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Introduction

Understanding the functional architecture of the primary visual cortex (V1) in

mammals has become a major subject within the neuroscience research field. Since

the first publications of Hubel and Wiesel in the 1960s, many scientists from very

different backgrounds have tried to make their contribution to the general objec-

tive of writing a mathematical model for the processes of visual perception and

cognition [51, 52].

As soon as electrophysiology permitted the recording of the activity of single

cortical neurons, the concept of receptive fields (RFs) emerged. The concept of a

receptive field has been widely spread in the academical scenario since the begin-

ning of the century, when Sherrington first coined the term to describe the area of

the body surface where a stimulus could elicit are reflex [110]. In 1938, Hartline

refined the concept and extended it to sensory neurons, stating that “responses

can be obtained in a given optic nerve fiber only upon illumination of a certain

restricted region of the retina, termed the receptive field of the fiber” [45]. This

hasn’t been a trivial discovery, as the first electrophysiological experiments made

on ganglion and bipolar cells were made using spatially unlimited stimuli, as the

brightening of a whole screen, causing small or irrelevant changes in the neural

response. Later, the term was also extended to other neurons in the visual path-

way, defining the limited area within the visual space where a luminous stimulus

could drive electrical responses in a given visual neuron. This electrical response

9



10 CHAPTER 0. INTRODUCTION

can be defined as the firing rate or take into account also sub-threshold activity —

depolarization and hyperpolarization of the membrane potential that do not give

rise to an action potential. While the latter choice is obviously the only possible

for studying bipolar cells, as their activity do not generate spikes, the RFs of cells

belonging to higher cortical areas are generally recovered by the elaboration of

their firing rate behavior.

After the pionierisitc work of Hubel and Wiesel, it is widely known in the aca-

demic environment that simple and complex cells in V1 are characterized by elon-

gated receptive fields, and consequently respond best to elongated stimuli, namely

bars, edges, boundaries or contours. With the development of advanced RF re-

construction methodologies, it was demonstrated that their different sensitivity

regions could be modeled with plane waves modulated in amplitude by a Gaussian

envelope. These bi-dimensional Gabor functions lead to the discovery that cortical

neurons are designed to efficiently solve the uncertainty between space/frequency

localization of the visual stimulus [53, 54, 24]. Further studies discovered the main

role of the temporal dimension in the description of the elaboration that the brain

performs on the visual signal coming from the retina [17]. Particularly interesting

spatio-temporal behaviors were found in the response properties of neurons be-

longing to the lateral geniculate nucleus (LGN) and to V1, with excitatory and

inhibitory sub-regions translating through time from the stimulus onset [26, 93].

Indeed, A large class of simple cells and the vast majority of complex cells in V1

shows a very specific space-time behavior in which the spatial phase of their RF

changes gradually as a function of time. This results in RF profiles that tilt along

an oblique axis in the space-time domain.

In the first chapter I will resume the findings oobtained by analyzing a data set

of this kind of spatio-temporal RFs reconstructed by electrophysiological record-

ings via the method of reverse correlation. The data that I reconstructed refers
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to 93 spatio-temporal RFs completely describing the response dynamics of V1

simple and complex cells belonging to adult mammals (cats), using stimuli com-

prising both spatio-temporal white noise distributions and natural scenes. The

RFs were fitted using a 3-dimensional Gabor model, which minimizes uncertain-

ties between localization the classical and the Fourier domain. Approximating

the raw data with this model and analyzing the results, I found relevant phys-

iological constraints operating within the parameters characterizing the cortical

cellular behavior. In fact, the modeled spatio-temporal RFs do not span the whole

parameter space, but define a particular sub-space that is sufficient to describe

all simple and complex cells in V1. In this thesis I identify this sub-space and I

will propose an additional constraint operating within cortical cells: a minimiza-

tion of the uncertainty over local velocity measurement. This study showed that

spatio-temporal receptive profiles can be well approximated by the weighted sum

of three-dimensional Gabors, and their unique organization optimizes the spatio-

temporal resolution, i.e. the precision with which a neuron can locate stimulus

velocities.

Thus, the discovered characteristics of the cells in the primary visual cortex

suggest to regard an image as a set of points defined on an extended domain, where

every point belonging to the image plane R2 is lifted to a point in an extended

n-dimensional space. Indeed, we know that these cells are spatially organized

in such a way that for every point (x, y) of the retinal plane there is an entire

set of cells, each one sensitive to a particular instance of the considered feature,

that could be the one of local orientation or velocity, giving rise to the so-called

hypercolumnar organization. Hypercolumnar organization and neural connectivity

between hypercolumns constitute the functional architecture of the visual cortex,

that is the cortical structure underlying the processing of visual stimulus.
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The mathematical modelling of the functional architecture of the visual cor-

tex in terms of differential geometry was introduced with the seminal works of

Koenderink [57] and Hoffmann [48, 49]. While the first author pointed out the dif-

ferential action of perceptual mechanisms, in particular with respect to jet spaces

arising from linear filters, the second author proposed to model the hypercolumnar

organization in terms of a fiber bundle structure and pointed out the central role of

symmetries in perception expressing them in terms of Lie groups and Lie algebras.

The problems of perception can also be addressed by a purely psychophysical

approach. The study of Field Hayes and Hess [34] introduced the notion of associ-

ation field, as path of information integration along images that can quantitatively

satisfy the assumptions of the Gestalt principle of good continuation. The percep-

tual role of this mechanism was indeed that of contour integration, that typically

occurs along field lines associated to locally coherent directions in images.

Almost simultaneously Mumford [73] proposed a variational approach to de-

scribe smooth edges, in terms of the elastica functional, that could be implemented

with stochastic processes defining curves with random curvature at any point. In-

deed, they produce probability distributions in the space R2 × S1 of positions

and orientations whose probability peaks follow elastica curves. Williams and Ja-

cobs [136] used such stochastic processes to implement a mechanism of stochastic

completion, and interpreted the probability kernel they obtained as tensors repre-

senting geometric connections on the space of positions and orientations associated

to the neural representation of images due to simple cells.

Many of such results dealing with differential geometry were given a unified

framework under the new name of neurogeometry by Petitot and Tondud [89],

who related the association fields of Field Hayess and Hess with the contact ge-

ometry introduced by Hoffmann and the elastica of Mumford. The problem of

edge organization in images was then addressed in terms of a stochastic process of
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the type of Mumford, introducing nonlinearities in order to take into account the

role of curvature, by August and Zucker [6, 7], while the variational approach of

Nitzberg, Mumford and Shiota was extended from edges to level lines of images

by Ambriosio and Masnou [3].

Then, in [19], Citti and Sarti showed how the functional architecture could be

described in terms of Lie groups structures. They interpreted the geometric action

of receptive profiles as a lifting of level lines into the space R2×S1 of positions and

orientations, and addressed the problem of occlusion with a nonlinear diffusion-

concentration process in such a space of liftings. In particular, this approach

allows to introduce orientation, instead of depth, as a third dimension for the

disentanglement of crossing level lines. In their model, then, contour completion is

justified as a propagation in the sub-Riemannian setting, and the integral curves of

the vector fields that generate the Lie algebra can be considered as a mathematical

representation of the association fields of Field, Hayes and Hess, hence proving the

relation between neural mechanisms and image completion. This method was then

concretely implemented in [105]. The problem of boundary completion was also

addressed from a slightly different point of view by Zucker [141], who showed the

role of Frenet frames.

Exact solutions to the Fokker-Planck equation associated to Mumford stochas-

tic process were provided by Duits and van Almsick [31], and later Duits and

Franken [28, 29] unified such stochastic approach with nonlinear mechanisms of

the type of August and Zucker, keeping left invariance with respect to the Lie

symmetry of the Euclidean motion group and yet allowing the invertibility of the

whole process. Their result was applied to the problem of contour enhancement

and contour completion, working on the whole Lie group by means of a repre-

sentation via suitably defined linear filters. This approach was then extended to
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different geometric setting by Duits and Führ [30], again with applications to the

processing of images.

In the second chapter of this thesis I describe an extension of the Citti-Sarti

model of neurogeometry [19]. In the proposed geometrical setting, a base variable

(time) and a fiber variable (local velocity) are added to the R2×S1 contact struc-

ture of visual position/local orientation: this defines a fiber bundle, a generaliza-

tion of the cartesian product (x, y, t)×(v, θ), where to every spatio-temporal point

(x, y, t) of the base space is associated the full fiber of possible values of orientation

and velocities (v, θ). To each point in the space (x, y, t, v, θ), thus, is naturally

associated the hyper-plane (called horizontal hyper-plane) whose x − y projec-

tion is the line with orientation θ. Curves passing through a point (x, y, t, v, θ),

with orientation θ, and velocity v are called admissible or horizontal curves of

the structure, since their tangent vector always belong to the horizontal plane.

Due to these admissibility conditions, a local stimulus measurement represented

by a point m0 = (x0, y0, t0, v0, θ0) of the manifold will have a certain probability

of pertaining to affine stimuli occupying given admissible regions on the space.

Considering the resulting probability density function as the probability of the

activity of two cells in the visual cortex of being mutually facilitated by long-range

horizontal connections, we can model the propagation of the measurements per-

formed by the visual cortex by first convolving a stimulus with a set of 3D Gabor

functions, and then convolving the output with the stochastic kernel generated by

the proposed contact structure. In particular, I will show through two numerical

simulations that this connectivity model can correctly reproduce some non-linear

spatio-temporal behaviors of the cells in the primary visual cortex, allowing me to

propose a possible mechanism underlying different non-trivial effects found in the

literature by means of phenomenological and psychophysiological experiments.
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As previously mentioned it is well understood since the beginning of the cen-

tury, when the psychological concepts of the Gestalt began to be defined, the

importance of key global properties of the visual stimulus (neighboring, good con-

tinuation, etc.) in the execution of visual cognitive tasks as image segmentation

and grouping [134, 124]. Field et al. made some experiments where observers were

presented with an ensemble of Gabor patches, a subset of which was consistently

aligned along a continuous path. Analyzing whether observers perceived the em-

bedded path or not, they drew position/orientation perceptual association fields,

showing that stimulus co-linearity and co-circularity play an important role for

feature grouping. Their study showed how chances of perceiving the curvilinear

path were high, if the orientation of its features was the one tangent at that point,

collapsed as their relative orientation deviated from being tangent, and became

significant again when the elements were set orthogonally to the path [34].

We know from many phenomenological findings that the grouping properties

obtained by spatial collinearity can easily be broken if one associates a speed and

an orthogonal direction of movement to each oriented segment, where the orthog-

onality is a constraint suggested by the spatio-temporal RPs in the visual cortex.

Limits have been found on the maximum rate of change of local speed along a con-

tour, so that based on that visual information the perception of boundaries and

shapes is possible. Indeed, a random speed distribution over a dashed line would

completely destroy the perception of a single unit as a whole, while enhancing the

impression of different segments pertaining to the random background field [92].

Following these findings, it has been introduced by Rainville the concept of

motion contour [92]: carrying out some psychophysiological experiments he showed

how the brain groups features together also relying on the local speed perpendicular

to their orientation axis, with coherent velocities being represented by velocity

fields that vary smoothly over space. The former study expanded the already
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known notions that local stimulus velocity is discernible (thus determinant for

grouping purposes) only when it is orthogonal to the perceived contour or it is

not part of a trajectory [60, 46, 121]. Coherently, the analysis carried out in

Chapter 1 over a data set of cortical neurons in the primary visual cortex showed

how the spatio-temporal shape of their RFs is biased to optimally measure the

local stimulus velocity. Thus, it may be inferred that stimulus local direction of

movement and speed are additional features driving the spatial integration involved

in the perception of shapes and contours.

