are available at 4.

4 http://knoesis.wright.edu/students/mperry/sparql-st.html

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 15

5.1 Datasets

We conducted experiments using two RDF datasets. One consisted of synthetically
generated RDF data corresponding to historical analysis of WWII (SynHist), and
the other (GovTrack) consisted of real-world RDF data from the political domain
that we obtained from http://www.govtrack.us/data/rdf/. Table 1 shows the charac-
teristics of these datasets.

Table 1 Characteristics of GovTrack and SynHist datasets

Dataset
Num Triples (in thousands) Num Avg Num

Asserted Inferred Total Spatial Points per
Features Polygon

SH1 71 50 121 3,470 98
SH2 980 643 1,623 28,488 63
SH3 4,295 2,708 7,002 77,440 67
SH4 11,593 7,559 19,152 169,722 56
SH5 17,616 11,290 28,906 244,653 61
GT1 2,959 3,036 5,995 3,433 4
GT2 5,245 5,226 10,471 3,433 4
GT3 12,820 13,099 25,919 3,433 4

Table 2 Scalability with respect to datset size for GovTrack dataset.Legends: # T = Number of
Triples, # V = Number of variables, # R = Result Size.

Query Description # T # V # R Execution Time (sec)
GT1 GT2 GT3

G1 t-select 5 5 94 0.14 0.136 0.137
G2 t-filter – int / after 5 6 483 0.614 0.609 0.565
G3 t-join – int / during 3/3 3/3 90 0.821 0.817 0.838
G4 t-join – int / before 3/3 3/3 120 0.376 0.376 0.375
G5 s-select 5 5 428 2.663 2.658 2.660
G6 s-filter – anyinteract 5 6 562 3.340 3.360 3.345
G7 s-join – overlap 4/1 4/2 144 0.99 0.995 0.981
G8 s-filter – anyinteract + t-filter – int / during 5 6 397 3.444 3.438 3.463

5.1.1 SynHist Dataset

Five synthetically generated datasets (SH1 - SH5) were used in our experiments.
The datasets correspond to a historical battlefield analysis ontology schema that we
created. The ontology schema defined 15 class types and 9 property types. Each
dataset was created in three phases. First we populated the thematic portion of the
ontology. Second we added spatial information, and in the final step we generated

16 Matthew Perry and Prateek Jain and Amit P.Sheth

Table 3 Scalability with respect to dataset size for SynHist dataset. Legends: # T = Number of
Triples, # V = Number of variables, # R = Result Size.

Query Description # T # V # R Execution Time (sec)
SH1 SH2 SH3 SH4 SH5

H1 t-select 5 5 178 0.290 0.291 0.290 0.290 0.292
H2 t-filter – int / overlap 5 6 128 0.178 0.321 0.572 1.179 2.238
H3 t-join – int / overlap 3/3 3/3 184 0.808 0.838 0.896 1.020 1.108
H4 t-join – int / anyinteract 3/3 3/3 42 0.360 0.361 0.374 0.389 0.392
H5 s-select 5 5 224 3.267 3.266 3.258 3.256 3.275
H6 s-filter – inside 5 6 303 3.999 3.996 3.984 3.989 3.981
H7 s-join – equal 4/2 4/2 48 0.296 0.296 0.298 0.297 0.295
H8 s-filter – inside + t-filter – int / overlap 5 6 13 3.772 3.770 3.779 3.768 3.781

temporal labels for the statements in the populated ontology. To populate the the-
matic portion of the battlefield analysis ontology, we used the ontology population
tool described in [20]. This tool inputs an ontology schema and relative probabilities
for generating instances of each class and property type. Based on these probabil-
ities, it generates instance data, which, in effect, simulates the population of the
ontology.

To add spatial aspects to this dataset, we randomly assigned a spatial geometry
to each instance of Geometry in the ontology. We used year 2000 census block
group boundary polygons from the US Census Bureau 5 for the spatial geometries.
Differently-sized sets of contiguous US States were chosen in proportion with the
ontology size.

