

~ 945 ~

ISSN Print: 2394-7500
ISSN Online: 2394-5869
Impact Factor: 5.2
IJAR 2015; 1(10): 945-953
www.allresearchjournal.com
Received: 22-07-2015
Accepted: 24-08-2015

Mani Laxman Aiyar
Dept. of EEE, Alliance
University, Bangalore,
Karnataka, 562106, India.

Ramesha K
Dept. of ECE, Dr. Ambedkar
Institute of Technology,
Bangalore, Karnataka, 560056,
India.

Correspondence
Mani Laxman Aiyar
Dept. of EEE, Alliance
University, Bangalore,
Karnataka, 562106, India.

A 2260 GOPS High-performance and High-precision sub-

pixel motion estimator-interpolator for real-Time 8K
UHDTV High efficiency video coding (HEVC) in next

generation wireless multimedia Applications

Mani Laxman Aiyar, Ramesha K

Abstract
Despite increased complexity sub-pixel motion estimation and compensation significantly outperforms
integer motion estimation and compensation in HEVC/MPEGH/H.265 Video Codec’s, since moving
objects do not necessarily move by integer pixel locations between successive video frames. Typically,
fractional pixel accuracy is obtained by means of bilinear interpolation producing a spatially blurred
predicted signal. The motion estimation and compensation is improved in this paper by means of the
filtering effect using a very effective spatial digital low pass FIR filter, which allows the motion vectors
to be determined with higher levels of precision and accuracy than existing algorithmic
implementations. The fractional pixel accuracy was achieved using a total of 112 8-tap digital FIR filter
for one-eighth pixel precision, which includes half and quarter pixel accuracy. The design has been
implemented on a 28nm TSMC process, with a speed of 1.101 GHz and it has achieved 2262 GOPS at
this speed, outputting data at the rate of 1.8 Tera bits per second, for one-eighth pixel accuracy.
Computational complexity, Memory & I/O Bandwidth has been reduced by inputting the Mean Square
Error Map of the pixels to the Fractional Pixel Estimator and then searching in the sub-pixel grid.

Keywords: HEVC, MPEGH, H.265, MPEG4, H.264, HEVC, HDTV, DVB, FIR.

Introduction
The amount of video content available on the internet has grown in leaps and bounds in the
past 10 years. This is primarily because of the introduction of Broadband technology,
especially the 3G and 4G wireless technologies. Now it is being seen that over 70% of
mobile data traffic is Multimedia content, of which Video content is predominant [1].
Ultra high definition television (Ultra-HDTV) achieves highly enhanced remarkable visual
experience and it is being promoted as the current and next-generation standard for digital
television to be been used as the primary delivery mechanism to deliver multimedia content
in the current and next generation wireless and multimedia communication applications [2].
4K Ultra-HDTV has the resolution of 4,096 x 2,160 pixels, which amounts to 8.9 Million
Pixels per Frame. The next generation 8K Ultra-HDTV, has the resolution of 8,192 x 4,320
pixels, amounting to 35.4 Million pixels per frame. There is an increase of 4x times to 16x
times in the number of pixels per frame, compared with today’s HDTV. At a frame rate of 30
fps, 8K HDTV amounts to 1.06 Giga Pixels per second and at 60 fps, this becomes 2.12 Giga
Pixels per second, which gives the data rate of 50 Giga bits per second (Gbps), and at 120 fps
the raw data rate approaches 100Gbps.
It is virtually impossible to process, store and transmit such huge volumes of raw video real-
time data, with current computing, storage and transmission technology, and in particular
wireless technologies. Hence there is need for highly efficient Multimedia Video coding
technology, which can provide highly efficient real-time compression.
Recent video coding standards such as the MPEG-4/H.264/AVC, provided significant coding
efficiency and bit rate savings over their predecessors, namely MPEG-2/H.262 Video [3]. The
MPEG-4/H.264/AVC provided 50% coding efficiency gain over MPEG-2 [4].
However they were not designed for High Definition (HD) and Ultra High Definition
Television (HDTV) Video Content, the demand for which has increased in leaps and bounds