Another kind of grouping is the one that we perform in space-time, for example

when a distinct moving or deforming shape disappears and reappears in the visual

field because of the occlusion caused by another moving object. Similarly to what

happens for the integration of spatial visual information, the brain is capable to

easily predict stimulus trajectories, and to group together elements having similar

motion or apparent motion paths. The facilitation in detecting stimuli in motion

given a previous cue with coherent trajectory is found to be significantly high, and

it cannot rely just on the temporal response summation given by the onset and

offset dynamics of classical RFs [118]. One possible explanation for these non-

linear effects could be the existence of a specialized facilitatory network linking

cells anisotropically and coherently with their axis of motion direction. Ledgeway

and Hess studied the perception of spatial contours defined by non-oriented stimuli

moving coherently and tangentially along a path, finding rules similar to the ones

driving facilitation in position/orientation and inferring a possible role played by

a trajectory-specialized network [59]. Another possible evidence of a trajectory-

driven connectivity comes from a recent study of the dynamics of neural population

response to sudden change of motion direction, where it is shown that for low

angular changes a non-linear part of the response provides a sort of spatio-temporal

interpolation [138].
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Unfortunately, most of the literature on the phenomenology of motion percep-

tion put the focus on moving dots. With this particular experimental setting, the

presence of a facilitation governing trajectory prediction could also be explained

by the classical orientation-driven horizontal connections in response to fast mo-

tion streaks [38, 40]. Indeed, the important role played by V1 collinear horizontal

connectivity in motion perception has been already hypothesized by Georges et al,

who showed that perception of speed is biased by the orientation of a feature’s axis

of motion: in particular, flashing orientated Gabor patches are perceived as mov-

ing faster when they are tangential to the path of apparent motion, while placing

them orthogonally makes the effect vanish. Their subsequent analyses outlined

that the paths of apparent motion can also be curvilinear, coherently with the po-

sition/orientation association fields, and the effect is maximum when the apparent

speed matches the conduction velocity of the long-range horizontal connections be-

tween orientation-selective cells in V1 [112]. Nevertheless, a recent study showed

how trajectories of oriented segments are significantly more detectable for orien-

tations orthogonal to the path of motion, thus once more proposing the existence

of two different facilitatory mechanisms [86].

In the third and final chapter I will carefully test the visual spatio-temporal

grouping properties of the connectivity geometrical model proposed in Chapter 2.

To simulate this grouping effect, I use the a priori geometrical knowledge under-

lying the definition of the contact structure described in Chapter 2, by applying

it to a revised version of a popular method for dimensionality reduction, that is,

spectral clustering. I will show how, in the case of spatial grouping of contours

in motion, even if the visual perceptual units can be correctly retrieved and dis-

tinguished by using just the information on position and local orientation, the

spatio-temporal information of local velocity greatly improves the quality of the

grouping, assigning to the main objects much less outlier elements, such as noise
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or background. In the end of the chapter I will apply the same methodology to

full shapes and contours moving in time, so that the perceptual units are defined

over the whole R2×R×S1×R+ spatio-temporal domain. In this case, the affinity

matrix can be built using as affinities the values of the 5-dimensional stochastic

kernel described in Chapter 2. I will test two different methods of spatio-temporal

grouping of shapes, relying on the cellular mechanisms of cortical functional areas

V1 and V5/MT, and basing on the results I will discuss and propose the possi-

bility of having many different cortical areas cohoperating in order to carry out

advanced tasks of visual grouping.



Chapter 1

The perception and

representation of motion in V1

1.1 Introduction

In this study, 93 spatio-temporal RF profiles completely describing the response

dynamics of V1 simple and complex cells belonging to adult cats were reconstructed

via reverse correlation and spike-triggered covariance analysis, using stimuli taken

from both spatio-temporal white noise distributions and natural scenes. Appro-

priate expedients were used in order to attenuate the effects that derive from using

data recorded with different experimental procedures.

The aim of this chapter is to show that while spatio-temporal receptive pro-

files can be accurately approximated by the weighted sum of three-dimensional

Gabors, their unique organization optimizes the spatio-temporal resolution, the

precision with which a neuron can locate stimulus velocities. The 3D Gabor model

minimizes uncertainties between localization in classical domains (the two spa-

tial dimensions and the temporal dimension) and localization in Fourier domains

(three-dimensional Fourier space), dictated by the general information theory’s un-

19
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certainty principle [24, 36]. Approximating the raw data with this model and an-

alyzing the results, I found relevant physiological constraints operating within the

parameters characterizing cortical cell behavior. In fact, modeled spatio-temporal

RFs do not span the whole parameter space and define a particular sub-space

that is sufficient to describe all simple and complex cells in V1. This sub-space

was identified and an additional constraint operating within cortical cells has been

proposed, a minimization of the uncertainty over velocity measurement.

In section 2A I briefly describe the reconstruction of the data set used for the

analysis. In section 2B I present the 3D Gabor model used in this paper to approx-

imate the raw RFs data, with an analysis of its main advantages and drawbacks.

Section 3A shows the distributions of some of the parameters extrapolated from

the fitting process, while in section 3B I define a new kind of uncertainty over

velocity measurement and calculate it for each RF in the data set. Finally, in

section 4 I conclude these analyses and suggest possible future developments.

1.2 Methods

1.2.1 RF reconstruction

Primary visual cortex simple cells can be seen as a linear systems with multiple

inputs, each referring to a different point within the RF, and a single output,

followed by a non-linear stage involving saturation and the generation of action

potentials. The linear stage of these systems is fully characterized by a 3D spatio-

temporal impulse response h(x, y, t) [97]. Intuitively, one can imagine this impulse

response as a temporal sequence of spatial maps over the X-Y plane, one for every

time instant after stimulation. This sequence can be played as a movie and is a

convenient visualization that describes the spatio-temporal dynamics of the neural

sensitivity of a given cortical cell (Fig. 1.1).
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Figure 1.1: In the first row is shown the time course of a simple cell’s RF. In

the second row are plotted, for each frame, one-dimensional profiles obtained by

summing RF data along the axis parallel to the cells preferred orientation. The

middle vertical line in these plots highlights how the RF subregions shift in space

through time. This cell is direction-selective and this kind of profile is said to be

space-time inseparable. The time interval between each frame is 15 msec. (Two

columns)

The first data set analyzed in this paper was downloaded from the Visiome

Network, a web-based database system with a variety of digital research resources

for vision science [122]. The package contained raw spike data file samples coming

from electrophysiological recordings made on adult cats for a total of 8 binocular

simple cells. Stimuli were dark and bright oriented bars projected at random

positions within the RF of the cell being recorded. As these cells were responding to

visual information coming from both eyes, two receptive profiles could be extracted

from a single cell, representing the linear spatio-temporal behavior of the neuron

with stimuli coming from the right or the left eye. The data was shared by Ohzawa

who, with DeAngelis and other authors, used it to make a series of studies on cat

simple cells, dealing with cell development, binocular disparity and general cortical

organization of simple cells in both adult cats and kittens [26, 25, 79]. The reverse

correlation process was carried out by a software application released by Ohzawa

together with the data.
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I recovered a second data set by analyzing neural data recorded from adult

cats by Tim Blanche in the laboratory of Nicholas Swindale, University of British

Columbia. Data were made available on the NSF-funded CRCNS Data Sharing

website [23]. The stimuli utilized were natural scenes, thus I utilized a modified

version of the reverse correlation process for the reconstruction to avoid biased

RF estimates. The details of this method can be found in [116]. I utilized only

six RFs out of ten for the analysis in this work, all of them belonging to simple

cells. As recordings were made using polytrodes through various cortical layers

[12], there was no prior assurance about the homogeneity of the cell types. In

fact, I discarded four of the reconstructed profiles as they presented much more

complicated behavior and a high level of noise.

Another data set was downloaded from the NSF-funded CRCNS Data Sharing

website [23], obtained by extra-cellular recordings from V1 of anesthetized adult

cats. Visual stimuli were one-dimensional white noise (random bars) aligned to the

preferred orientation of each cell. These experiments were specifically performed to

measure the spatio-temporal RFs of cortical complex cells, and I utilized a spike-

triggered covariance method, whose detailed description can be found in [117],

to reconstruct 71 spatio-temporal sub-units (those features in the visual stimuli

affecting the firing probability of a complex cell) driving the neural responses of

48 cells.

1.2.2 RFs fitting with the 3D Gabor model

The method that I utilized for modeling spatio-temporal simple cell profiles and

complex cell sub-units is based on the well-established 2D Gabor model that is

conventionally used in describing cellular sensitivity upon the two-dimensional

visual space [53, 54, 66]. This model is particularly significant, as Gabor himself

in his ground-breaking paper on information theory showed that the family of
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functions that take his name is capable of locating an event, both in position and

momentum, with the maximum precision possible, thus reaching the theoretical

limit over the uncertainty of the measurement of two conjugate variables given by

the uncertainty principle [36]:

(∆x)(∆y)(∆ξ)(∆η) ≥ 1

4
π2, (1.1)

where ∆x and ∆y are the uncertainty values over the localization along the x-

and y-axis, while ∆ξ and ∆η are the uncertainty values relative to the localization

within the bi-dimensional Fourier domain.

It is known that the notion of a bi-dimensional Gabor wavelet can be general-

ized from two spatial dimensions to three spatio-temporal dimensions (2D space

and time) [1, 90]. This model can be simplified if one decides to sacrifice the

information relative to the axis parallel to the elongated sub-regions direction in

favor of a simpler description of a cell’s spatio-temporal behavior: this is possible

by summing each frame along the cell’s preferred direction in order to reduce the

model to a plane wave within an opportune spatio-temporal window, similarly to

what is conventionally seen for profiles over two spatial dimensions:

ǧ(x, t) = exp

{
−(x− x0)2

2∆x2
− (t− t0)2

2∆t2

}
× exp {−2πi [ξ0(x− x0) + ω0(t− t0)]} , (1.2)

where ω0 is the temporal frequency determining, together with the spatial fre-

quency perpendicular to the cell’s preferred direction (−η0, ξ0), the velocity at

which the excitatory and inhibitory sub-regions move within the area subtended

by the RF.

It is worth noting that in doing this we lose information about the RF be-

havior along the y axis, but we am not precluding the model from minimizing

the previously formulated uncertainty principle, as long as I suppose the RF has
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a Gaussian amplitude response along that direction. This simplified Gabor ker-

nel was utilized to accomplish motion perception tasks even before the reverse

correlation technique permitted the reconstruction of spatio-temporal RF profiles

[1, 129].

Thus, the spatio-temporal model results are very similar to the 2D spatial RFs,

one of the principal differences being the Gabor kernel orientation,

φ = arctan
ω0

ξ0

. (1.3)

When the 2D domain was merely spatial, this property referred to the orientation

that a stimulus had to present to get the maximum response from the cell. Ori-

entation in the spatio-temporal domain represents instead the optimal stimulus

velocity ω0/ξ0: the more the kernel is skewed, the higher the stimulus velocity for

which the cell is tuned. This is valid for both inseparable and separable profiles,

with the distinction that separable profiles respond maximally to both movement

directions. The stationary oscillations that are typical of separable profiles can,

indeed, easily be obtained by inseparable members of the Gabor family function,

leading to the final model I used for the fitting process:

ǧs(x, t) = exp [i(ξ0x− ω0t] + C exp [i(ξ0x+ ω0t] = 2 exp(iξ0x) cos(ω0t), (1.4)

where C is a constant going from 0 to 1. This parameter is called the separability

index, used also by DeAngelis in his model as being the sum of two separable

components [27]. The fitting results showed how cortical RFs rarely present purely

separable or purely inseparable profiles.