The final phase of dataset generation assigned temporal labels to statements in
the ontology. Temporal intervals were randomly assigned to each asserted instance
statement. Start times and end times for each interval were randomly selected with
uniform probability from two overlapping date ranges. We ensured that each interval
was valid (i.e., start time earlier than end time) before adding it to the dataset.

5.1.2 GovTrack Dataset

The GovTrack RDF dataset contains data about activities of the US Congress. More
specifically, it contains data describing politicians, bills, voting records, political or-
ganizations, political offices, and terms held by politicians. The ontologies used for
this dataset contained 74 classes and 139 properties. 22 classes and 47 properties
were actually used in the instance data. Some transformations and enhancements of
the dataset were needed to make it appropriate for experimentation. The GovTrack
data contained a significant amount of temporal information. However, this infor-
mation was encoded using separate properties rather than as temporal RDF. A pre-
processing step was therefore needed to transform the dataset into a temporal RDF
graph. To enhance the dataset with spatial data, we linked Congressional District

5 http://www.census.gov/geo/www/cob/bdy files.html

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 17

instances with a bounding box representation of their corresponding boundary poly-
gons available from the US Census Bureau [?]. We used boundary files for the
106th - 110th Congress. We created three differently-sized subsets of the GovTrack
data (GT1 - GT3). GT1 contained information on bills and voting from the 106th
Congress. GT2 used the 106th and 107th Congress, and GT3 used the 106th - 110th
Congress.

5.2 Experiments

Our experiments were designed to characterize the overall performance of our ap-
proach with respect to (1) dataset size and (2) graph pattern complexity.

In the following, we refer to two different graph pattern types: unselective and
selective. An unselective graph pattern contains constant URIs in the predicate po-
sition in each triple pattern and variables in each subject and object position, for
example:

?x usgov:cosponsor ?y .
?x usgov:sponsor ?z .
?x usgov:inCommittee ?c

A selective graph pattern has constant URIs in each predicate position and addi-
tionally contains a constant URI in the subject and/or object position in at least one
triple pattern, for example:

?p usgov:hasRole ?y .
?y usgov:forOffice usgov:congress/senate/va

5.2.1 Scalability w.r.t. Dataset Size

Tables 2 and 3 summarize the results of our experiments with respect to dataset size.
These experiments were designed to test the scalability of our implementation for a
basic set of SPARQL-ST queries.

Temporal Selection: Queries G1 and H1 select the intersect interval of the triples
making up 5 hop selective graph patterns. The results show that query execution time
is near constant as the dataset size grows. This is a result of the index-based nested
loop join (NLJ) strategy used by the DBMS, which tends to have execution times
proportional to the result set size.

Temporal Filter: Queries G2 and H2 test the scalability of our implementation
for a SPARQL-ST query involving a TEMPORAL FILTER condition between a
derived intersect interval and a constant time interval. These queries used an uns-
elective graph pattern in combination with very selective temporal conditions. The
queries show relatively constant execution time for the GovTrack dataset but show

18 Matthew Perry and Prateek Jain and Amit P.Sheth

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7

T
im

e
(s

ec
)

Graph Pattern Length

Temporal filter query

SynHist worst case
SynHist best case

GovTrack worst case
GovTrack best case

(a) t-filter

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7

T
im

e
(s

ec
)

Graph Pattern Length

Spatial filter query

SynHist dataset
GovTrack dataset

(b) s-filter

 0

 0.05

 0.1

 0.15

 0.2

 2 4 6 8 10
 0

 20

 40

 60

 80

 100

 120

T
im

e
(s

ec
)

R
es

ul
t S

iz
e

(r
ow

s)

Graph Pattern Length

Temporal select query for GovTrack dataset

Execution Time
Result Size

(c) t-select GovTrack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10
 0

 20

 40

 60

 80

 100

 120

T
im

e
(s

ec
)

R
es

ul
t S

iz
e

(r
ow

s)