Internat ional Journal of Applied Research 2015; 1(10): 945-953

~ 946 ~

International Journal of Applied Research

in recent times [5]. As a consequence, ITU-T VCEG and
ISO/IEC MPEG established a Joint Collaborative Team
(JCT) on Video Coding (JCT-VC), and issued a joint call of
proposals (CfP) on video coding technology in 2010. In
response to this CfP, lot of proposals were submitted from
representatives of industry and academia which led to the
development of the High Efficiency Video Coding (HEVC)
Standard. The final specification of the HEVC standard was
approved by ITU-T as H.265 and by ISO/IEC as MPEG-H,
Part 2 [6].
The HEVC / MPEGH-2/H.265 standard were designed to be
applicable for almost all existing MPEG4/H.264/AVC
applications, while putting emphasis on high-resolution
video coding. Since the development process of HEVC was
driven by the most recent scientific and technological
achievements in the field of video coding, dramatic bit rate
savings were achieved for substantially the same visual
quality, when compared to its predecessor MPEG4/H.
264/AVC [7-9].
To meet the high demand for ultra-High Definition
(UHDTV) and Quad Full High Definition (QFHD) video
compression, the latest video coding standard, High
Efficiency Video Coding (HEVC) [10, 11], improves the
coding efficiency compared to all previous standards with a
30% to 50% BD-rate reduction [12, 13] and provides excellent
compression ratio, but they also involve high computational
complexity and memory bandwidth requirements [14]. This
leads to critical challenges in the implementation of the video
codec’s in meeting the constraints of real-time throughput
capability and reduced power dissipation for extended
battery life especially in mobile and wireless devices.
Motion Estimation is a key encoding component of all the
video coding standards [15], as there is a limited scope for
improved compression performance in the later stages of the
encoding namely, DCT, quantization, and entropy coding,
since the operation of the DCT and the codebook of entropy
coding are specified by the video coding standard. However,
Motion Estimation and Compensation provides scope for
significant performance improvement in the design of the
first stage of the Video CODEC. Efficient motion estimation
reduces the energy in the motion-compensated residual frame
and dramatically improves compression performance [15].
In the early motion-compensation algorithms like H.261,
only full-pixel motion vectors were used i.e. the components
of a motion vector were restricted to an integer number.
Because the real motion between two successive images of a
sequence is in general not exactly described by steps of one
pixel, this restricted resolution leads to errors in the motion-
compensated prediction and thus to an increased prediction
error [16].
Despite the increased complexity, sub-pixel motion
estimation and compensation can significantly outperform
integer motion estimation and compensation. This is because,
a moving object will not necessarily move by an integer
number of pixels, between successive video frames.
Searching sub-pixel locations as well as integer locations is
likely to find a good match in a large number of cases [15].
Accurate motion estimation is essential to effective motion
compensated video signal processing and sub-pixel
resolutions are required for high quality applications [19]. It
has been reported that motion vectors with fractional
accuracy may be more efficient in encoding, motion
compensated blocks [18].
The majority of the motion-compensated predictors that are

reported in the literature use motion-compensation with
“integer-pixel accuracy”. Typically fractional pixel accuracy
is achieved by means of bilinear interpolation, which
produces spatially blurred predicted signal [15]. By using a
spatial low pass filter, the predictor can improve the motion
compensation. Improvement gained in this way is referred to
as the filtering effect [17].
The prediction capability of motion compensation algorithm
in MPEG4-10/H. 264 is further improved by allowing
motion vectors to be determined with higher levels of spatial
accuracy than in existing standards. One-eighth pixel
accuracy is currently the highest precision accuracy that can
be achieved in motion compensation, in MPEG4-10/H. 264,
in contrast with prior standards based primarily on half-pixel
accuracy. Quarter-pixel accuracy is available only in the
newest versions of MPEG4-2 visual. One-eighth pixel
accuracy is adopted as a feature for increased coding
efficiency at high bit rates and high video resolutions in
HDTV [20].
The main objective of this work was to achieve motion-
compensation with fractional-pixel accuracy, up to one-
eighth pixel precision. Here pixel precision is achieved by
what is referred to as the filtering effect, by designing an
appropriate filter to overcome the spatial blurring. Further to
this the filtering is done in three stages. The first stage is at
half-pixel precision, the second stage being at quarter-pixel
level and the third stage at the one-eighth pixel precision
level done by bilinear interpolation. Computational
complexity, Memory and I/O Bandwidth is reduced by
inputting the mean square error map, of the integer pixels
from the Integer pixel locations to the fractional pixel
estimator, and then further searching in the sub-pixel grid.
This work involves the design, modelling and simulation of
the sub-pixel motion estimation in Matlab, C & Verilog HDL
and implementation of the same on a TSMC 28nm process,
using Cadence & Synopsys Design tools. The output of the
integer pixel motion estimation unit, are the integer motion
vectors and the mean square error map. The MSE map
consists of 9 x 9 grid around the optimal integer motion
vector. This is inputted to the sub-pixel precision estimation
unit, for interpolating the sub-pixel values.
The rest of the paper is organized as follows. Section-2
describes the design and implementation of the Motion
estimator-interpolator and Section-3 describes the results
achieved and analysis of the same.

