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Abstract 
Despite increased complexity sub-pixel motion estimation and compensation significantly outperforms 
integer motion estimation and compensation in HEVC/MPEGH/H.265 Video Codec’s, since moving 
objects do not necessarily move by integer pixel locations between successive video frames. Typically, 
fractional pixel accuracy is obtained by means of bilinear interpolation producing a spatially blurred 
predicted signal. The motion estimation and compensation is improved in this paper by means of the 
filtering effect using a very effective spatial digital low pass FIR filter, which allows the motion vectors 
to be determined with higher levels of precision and accuracy than existing algorithmic 
implementations. The fractional pixel accuracy was achieved using a total of 112 8-tap digital FIR filter 
for one-eighth pixel precision, which includes half and quarter pixel accuracy. The design has been 
implemented on a 28nm TSMC process, with a speed of 1.101 GHz and it has achieved 2262 GOPS at 
this speed, outputting data at the rate of 1.8 Tera bits per second, for one-eighth pixel accuracy. 
Computational complexity, Memory & I/O Bandwidth has been reduced by inputting the Mean Square 
Error Map of the pixels to the Fractional Pixel Estimator and then searching in the sub-pixel grid. 
 
Keywords: HEVC, MPEGH, H.265, MPEG4, H.264, HEVC, HDTV, DVB, FIR. 
 
Introduction 
The amount of video content available on the internet has grown in leaps and bounds in the 
past 10 years. This is primarily because of the introduction of Broadband technology, 
especially the 3G and 4G wireless technologies. Now it is being seen that over 70% of 
mobile data traffic is Multimedia content, of which Video content is predominant [1].  
Ultra high definition television (Ultra-HDTV) achieves highly enhanced remarkable visual 
experience and it is being promoted as the current and next-generation standard for digital 
television to be been used as the primary delivery mechanism to deliver multimedia content 
in the current and next generation wireless and multimedia communication applications [2]. 
4K Ultra-HDTV has the resolution of 4,096 x 2,160 pixels, which amounts to 8.9 Million 
Pixels per Frame. The next generation 8K Ultra-HDTV, has the resolution of 8,192 x 4,320 
pixels, amounting to 35.4 Million pixels per frame. There is an increase of 4x times to 16x 
times in the number of pixels per frame, compared with today’s HDTV. At a frame rate of 30 
fps, 8K HDTV amounts to 1.06 Giga Pixels per second and at 60 fps, this becomes 2.12 Giga 
Pixels per second, which gives the data rate of 50 Giga bits per second (Gbps), and at 120 fps 
the raw data rate approaches 100Gbps.  
It is virtually impossible to process, store and transmit such huge volumes of raw video real-
time data, with current computing, storage and transmission technology, and in particular 
wireless technologies. Hence there is need for highly efficient Multimedia Video coding 
technology, which can provide highly efficient real-time compression.  
Recent video coding standards such as the MPEG-4/H.264/AVC, provided significant coding 
efficiency and bit rate savings over their predecessors, namely MPEG-2/H.262 Video [3]. The 
MPEG-4/H.264/AVC provided 50% coding efficiency gain over MPEG-2 [4].  
However they were not designed for High Definition (HD) and Ultra High Definition 
Television (HDTV) Video Content, the demand for which has increased in leaps and bounds 
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in recent times [5]. As a consequence, ITU-T VCEG and 
ISO/IEC MPEG established a Joint Collaborative Team 
(JCT) on Video Coding (JCT-VC), and issued a joint call of 
proposals (CfP) on video coding technology in 2010. In 
response to this CfP, lot of proposals were submitted from 
representatives of industry and academia which led to the 
development of the High Efficiency Video Coding (HEVC) 
Standard. The final specification of the HEVC standard was 
approved by ITU-T as H.265 and by ISO/IEC as MPEG-H, 
Part 2 [6]. 
The HEVC / MPEGH-2/H.265 standard were designed to be 
applicable for almost all existing MPEG4/H.264/AVC 
applications, while putting emphasis on high-resolution 
video coding. Since the development process of HEVC was 
driven by the most recent scientific and technological 
achievements in the field of video coding, dramatic bit rate 
savings were achieved for substantially the same visual 
quality, when compared to its predecessor MPEG4/H. 
264/AVC [7-9]. 
To meet the high demand for ultra-High Definition 
(UHDTV) and Quad Full High Definition (QFHD) video 
compression, the latest video coding standard, High 
Efficiency Video Coding (HEVC) [10, 11], improves the 
coding efficiency compared to all previous standards with a 
30% to 50% BD-rate reduction [12, 13] and provides excellent 
compression ratio, but they also involve high computational 
complexity and memory bandwidth requirements [14]. This 
leads to critical challenges in the implementation of the video 
codec’s in meeting the constraints of real-time throughput 
capability and reduced power dissipation for extended 
battery life especially in mobile and wireless devices. 
Motion Estimation is a key encoding component of all the 
video coding standards [15], as there is a limited scope for 
improved compression performance in the later stages of the 
encoding namely, DCT, quantization, and entropy coding, 
since the operation of the DCT and the codebook of entropy 
coding are specified by the video coding standard. However, 
Motion Estimation and Compensation provides scope for 
significant performance improvement in the design of the 
first stage of the Video CODEC. Efficient motion estimation 
reduces the energy in the motion-compensated residual frame 
and dramatically improves compression performance [15].  
In the early motion-compensation algorithms like H.261, 
only full-pixel motion vectors were used i.e. the components 
of a motion vector were restricted to an integer number. 
Because the real motion between two successive images of a 
sequence is in general not exactly described by steps of one 
pixel, this restricted resolution leads to errors in the motion-
compensated prediction and thus to an increased prediction 
error [16]. 
Despite the increased complexity, sub-pixel motion 
estimation and compensation can significantly outperform 
integer motion estimation and compensation. This is because, 
a moving object will not necessarily move by an integer 
number of pixels, between successive video frames. 
Searching sub-pixel locations as well as integer locations is 
likely to find a good match in a large number of cases [15]. 
Accurate motion estimation is essential to effective motion 
compensated video signal processing and sub-pixel 
resolutions are required for high quality applications [19]. It 
has been reported that motion vectors with fractional 
accuracy may be more efficient in encoding, motion 
compensated blocks [18].  
The majority of the motion-compensated predictors that are 