The scope of the modeling process is to evaluate the capacity of a cell in V1

to measure stimulus velocity. The proposed model is not causal nor physically

realizable as the Gaussian function modulating the RF temporal amplitude is

neither of these. Still, the fitting results show that it can be regarded as an

approximation of a causal filter as the Gaussian amplitudes at time t = 0 are
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always at the order of magnitude of the noise. The non-causal Gabor model allows

us to appreciably maintain the RFs main responsive properties while studying their

behavior by seeing them as optimal measurement systems and including as internal

parameters directly relevant features of the physiological visual processing stage

(especially temporal frequency).

The downside of this model is the almost systematic incapability of the tempo-

ral Gabor to capture the ending low-amplitude slow dynamics, which sometimes

appear in many cortical spatio-temporal RFs. After a quick spectral analysis, one

could infer that the role of these slow dynamics could be to approximately maintain

a null-mean temporal response without making the velocity-sensitive main dynam-

ics less effective. This observation is clear when one observes Fig. 1.2: along the

horizontal axis relative to the temporal null frequency the response amplitude of

the RF is always very low, thus not significantly responding to non-moving stimuli.

A quick review of the available literature shows how some previous models, like

the DeAngelis one, use a Gaussian envelope on a deformed time axis, thus still

ignoring the causality of the filter [27]. Some other models use a causal approach

to model the behaviour of cortical RFs, but in doing this one would sacrifice the

ease of the extrapolating meaningful parameters [1, 128, 33].

Spatio-temporal reconstructed raw data have been fitted using this model. A

total of 93 RFs were studied, 22 reconstructed from recordings made on simple

cells and 71 made on complex cells. Although the experiments in which the data

were recorded show some variations, as do the final assumptions they were thought

to show, I utilized various reconstruction methods in order to reduce the variance

due to these differences as much as possible, and the coherence found in between

elements belonging to different data sets suggests the success of the proposed

methodology. The accuracy of the approximations, the significant correlations

found within the parameter distributions, and the concordance of these correlations
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Figure 1.2: Plots showing reconstructed data relative to two RFs, both in spatio-

temporal classical and Fourier domains. Separable profiles can be obtained by the

product of two separate real functions defined over space and time (respectively),

and they respond to both stimulus movement directions, while inseparable profiles

are structurally direction-selective. The white lines on the spectral plots mark

the horizontal axis relative to the zero temporal frequency. It can be noted that

response amplitudes over this line remain consistently low, which is an effect of

the late slow dynamics of the RFs.
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with previously published studies allow us to say that the analysis carried out in

this thesis is in some way more robust and comprehensive than the previously

cited studies, investigating whether general constraints or relationships are present

within the cortex when it’s seen as a whole.

I have discarded four of the studied receptive profiles which had only one tempo-

ral semi-cycle, thus presenting the same spatial regions of sensitivities throughout

the whole duration of their impulse response. The reason is that the approxima-

tion with the Gabor model of these non-dynamical types of cells could give false

temporal frequency values. Overall, these analyses are focused on RF velocity

measuring capabilities, thus I am not interested in non-dynamical cells.

1.3 Results

The model fitted well the spatio-temporal profiles of both complex and simple

cells, and could robustly describe some temporal properties that were hardly or

only partially captured by other models. The results of the fit for some of the

cells in the data set are shown in Fig. 1.3. I calculated a percentage error for each

approximated RF by normalizing both the raw data and the fit so that the L2-norm

of their difference, divided by two, lies between 0 and 1. The mean fit error was

0, 34, a relatively low value considering the model utilized and the results obtained

in previous studies [27]. Each of the 93 receptive profiles can be labeled with

the four parameters that characterize the corresponding 3D Gabor filter: spatial

frequency ξ0, temporal frequency ω0, spatial width ∆x, and temporal width ∆t.

In the sections that follow, I will refer to frequencies as the absolute value of the

corresponding parameters found by the fitting process. The next section analyzes

the distribution of the filter parameters, discussing some of the correlations found

among them. Most of them are identified in the literature, but here the novelty is
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that they appear to be consistent within the three different datasets, disregarding

the distinction between simple and complex cells. The second part of the section

provides a remarkable new feature of this distribution in terms of optimality of

the family of filters with respect to velocity measurements.

1.3.1 Parameters distribution

One of the most studied indices found in the literature is the number of ON and

OFF spatial sub-regions within the RF area, driving the excitatory or inhibitory

effect that a visual stimulus has on the response of a cortical neuron. Using 1.5,

I can compute the sub-region index (DSI) as the number of half-wavelengths, or

semi-cycles, covered within two standard deviations:

DSI = 8∆xξ0. (1.5)

Fig. 1.4a shows the joint distribution of these two parameters. The totality

of the cells studied is shown. The distributions are plotted in logarithmic scale to

show clearly the inverse relation between the parameters, that in this representa-

tion are distributed along a straight line. It can be seen from the fluctuations that

are visible in the histogram that both simple cell profiles and complex cell sub-

units share the same approximate inverse proportionality relation. This fact has

a physiological significance, showing that RF profiles generally have two or three

spatial ON and OFF alternating sub-regions, which suggests that they could be

thought of as many scaled versions of some general basic structure. These results

confirm the conclusions previously made by other authors [25, 95].

Modeling spatio-temporal RF profiles with bi-dimensional Gabor functions al-

lowed us to make the sub-region analysis with respect to the temporal behavior.

The product between the impulse response duration ∆t and the preferred tempo-

ral frequency ω0 can be used to count the number of alternating excitatory and
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Figure 1.3: Plots showing four different example RFs from the data set - one for

each row. From left to right, original spatio-temporal data, the fitting obtained us-

ing the Gabor model and the function relating velocity uncertainty and RF shape.

The function shown in the right plot always presents an optimal value of ε where

the uncertainty over stimulus velocity measurement is minimized. Crossed circles

are plotted in correspondence to the value relative to the true spatio-temporal

shape of the plotted RFs, always placing themselves near to the theoretical min-

imum value. This is true for all the RFs in the data set. The fit error defined

at the beginning of section 3 for the RFs in the figure is, from top to bottom,

0, 23,0, 26,0, 19,0, 37.



30 CHAPTER 1. MOTION IN V1

inhibitory sub-regions subtended by the profiles. Fig. 1.4b shows the joint distri-

bution of the two temporal parameters, and a regularity in following the inverse

proportionality rule is also evident here.
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Figure 1.4: (a) In the left plot is the distribution of the number of sub-region

index (DSI) of the profiles and sub-units belonging to the cells studied: a Gaussian

function representing distribution mean and standard deviation is plotted with a

dashed line. The right-hand plot illustrates the inverse proportionality governing

size vs. spatial frequency distribution with a continuous line corresponding to the

mean value of their product and dashed lines corresponding to the mean ±2SD.

(b) The same type of plots show relations between temporal frequency and RF

duration.

Once again, I have chosen to analyze only cells which present dynamic behavior,

discarding those whose receptive profile was not oscillating with time. With this

in mind, we can appreciate how in this case the DSI distribution is narrower than

in the spatial case, with temporal dynamics generally lying between 1,6 and 2,4
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semi-cycles. This index distribution seems to infer that cortical neurons do not

need more than one oscillation to accomplish the task for which their temporal

behavior is designed. From the point of view of velocity estimation, this seems to

be adequate to measure a motion that is approximately linear and uniform within

the time window, providing a more rough characterization than the one given by

spatial resolution. It is also worth noting that, dividing the mean values of the

two distributions we obtain the following:

∆tω0

∆xξ0

= v
∆t

∆x
' 2

3
, (1.6)

from which it is possible to infer that RFs in the data set have plane waves

that travel through approximately the 2/3 of the total RF size in the time ∆t in

which they are active.

These results confirm the conclusions previously made by other authors that the

number of spatial excitatory and inhibitory sub-regions of a cell RF is constrained

to stay within a small range of values [25, 95]. Sasaki and Ohzawa, performing

a study comparing simple and complex cells, stated that complex cell sub-units

generally present significantly more sub-regions than simple cell profiles [108]. This

fact was not confirmed by the present work, although there were significantly

fewer recovered simple cell profiles than complex cell sub-units. Furthermore,

recent studies have pointed out that the distinction between simple and complex

cells cannot be made as easily as previously thought, and parameter bimodal

distributions might be directly caused by this classification [69].

One of the most widely researched relationships between RF profile parameters

of visual neurons is the one that compares the tuning for spatial frequencies with

the preference for temporal frequencies. Many authors in the last two decades

have noticed how a negative correlation between these two variables is generally

appreciable, that is, cells tuned for higher spatial frequencies will most probably
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present slower temporal dynamics in their responses to visual stimuli and vice

versa. This trend was found in independent studies involving electrophysiological

recordings from both LGN cells and cortical neurons, regarding both simple and

complex cells [67]. Nevertheless, the nature of this relationship, whether the pa-

rameters are directly or inversely proportional, has never been precisely defined,

mainly because of the wide variance that the distribution presents. Intuitively,

when working with variables related to physiological response spectral character-

istics one could expect the values to present asymptotes corresponding to their

physical constraints, yielding to an inversely proportional relationship. Recently,

Tan and Yao asserted that the spatio-temporal characteristic distribution of visual

neurons in the LGN is the one that provides the most efficient way to represent

stimulus information [115]. In doing this, they showed that the joint distribution

of preferred spatio-temporal frequencies seems to follow a strict inversely propor-

tional rule, the product of the two parameters being always lower than a certain

value.

Simple cell RF spatio-temporal dynamics were studied by DeAngelis [26]. He

also investigated the changes in the parameter distribution during the cortical

development by making recordings from visual neurons of adult cats and kittens

aged four- and eight-weeks. As a result, he found a significant negative correlation

between spatial and temporal frequency tuning in adult cats, and he noticed how

this relationship does not occur innately, but slowly emerges along with the brain

development. Again, the joint parameter distribution was so sparse that a clear

relationship was indistinguishable, even if a general trade-off between the two

selectivities was fairly evident.

Fig. 1.5a shows the joint spatio-temporal frequency distribution of the 93

studied profiles. It is possible to see that a fairly significant negative correlation is

present, although the great distribution variance does not make it possible to infer
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that this is the exact general rule followed by cortical neurons. This distribution

agrees with the findings of DeAngelis, whose joint parameter distribution is very

similar to the one shown here.

Another constraint that seems to limit the possible Gabor filters used by V1

to process visual stimuli is shown in Fig. 1.5b, where the joint distribution of

the uncertainties relative to the two classical domains, ∆x and ∆t, is plotted.

A significant negative correlation is present here, even if the distribution is very

sparse.