Design of algorithm and its implementation
Motion Estimation and Compensation
Motion Estimation is a process in video compression, by
which the current frame is predicted from a previous
frame(s) or future frame(s) or both. The Motion Estimator
generates motion Vectors to indicate where the objects have
moved from, as shown in Figure 1.
This motion Estimation process is done only at the Encoder.
The Motion Compensator subtracts the predicted frame from
the original frame, to produce the residual frame as shown in
Figure 2.
Only the residual frame is encoded and transmitted to the
Receiver. The Video Decoder reconstructs the original frame
from the motion vectors based on an identical prediction
scheme at the receiver. The best compression performance is
achieved when the size of the residual frame transmitted
through the channel is minimized.

~ 947 ~

International Journal of Applied Research

Fig 1: Motion Vectors

Fig 2: The Motion Compensator

The Block Matching Process
The initial motion estimate is achieved by means of a block
matching process. For each block of luminance samples in
the current frame, the motion estimation algorithm searches a
neighboring area in the reference frame for a match. The best
match is one that minimizes the energy of the difference
between the two blocks. The complete set of mean square
error values for each position in the frame forms the MSE
map for the frame, as shown in Figure3 and Figure 4.

Fig 3: Block Matching Process and MSE positions

The MSE provides a measure of the energy remaining in the
difference block for a N xN sample block the MSE is given
by:

MSE = 1/N² ∑∑ (Cij – Rij) ²; ∑ from 0 to N-1,

Where Cij is a sample in the current block and Rij is a sample
in the reference block.

Fig 4: Mean Square Error Map

Mean Absolute Error
Mean absolute error provides a reasonable good
approximation of residual energy and is easier to calculate
then the MSE, since it requires magnitude calculation instead
of square calculation for each pair of samples is given by:

MAE = 1/N² ∑∑ | (Cij – Rij)|; summation from 0 to N-1

The comparison may be further simplified by neglecting the
1/N² term giving the sum of absolute errors (SAE) or the sum
of absolute differences (SAD), which gives a reasonable
approximation and is used as a matching criterion for block-
based motion compensation.

SAD = ∑∑ | (Cij – Rij)|; summation from 0 to N-1

Sub-Pixel Motion Estimation
The best match for the block matching process is not
necessarily a region offset from the current block by an
integer number of pixels. For many blocks, a better match is
found by searching a region interpolated to sub-pixel
accuracy. This will produce a smaller Displaced Frame
Difference (DFD), which reduces the energy in the residual
frame, which leads to increased compression efficiency.

Estimating sub-pixel values using Bilinear Interpolation
in 2D
The interpolating filter is a digital low-pass FIR filter, used
to filter the image frequencies generated by increasing the
sampling rate. The Interpolation process is shown in Figure
5.

Fig 5: Interpolation Process

The computational overhead of sub-pixel interpolation is
reduced by interpolating between the SAE values calculated
at integer position, rather than carrying out search at sub-
pixel positions [3]. SAE is a continuous function in the region
of the minimum. Figure 3 shows the approach of bilinear

~ 948 ~

International Journal of Applied Research

interpolation in 1D. The integer SAE calculations are carried
out to produce the points shown in black. By fitting a curve
to the integer SAE results, estimated SAE results are found
for the neighboring half-pixel positions as shown in Figure 6.

Fig 6: Estimating half-pixel positions from and Curve Fitting

The complexity of half-pixel estimation is reduced using this
method. The accuracy of the motion-compensation depends
on, how accurately the curve fitting approximates the actual
half-pixel results. The 1D interpolation process is extended
by doing bilinear interpolation in 2D.

Fig 7: The 3-D SAE Map

2D interpolation takes a series of (x, y, z) points and
generates estimated values of z at new (x, y) points. This
interpolation process is used since the function that originally
generated the (x, y, z) is unknown. Interpolation is related to
but very distinct from fitting a function to a series of points.
Here, the interpolated function goes through all the original
points, while a fitted function does not. Data is available for
a rectangular grid of points and bilinear interpolation is
performed here for points off the grid. Here this process was
modeled in Matlab as shown in Figure 7, and then was
designed and implemented using Verilog HDL and
synthesized on a 28nm TSMC process.