reported in the literature use motion-compensation with 
“integer-pixel accuracy”. Typically fractional pixel accuracy 
is achieved by means of bilinear interpolation, which 
produces spatially blurred predicted signal [15]. By using a 
spatial low pass filter, the predictor can improve the motion 
compensation. Improvement gained in this way is referred to 
as the filtering effect [17]. 
The prediction capability of motion compensation algorithm 
in MPEG4-10/H. 264 is further improved by allowing 
motion vectors to be determined with higher levels of spatial 
accuracy than in existing standards. One-eighth pixel 
accuracy is currently the highest precision accuracy that can 
be achieved in motion compensation, in MPEG4-10/H. 264, 
in contrast with prior standards based primarily on half-pixel 
accuracy. Quarter-pixel accuracy is available only in the 
newest versions of MPEG4-2 visual. One-eighth pixel 
accuracy is adopted as a feature for increased coding 
efficiency at high bit rates and high video resolutions in 
HDTV [20]. 
The main objective of this work was to achieve motion-
compensation with fractional-pixel accuracy, up to one-
eighth pixel precision. Here pixel precision is achieved by 
what is referred to as the filtering effect, by designing an 
appropriate filter to overcome the spatial blurring. Further to 
this the filtering is done in three stages. The first stage is at 
half-pixel precision, the second stage being at quarter-pixel 
level and the third stage at the one-eighth pixel precision 
level done by bilinear interpolation. Computational 
complexity, Memory and I/O Bandwidth is reduced by 
inputting the mean square error map, of the integer pixels 
from the Integer pixel locations to the fractional pixel 
estimator, and then further searching in the sub-pixel grid. 
This work involves the design, modelling and simulation of 
the sub-pixel motion estimation in Matlab, C & Verilog HDL 
and implementation of the same on a TSMC 28nm process, 
using Cadence & Synopsys Design tools. The output of the 
integer pixel motion estimation unit, are the integer motion 
vectors and the mean square error map. The MSE map 
consists of 9 x 9 grid around the optimal integer motion 
vector. This is inputted to the sub-pixel precision estimation 
unit, for interpolating the sub-pixel values. 
The rest of the paper is organized as follows. Section-2 
describes the design and implementation of the Motion 
estimator-interpolator and Section-3 describes the results 
achieved and analysis of the same. 
 