Physiologically, this fact can be interpreted by recalling the fact that cells that

have larger RFs receive input from a greater number of retinal photoreceptors

in the first place, which concur in raising the membrane potential of the output

synapsed ganglion cells more rapidly. It is possible, then, to imagine these retinal

cells starting to spike and exhaust the sensitivity of their impulse response, for

example, because of early inhibition before other cells with smaller RFs. This

temporal advantage could be propagated (and, perhaps, amplified) as visual infor-

mation travels through the neural visual pathway. This reflects, in some way, the

explanation that Weng, Yeh and Alonso gave to explain the fact that RF size and

response latency are directly correlated within the cat LGN [133]. Furthermore,

this would not contradict the well-established fact that pre-cortical axon conduc-

tion velocities favor the cells that process the lowest spatial frequencies [67].

The sparsity of this distribution is justified if one regards the RFs as stimu-

lus velocity measurement filters: in fact, as we will see in the next section, the

sensibility range of stimulus velocity is not only a function of these two variances,

but also, in a more complex way, of the position in the spatio-temporal spectral

plane. From a signal processing point of view, it therefore makes sense for this

distribution correlation to be fairly small.
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Figure 1.5: (a) Joint spatio-temporal frequency distribution. Complex cell sub-

units are indicated as black squares, while simple cell profiles are drawn as circles.

A dashed line is drawn over a robust linear regression performed over the dis-

tribution: it is not intended to fit the data, but just to graphically render the

parameters’ correlation. This notation is followed within all next subfigures. (b)

Joint spatio-temporal uncertainties distribution. (c) RF sizes vs. preferred stimu-

lus velocity. A strong direct proportionality seems to drive these two parameters’

distribution. (d) RF profile duration vs. preferred stimulus velocity. A significant

negative correlation is found. (Two columns)
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Dividing temporal frequency (ω0) by spatial frequency (ξ0), one can determine

a cell’s preferred stimulus velocity, which I will call v0. This is true for both

separable and inseparable profiles, the only difference being in spatio-temporally

separable profiles responding with approximately the same strength for the two

possible stimulus movement directions. In fact, if a stimulus were a dark or a

bright bar moving in time, in the same representation used to create X-T plots

this would be viewed as skewed stripes, which would have width and orientation

related to its spatial and temporal frequency. In the spatio-temporal Fourier plane,

the preferred velocity of a cell corresponds exactly to the slope of the line passing

through the origin and intersecting the point that has coordinates given by the

neuron’s preferred spatio-temporal frequencies.

The relationship between preferred velocities and spatial uncertainty is the one

that presented the strongest correlation coefficient. Fig. 1.5c illustrates a regular

direct proportionality between RF sizes (along the axis perpendicular to the cell’s

preferred direction) and preferred stimulus velocity. This means that cortical cells

that have the largest RFs are the ones whose task is to process the visual events

that have the highest stimulus velocity, and this scheme appears to stand for every

kind of cell, complex or simple, that has separable or inseparable profiles, in V1.

Fig.1.5d, shows velocity tuning plotted against profile duration: in this case the

correlation is not as strong as before, although it still presents a significant value.

Nevertheless, a simple assertion can be made: there were no cells in the data sets

studied that were tuned for detecting high stimulus velocities and whose response

duration was within the highest values found.
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1.3.2 Spatio-temporal uncertainty

In the spatio-temporal Fourier plane shown in Fig. 1.6, it is possible to define

velocities as the ensemble of points in the plane satisfying the relation

v0 =
ω0

ξ0

. (1.7)

This is true for every line passing through the origin, which thus can be associated

with velocity values. For simplicity, I will refer to them as iso-velocity lines. As

the 3D Gabor model I have used to approximate the receptive profiles has spatial

and temporal frequency axes as principal axes, it is not possible to calculate a

velocity bandwidth value by just combining the parameters defining spatial and

temporal variances. Nevertheless, some tentative predictions about the shape and

dimensions of the RFs in the data set can be made: the parameter distribution

that has been previously examined limits the possible shapes and positions over

the spectral spatio-temporal plane through which a primary visual cortex neuron’s

receptive profile can be modeled. While the spatial versus temporal frequency

distribution seen in Fig. 1.5a constrains center position, Figg. 1.5c and 1.5d

show that a higher iso-velocity line angular coefficient (a greater velocity value)

corresponds to wider temporal frequency and narrower spatial frequency variances

(uncertainties).

Another way to visualize the spatio-temporal organization of cortical cells is to

see the RFs as filters covering the spatio-temporal frequency space. Fig. 1.7 shows

the scatter plot of the responses of the cells belonging to the data set studied. Here

we can clearly see how the spatio-temporal Fourier plane is far from being com-

pletely spanned by the RFs. Instead, a triangular shaped pattern emerges so that

stimuli carrying both high spatial and high temporal frequencies, together with

those that have extremely high or extremely slow velocities, are lacking “ded-
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Figure 1.6: Sensitivity ellipses representing three sample Gabor functions in the

spatio-temporal Fourier plane. Uncertainty over stimulus velocity measure can be

defined as the difference between the angular coefficient of the two iso-velocity

lines tangent to these ellipses.
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icated” sensory neurons and cannot therefore be perceived. This fact will be

discussed further in the next section.

As with spatial and temporal frequencies, one can also calculate the bandwidth

for a cell’s velocity tuning, that is, uncertainty over velocity measurement. To find

velocity measurement uncertainties, I construct an ellipse for every cell, centered

at the coordinates (ξ0, ω0) indicated by its spatio-temporal frequency sensitivity

having ∆ξ and ∆ω as its semi-axes. This would be nothing else but a contour line of

the Gaussian function representing the cell’s frequency response amplitude. Then,

I define the spatio-temporal uncertainty ∆v of a given neuron as the difference

between the velocity values associated to the iso-velocity lines tangent to this

sensitivity ellipse. Stimuli that are capable of significantly influencing a neuron’s

firing rate should be moving at a velocity within v0±∆v/2: this quantity measures

the precision with which a neuron locates stimulus velocities. It is important to

note that this definition of uncertainty is not formally related to an uncertainty

principle, like ∆x and ∆t. Here I define the uncertainty on the measured velocity as

the fluctuations that are associated to this derived quantity when the parameters

ξ0 and ω0 are allowed to have fluctuations within one standard deviation.

It is worth considering the effects on cortical information processing that these

relations imply. For every modeled cell in the data set, I take the four Gabor

kernel parameters ξ0, ω0, ∆x, ∆t, that uniquely identify its receptive profile’s

position over the spectral spatio-temporal plane. Then for every receptive profile,

I maintain its spatial and temporal frequency values and define two new variables,

the spectral sensitivity area

SA = ∆ξ∆ω, (1.8)

and a positive shape or eccentricity index for the Gaussian sensitivity function:

ε =
∆ξ

∆ω
. (1.9)
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The velocity uncertainty value ∆v, following the previous definitions, will be:

∆v = 2
√
SA

√
1
ε
ξ2

0 + εω2
0 − SA

ξ2
0 − εSA

. (1.10)

If for every receptive profile I fix spatial frequency, temporal frequency, and spectral

sensitivity area, it is possible to show how its uncertainty over velocity measure-

ment varies with eccentricity. In this way, I aim to perform a shape analysis over

the ellipses, as opposed to a dimensional analysis that could be made by fixing

the eccentricities and allowing the areas to vary, which is not interesting for the

purposes of this analysis.
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Figure 1.7: A scatter plot of the spatio-temporal sensitivity ellipses associated

to the RFs in the data set. The responses seem to be concentrated at mid-range

frequency values. However, it is possible to note how their shapes are not randomly

distributed: vertically elongated ones clearly prefer higher velocity values.

The results for some of the cells are shown in Fig. 1.3, where a given function

is associated to each profile (the original data and the Gabor fit are shown). These

functions always present an “optimal shape” where the uncertainty over stimulus

velocity measurement reaches a minimum value. Circles are plotted in correspon-

dence to the eccentricity value indicating the actual spatio-temporal shape of the
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profile. These graphs clearly show receptive profiles always placing themselves

near to the theoretical minimum value, if not exactly over it, seemingly present-

ing an impulse response of optimal size and duration - given their position in the

spatio-temporal spectral plane - and thus capable of detecting moving stimuli’s

velocities with the maximum precision possible.

This analysis shows V1 as having an efficient organization exploiting as far

as possible all of the studied degrees of freedom. Spatio-temporal uncertainty

is maintained at a low level within the visual cortex by assigning the detection

of higher velocities to the cells that have the largest RFs, and smaller spatial

frequency bandwidths, while lower velocities are generally detected by cells with

a longer response duration and a narrower temporal frequency bandwidth. This

confirms the fact that V1 tends to resolve physiologically, in the most efficient

way, some kind of uncertainty regarding both spatial and temporal domains so

that the possibility of drawing a general spatio-temporal cortical organization of

visual neurons can begin to be appreciated.

Indeed, the keyword that seems to best describe the efforts of the brain in

processing visual information is “efficiency”: from the Gabor-like spatio-temporal

impulse responses to the physiological trade-offs between spatial and temporal

measured frequencies and spatial and temporal sizes, V1 is designed to offer the

most accurate representation possible of the time-varying sequences of retinal im-

ages to the next stages in the visual pathway, allowing the brain a “window”

through which to interact with the surrounding physical world. The fact that this

is done by taking into account simultaneously both spatial and temporal retinal

information indicates that a primary raw work of movement detection is operated

by V1, whose conventionally accepted main role in visual processing regards re-

solving stimulus complexity over the spatial domain; and that this is worked out

with the maximum precision possible.
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Finally, recalling Figure 1.7 it can be observed how the spatio-temporal fre-

quency space is only partially spanned by the responses of the cortical RFs. In

particular, the triangular responsive shape found analyzing the data set is consis-

tent with the “blunted diamond” shape of the spatio-temporal window of visibility

found in psychophysical experiments and described by Watson et al [130]. The re-

sults suggest that the parceling of this window with spatio-temporally oriented

Gabor kernels is accomplished and driven by accuracy-based spatio-temporal or-

ganization.
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Chapter 2

Models of functional architecture

in the visual cortex

2.1 Introduction

The modular structure of the mammalian visual cortex has been discovered in the

seventhies by the pioneeristic work of Hubel and Wiesel [52, 51]. Many families of

cells contribute to sampling and coding the stimulus image. Each family is sensible

to a specific feature of the image: position, orientation, scale, color, curvature,

velocity, stereo.

The main behaviour of simple cells is that of detection of positions and local

orientations via linear filtering of the stimulus, and the linear filter associated to

a given cell is called its receptive profile. Daugman [24] proposed a criterion of

minimal uncertainty for the shape receptive profile, which results in two dimen-

sional spatial Gabor filters, that was later confirmed by Jones and Palmer [54] and

Ringach [94]. Simple cells also possess a temporal behaviour, studied by De Ange-

lis et al. [25], and spatio-temporal receptive profiles could again be interpreted in

Chapter 1 in terms of minimal uncertainty, resulting in three dimensional Gabor

43
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filters. However, not all cell activity in response to stumuli can be justified in

terms of linear filters, and nonlinearities can sometimes become relevant to model

their behaviours [41].

In this chapter I propose a mathematical model of cortical functional architec-

ture for the processing of spatio-temporal visual information, that is compatible

with both phenomenological experiments and neurophysiological findings. The

adopted theoretical framework follows the outlined path of mathematical models

of the activity of the visual cortex, and in particular it continues the geometric

approach of Citti and Sarti [19] to a space of higher dimension, since it takes

into account time and velocity of stimuli. I will extend the stochastic process of

Mumford [73] to this setting, working in a space of liftings arising from the filter-

ing with spatio-temporal receptive profiles, and make use of assumptions like the

ones of Ermentrout and Cowan [32] in order to construct a population dynamics

able to provide a new form of association fields adapted to the problem of mo-

tion integration and motion completion under occlusion. Moreover, the resulting

kernels will be comparable to measured neural activities in the presence of stimuli

characterized by their direction of motion.