Graph Pattern Length

Temporal Select for SynHist dataset

Execution Time
Result Size

(d) t-select SynHist

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8 9 10
 0

 100

 200

 300

 400

 500

 600

T
im

e
(s

ec
)

R
es

ul
t S

iz
e

(r
ow

s)

Graph Pattern Length

Spatial select query for GovTrack dataset

Execution Time
Result Size

(e) s-select GovTrack

 0

 1

 2

 3

 4

 5

 2 3 4 5 6 7 8 9 10
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

T
im

e
(s

ec
)

R
es

ul
t S

iz
e

(r
ow

s)

Graph Pattern Length

Spatial select query for SynHist dataset

Execution Time
Result Size

(f) s-select SynHist

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10
 0

 100

 200

 300

 400

 500

T
im

e
(s

ec
)

R
es

ul
t S

iz
e

(r
ow

s)

Graph Pattern Length

Spatial select plus Temporal select for GovTrack dataset

Execution Time
Result Size

(g) st-select GovTrack

 0

 1

 2

 3

 4

 5

 2 4 6 8 10
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

T
im

e
(s

ec
)

R
es

ul
t S

iz
e

(r
ow

s)

Graph Pattern Length

Spatiotemporal select query for SynHist dataset

Execution Time
Result Size

(h) st-select SynHist

Fig. 5 Results of scalability experiments for graph pattern complexity for SynHist (SH5) and
GovTrack (GT3) datasets.

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 19

more of a linear growth for the SynHist dataset. In each case, the DBMS uses an
index-based NLJ strategy over the composite indexes containing start date and end
date information.

These particular queries represent a challenging case for our implementation.
Because the INTERSECT / RANGE interval derived for a graph pattern instance
is constructed dynamically from the temporal labels of edges in the graph pattern
instance, we cannot directly index these derived values. We must instead apply the
temporal filtering condition to each graph pattern instance as it is being constructed,
which can lead to a very large set of intermediate results that are later discarded. The
unnecessary intermediate results are generated because, in many cases, we cannot
exclude a graph pattern instance until it is fully constructed and the final derived
time interval is known. We try to alleviate this problem by placing limited temporal
constraints on individual triple patterns in the graph pattern. These initial constraints
can reduce the number of intermediate results generated, but the amount of reduction
depends on the specific interval type and temporal relation used. This issue is further
explored in Section 5.2.2.

The difference in the scalability of the queries over the GovTrack dataset is a
result of the characteristics of the time intervals in each dataset. The triples in the
SynHist dataset have more densely packed valid time intervals with a higher degree
of overlap than do the triples in the GovTrack dataset. As a result, the temporal
filtering conditions that can be placed on each triple in the graph pattern are ulti-
mately less selective, leading to larger growth in intermediate results as the dataset
size increases.

Temporal Join: Queries G3, G4 and H3, H4 tested the scalability of our im-
plementation for SPARQL-ST queries involving a TEMPORAL FILTER condition
between two derived time intervals. The filter condition acts as a join between two
disjoint graph patterns. The execution times for queries G3, G4 and H4 are relatively
constant as the dataset size grows, but query H3 shows a slight growth in execution
time. The growth for this query results from a combination of the particular temporal
relation used and the denser set of time intervals in the SynHist dataset.

Spatial Selection: Queries G5 and H5 select a spatial variable. These queries
use a selective graph pattern involving a single spatial variable. As a result of the
index-based join strategy used by the DMBS, query execution time is near constant
as dataset size increases. These queries have a significantly longer execution time
than the corresponding temporal selection queries. The longer time is a result of
the overhead of populating the result set of the query with RDF/XML serialization
(stored as a CLOB) of each spatial feature in the result.

Spatial Filter: Queries G6 and H6 use an unselective graph pattern in combi-
nation with a SPATIAL FILTER expression over a spatial variable and a constant
spatial feature (a rectangle in each case). The execution times for each query are
near constant as the dataset size increases due to the index-based join strategy used
by the DBMS to evaluate the graph pattern. The execution times for the GovTrack
dataset are a bit faster because the spatial features in this dataset are simpler. Again,
extra time is needed for spatial queries to populate the result set.