Design of algorithm and its implementation 
Motion Estimation and Compensation 
Motion Estimation is a process in video compression, by 
which the current frame is predicted from a previous 
frame(s) or future frame(s) or both. The Motion Estimator 
generates motion Vectors to indicate where the objects have 
moved from, as shown in Figure 1. 
This motion Estimation process is done only at the Encoder. 
The Motion Compensator subtracts the predicted frame from 
the original frame, to produce the residual frame as shown in 
Figure 2. 
Only the residual frame is encoded and transmitted to the 
Receiver. The Video Decoder reconstructs the original frame 
from the motion vectors based on an identical prediction 
scheme at the receiver. The best compression performance is 
achieved when the size of the residual frame transmitted 
through the channel is minimized. 
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Fig 1: Motion Vectors 
 

 
 

Fig 2: The Motion Compensator 
 

The Block Matching Process 
The initial motion estimate is achieved by means of a block 
matching process. For each block of luminance samples in 
the current frame, the motion estimation algorithm searches a 
neighboring area in the reference frame for a match. The best 
match is one that minimizes the energy of the difference 
between the two blocks. The complete set of mean square 
error values for each position in the frame forms the MSE 
map for the frame, as shown in Figure3 and Figure 4.  

 

 
 

Fig 3: Block Matching Process and MSE positions 
 

The MSE provides a measure of the energy remaining in the 
difference block for a N xN sample block the MSE is given 
by: 
 
MSE = 1/N² ∑∑ (Cij – Rij) ²; ∑ from 0 to N-1,  
 

Where Cij is a sample in the current block and Rij is a sample 
in the reference block.  

 

 
 

Fig 4: Mean Square Error Map 
 

Mean Absolute Error 
Mean absolute error provides a reasonable good 
approximation of residual energy and is easier to calculate 
then the MSE, since it requires magnitude calculation instead 
of square calculation for each pair of samples is given by: 
 
MAE = 1/N² ∑∑ | (Cij – Rij)|; summation from 0 to N-1 
 
The comparison may be further simplified by neglecting the 
1/N² term giving the sum of absolute errors (SAE) or the sum 
of absolute differences (SAD), which gives a reasonable 
approximation and is used as a matching criterion for block-
based motion compensation. 
 
SAD = ∑∑ | (Cij – Rij)|; summation from 0 to N-1 
 
Sub-Pixel Motion Estimation 
The best match for the block matching process is not 
necessarily a region offset from the current block by an 
integer number of pixels. For many blocks, a better match is 
found by searching a region interpolated to sub-pixel 
accuracy. This will produce a smaller Displaced Frame 
Difference (DFD), which reduces the energy in the residual 
frame, which leads to increased compression efficiency. 
 
Estimating sub-pixel values using Bilinear Interpolation 
in 2D 
The interpolating filter is a digital low-pass FIR filter, used 
to filter the image frequencies generated by increasing the 
sampling rate. The Interpolation process is shown in Figure 
5. 

 

 
 

Fig 5: Interpolation Process 
 

The computational overhead of sub-pixel interpolation is 
reduced by interpolating between the SAE values calculated 
at integer position, rather than carrying out search at sub-
pixel positions [3]. SAE is a continuous function in the region 
of the minimum. Figure 3 shows the approach of bilinear 
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interpolation in 1D. The integer SAE calculations are carried 
out to produce the points shown in black. By fitting a curve 
to the integer SAE results, estimated SAE results are found 
for the neighboring half-pixel positions as shown in Figure 6.  

 

 
 

Fig 6: Estimating half-pixel positions from and Curve Fitting 
 

The complexity of half-pixel estimation is reduced using this 
method. The accuracy of the motion-compensation depends 
on, how accurately the curve fitting approximates the actual 
half-pixel results. The 1D interpolation process is extended 
by doing bilinear interpolation in 2D.  