The starting point in Section 3.2 is a process of detection resulting from linear

filtering with three dimensional Gabor functions with two spatial and one temporal

dimensions, which have been proposed as a model of spatio-temporal receptive

profiles of primary visual cortex simple cells (see [25], [20]). Spatio-temporal Gabor

filters extend simple cells Gabor behavior as spatial filters [24, 94], that proved

its usefulness for the classical task of edge detection, while its role for motion

detection was already pointed out in [90]. The Gabor transform takes in input a

moving image f(x, t), where x ∈ R2 are spatial coordinates and t ∈ R is time and

provides in output a representation of the signal in the phase space

f(x, t)→ F (q, s; p, ν),
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with q ∈ R2 and s ∈ R representing spatio-temporal position and (p, ν) represent-

ing, respectively, spatial and temporal frequency.

Since I am mainly interested in spatio-temporal dynamical aspects, I will assign

to temporal frequency the meaning of velocity v on the (x, t) coordinates. I will

also select the subset of all detected features corresponding to a fixed value of

|p|. This will end up to be a 5D manifold, with a contact structure, induced by a

normalization of the Liuoville form.

In Section 2.3 I will outline that this constraint carries a notion of admissible

curves [37] in a deterministic and a stochastic setting, allowing to compute the ker-

nels connecting filters in the 5D manifold. The stochastic processes are completely

determined by the described structures of the tangent space of the 5D manifold

and they turn out to be described by the fundamental solution of a Fokker Planck

equation [80]. In fact the processes contain diffusion in the fiber variables and

transport along the remaining generators of admissible tangent directions, in the

spirit of [73, 136]. I will compute these kernels in two limit cases: the motion of a

contour at a fixed time instant, and the motion of a point moving in time. The first

one reduces to the geometry of contours, with a notion of instantaneous velocity,

the second one corresponds to point trajectories in time, and can be related to the

subset of the Galilei group [114] on the plane.

In Section 2.4 I will discuss the compatibility of the previously calculated ker-

nels with psychophysiological findings reported in the recent literature. Then I

will insert the connectivity kernels computed in Section 2.3 in a neural population

activity model [32], regarding them as cortical facilitation patterns.

In section 2.5 I will use this population activity model equipped with the suit-

able connectivity kernels in two numerical simulations, comparing the results to

recent phenomenological findings of the perception of contours in motion [92], and
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to fMRI measurements of cortical neural activity related to motion perception

[138].

2.2 The geometry of spatio-temporal dynamics

In this section I extend an approach introduced in [19] that amounts to model each

V1 simple cell in terms of its receptive profile, to interpret its action as a Gabor

filtering, and to introduce a geometry of the space compatible with the properties of

the output. In this chapter I will consider each cell as sensitive to a local orientation

and apparent velocity, that is the velocity orthogonal to a moving stimulus. The

collected data lies on a five dimensional manifoldM of space, time, orientation and

velocity, a single cell being represented as a point onM. The geometric structure

of this manifold will be described in terms of a contact structure, that provides a

constraint on the tangent space and on admissible connectivity among cells.

2.2.1 Spatio-temporal receptive profiles

It is known that the visual cortex decomposes the visual stimulus by measuring

its local features. Local orientation and direction of movement have been the

first visual features of neurons in V1 that have been studied. Receptive profiles

(RPs) are descriptors of the linear filtering behavior of a cell and they can be

reconstructed by processing electrophysiological recordings [94]. It has been shown

that the spatial characteristics of these RPs can be modeled by 2-dimensional

Gabor functions [24, 54].

However a large class of cells shows a very specific space-time behavior in

which the spatial phase of the RP changes gradually as a function of time [25].

Although many models have been proposed to reproduce these dynamics [25, 1],

in [20] it has been shown that a 3-dimensional sum-of-inseparable Gabor model
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Figure 2.1: A spatio-temporal receptive profile taken from the data set studied in

[25] and [20] (cell n.15 in the latter reference). In the top row, the sequence relative

to the raw data, reconstructed using reverse correlation from electrophysiological

recordings. In the bottom row, the 3-dimensional Gabor fit, visualized as 2D slices.

can fit very well experimental data of both separable and inseparable RPs (Fig.

2.1). Following this approach, I choose Gaussian Gabor filters centered at position

q = (q1, q2) ∈ R2 on the image plane, activated around time s ∈ R, with spatial

frequency p = (p1, p2) ∈ R2, temporal frequency ν ∈ R, spatial width σx ∈ R+

(circular gaussians) and temporal width σt ∈ R+

ψσz (x, t) = ei(p·(x−q)−ν(t−s))e
− |x−q|

2

σ2x
− (t−s)2

σ2t (2.1)

where I have used the abbreviations z = (q1, q2, s) + i(p1, p2, ν) ∈ C3 and σ =

(σx, σt) ∈ R+ × R+. Also note that the functions (2.1) correspond to the propa-

gation of a two dimensional plane wave within the activating window with phase

velocity

v =
ν

|p|
. (2.2)
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Figure 2.2: Visualization of the one-form ω with respect to a cell RP. In the

left and center subplots are shown the isosurfaces of the RP already seen in Fig.

2.1. In the left plot I visualize the reconstructed data, while in the middle plot

I visualize its Gabor fit. The orientation of the yellow line within the fitted data

represents the orientation of the wavefront of the Gabor filter and coincides with

the one-form ω = cos θdq1 + sin θdq2 − vds, or the dual vector ~X. In the right

plot the semi-opaque red plane represents the horizontal tangent plane in the R3

spatio-temporal space, generated by ~X5 and ~X1 (blue line).

The variable z = (q1, q2, s) + i(p1, p2, ν) is canonically associated [35] to the phase

space

R6 = {(q1, q2, s, p1, p2, ν)} (2.3)

endowed with the symplectic structure compatible with the complex structure of

C3 of variable z, that is

Ω = dλ = dp1 ∧ dq1 + dp2 ∧ dq2 − dν ∧ ds

where I have denoted with λ the Liouville form

λ = p1dq1 + p2dq2 − νds. (2.4)

Since I am mainly interested in the geometry of level lines, the analysis can be

restricted to the information captured by filters possessing a fixed central spatial
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frequency |p|. This amounts to fixing a scale of oscillations, hence disregarding the

harmonic content of the filtering by focusing on the features of orientations and

velocity. We then obtain the reduced 1-form

ω =
λ

|p|
= cos θdq1 + sin θdq2 − vds (2.5)

where p = |p|(cos θ, sin θ). This form is defined on the spatio-temporal phase space

with fixed frequency, that is the 5-dimensional manifold

M = R2 × R+ × S1 × R+ = {η = (q1, q2, s, θ, v)},

and it is associated to every Gabor filter as shown in Fig. 3.1. At this level, time

s is introduced as a base variable with the same role of
(
q1
q2

)
. The dual variable

of s is v, which has the same role of θ, both being the engrafted variables with

respect to time and space. To every point of M corresponds univocally a Gabor

filter whose parameters are the coordinates of the point itself.

2.2.2 Admissible tangent space as constraint on the con-

nectivity on M

I will model the connectivity between points in the spaceM in terms of admissible

tangent directions of M itself. From the geometric point of view, the presence

of the 1-form (2.5) is equivalent to the choice of a vector field with the same

coefficients as ω with respect to the canonical basis { ∂
∂q1
, ∂
∂q2
, ∂
∂s
, ∂
∂θ
, ∂
∂v
}, that is its

dual vector (see Fig. 3.1):

~X = (cos θ, sin θ,−v, 0, 0).

The kernel of ω, denoted kerω (or ω = 0) is the space of vectors orthogonal to ~X.

A basis of this space is constituted of the so-called horizontal or admissible vectors

~X1 = (− sin θ, cos θ, 0, 0, 0) , ~X2 = (0, 0, 0, 1, 0)

~X4 = (0, 0, 0, 0, 1) , ~X5 = (v cos θ, v sin θ, 1, 0, 0)
(2.6)
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so that

kerω = span{ ~X1, ~X2, ~X4, ~X5} (2.7)

that defines the horizontal tangent space. It is worth noting that the Euclidean

metric on the horizontal planes makes the vector fields Xi orthogonal.

The only manifolds (curves or surfaces) admissible in this space are the ones

whose tangent vectors are linear combinations of the horizontal vectors (3.3). The

neural connectivity between the receptive fields at different points in theM space

will be defined in terms of these vectors in Section 2.3.

For reader convenience I compute here explicitly all the non-zero commutation

relations between the vector fields 1:

[ ~X1, ~X2] = ~X3 = (cos θ, sin θ, 0, 0, 0) (2.8)

[ ~X2, ~X3] = ~X1

[ ~X4, ~X5] = ~X3 (2.9)

[ ~X2, ~X5] = v ~X1.

In Fig. 2.3 I have depicted the structure of the tangent fields (3.3). For visu-

alization purposes, I show the fields in two different representations. In Fig. 2.3a

1To every vector field ~X = (a1, a2, a3, a4, a5) I can associate a directional derivative

X = a1∂q1 + a2∂q1 + a3∂s + a4∂θ + a5∂v

with the same coefficients. Then I will call commutator of X and Y

[X,Y ] = XY − Y X.

I say that X and Y commute if [X,Y ] = 0. Note that partial derivatives always commute,

while directional derivatives in general do not. It is important to note that, even though the

commutator is expressed formally as a second derivative, it is indeed a first derivative, so that it

has an associated vector. Hence I can as well define the commutator between the vectors ~X and

~Y as the vector associated to XY − Y X.
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(a) (b)

Figure 2.3: Visualization of the admissible tangent space of M, generated by the

vectors ~X1, ~X2, ~X4, ~X5. In a) I show the projection in the (q, θ) space. Red planes

are the sections of the horizontal planes, generated by ~X1 and ~X2. Red arrows

indicate the ~X1 direction, black arrows the v ~X3 one. In b) I depict the projection

in the (x3, s, v) space. The blue planes are the sections of the horizontal planes,

spanned by ~X4 and ~X5 The black arrows represents the v ~X3 as before.
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I visualize the structure restricted to the spatial and engrafted variables (q, θ, v),

spanned by ~X1 and ~X2. The tilting of the planes is due to the non commutative

relation (2.8). In Fig 2.3b I show the spatio-temporal structure restricted to the

variables (x3, s, v), where x3 = q1 cos θ + q2 sin θ. Also in this figure the tilting of

the planes spanned by ~X4 and ~X5 is due to the non vanishing commutator condi-

tion (2.9). It is worth noting that in this setting, the propagation is permitted only

along the horizontal planes, while it is forbidden in their orthogonal direction ~X.

Let us note that ~X3 = [ ~X1, ~X2] is linearly independent of the horizontal tangent

space at every point. Hence { ~X1, ~X2, ~X4, ~X5} together with their commutators

span the whole space at every point. This is the so called Hörmander condition,

which will have a crucial role in studying the property of the space. The same

condition can be expressed in terms of properties of the form ω, which is called

contact form [37] since ω ∧ dω is never zero being the volume form of the space.