Bilinear interpolation by designing Digital FIR LPF’s
In this paper, bilinear interpolation at sub-pixel levels has
been achieved by designing 112 8-tap FIR digital filters
using Matlab. The FIR filter is represented by the following
filter difference equation:

Y (n) = ∑ h (k) x (n-k); k varying from 0 to L, L = 7 in this
case;

The frequency response of this filter is determined from the
equation: H (ejθ) = ∑ h (k) e-jkθ; k varying from 0 to L, L = 7
in this case;
The z-transform of the above equation can be represented as:
H (z) = ∑h (k) z-k; varying from 0 to L, L = 7 in this case;

Simulation of the Design
The coefficients of the 8-tap FIR filters for the half-, quarter-
& one-eighth pixel position was designed in Matlab. The
filter responses including magnitude and the phase plots for
the quarter-pixel, half-pixel and one-eighth pixel are shown
in Figure 8.

Fig 8: FIR Filter Response

Further the designswere implemented in hardware by using
Verilog HDL and simulated in Synopsys VCS simulator.

Video Encoder System Architecture
As shown in Figure 9 the motion estimation accelerator unit
forms a major part of the video encoder system architecture.
This unit is separate from that of the system CPU, memory &
I/O. The current and reference blocks are stored in the
current frame buffer RAM and search window buffer RAM
respectively. These form the inputs to the motion estimation
unit as shown if figure. The motion estimation unit accesses
this data through the global address & data bus.

Fig 9: Video Encoder System Architecture

Integer Motion Estimator
The inputs to the motion estimation unit are the current 8 x 8
block and reference 16 x 16 block. The integer unit finds a
match for the current 8 x 8 block, in the reference 16 x 16
search window. For the full search motion estimation, the
Integer Unit calculates the mean square error (MSE) map for
a 9 x 9 grid, as shown in figure. The location of the minimum
MSE in the 9 x 9 grid forms the optimal integer motion
vector. The motion vectors and the MSE error map are the
outputs from the integer unit and are stored in memory.

Sub-Pixel Estimator
The output of the integer pixel motion unit the inputs to the
sub-pixel motion estimation unit, being designed. The input
to the current design is the optimal motion vector and the

~ 949 ~

International Journal of Applied Research

mean square error map with the optimal integer position at
the center (4, 4). The Mean Square Error map consists of a
9x9 grid around the optimal integer motion vector. This
design also can be used as a sub-pixel interpolation unit in
order to interpolate the sub-pixel values for higher resolution.
In that case, the actual pixel values are loaded as an input to
the design. This is achieved by multiplexing the inputs as
shown in figure.

Fig 10: The Sub-Pixel Estimator

The design of the sub-pixel estimator has been done in three
modular stages as follows:
1. The Half-Pixel design, which interpolates the half-pixels
2. The Quarter-Pixel design, which interpolates the half-

and quarter- pixels.
3. The One-Eighth-Pixel which interpolates the half,

quarter, and one-eighth pixels.

The Half-Pixel Design
The heart of the design consists of several multipliers,
adders, comparators and the clipping function. The whole
design was created using a Verilog HDL model.

Inputs
The inputs to the design are the mean square error map from
the integer-pixel motion estimation unit. These inputs come
as a 9x9 array. The total number of inputs are eight one.
Each of these inputs has a value between 0 and 255 which
are represented in 8 bits. The motion vector is at the center of
the array at location (4, 4). The array starts from (0, 0) and
ends at (8, 8). The data is stored row-wise. The first nine
inputs are from (0, 0) to (0, 8). Then the next nine values
come in from (1, 0) to (1, 8) and so on up to (8, 8).

Outputs
The output is the optimal motion vector location and value.

The value of the output is in 8 bit form.
Also, there are eight other half-pixel outputs, in addition to
the optimal integer-pixel. All these outputs have 8 bit values.
These outputs are the actual half-pixel interpolation values.
The half-pixel values are calculated from the input 9x9 array.
Figure shows these half-pixel values which were calculated
in the grid array (33x33).

The Quarter-Pixel Design
The heart of the design consists of several multipliers,
adders, comparators and the clipping function. The whole
design was created using a Verilog HDL model.

Inputs
The inputs to the design are the mean square error map, from
the integer-pixel motion estimation unit. These inputs come
as 9x9 array. The total number of inputs is eighty one. Each
of these inputs have a value between 0 and 255 which are
represented in 8 bits. The motion vector is at the center of the
array at location (4, 4). The array starts from (0, 0) and ends
at (8, 8). The data is stored row-wise. The first nine inputs
are from (0, 0) to (8, 8). Then the next nine values come in
from (1, 0) to (1, 8) and so on up to (8, 8).