 

 
 

Fig 7: The 3-D SAE Map 
 

2D interpolation takes a series of (x, y, z) points and 
generates estimated values of z at new (x, y) points. This 
interpolation process is used since the function that originally 
generated the (x, y, z) is unknown. Interpolation is related to 
but very distinct from fitting a function to a series of points. 
Here, the interpolated function goes through all the original 
points, while a fitted function does not. Data is available for 
a rectangular grid of points and bilinear interpolation is 
performed here for points off the grid. Here this process was 
modeled in Matlab as shown in Figure 7, and then was 
designed and implemented using Verilog HDL and 
synthesized on a 28nm TSMC process. 
 
Bilinear interpolation by designing Digital FIR LPF’s 
In this paper, bilinear interpolation at sub-pixel levels has 
been achieved by designing 112 8-tap FIR digital filters 
using Matlab. The FIR filter is represented by the following 
filter difference equation: 
 
Y (n) = ∑ h (k) x (n-k); k varying from 0 to L, L = 7 in this 
case; 
 
The frequency response of this filter is determined from the 
equation: H (ejθ) = ∑ h (k) e-jkθ; k varying from 0 to L, L = 7 
in this case; 
The z-transform of the above equation can be represented as: 
H (z) = ∑h (k) z-k; varying from 0 to L, L = 7 in this case; 

Simulation of the Design 
The coefficients of the 8-tap FIR filters for the half-, quarter- 
& one-eighth pixel position was designed in Matlab. The 
filter responses including magnitude and the phase plots for 
the quarter-pixel, half-pixel and one-eighth pixel are shown 
in Figure 8. 

 

 
 

Fig 8: FIR Filter Response 
 

Further the designswere implemented in hardware by using 
Verilog HDL and simulated in Synopsys VCS simulator.  
 
Video Encoder System Architecture 
As shown in Figure 9 the motion estimation accelerator unit 
forms a major part of the video encoder system architecture. 
This unit is separate from that of the system CPU, memory & 
I/O. The current and reference blocks are stored in the 
current frame buffer RAM and search window buffer RAM 
respectively. These form the inputs to the motion estimation 
unit as shown if figure. The motion estimation unit accesses 
this data through the global address & data bus. 

 

 
 

Fig 9: Video Encoder System Architecture 
 

Integer Motion Estimator 
The inputs to the motion estimation unit are the current 8 x 8 
block and reference 16 x 16 block. The integer unit finds a 
match for the current 8 x 8 block, in the reference 16 x 16 
search window. For the full search motion estimation, the 
Integer Unit calculates the mean square error (MSE) map for 
a 9 x 9 grid, as shown in figure. The location of the minimum 
MSE in the 9 x 9 grid forms the optimal integer motion 
vector. The motion vectors and the MSE error map are the 
outputs from the integer unit and are stored in memory. 
 
Sub-Pixel Estimator 
The output of the integer pixel motion unit the inputs to the 
sub-pixel motion estimation unit, being designed. The input 
to the current design is the optimal motion vector and the 
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mean square error map with the optimal integer position at 
the center (4, 4). The Mean Square Error map consists of a 
9x9 grid around the optimal integer motion vector. This 
design also can be used as a sub-pixel interpolation unit in 
order to interpolate the sub-pixel values for higher resolution. 
In that case, the actual pixel values are loaded as an input to 
the design. This is achieved by multiplexing the inputs as 
shown in figure.  

 

 
 

Fig 10: The Sub-Pixel Estimator 
 

The design of the sub-pixel estimator has been done in three 
modular stages as follows: 
1. The Half-Pixel design, which interpolates the half-pixels 
2. The Quarter-Pixel design, which interpolates the half-

and quarter- pixels. 
3. The One-Eighth-Pixel which interpolates the half, 

quarter, and one-eighth pixels. 
 
The Half-Pixel Design 
The heart of the design consists of several multipliers, 
adders, comparators and the clipping function. The whole 
design was created using a Verilog HDL model. 
 