I also note that I can define on M a smooth composition law

(q, s, θ, v)� (q′, s′, θ′, v′)

= (Rθ(q
′ +
(
v
0

)
s′) + q, s′ + s, θ′ + θ, v′ + v)

(2.10)

where Rθ is a counterclockwise rotation of an angle θ, that is such that the vector

fields { ~X1, ~X2, ~X3, ~X4, ~X5} are left invariant with respect to this law. This implies

that also the admissible curves of the structrue and its kernels will be invariant.

The manifold M together with this composition law can also be identified with a

subset of the Galilei group (see Appendix).

2.2.3 The output of the receptive profiles

The output of the Gabor filters selects a set of points in M corresponding to

specific features of the image. Since the Gabor filters are always connected in

terms of the vectors (3.3), also their output will inherit this structure, and will be

concentrated around an admissible surface.
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The energy output of a cell with receptive profile ψσz in presence of a spatio-

temporal stimulus f(x, t) is given by

F (q, s, θ, v)
.
= |〈ψσz , f〉|

2

=
∣∣∣∫

R3

dx dt e−i|p|((x−q)1 cos θ+(x−q)2 sin θ−v(t−s))

e
− |x−q|

2

σ2x
− (t−s)2

σ2t f(x, t)
∣∣∣2.

(2.11)

I note that taking the square modulus in (3.2) disregards the phase of the cor-

responding linear filtering, which for many applications (see e.g. [30]) is crucial.

In this case however all the relevant information is encoded in this energy model.

In particular the geometric quantities θ and v are encoded in the points of max-

ima of the energy. To see why, I recall that the analogous of formula (3.2) with

purely spatial Gabor filters was studied in [19], where the filtering output F0 was

a function of the variables
(
q1
q2

)
and θ alone (see also [47]). In order to outline

the goemetric meaning of the lifting, I consider its action on level lines which are

smooth. In that case, the output F0 to a stimulus f0(x) takes its maximum around

a value θ∗ = θ∗(
(
q1
q2

)
)

max
θ
F0(
(
q1
q2

)
, θ) = F0(

(
q1
q2

)
, θ∗)

where (cos θ∗, sin θ∗) identifies the orientation orthogonal to the level lines of f0(x).

As a consequence, in [19] it is proved that the level lines of f0 are lifted to curves

admissible in the sense that their tangent vector lies in the kernel of the form

ω3 = cos θdq1 + sin θdq2

which is a contact form that can be obtained by restricting (2.5) to the space

(
(
q1
q2

)
, θ).

Since here I take into account time, then the output F is a function defined

on M. In perfect analogy with the lower dimensional case, and denoting with

(
(
q1
q2

)
, s(
(
q1
q2

)
)) a level set of the stimulus f(x, t), the output F takes its maximum
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around the values θ∗ = θ∗(
(
q1
q2

)
, s(
(
q1
q2

)
)) and v∗ = v∗(

(
q1
q2

)
, s(
(
q1
q2

)
))

max
θ,v

F (
(
q1
q2

)
, s(
(
q1
q2

)
), θ, v) = F (

(
q1
q2

)
, s(
(
q1
q2

)
), θ∗, v∗)

such that the vector (cos θ∗, sin θ∗, v∗) is orthogonal to the level set of f . The vector

(cos θ∗, sin θ∗) is orthogonal to the spatial level line, and the scalar v∗ represents

the apparent velocity in this direction.

The surface

Σ =
{((

q1
q2

)
, s(
(
q1
q2

)
), θ∗, v∗

)}
is the 5D lifting of the level set of f , and the orthogonality condition implies that

it is admissible, in the sense that its tangent vectors lie in the horizontal space,

kernel of the form ω (see Fig. 2.4).

This shows that such level sets of f define a contact structure on the manifold,

so the study of such geometric features induces to endowM with the corresponding

constraint on the tangent bundle that can be equivalently interpreted as a sub-

Riemannian constraint [72, 19, 10].

2.3 Curves and kernels of connectivity

The lifted points of the spatio-temporal stimulus are connected by admissible in-

tegral curves. However I will see that not all admissible curves can be considered

lifted ones, and I will describe which ones have this property. These curves will

represent the association fields in space-time, analogously to the association fields

of Field Hayes and Hess[34] in the pure spatial case, and are reminiscent of the

classical Gestalt concept of good continuation. I will discuss in Section 2.4 the com-

patibility of this structure with the cortical functional architecture. A probabilistic

version of the connectivity field will be provided on the basis of Fokker Planck equa-

tions first introduced by D. Mumford in the spatial case [73], and interpreted as
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Figure 2.4: A schematical representation of the level set of a function f (in this

case, an expanding contour) lifted as an admissible surface Σ on the 5D structure.

Red and black arrows indicate, respectively, the local direction of the vector fields

~X5 and ~X3 over two points in space-time.

model of connectivity in Lie groups in several works such as [89, 142, 7, 28, 29, 106].

Here I will extend this stochastic approach to the space-time contact structure.

2.3.1 Generators of lifted curves

We have already seen that the output of RP filtering is concentrated around ad-

missible submanifolds. Nevertheless not all admissible submanifolds can be lifting

of images, since lifting are graphs of the functions θ∗ and v∗. For example the

plane generated by the vectors ~X2 and ~X4 cannot be recovered by lifting. Hence

I will study the possible linear combinations of vector fields { ~Xi}, which can be

tangent to lifted level lines. An ω-admissible curve γ ⊂ M is characterized by

γ̇ ∈ kerω, i.e.

γ̇ = a1
~X1(γ) + a2

~X2(γ) + a4
~X4(γ) + a5

~X5(γ)

with ai not necessarily constant. Lifted curves depend on the vectors ~X1 or ~X5,

which are tangent to the base space (q, s), and their linear combination. To simplify
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the problem, I will consider separately two special cases of particlar interest for

the model: the limit cases of contour motion detected at a fixed time (a5 = 0), and

motion of a point in time (a1 = 0). The first one is described by integral curves of

the vector ~X1 and of the generators of the engrafted variables ~X2 and ~X4:

γ̇3 = ~X1(γ) + k ~X2(γ) + c ~X4(γ). (2.12)

These curves lie in the section of the contact structure depicted in Figure 2.3a,

where k represents Euclidean curvature and c is the rate of change of local velocity

along the curve. On the other hand, the motion of a point in time can be described

as

γ̇T = ~X5(γ) + w ~X2(γ) + a ~X4(γ) (2.13)

that are suitable to describe spatio-temporal trajectories of points. The coefficient

w of the direction ~X2 is the angular velocity, and the coefficient a of ~X4 is the

tangential acceleration.

2.3.2 Curves and kernels for contours in motion

Moving contours as deterministic integral curves

I consider now the geometry of moving contours at a fixed time. These are gener-

ated by the integral curves (2.12) so to satisfy the system of equations γ̇(t) = ~X1(γ) + k ~X2(γ) + c ~X4(γ)

γ(0) = ξ0

(2.14)

with variable coefficients k, c. In particular, due to condition (2.8) the set of

points reacheable by piecewise constant integral curves of this type (for an explicit

expression see e.g. [19]) starting from a fixed point ξ0 = (q0, s0, θ0, v0) is the space

N = {(
(
q1
q2

)
, s0, θ, v)} (2.15)
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Figure 2.5: The subset of horizontal curves with constant coefficients pertaining

to Σ0(ξ0) by varying parameters k and c, with initial velocity set to 0. Left plot:

projections over the variables (q1, q2, θ) with different values for k, and same non-

null value for c. Right plot: projections over the variables (q1, q2, v) relative to

some negative and positive values of c. The curves with k = 0 (blue ones in the

right plot) are straight lines, as the direction of spatial propagation never changes.

where s0 is fixed, so the space N can be identified with the space of points ξ =

(
(
q1
q2

)
, θ, v).

I also denote with Σ0(ξ0) the set of points reached by the fan of curves solution

to the system (2.14) with constant coefficients (k, c), depicted in Fig. 2.5.

As I did with (2.10) I can define on N a smooth composition law

(q, θ, v) � (q′, θ′, v′) = (Rθq
′ + q, θ′ + θ, v′ + v) (2.16)

where Rθ is a counterclockwise rotation of an angle θ, that is such that the vector

fields { ~X1, ~X2, ~X3, ~X4} are left invariant with respect to this law. Since this is

a group law, the manifold N together with this (2.16) provides the Lie group

R2 n S1 × R, that is the direct product of the SE(2) group and the group of the

reals with addition.

Stochastic kernel

Let us consider a probabilistic counter part of trajectories (2.14). The vector field

X1 expresses a derivative in the direction of a variable coded on the retina, while
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the vectors X2, X4 express derivatives in the direction of an eingrafted variable.

Due to their different role, I will consider the following vector-valued stochastic

process  dγ = ~X1(γ)dt+ ~X2(γ)dW1 + ~X4(γ)dW2

γ(0) = ξ0

(2.17)

where W = (W1,W2) is a two dimensional Brownian motion. The distribution

of these stochastic curves is mostly concentrated around the surface Σ0(ξ0). The

density of points reached by this stochastic kernel is then a candidate to implement

the mechanism of association fields (see Fig. 2.6). This approach generalizes the

approach of random paths introduced in [73, 136] for the SE(2) problem.

If I call ρgv(ξ, t|ξ0, 0) the density of points of N reached at the value t of the

evolution parameter by the sample paths of the process (2.17), then ρgv can be

obtained as the fundamental solution

(∂t + Lgv)ρgv(ξ, t|ξ0, 0) = δ(ξ − ξ0)δ(t)

where Lgv is the Fokker-Planck operator

Lgv
.
= X1 − κ2X2

2 − α2X2
4 (2.18)

containing a diffusion over the fiber variables θ and v and a drift in the base vari-

ables, and with Xi and X2
i I denote first and second order derivatives in direction

~Xi. Since Lgv contains a set of vector fields that generates the whole tangent space

of N , by Hörmander theorem this operator is hypoelliptic [50]. This means that

ρgv is non-null in all N for any t > 0, even if the operator Lgv contains only 3

linearly independent fields. Moreover, since it defines the Fokker-Planck equation

for the stochastic process (2.17), ρgv is indeed a (conditional) probability density

on N , evolving with the parameter t.

In order to characterize each point of N in terms of the density of paths (2.17)

that reach it, independently of the value of the evolution parameter, we need a
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(a) (b)

Figure 2.6: Horizontal curves and stochastic kernels for the integration of contours

in motion. Left: the isosurface plot of the kernel Γgv (isovalue: 0.002 max(Γgv)) is

superimposed over the subsets of curves (2.14) with constant coefficients already

shown in Fig. 2.5. Right: the kernel projections of Γgv relative to the variables a)

(q1, q2, θ) and b) (q1, q2, v) are plotted in gray under the projections of the curves

(in yellow). This kernel was obtained by calculating the evolution of 106 stochastic

paths.

notion corresponding to the fan Σ0(ξ0), expressed in terms of ρgv . The density of

points reached at any value of the evolution parameter by the stochastic dynamics

(2.17) is given by

Γgv(ξ|ξ0)
.
=

∫
R
ρgv(ξ, t|ξ0, 0)dt . (2.19)

This derived quantity is actually the fundamental solution of the operator Lgv , so

explicitly we have (
X1 −

(
κ2∂2

θ + α2∂2
v

) )
Γgv(ξ|ξ0) = δ(ξ − ξ0) (2.20)

and since the vector fields involved in equation (2.18) are left invariant with respect

to the group law (2.16), the solution (2.19) possesses the symmetry

Γgv(ξ|ξ0) = Γgv(ξ
−1
0 � ξ|0) ∀ ξ, ξ0 ∈ N . (2.21)

I recall that in [31] several representations of the exact solution to a problem

analogous to (2.20) were presented. In this work I will deal with the numerical
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implementation of the fundamental solution Γgv(ξ|ξ0), developed with standard

Markov Chain Monte Carlo methods (MCMC) [101]. This is done by generating

random paths obtained from numerical solutions of the system (2.17) and averaging

their passages over discrete volume elements, and appears suitable to treat also

the more involved case of subsequent equation (2.26). An example is shown in

Fig. 2.6, where an isosurface plot of the kernel is plotted over the integral curves

(2.14) with constant coefficients, already depicted in Fig. 2.5. By comparing such

numerical approximations with [31], I can confirm the accuracy of this method.