Outputs
The output is the optimal motion vector location and value.
The value of the output is in 8 bit form. Also, there are 48
other quarter-pixel outputs in addition to the optimal integer-
pixel. All these outputs have 8 bit values. These outputs are
the actual quarter-pixel interpolation values.

Multipliers and Adders
These multipliers and adders have been modeled in
behavioral modeling, using Verilog hardware description
language. The actual architectural implementation of these
multipliers and adders has been done during synthesis. The
synthesis was done using Synopsys Design Compiler, using
the Design Ware foundation components, for architectural
implementation of the multipliers and adders. The quarter-
pixel values were calculated from the input 9x9 array. Figure
11 shows the quarter-pixel values which were calculated in
the grid array.

Fig 11: 9 x 9 Quarter Pixel Array

The Comparators
The final 49 quarter-pixel output values are compared for the
minima. The input to the comparator logic is an array of
17x17 quarter-pixels around the optimal integer-pixel, as

shown in Figure 12. The comparator logic is implemented as
a 50 input comparator, with an additional input for the
reference value.

A d b‐h d b‐h d b‐h d A

d e d f‐h d f‐h d e d

b‐v d c‐q d c‐q d c‐q d b‐v

d f‐v d g d g d f‐v d

b‐v d c‐q d c‐m d c‐q d b‐v

d f‐v d g d g d f‐v d

b‐v d c‐q d c‐q d c‐q d b‐v

d e d f‐h d f‐h d e d

A d b‐h d b‐h d b‐h d A

~ 950 ~

International Journal of Applied Research

Fig 12: The 17 x 17 one-eighth-Pixel Array

The One Eighth-Pixel Design
The heart of the design consists of several multipliers,
adders, comparators and the clipping function. The whole
design was created using a Verilog HDL model.

Inputs
The input to the design is the mean square error map, from
the integer-pixel motion estimation unit. These inputs come
as 9x9 array. The total number of inputs is eighty one.
Each of these inputs have a value between 0 and 255 which
are represented in 8 bits. The motion vector is at the center of
the array at location (4, 4). The array starts from (0, 0) and
ends at (8, 8). The data is stored row-wise. The first nine
inputs are from (0, 0) to (8, 8). Then the next nine values
come in from (1, 0) to (1, 8) and so on up to (8, 8).

Outputs
The output is the optimal motion vector location and value.
The value of the output is in 8 bit form. Also, there are 225

other one eighth-pixel outputs in addition to the optimal
integer-pixel. All these outputs have 8 bit values. These
outputs are the actual one eighth-pixel interpolation values.
The one eighth-pixel values were calculated from the 9x9
array.

Results and Discussion
Comparison of the results with other implementations
Reference [25] describes a cascadable 200GOPS motion
estimation chip for HDTV Applications. Reference describes
a parallel processor for motion estimation. Reference [26] and
[27] describes a VLSI Implementation of mean-corrected
block-matching motion estimation of Partial Quad trees. A
Verilog standard cell based synthesis approach was used for
this design contrary to that of the full custom design
methodology used by which offers the advantage of faster
migration to newer VLSI technology libraries. The main
differences of the presented work to that of the previous
implementations are shown in Table 1 below.

Table 1: Comparison of Results

Table 2 shows comparison with recent sub-pixel Motion
Estimator designs. The data in [31] were estimated by the
same method used in [32]. The proposed design reduces the
gate count by 87% and reduces the on-chip memory by
96.9% when compared to the direct implementation of HM,

as estimated in [33]. Compared to the parallel implementation
in in [33], our design reduces the gate count by 57% and the
on-chip memory size by 91%, with a higher throughput and
better coding efficiency. These reductions are a result of the
16x16 processing unit size and joint optimization of the