20 Matthew Perry and Prateek Jain and Amit P.Sheth

In the SynHist dataset, we see that the spatial filtering queries scale better than
temporal filtering queries. Unlike INTERSECT/ RANGE intervals, the spatial ge-
ometries can be indexed because they are not dynamically created. The spatial filter-
ing queries consequently scale better because we can consistently reduce the search
space using the spatial index and do not get as much growth in intermediate results
as the dataset size increases.

Spatial Join: Queries G7 and H7 involved a graph pattern with two disjoint
components and a SPATIAL FILTER condition over two spatial variables that acts
as a spatial join for the two components of the graph pattern. Again, the execution
times for each query are near constant as the dataset size increases as a result of
the index-based join strategy used to evaluate the graph pattern. The times are a
bit faster than other spatial queries because of the smaller result set sizes for these
queries, which limits the overhead of populating the result set.

Spatiotemporal Filter: Queries G8 and H8 involve unselective graph patterns
and both SPATIAL FILTER and TEMPORAL FILTER conditions. In each case,
query execution time is near constant as the dataset size increases. Queries over the
SynHist dataset are slower relative to their result set size because of the less efficient
temporal processing and more complicated spatial features in this dataset.

5.2.2 Scalability w.r.t. Graph Pattern Complexity

Our next experiments are designed to test the scalability of our implementation with
respect to query complexity: that is, the size of the graph pattern used. All experi-
ments used the GT3 and SH5 datasets.

Temporal Filter: Our first experiment tested TEMPORAL FILTER queries in-
volving unselective graph patterns and selective temporal filtering conditions. The
key to the performance of these queries is to reduce the amount of search space by
placing partial temporal constraints on individual triple patterns in the graph pattern.
As we noted earlier, the effectiveness of these partial temporal constraints depends
on the particular interval type and temporal relation used in a query.

The objective of this experiment was to characterize the performance of temporal
filter queries in both the worst-case scenario (very limited initial temporal filtering)
and the best-case scenario (complete initial temporal filtering). An INTERSECT in-
terval type in combination with a DURING temporal relation represented the worst-
case. In this situation, we can only enforce that the valid time interval of each triple
does not end before the query interval starts or start after the query interval ends. In
contrast, with a RANGE interval type and a DURING temporal relation, we can en-
force that each triple starts after the query interval starts and ends before the query
interval ends. These conditions completely filter out any unwanted graph pattern
instances, and this query represents a best-case. Figure 5(a) shows the execution
times for a best-case and worst-case query for unselective graph patterns varying in
size from one triple to seven triples. We can see that execution time grows roughly
linearly in each case, but performance is significantly worse for the worst-case sce-
nario. The performance is better for the GovTrack dataset because of the nature of

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 21

the temporal intervals in each dataset as we discussed in Section 5.2.1. The execu-
tion time for queries over the SynHist dataset tends to grow more rapidly at first and
then taper off as the graph pattern gets more complex. This trend is a result of the
selectivity of the graph pattern itself. In this dataset, there are fewer instances of the
more complex graph patterns. This slows the growth in intermediate results, so not
as much additional temporal filtering is needed after executing the base query.

Spatial Filter: Our next experiment tested SPATIAL FILTER queries involv-
ing unselective graph patterns and selective spatial filtering conditions. Figure 5(b)
shows the execution times of these queries. As the graph pattern size grows, the
query execution times show linear scalability on both datasets. These spatial queries
are initially slower than the temporal filter queries but become faster for the larger
graph patterns because the time for temporal filtering outweighs the time needed
to populate spatial features in the result set. The faster execution times result from
the more effective spatial indexing. The spatial index is initially used to select the
URIs satisfying the spatial filtering condition, which reduces the search space for
evaluating the rest of the graph pattern. The queries over the SynHist dataset have
slower execution times because spatial computations are more expensive for the
more complex spatial geometries in the SynHist dataset.