Moreover, from the figure it can be seen that the probability density is concentrated

around the surface Σ0(ξ0) and decays rapidly away from it. This is reasonable since

for this kind of hypoelliptic operators one can generally obtain estimates for the

fundamental solution in terms of exponential decay with respect to a geodesic

distance computed with respect to the minimal set of vector fields that, together

with their commutators, span the whole tangent space [100]. Such a distance is

anisotropic, and its balls are squeezed in the directions of the commutators [75].

Here the vector fields involved are {X1, X2, X4}, hence the concentration of the

fundamental solution around the set Σ0 defined by their integral curves follows by

the sharper decay in the direction of the commutators. I also note that in this

particular case, due to the availability of exact solutions and estimates from [31],

this behaviour can also be checked directly.
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2.3.3 Curves and kernels for point trajectories

Point trajectories as deterministic integral curves

The trajectory-type curves introduced in (2.13) are solutions γ : R → M to the

system of ordinary differential equations γ̇(t) = ~X5(γ) + w ~X2(γ) + a ~X4(γ)

γ(0) = η0

(2.22)

for given initial point η0 = (q10, q20, s0, θ0, v0). In general the coefficients w, a

need not to be constant, but we can have a local approximation of any curve in a

neighborhood of the starting point if we consider the case of constant coefficients.

In this model case when w and a are not zero, (2.22) is explicitly solved by

q1(t) = q10 + %(cos(θ(t)− φ)− cos(θ0 − φ)) +
a

w
t sin θ(t)

q2(t) = q20 + %(sin(θ(t)− φ)− sin(θ0 − φ))− a

w
t cos θ(t)

s(t) = s0 + t

θ(t) = θ0 + wt

v(t) = v0 + at

where % =

√
a2+v20w

2

w2 and φ = arctan v0w
a

, and a reasonable choice is to set s0 = 0,

in order to synchronize the evolution parameter t with the time parameter s.

The fan Σ(η0) of such curves is depicted in Fig. 2.7. Each of them describes

a motion on the plane
(
q1
q2

)
that, for small times, consists approximately of arcs

of circles with radius %, while for sufficiently large times corresponds to enlarging

spirals around a slightly moving center. Their instantaneous acceleration is given

by

(
q̈1

q̈2

)
= Rθ

(
a

vw

)
, so that a corresponds to the tangential acceleration2 along

2By direct computation, a is the time derivative of the modulus of the velocity

a =
d

dt

√
q̇1(t)2 + q̇2(t)2 .



62 CHAPTER 2. FUNCTIONAL ARCHITECTURE IN V1

Figure 2.7: Projections over the variables (q1, q2, s) of the fan of curves with con-

stant coefficients, for different values of parameters w and a and a non-null initial

velocity. Different values of w are associated to different curve colors, while gray is

used for projections over two dimensional planes. Left plot: curves with different

values of w, and a fixed non-null value for a. Right plot: curves with different

values of a.

direction X3:

a = q̈1 cos θ + q̈2 sin θ

while their curvature is
q̇1q̈2 − q̇2q̈1

(q̇1
2 + q̇2

2)
3
2

=
w

v
.

In particular, when w = 0 I obtain straight lines along the θ0 direction, while for

a = 0 I obtain circular trajectories of radius
v0

w
.

Stochastic kernel

Similarly to what I have done in section 2.3.2, let us consider the vector-valued

stochastic process dγ = X5(γ)dt+X2(γ)dW1 +X4(γ)dW2

γ(0) = η0

(2.23)

where W = (W1,W2) is a two dimensional brownian motion.
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The density ρg0(η, t|η0, 0) of points ofM reached at the value t of the evolution

parameter by the sample paths of the process (2.23), is the fundamental solution

of the equation

(∂t + Lg0)ρg0(η, t|η0, 0) = δ(η − η0)δ(t) (2.24)

where Lg0 is the Fokker-Planck operator

Lg0
.
= −α2X2

4 − κ2X2
2 +X5. (2.25)

Equation (2.24) is not hypoelliptic, indeed its fundamental solution ρ is concen-

trated on a submanifold of codimension 1 defined by the equation t = s, from the

system (2.23). However it is still a Fokker-Planck equation, hence ρ is nonnegative,

and integrating the density ρg0 with respect to the evolution parameter t I derive

the fundamental solution of the operator Lg0 . Explicitly I have(
∂s −

(
κ2∂2

θ + α2∂2
v − vX3

) )
Γg0(η|η0) = δ(η − η0) (2.26)

and I note in particular that this equation is now a hypoelliptic equation that is

also the Fokker-Planck equation of a stochastic process defining a propagation in

the physical time s. Moreover, since the vector fields that consitute the operator

(2.25) are left invariant with respect to the composition law (2.10), the solution

(2.19) possesses the symmetry

Γg0(η|η0) = Γg0(η
−1L
0 � η|0) ∀ η, η0 ∈M (2.27)

where η−1L
0 stands for the left inverse with respect to (2.10), see also Appendix.

Similarly to what I have done in the previous section, I can obtain Γg0(η|η0) at

each point by solving numerically the system of stochastic differential equations

(2.23) and applying standard Markov Chain Monte Carlo methods. An isosurface

plot of the kernel is shown in Fig. 2.8, over the same integral curves of Fig. 2.7

and again we see the concentration around the fan Σ(η0).

The fundamental solution (2.26) will be concretely applied in Section 2.5 as a

facilitation field, toward the task of motion integration of trajectories.
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(a) (b)

Figure 2.8: Horizontal curves and stochastic kernels for the integration of motion,

with a non-null initial velocity value. As before, different values of k are associated

to different curve colors. Left: the isosurface plot of the kernel Γg0 (isovalue:

0.001 max(Γg0)) is superimposed over the curves (2.22) with constant coefficients

already shown in Fig. 2.7. Right: the projections of Γg0 relative to the variables

(q1, q2, s) are plotted under the projections of the curves (in yellow). This kernel

was obtained by calculating the evolution of 106 stochastic paths.
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2.4 Neural propagation of boundaries and tra-

jectories

The curves (2.14) and (2.22) can be related to well-defined perceptual mecha-

nisms. More precisely, I propose to consider them as association fields, in the

sense of [34], devoted to the integration of contour in motion and trajectories. The

perceptual tasks of subjective boundary completion and motion integration have

been widely studied by both psychologists and physiologists, and their underlying

physiological explanation continues to be an open issue of discussion. The percep-

tual bias towards collinear stimuli has classically been associated to the long-range

horizontal connections linking cells in V1 sharing similar preferences in stimulus

orientation. This specialized form of intra-striate connectivity pattern is found

across many species, including cats, tree shrews and macaques [56, 15], the main

difference being the specificity and the spatial extent of the connections. Fur-

thermore, axons seem to follow the retinotopic cortical map anisotropically, with

the axis of anisotropy being related to the orientation tuning of the originating

cell [13]. These connections have already been modeled in [19] by means of a

sub-Riemannian diffusion process over the orientation space R2 × S1.

Similarly to what happens for the integration of merely spatial visual infor-

mation, the brain is also capable to easily predict stimulus trajectories [120], and

to group together boundary elements sharing similar motion or apparent motion

paths [60, 92]. One possible explanation for these effects could be the existence of

specialized facilitatory networks linking cells anisotropically and coherently with

their preference in velocity and axis of motion direction. Supporting these as-

sumptions, it has been found that the neural preferences in direction of move-

ment are also structurally mapped in the cortical surface, with nearby neurons

being tuned for similar motion direction [132], and it has been shown that excita-
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tory horizontal connections in the V1 of the ferret are strictly iso-direction tuned

[99]. Furthermore, it is known that also extra-striate area MT/V5 is retinotopi-

cally organized, its horizontal connectivity pattern being highly structured, with

connections reaching columns of cells tuned for similar orientation and direction

preference anisotropically and asymmetrically [65, 2]. Moreover, striate and extra-

striate cortical areas seem to cooperate, and surround modulation in V1 can be

given by the connectivity patterns implemented in both areas by means of fast

feedforward and feedback inter-areal projections [4].

Regarding the physiological correlates of motion integration, it was shown that

the motion of an occluded object trajectory is significantly represented in the

human brain by the same visual areas that process real motion [81]. Moreover,

a recent study based on electrophysiological recordings of the V1 of tree shrews

showed some non-linear neural behaviors that are coherent with the phenomeno-

logical dynamics of motion integration [138]. It is indeed a general assumption that

some cortical area in the visual cortex is responsible for predicting future motion, a

possible implementation being a specialized connectivity for spatio-temporal tra-

jectory facilitation, that is different from the one in V1 responsible for contour

integration [43, 119, 125, 135].

Here, I do not speculate on the exact physiological origin of these psychophys-

iological findings. However, I want to show that the connectivity kernels Γgv and

Γg0 arising from the geometry defined in Section 3.2 is capable to reproduce quali-

tatively some of the effects reported on the works that have been previously cited.

I will embed this connectivity in the neural population activity model described

in the next paragraph. Then, in Section 2.5 I will simulate the response of cortical

visual neurons to artificial stimuli, comparing the results with some psychophysi-

ological findings reported in the recent literature.
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2.4.1 Modeling neural activity

The state of a population of cells can be characterized by a real-valued activity

variable, which depends on the interaction of the feedforward input at different

points, due to the cortical connectivity. The first population activity models are

due to Wilson and Cowan [137], and Ermentrout and Cowan [32]:

da(η, t)

dt
= −a(η, t) + S

(
cf

∫
M

Γ(η|ζ)a(ζ, t)dζ + F (η)
)

(2.28)

where a is the neural activity of the population, F is the feedforward input (3.2),

Γ is the facilitation kernel, cf is the facilitation strength and S is the sigmoidal

function

S(τ) =
1

1 + e−µ(τ−β)
. (2.29)

In the stationary case a first order approximation of the solution of (2.28) is

F0(η) = S
(
cf

∫
M

Γ(η|ζ)S(F (ζ))dζ + F (η)
)

(2.30)

that is the activity formula that I will use in the experiments of Section 2.5. Let’s

explicitly note that the term

FT (η) = S(F (η)) (2.31)

represents the mean neural extra-cellular activity in response to a stimulus.

The geometry of the functional architectures is contained in the kernel Γ, tak-

ing into account the deep structures of the connectivity space. Then the overall

probability of activation can be obtained by convolution of the activity with the

kernel Γ, and the term

P (η) =

∫
M

Γ(η|ζ)FT (ζ)dζ (2.32)

is the facilitation pattern resulting from the contribution of horizontal cortico-

cortical or feedback inter-areal connectivities.
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I note that, since the Lebesgue measure dζ onM is left invariant with respect

to the composition law (2.10), and due to the symmetry (2.27), then (2.32) has

the structure of a convolution.