Comparison UcdL RWTC Aachen Tech. University Our Design Our Design Our Design

Criteria Belgium Germany Munich Half‐Pixel Quarter‐Pixel 1/8th Pixel

Search Strategy Prog. Full‐Search Full‐Search Full‐Search Full‐Search Full‐Search

of Pixel Element 12 32 x 32 32 x 32 3 x 3 9 x 9 15 x 15

Clock Frequency 50 MHZ 200 MHZ 100 MHZ 1120 MHZ 1010 MHZ 1010 MHZ

Design Style Full Custom Full Custom VHDL Synth Verilog Verilog Verilog

Process 1 um 0.5 um, 2LM 0.35um Compass 28 nm TSMC 28 nm TSMC 28 nm TSMC

Processing Power N.A. 200 GOPS 100 GOPS 430 GOPS 1616 GOPS 2262 GOPS

Speed(MHZ) 200 100 1120 1010 1010

On‐Chip Memory 512 Bytes No 12,288 Bytes 802 Bytes 802 Bytes 802 Bytes

MV Search Area Prog. +/‐ 15 [‐16,+15], [‐32, +31] +/‐ 15 +/‐ 15 +/‐ 15

~ 951 ~

International Journal of Applied Research

algorithm and architecture. The Motion Estimator design in
the HEVC Encoder of [34] supports the same block size as in
[33], but with a very large three-level reference data buffer
that accounts for over 90% of its final 7.14-MB on-chip

memory. Article [34] is not included in the comparison in the
table due to lack of details, but a detailed comparison with
the [35] shows the advantages of our proposed design.

Table 2: Comparison of Results with other Sub-Pixel Motion Estimators

The main objective of this project is to achieve motion-
compensation with fractional-pixel accuracy, up to one
eighth-pixel accuracy. In this report, fractional pixel
accuracy is achieved by what is referred to as the filtering
effect by using the FIR filter coefficients as described in the
H. 264 standard. In this work, filtering is done at two stages.
The first filtering is done at the half-pixel stage and the
second filtering is done at the quarter-pixel stage. The one
eighth-pixels are extracted by means of bilinear
interpolation. Computational Complexity and Memory & I/O
bandwidth is reduced by inputting the mean square error
map, of the pixels to the Fractional Pixel estimator and then
searching in the sub-pixel grid.

The sub-pixel motion estimation unit was designed in
Verilog HDL and synthesized using Synopsys and Cadence
tools. The output of the integer pixel motion unit is an input
to the sub-pixel motion estimation unit being modeled. The
input to the current design is the optimal motion vector and
the mean square error map with the optimal integer position
at the center (4, 4). The Mean Square Error map consists of a
9x9 grid around the optimal integer motion vector. This
design can also be used as a sub-pixel interpolation unit in
order to interpolate the sub-pixel values for higher resolution.
The computational complexity and Memory & I/O
bandwidth is reduced by inputting the mean square error map
of the pixels to the Fractional Pixel estimator, and then
searching in the sub-pixel grid.

Table 3: Comparison of Mathematical Operations

The half-, quarter- one eight- pixel motion estimator was
designed, simulated, synthesized and verified at the gate
level using the 28 nm TSMC process. The fractional pixel
accuracy was achieved using a 2 stage spatial 8-Tap Digital
FIR filter for the one eighth-pixel estimator of MPEG4/H.
264. A total of 112 8-Tap FIR filters were used at the one
eighth-pixel level in comparison to 188 8-Tap FIR filters and

24 8-Tap filters at the quarter- and half-pixel levels,
respectively, as shown in Table 3.
The half-pixel design which is a 160,000 gate design, is
working at a speed of 1.12 GHz and is achieved a maximum
of 430 Giga Operations per Second (GOPS), at this speed.
The quarter-pixel design which is a 320,000 gate design is
working at a speed of 1.01 GHz and it achieved a maximum

S.NO. Reference Article [30] [31] [32] [33] [35]