Basic Selection Queries: Our final experiments tested the scalability of our im-
plementation for spatial, temporal and spatiotemporal selection queries using selec-
tive graph patterns ranging in size from 1 to 10 triples. The results of these experi-
ments are shown in Figure 5(c) – Figure 5(h). The number of result rows returned
from the query is also shown in the graphs. These graphs show that performance is
quite good for selective graph pattern queries even as the graph patterns grow rel-
atively large. In each case, the execution times grow roughly linearly as the graph
pattern size increases when the effects of the result set size are taken into account.
The DBMS starts with the most selective triple pattern and uses an index-based join
to construct the rest of the graph pattern instance. The initial selection dramatically
cuts down the search space and results in the fast execution times for these queries.
The spatial and spatiotemporal queries are slower than the temporal queries due to
the overhead of populating spatial features in the result set.

6 Related Work

Extensions of SPARQL are abundant in the literature. These range from extensions
for handling spatio-temporal data [16] to computing semantic associations [3, 13]
to extensions for enabling skyline queries [25].

In a recent work [16] the authors have extended RDF (known as stRDF) to rep-
resent spatial and temporal data. stRDF is a constraint data model which extends
RDF with represent spatial and temporal data. This is done primarily by using the
main ideas from spatial and temporal constraint databases and by representing spa-
tial objects using quantifier-free formulas in a first-order logic of linear constraints.
Further, stSPARQL extends SPARQL (stSPARQL) so that spatial and temporal data

22 Matthew Perry and Prateek Jain and Amit P.Sheth

can be queried using a declarative and user-friendly language. Although the objec-
tive of the two works are identical, we do so without any extensions of modification
to existing RDF Models, thus making our approach useful for querying existing real
world spatial data resources such as GovTrack, Geonames. For modeling time, both
stSPARQL and our work rely on temporal RDF graphs presented in [9] to represent
the valid time of a triple. The spatial modeling aspects of our work is significantly
different from stSPARQL. Geometries in stRDF and stSPARQL are based on the
mathematical concept of semi-linear subsets of Qk , using notions of linear algebra.
Further, in our work we have presented an evaluation of our approach on real world
datasets and thus proved its performance and usefulness. We could not find a similar
kind of evaluation in the work related to stSPARQL. Thus to summarize, the works
follow different approaches for reaching the same objective of supporting modeling
and querying of spatio-temporal- data using Semantic Web technologies.

Another discussion of querying spatial data using SPARQL appears in a paper
by Kolas and Self [15] in the Semantic Web in use track of ISWC 2007. The au-
thors describe a prototype system for integrated storage and querying of spatial and
semantic data. The system is queried using standard SPARQL syntax. They use the
GeoRSS RDF vocabulary to model spatial objects and use a set of qualitative topo-
logical relationships based on the Region Connection Calculus [5] to specify spatial
relationships in queries. The query below uses their approach to find gas stations
within 1 mile of 38◦N, 77◦W .

SELECT ?x
WHERE {
?x rdf:type gas:GasStation .
?x georss:where ?y .
?y rcc:part ?p .
?y rcc:part ?p .
?p rdf:type gml:Buffer .
?p gml:radius "1" .
?p gml:bufferGeometry ?g .
?g rdf:type gml:Point .
?g gml:pos "38 -77" }

In contrast to this approach, we introduce special spatial variables and specify spa-
tial constraints using a SPAT IALFILT ER clause instead of encoding the spatial con-
straint within the graph pattern. Without introducing spatial variables this approach
would suffer from the shortcomings described in Section 3.4. In addition, their im-
plementation only supported the relations connected and part, and no performance
results were presented.

There have also been proposals for adding geospatial capabilities to SPARQL
using the extensibility features of the Jena Semantic Web framework and its ARQ
SPARQL engine [11]. For example, code implementing property functions that ex-
tend ARQ for geospatial relations appears at 6.

The following example query uses a nearby() property function to select hotels
near a certain point.