Inputs 
The inputs to the design are the mean square error map from 
the integer-pixel motion estimation unit. These inputs come 
as a 9x9 array. The total number of inputs are eight one. 
Each of these inputs has a value between 0 and 255 which 
are represented in 8 bits. The motion vector is at the center of 
the array at location (4, 4). The array starts from (0, 0) and 
ends at (8, 8). The data is stored row-wise. The first nine 
inputs are from (0, 0) to (0, 8). Then the next nine values 
come in from (1, 0) to (1, 8) and so on up to (8, 8). 
 
Outputs 
The output is the optimal motion vector location and value. 

The value of the output is in 8 bit form. 
Also, there are eight other half-pixel outputs, in addition to 
the optimal integer-pixel. All these outputs have 8 bit values. 
These outputs are the actual half-pixel interpolation values. 
The half-pixel values are calculated from the input 9x9 array. 
Figure shows these half-pixel values which were calculated 
in the grid array (33x33). 
 
The Quarter-Pixel Design 
The heart of the design consists of several multipliers, 
adders, comparators and the clipping function. The whole 
design was created using a Verilog HDL model. 
 
Inputs 
The inputs to the design are the mean square error map, from 
the integer-pixel motion estimation unit. These inputs come 
as 9x9 array. The total number of inputs is eighty one. Each 
of these inputs have a value between 0 and 255 which are 
represented in 8 bits. The motion vector is at the center of the 
array at location (4, 4). The array starts from (0, 0) and ends 
at (8, 8). The data is stored row-wise. The first nine inputs 
are from (0, 0) to (8, 8). Then the next nine values come in 
from (1, 0) to (1, 8) and so on up to (8, 8). 
 
Outputs 
The output is the optimal motion vector location and value. 
The value of the output is in 8 bit form. Also, there are 48 
other quarter-pixel outputs in addition to the optimal integer-
pixel. All these outputs have 8 bit values. These outputs are 
the actual quarter-pixel interpolation values. 
 
Multipliers and Adders 
These multipliers and adders have been modeled in 
behavioral modeling, using Verilog hardware description 
language. The actual architectural implementation of these 
multipliers and adders has been done during synthesis. The 
synthesis was done using Synopsys Design Compiler, using 
the Design Ware foundation components, for architectural 
implementation of the multipliers and adders. The quarter-
pixel values were calculated from the input 9x9 array. Figure 
11 shows the quarter-pixel values which were calculated in 
the grid array. 

 

 
 

Fig 11: 9 x 9 Quarter Pixel Array 
 

The Comparators 
The final 49 quarter-pixel output values are compared for the 
minima. The input to the comparator logic is an array of 
17x17 quarter-pixels around the optimal integer-pixel, as 

shown in Figure 12. The comparator logic is implemented as 
a 50 input comparator, with an additional input for the 
reference value. 
 

A d b‐h d b‐h d b‐h d A

d e d f‐h d f‐h d e d

b‐v d c‐q d c‐q d c‐q d b‐v

d f‐v d g d g d f‐v d

b‐v d c‐q d c‐m d c‐q d b‐v

d f‐v d g d g d f‐v d

b‐v d c‐q d c‐q d c‐q d b‐v

d e d f‐h d f‐h d e d

A d b‐h d b‐h d b‐h d A
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Fig 12: The 17 x 17 one-eighth-Pixel Array 
 

The One Eighth-Pixel Design 
The heart of the design consists of several multipliers, 
adders, comparators and the clipping function. The whole 
design was created using a Verilog HDL model.  
 
Inputs 
The input to the design is the mean square error map, from 
the integer-pixel motion estimation unit. These inputs come 
as 9x9 array. The total number of inputs is eighty one.  
Each of these inputs have a value between 0 and 255 which 
are represented in 8 bits. The motion vector is at the center of 
the array at location (4, 4). The array starts from (0, 0) and 
ends at (8, 8). The data is stored row-wise. The first nine 
inputs are from (0, 0) to (8, 8). Then the next nine values 
come in from (1, 0) to (1, 8) and so on up to (8, 8). 
 
Outputs 
The output is the optimal motion vector location and value. 
The value of the output is in 8 bit form. Also, there are 225 

other one eighth-pixel outputs in addition to the optimal 
integer-pixel. All these outputs have 8 bit values. These 
outputs are the actual one eighth-pixel interpolation values. 
The one eighth-pixel values were calculated from the 9x9 
array.  
 