Author Lin Ding Zhou Sinangil Jou This Work

Year 2008 2009 2013 2013 2015 2015

Design Feature Standard

1 CMOS Technology H.264/AVC H.264/MVC H.264/AVC HEVC (HM3.0HEVC HEVC/H.264

2 Max Freq(MHz) 130nm 90nm 40nm 65nm 90nm 28nm

3 Max Resolution 145 280 210 200 270 1010

4 Frame Frequency(fps) 1920x1080 3840x2160 7680x4320 3840x2160 4096x2048 8192x4320

5 Frame Types 60 24 48 60 60 60

6 Reference Frame # P/B P/B P/B P/B P/B P/B

7 Support Tools 1 1 1 1 1 1

8 Max Search Range IME,FME IME,FME IME,FME IME,FME IME,FME IME,FME

9 Pipeline Unit +/‐128 +/‐16 +/‐64 +/‐64 +/‐64

10 Gate Count 16X16 16X16 16X16 ‐ 16X16 16X16

11 Memory Usage (KB) 283K 909K 2458K 1830K 778.7K 320K

12 Throughput(Mpel/sec) 18 ‐ 552 208 17.4 0.8

13 Supported Block Sizes 124 212 1593 497 503 2123

14 Sub‐pixel Accuracy All‐H.264 All‐H.264 8X8‐16X16 16x16,32x32,All HEVC All HEVC

15 Processing Power(GOPS) 1/2 1/2 1/2 1/2 1/4 1/8

16 ‐ ‐ ‐ ‐ ‐ 2260

S.No. Design 1/2‐Pixel 1/4‐Pixel 1/8 Stage 1 1/8 Stage 2 1/8 Stage 3 1/8 Total

1 # of Comparisons 20 100 552

2 # of Equations 24 100 112 48 128 288

3 # of Multiplier /Equation 8 8 8 1 0 9

4 # of Adder / Equation 7 7 7 2 1 10

5 # of Divisions / Equation 1 1 1 1 1 3

6 # of Operations 16 16 16 4 2 22

7 Total # of Multiplications 192 800 896 48 0 944

8 Total # of Additions 168 700 784 96 128 288

9 Total # of Divisons 24 100 112 48 128 288

10 Total # of Operations 384 1600 1792 192 256 2240

11 (GOPS) 430.08 1616.00 1809.92 193.92 258.56 2262.40

12 Speed(GHZ) 1.12 1.01 1.01 1.01 1.01 1.01

~ 952 ~

International Journal of Applied Research

of 1616 Giga Operations per Second (GOPS) at this speed.
The one eighth-pixel design which is a 320,000 gate design
is working at a speed of 1.01 GHz and it achieved a
maximum of 2262 Giga Operations per Second (GOPS) at
this speed. This design outputs data at the rate of 1.8 Tera
bits per second, at 1.01 GHz, as shown in Table 2.

References
1. Cisco Virtual Networking Index. Global Mobile Data

Traffic Forecast Update, [Online]. Available: 2011-
2016,
http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/ white paper c11-520862.html

2. He G, Zhou D, Li Y, Chen Z, Zhang T, Goto S, High-
Throughput Power Efficient VLSI Architecture for
Fractional Motion Estimation for Ultra-HD HEVC
Video Coding, IEEE Transactions on VLSI Systems,
2015.

3. Sinangil ME, Sze V, Zhou M, Chandrakasan AP. Cost
and Coding Efficient Motion Estimation Design
Considerations for HEVC Standard, IEEE Journal of
selected topics in signal processing. 2013; 7(6).

4. Ostermann J, Bormanns P, List P, Marpe D, Narroschke
M, Pereira F, Stockhammer T, Wedi T. Video Coding
with H.264/AVC: Tools, Performance and complexity”,
IEEE Circuits and Systems First Quarter 2004; l4(1):7-
28.

5. Grois D, Marpe D, Mulayoff A, Hadar O. Performance
Comparison of H. 265/MPEG-HEVE, VP9 and H.
264/MPEG-AVC Encoders, IEEE 30th Picture Coding
Symposium, Dec 2013.

6. ITU-T. Recommendation H: 265 (04/13), Series H:
Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services-Coding of Moving Video, High
Efficiency Video Coding, Online:
http://www.itu.int/rec/T-REC-H. 265-201304-I.

7. Ohm J, Sullivan GJ, Schwarz H, Tan TK, Wiegand T.
Comparison oif the coding efficiency of video coding
standards-including High Efficiency Video Coding
(HEVC), IEEE Transactions on Circuits and Systems fo
Video Technology 2012; 22(12):1669-1684.

8. Li B, Sullivan GJ, Xu J Comparison of compression
performance of HEVC Draft 9 with AVC high profile
and performance of HM9.0 with temporal scalability
characteristics, JCTVC-L03222, Jan 2013.

9. Horowitz M, Kossentini F, Mahdi N, Xu S, Guermazi H,
Tmar H et al. Informal subjective quality comparison of
video compression performance of the HEVC and H.
264/MPEG-4 AVC standards for low delay applications,
Proceedings SPIE 8499, Applications of Digital Image
Processing XXXV, 84990W, Oct 2012.

10. High Efficiency Video Coding, ITU-T Rec. H. 265,
April 2013.

11. Sullivan GJ, Ohm J-R, Han W-J, Wiegand T. Overview
of the High Efficiency Video Coding Standard (HEVC),
IEEE Transactions on Circuits and Systems fo Video
Technology 2012; 22(12):1649-1668.