6 http://geospatialweb.googlecode.com/svn/trunk/jenaext/src/org/geospatialweb/arqext/

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 23

SELECT ?n
WHERE {
?s geo:nearby(51.45, -2.583) .
?s rdf:type ex:Hotel .
?s ex:name ?n}

Again, such an approach does not use spatial variables, so it will suffer from the
shortcomings we mentioned earlier. In addition, property functions are an ARQ-
specific feature that are not part of the SPARQL specification.

There are currently no extensions of SPARQL for temporal RDF graphs. How-
ever [8, 9] and [24] discuss aspects of querying temporal RDF graphs. [8, 9] briefly
present a query language for temporal RDF graphs through a series of examples.
The authors state that the query language needs a built in arithmetic language to
reason about time and intervals and a construct to form maximal validity intervals
for a given triple. In our proposal, the T EMPORALFILT ER clause provides the
needed temporal reasoning capabilities, and the need for maximal intervals is taken
care of during our temporal RDFS inferencing procedure. Pugliese, et al. formally
define a temporal RDF query [24]. The query is essentially a graph pattern involv-
ing triple patterns associated with either a temporal variable or a temporal constraint.
The temporal query specified by Pugliese, et al. also supports the notion of a maxi-
mal interval for each triple. An additional feature we support over these proposals is
the ability to perform temporal computations over temporal intervals derived from
the maximal intervals of multiple triples. We use the notions of intersect and range
to provide this capability. Furthermore, neither of these works discuss extensions of
SPARQL needed to support their proposed querying approaches.

7 Conclusions

This work presented SPARQL-ST, an extension of SPARQL for spatiotemporal
queries. SPARQL-ST adds spatial variables and constructs for manipulating tempo-
ral triples. We gave a formal syntax and semantics for SPARQL-ST and presented
a prototype implementation built on top of a commercial DBMS. We demonstrated
the scalability of our prototype implementation with an experimental evaluation us-
ing both real-world and synthetic RDF datasets of over 25 million triples. In the
future, we plan to investigate standardization issues with respect to our spatiotem-
poral extensions to SPARQL. We also plan to do a comparative study of the RD-
F/SPARQL approach for spatiotemporal querying presented in this work and an
approach using OWL-DL and specialized spatial and temporal reasoners. Such a
study would help determine the pros and cons of each method.

Acknowledgements We thank Professor T. K. Prasad for his helpful comments on our formal-
ization of SPARQL-ST, and Cory Henson for his comments on a draft of this work. This work
is partially funded by NSF-ITRIDM Award #0714441 (SemDIS: Discovering Complex Relation-
ships in the Semantic Web) and by NSF Award #IIS-0842129, titled ”III-SGER: Spatio-Temporal-

24 Matthew Perry and Prateek Jain and Amit P.Sheth

Thematic Queries of Semantic Web Data: a Study of Expressivity and Efficiency (09/01/2008-
08/31/2010)”.

References

1. Alia I. Abdelmonty, Philip D. Smart, Christopher B. Jones, Gaihua Fu, and David Finch. A
critical evaluation of ontology languages for geographic information retrieval on the internet.
Journal of Visual Languages and Computing, 16(4):331–358, 2005.

2. James F Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

3. Kemafor Anyanwu, Angela Maduko, and Amit P. Sheth. SPARQ2L: Towards support for sub-
graph extraction queries in RDF databases. In 16th International World Wide Web Conference,
pages 797–806, Banff, Alberta, Canada, 2007.

4. Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation. http://www.w3.org/tr/rdf-schema/.

5. Anthony G Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Oualitative
spatial representation and reasoning with the region connection calculus. GeoInformatica,
1(3):275–316, 1997.

6. Max J Egenhofer. Toward the semantic geospatial web. In 10th ACM International Symposium
on Advances in Geographic Information Systems, pages 1–4, McLean, VA, USA, 2002.

7. Max J Egenhofer and John R Herring. Categorizing binary topological relations between re-
gions, lines, and points in geographic databases. Technical Report 94-1, University of Maine,
National Center for Geographic Information and Analysis, 1994.

8. Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Temporal RDF. In 2nd European
Semantic Web Conference, pages 93–107, Heraklion, Crete, Greece, 2005.

9. Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Introducing time into RDF. IEEE
Transactions on Knowledge and Data Engineering, 19(2):207–218, February 2007.

10. Patrick Hayes. RDF semantics. http://www.w3.org/tr/rdf-mt/.
11. Hewlett-Packard Development Company. ARQ - a SPARQL processor for jena.

http://jena.sourceforge.net/arq/.
12. Jerry Hobbs and Feng Pan. An ontology of time for the semantic web. ACM Transactions

on Asian Language Processing (TALIP): Special issue on Temporal Information Processing,
3(1):66–85, 2004.

13. Krys Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for semantic association
discovery. In 4th European Semantic Web Conference, pages 145–159, Innsbruck, Austria,
2007.

14. David Kolas, John Hebeler, and Mike Dean. Geospatial semantic web: Architecture of ontolo-
gies. In 1st International Conference on GeoSpatial Semantics, pages 183–194, Mexico City,
Mexico, 2005.

15. David Kolas and Troy Self. Spatially-augmented knowledgebase. In 6th International Seman-
tic Web Conference, pages 792–801, Busan, South Korea, 2007.

16. Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying Metadata in the Semantic
Sensor Web: the model strdf and the query language stsparql. In Lora Aroyo, Grigoris An-
toniou, Eero Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania
Tudorache, editors, Proceedings of the 7th Extended Semantic Web Conference (ESWC2010),
Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I, volume 6088 of Lecture
Notes in Computer Science. Springer, June 2010.

17. Joshua Lieberman. W3C geospatial incubator group. http://www.w3.org/2005/incubator/geo/.
18. Open Geospatial Consortium. Open geospatial consortium geospatial semantic web interop-

erability experiment. http://www.opengeospatial.org/projects/initiatives/gswie.
19. Jorge Perez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.

In 5th International Semantic Web Conference, pages 30–43, Athens, GA, USA, 2006.

SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries 25

20. Matthew Perry. Tontogen: A synthetic data set generator for semantic web applications. AIS
SIGSEMIS Bulletin, 2(2):46–48, 2005.

21. Matthew Perry, Farshad Hakimpour, and Amit Sheth. Analyzing theme, space and time: An
ontology-based approach. In 14th ACM International Symposium on Geographic Information
Systems, pages 147–154, Arlington, VA, USA, 2006.

22. Matthew Perry, Amit P. Sheth, Farshad Hakimpour, and Prateek Jain. Supporting complex the-
matic, spatial and temporal queries over semantic web data. In 2nd International Conference
on Geospatial Semantics, pages 228–246, Mexico City, Mexico, 2007.

23. Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF, W3C recom-
mendation. http://www.w3.org/tr/rdf-sparql-query/.

24. Andrea Pugliese, Octavian Udrea, and V S Subrahmanian. Scaling RDF with time. In 17th
International World Wide Web Conference, pages 605–614, Beijing, China, 2008.

25. Wolf Siberski, Jeff Z. Pan, and Uwe Thaden. Querying the semantic web with preferences. In
5th International Semantic Web Conference, pages 612–624, Athens, GA, USA, 2006.

26. Raj Singh, Andrew Turner, Mikel Maron, and Allan Doyle. GeoRSS: Geographically encoded
objects for RSS feeds. http://georss.org/gml.

27. Philip D. Smart, Alia I. Abdelmonty, Baher A. El-Geresy, and Christopher B. Jones. A frame-
work for combining rules and geo-ontologies. In 1st International Conference on Web Rea-
soning and Rule Systems, pages 133–147, Innsbruck, Austria, 2007.

28. Yannis Theoharis, Vassilis Christophides, and Gregory Karvounarakis. Benchmarking
database representations of RDF/S stores. In 5th International Semantic Web Conference,
pages 685–701, Galway, Ireland, 2005.