Results and Discussion 
Comparison of the results with other implementations 
Reference [25] describes a cascadable 200GOPS motion 
estimation chip for HDTV Applications. Reference describes 
a parallel processor for motion estimation. Reference [26] and 
[27] describes a VLSI Implementation of mean-corrected 
block-matching motion estimation of Partial Quad trees. A 
Verilog standard cell based synthesis approach was used for 
this design contrary to that of the full custom design 
methodology used by which offers the advantage of faster 
migration to newer VLSI technology libraries. The main 
differences of the presented work to that of the previous 
implementations are shown in Table 1 below. 

 
Table 1: Comparison of Results 

 

 
 
Table 2 shows comparison with recent sub-pixel Motion 
Estimator designs. The data in [31] were estimated by the 
same method used in [32]. The proposed design reduces the 
gate count by 87% and reduces the on-chip memory by 
96.9% when compared to the direct implementation of HM, 

as estimated in [33]. Compared to the parallel implementation 
in in [33], our design reduces the gate count by 57% and the 
on-chip memory size by 91%, with a higher throughput and 
better coding efficiency. These reductions are a result of the 
16x16 processing unit size and joint optimization of the 

Comparison  UcdL RWTC Aachen Tech. University Our Design Our Design Our Design

Criteria Belgium Germany Munich Half‐Pixel Quarter‐Pixel 1/8th Pixel

Search Strategy Prog. Full‐Search Full‐Search Full‐Search Full‐Search Full‐Search

# of Pixel Element 12 32 x 32 32 x 32 3 x 3 9 x 9 15 x 15

Clock Frequency  50 MHZ 200 MHZ 100 MHZ 1120 MHZ 1010 MHZ 1010 MHZ

Design Style Full Custom Full Custom VHDL  Synth Verilog  Verilog  Verilog 

Process 1 um 0.5 um, 2LM 0.35um Compass 28 nm TSMC 28 nm TSMC 28 nm TSMC

Processing Power N.A. 200 GOPS 100 GOPS  430 GOPS  1616 GOPS  2262 GOPS 

Speed(MHZ) 200 100 1120 1010 1010

On‐Chip Memory 512 Bytes No 12,288 Bytes 802 Bytes 802 Bytes 802 Bytes

MV Search Area Prog. +/‐ 15 [‐16,+15], [‐32, +31] +/‐ 15 +/‐ 15 +/‐ 15
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algorithm and architecture. The Motion Estimator design in 
the HEVC Encoder of [34] supports the same block size as in 
[33], but with a very large three-level reference data buffer 
that accounts for over 90% of its final 7.14-MB on-chip 

memory. Article [34] is not included in the comparison in the 
table due to lack of details, but a detailed comparison with 
the [35] shows the advantages of our proposed design. 

 
Table 2: Comparison of Results with other Sub-Pixel Motion Estimators 

 

 
 

The main objective of this project is to achieve motion-
compensation with fractional-pixel accuracy, up to one 
eighth-pixel accuracy. In this report, fractional pixel 
accuracy is achieved by what is referred to as the filtering 
effect by using the FIR filter coefficients as described in the 
H. 264 standard. In this work, filtering is done at two stages. 
The first filtering is done at the half-pixel stage and the 
second filtering is done at the quarter-pixel stage. The one 
eighth-pixels are extracted by means of bilinear 
interpolation. Computational Complexity and Memory & I/O 
bandwidth is reduced by inputting the mean square error 
map, of the pixels to the Fractional Pixel estimator and then 
searching in the sub-pixel grid. 
 
 

The sub-pixel motion estimation unit was designed in 
Verilog HDL and synthesized using Synopsys and Cadence 
tools. The output of the integer pixel motion unit is an input 
to the sub-pixel motion estimation unit being modeled. The 
input to the current design is the optimal motion vector and 
the mean square error map with the optimal integer position 
at the center (4, 4). The Mean Square Error map consists of a 
9x9 grid around the optimal integer motion vector. This 
design can also be used as a sub-pixel interpolation unit in 
order to interpolate the sub-pixel values for higher resolution.  
The computational complexity and Memory & I/O 
bandwidth is reduced by inputting the mean square error map 
of the pixels to the Fractional Pixel estimator, and then 
searching in the sub-pixel grid. 
 