12. Bjontegaard G. Calculation of Average PSNR
Differences between RD Curves, ITU-T SG16
documents VCEG-M33, JCTVC, 2001.

13. Jou SY, SJ Chang, Chang TS. Fast Motion Estimation
Algorithm and Design for Real Time QFHD High-
Efficiency Video Coding, IEEE Transactions on Circuits
and Systems for Video Technology, 2015.

14. Zhou D, Zhou H, He G, Goto S. A 1.59 Gpixels/s
Motion Estimation Processor with -211-to-211 Search
Range for UHDTV Video Encoder, Symposium of VLSI
Circuits and Digital Technology Papers, 2013.

15. Iain EG Richardson. Video Codec Design, John Wiley
& Sons Ltd, 2002.

16. Pereira F, Ebrahimi T. The MPEG-4 Hand Book,
Prentice Hall PTR, New Jersey, 2002.

17. Girod B. Motion Compensating prediction with
fractional-pixel accuracy, IEE Transactions on
Communications 1993; 41(4):604-612.

18. Yang K A family of VLSI designs for the motion
compensation block-matching algorithm, IEEE
Transactions on circuits and systems 1989; 36(10):1317-
1325.

19. Lix X, Gonzales C. A locally quadratic model of the
motion estimation error criterion function and its
application to sub-pixel interpolation, IECE
Transactions on circuits and systems for video
technology 1996; 6(1).

20. H. 264 standard UB Video Inc, 2014,
www.ubvideo.com.

21. Girod B. Motion Compensating prediction with
fractional-pixel accuracy, IEE Transactions on
Communications 1993; 41(4):604-612.

22. Yang K. A family of VLSI designs for the motion
compensation block-matching algorithm, IEEE
Transactions on circuits and systems 1989; 36(10):1317-
1325.

23. Lix X, Gonzales C. Alocally quadratic model of the
motion estimation error criterion function and its
application to sub-pixel interpolation, IECE
Transactions on circuits and systems for video
technology 1996; 6(1).

24. H. 264 standard UB Video Inc, 2014,
www.ubvideo.com.

25. Berns JP, Noll TG. A cascadable 200 GOPS motion
estimation chip for HDTV applications, IEEE custom
integrated circuits conference, San Diego, 1996, 335-
358.

26. Hanssens E, Legat JD. A Parallel processor for Motion
Estimation, SPIE, 1996, 1006-1016.

27. Kuhn P. Algorithms complexity analysis and VLSI
architectures for MPEG-4 Motion Estimation” Kluwer
Academic Publishers, 1999.

28. Kuhn P. VLSI Implementation of Mean-corrected
Block-Matching Motion Estimation of Partial Quad
trees, VLBV 97, Workshop for very low Bitrate Video
Coding, Sweden, 1997.

29. Mathias Wien. High Efficeincy Video Coding, Springer,
2015.

30. Lin Y-K, Lin C-C, Kuo T-Y, Chang T-S. A Hardware-
Efficient H. 264/AVC Motion-Estimation Design for
High-Definition Video, IEEE Trans. Circuits Syst 2008;
1(55)6:1526-1535.

31. Ding L-F, Chen W-Y, Tsung P-K, Chuang T-D, Chiu H-
K, Chen Y-H. A 212 MPixels/s 4096×2160p multiview
video encoder chip for 3D/quad HDTV applications, in
ISSCC Dig. Tech. Papers, 2009, 154-155.

32. Zhou J, Zhou D, He G, Goto S. A 1.59 Gpixel/s Motion
Estimation Processor with -211 to 211 Search Range for
UHDTV Video Encoder, Symp. VLSI Circuits Dig.
Tech. Papers, 2013, 286-287.

33. Sinangil ME, Sze V, Minhua Z, Chandrakasan AP. Cost

~ 953 ~

International Journal of Applied Research

and coding efficient motion estimation design
considerations for High Efficiency Video Coding
(HEVC) Standard, IEEE J. Selected Topics in Signal
Processing. 2013; 7:1017-1028.

34. Tsai S-F, Li C-T, Chen H-H, Tsung P-K, Chen K-Y,
Chen L-G. A 1062 Mpixels/s 8192x4320p High
Efficiency Video Coding (H.265) encoder chip, in Symp.
VLSI Circuits Dig. Tech. Papers, June 2013.

35. Jou S-y, Chang S-J, Chang T-S. Fast Motion Estimation
Algorithm and design for real time QFHD High
Efficicncy Video Coding, IEEE Transactions on Circuits
and Systems for Video Technology, 2015