 
 

Table 3: Comparison of Mathematical Operations 
 

The half-, quarter- one eight- pixel motion estimator was 
designed, simulated, synthesized and verified at the gate 
level using the 28 nm TSMC process. The fractional pixel 
accuracy was achieved using a 2 stage spatial 8-Tap Digital 
FIR filter for the one eighth-pixel estimator of MPEG4/H. 
264. A total of 112 8-Tap FIR filters were used at the one 
eighth-pixel level in comparison to 188 8-Tap FIR filters and 

24 8-Tap filters at the quarter- and half-pixel levels, 
respectively, as shown in Table 3. 
The half-pixel design which is a 160,000 gate design, is 
working at a speed of 1.12 GHz and is achieved a maximum 
of 430 Giga Operations per Second (GOPS), at this speed. 
The quarter-pixel design which is a 320,000 gate design is 
working at a speed of 1.01 GHz and it achieved a maximum 

S.NO. Reference Article [30] [31] [32] [33] [35]

Author Lin Ding Zhou Sinangil Jou This Work

Year 2008 2009 2013 2013 2015 2015

Design Feature Standard

1 CMOS Technology H.264/AVC H.264/MVC H.264/AVC HEVC (HM3.0HEVC HEVC/H.264

2 Max Freq(MHz) 130nm 90nm 40nm 65nm 90nm 28nm

3 Max Resolution 145 280 210 200 270 1010

4 Frame Frequency(fps) 1920x1080 3840x2160 7680x4320 3840x2160 4096x2048 8192x4320

5 Frame Types 60 24 48 60 60 60

6 Reference Frame # P/B P/B P/B P/B P/B P/B

7 Support Tools 1 1 1 1 1 1

8 Max Search Range IME,FME IME,FME IME,FME IME,FME IME,FME IME,FME

9 Pipeline Unit +/‐128 +/‐16 +/‐64 +/‐64 +/‐64

10 Gate Count 16X16 16X16 16X16 ‐ 16X16 16X16

11 Memory Usage (KB) 283K 909K 2458K 1830K 778.7K 320K

12 Throughput(Mpel/sec) 18 ‐ 552 208 17.4 0.8

13 Supported Block Sizes 124 212 1593 497 503 2123

14 Sub‐pixel Accuracy All‐H.264 All‐H.264 8X8‐16X16 16x16,32x32,All HEVC All HEVC

15 Processing Power(GOPS) 1/2 1/2 1/2 1/2 1/4 1/8

16 ‐ ‐ ‐ ‐ ‐ 2260

S.No. Design 1/2‐Pixel 1/4‐Pixel 1/8 Stage 1 1/8 Stage 2 1/8 Stage 3 1/8 Total

1 # of Comparisons 20 100 552

2 # of Equations 24 100 112 48 128 288

3 # of Multiplier /Equation 8 8 8 1 0 9

4 # of Adder / Equation 7 7 7 2 1 10

5 # of Divisions  / Equation 1 1 1 1 1 3

6 # of Operations 16 16 16 4 2 22

7 Total # of Multiplications 192 800 896 48 0 944

8 Total # of Additions 168 700 784 96 128 288

9 Total # of Divisons 24 100 112 48 128 288

10 Total # of Operations 384 1600 1792 192 256 2240

11 (GOPS) 430.08 1616.00 1809.92 193.92 258.56 2262.40

12 Speed(GHZ) 1.12 1.01 1.01 1.01 1.01 1.01



 

~ 952 ~ 

International Journal of Applied Research 
 

of 1616 Giga Operations per Second (GOPS) at this speed. 
The one eighth-pixel design which is a 320,000 gate design 
is working at a speed of 1.01 GHz and it achieved a 
maximum of 2262 Giga Operations per Second (GOPS) at 
this speed. This design outputs data at the rate of 1.8 Tera 
bits per second, at 1.01 GHz, as shown in Table 2. 
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