In the model of Ermentrout-Cowan only position and orientation were consid-

ered and symmetry properties were imposed to the facilitation patterns. In [106],

for the same features it was proposed to choose as a kernel Γ the fundamental

solution of a Fokker Planck equation deduced from the Euclidean symmetries.

In the next section, two numerical simulations will be performed using equation

(2.30). In the first one, I will model the propagation of boundaries in motion using

the connectivity kernel (2.19). In the second experiment I will model instead the

propagation of trajectories, using the 5D kernel (2.26).

2.5 Numerical simulations

In this section some numerical simulations will be performed to test the reliability

of the kernels computed in Section 2.3 when introduced in the activity model

(2.30) and the results will be compared to some psychophysical and physiological

experiments.

2.5.1 The feedforward and extracellular activity in response

to a stimulus

For the subsequent numerical simulations, I measured in every discrete point zj =

(xj, yj, tj) of a stimulus f of size nx × ny × nt, its local energy of orientation

and speed by convolving the input image sequence with a pre-determined bank of

Gabor filters of fixed spatial frequency centered at the points ηi = (xi, yi, ti, θi, vi),
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thus discretizing Eq. (3.2) so to have

F (ηi) =
∣∣∣ N∑
j=1

e−i(p1(xj−xi)+p2(yj−yi)−νi(tj−ti))

e
−
|xj−xi|

2+|yj−yi|
2

σ2x
−

(tj−ti)
2

σ2t f(zj)
∣∣∣2

(2.33)

where p1 and p2 are the component frequencies |p| cos θi and |p| sin θi.

I chose the spatio-temporal frequencies and the maximum velocity value vm

represented in the Gabor filter set depending on the stimulus, so that given the

couple (|p|, vm) the filters have a maximum temporal frequency of νm = |p|vm. I

normalized the filters so that the response could range from 0 (in regions with no

changes in luminance) to 1 (square plane waves sharing the filter parameters |p|

and νi), corresponding to a normalization of the stimulus contrast. The Gabor

scale parameters will follow the relations
σx = 2.5π

4|p|

σt = π
2νm

(2.34)

whose meaning is to approximately have 2.5 spatial subregions under the Gabor

Gaussian envelope, and a variable νi that allows the filter with maximum velocity

to cover one wavelength within the Gabor active time interval (see [20, 25, 94] for

the physiological justifications).

The thresholded feedforward input FT is then computed following Eq. (2.29),

representing the mean neural extra-cellular activity in response to the stimulus.

In the subsequent analyses, the values to which I set the parameters µ and β in

the above stated formulas will be explicitly specified. It is worth noting that these

parameters are not due to physiological data, due to the difficulty in finding some

reference in the literature, but are chosen as to have a computationally reasonable

number of non-null measurements FT .
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Figure 2.9: The stimulus used in Experiment 1.

2.5.2 Experiment 1 - Contours in motion

For the first simulation I use a dashed circle in linear motion moving upwards

within the visual space. The image size is 200×200 pixels and the image sequence

is composed of 64 frames. The circle segments are approximately 2 pixels wide and

the circle is moving with a uniform speed of 0.5 pixels per frame (see Fig. 2.9). To

get a measurement of local spatio-temporal features, I convolve the stimulus with a

set of 3-dimensional Gabor functions with (3.2). The spatial frequency parameter

is set to |p| = π/2, so that the Gabor moving subregions match the width of the

segments. The maximum local velocity represented in the filter set is vm = 1 pixel

per frame, while spatial and temporal scale parameters are calculated accordingly

with (2.34). After having convolved the stimulus with the Gabors, I model the

neural extra-cellular activity by using (2.29) with parameters µ = 10, β = 0.5,

obtaining FT .

I select the 4-dimensional subset corresponding to the 32nd frame FTv(ξi) =

FT (xi, yi, 32, θi, vi), where ξi = (xi, yi, θi, vi), thus neglecting behaviors over time.

This is because the model given by the stochastic model of connectivity distribu-

tion Γgv is stationary, even if it is relying on spatio-temporal information, and is

compatible with the dimensionality of N in (2.15).

Following the assumptions that the measurements FTv(ξ) can model the output

of a cortical direction- and speed-selective cell (or of a neural population that are
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selective to the same visual features), the overall continuation probability can be

obtained with a discretized version of the cortico-cortical facilitation pattern (2.32)

with the kernel Γgv :

P (ξi) =
∑
ξ′i∈N

Γgv(ξi|ξ′i)FTv(ξ′i) (2.35)

where Γgv(ξi|ξ′i) is calculated for every fiber vector (θi, vi) on the same discretized

domainN of the lifted stimulus, using the stochastic approach described in Section

2.3.3. The structure of (2.35) is that of a discrete version of a group convolution

with respect to the composition law (2.16), due to the symmetry (2.21) of the

kernel and the left invariance of the Lebesgue measure on N .

It is worth noting that the parameters κ and α governing the diffusion process

are related to the maximum spatio-temporal curvature of an illusory contour. Due

to the lack of reference physiological data, the values for the diffusion coefficients

were chosen in such a way that at the final value taken by the evolution parameter

of the stochastic paths, the mean square displacements of the fiber variables (θ, v)

are (π, vm/2), that means κ = 2 and α = 1.

Finally, the population activity is computed by

F0(ξi) = S(F (ξi) + cfP (ξi)) (2.36)

that is a discretized version of (2.30) where cf is a coefficient governing the to-

tal strength of the excitatory connections. In Fig. 2.10 are shown the results of

the simulation. In the top row I have plotted a iso-level surface of the normalized

and thresholded output measurements FTv . The process correctly lifts the stimulus

around its theoretical values in the domainN . In the bottom row, the iso-level sur-

face of the global cortical activity F0 is shown. Note that continuation is performed

within the whole manifold N , propagating the local speed and direction cues at

the end of the segments, and interpolating the data to define a 4-dimensional set

that carries information even in the visual space between the segments, where no
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(a) (b)

Figure 2.10: Results of Experiment 1: in the left subplots, measurements of local

direction of motion θ; in the right subplots, measurements of local velocity v. The

theoretical values for a circle translating at a speed of 0.5 pixels per frame are shown

with a red line. a) Isosurface plot of FT (isovalue: 0.2). The information about

local orientation and velocity is correctly retrieved, but activity remains clustered

within disjoint regions of the domain. b) The modeled extra-cellular activity F0

after horizontal propagation on the submanifoldN (facilitation strength: cf = 40).

changes in contrast were originally present in the stimulus. These results are co-

herent with recent psychophysiological findings, where it is stated that a global

shape in motion is better perceived if local velocity changes smoothly along its

contour [92], and that the integration of the motion of a partially occluded object

is facilitated when its visible contours define closed configurations [62].

2.5.3 Experiment 2 - Motion integration

The stimuli that I will use in this simulation will be several instances of an object

in motion along a certain direction, that disappears at a given time position t1,

and reappears at t2 with a direction of motion changed by ∆θ in a position that is

coherent to a piecewise continuous trajectory (Fig. 2.11). It is a well documented

fact that humans tend to perceive the two trajectories as pertaining to a single unit

just for small values of ∆T = t2 − t1 and ∆θ, an effect that is commonly referred



2.5. NUMERICAL SIMULATIONS 73

Figure 2.11: An example stimulus sequence, and the paradigm used to generate

the stimuli in Experiment 2.

to as motion integration. In particular, we know from many psychophysiological

experiments that the chances of detecting a straight or curvilinear trajectory in

noise increase with stimulus duration and with direction coherence [127, 118].

To do so, I created multiple instances from the stimulus paradigm described

above, and shown in Fig. 2.11, assigning different values to the parameters ∆T

and ∆θ. It is worth noting that I am using an elongated object whose axis of

motion is always orthogonal to its major axis of eccentricity. The choice of this

particular stimulus is naturally explained by the geometry, as the points ∈M that

are connected by its continuation property implicitly define a local orientation and

a direction of motion that is orthogonal to that orientation. The Gabor filtering

of a different kind of stimulus (for example a moving dot) would indeed measure

high responses also for those velocity projections that are coherent with the real

axis of motion, due to the motion streak effect [38], requiring a different neural
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model to detect unambiguously the direction of motion. Thus, even if the majority

of the psychophysiological experiments use moving dots as stimuli, the validity of

the following experiment is not influenced, as exploring the exact physiological

implementation of motion integration is out of the scope of this chapter.

The image sequences to process are 51 × 51 pixels wide and are composed of

102 frames. The value of eccentricity of the moving ellipsoidal object is set to 2,

and its velocity is set to 0.5 pixels per frame. Each stimulus instance is uniquely

identified by the couple (∆T,∆θ). I convolve each sequence with a set of Gabor

filters with vm = 1 and p set to match width of the object’s minor axis, and again,

I threshold the output according to (2.29) using parameters µ = 20, β = 0.7,

obtaining the set of measurements FT . In the previous simulation I have taken

a temporal slice of this output, and then I have propagated the activity using

the connectivity kernel Γgv . Similarly, here I will propagate the activity present

in FT , but without discarding time. The corresponding facilitation pattern P (ηi)

is then obtained convolving it with the 5-dimensional kernel Γg0 defined on the

same discrete domain M of the lifted stimulus using the same approach that led

to (2.35)

P (ηi) =
∑
η′i∈M

Γg0(ηi|η′i)FT (η′i)

and the total population activity F0(ηi) is computed following (2.36) with cf = 20.

Since this is a discretization of (2.32), again I am considering a convolution-type

operator.

The results obtained by processing two stimulus configurations are shown in

Fig. 2.12, where only the central portion of the full temporal domain is plotted,

to highlight the different effects that activity propagation has in the two cases.

When the change in direction of motion of the object is under a certain threshold,

the trajectory is completed smoothly, yielding a strong activation in the temporal

interval when the object is not present in the scene. If the value of ∆θ increases,
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(a) (b)

Figure 2.12: A comparison between the spatio-temporal continuation capabilities

of the model, applied to stimulus instances with different values of ∆θ. The

plot shows three isosurfaces of max(θ,v) F0 (isovalues 0.9, 0.5, 0.1 in red, yellow

an green): a) ∆T = 12, ∆θ = π
6
, b) ∆T = 12, ∆θ = 5π

12
. The probabilistic

continuation given by the geometry in the configuration with the smallest change

in direction of motion allows a smooth trajectory completion. The same is not true

for the stimulus with an higher value of ∆θ: even if a weak response connecting and

interpolating the two parts of the stimulus is still present, the strongest facilitation

component do not deviate from the early straight path of the object.
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(a) (b)

Figure 2.13: A direct comparison between the electrophysiological recordings made

in [138] and the results obtained with the proposed model for the same stimulus

parameters: in both cases ∆T = 0, while ∆θ is equal to π
4

(a) and π
2

(b). To

compare responses, I integrate over x and y and depict three isosurfaces with

isovalues taken as 0.9, 0.5, 0.1 (in red, yellow and green respectively) times the

maximum value among the outputs shown. Note that, disregarding the weaker

physiological responses to opposite directions, the non-linear facilitating behavior

is very well reproduced by the model.
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however, the spatio-temporal curvature of the optimal subjective trajectory pro-

gressively becomes too high to be completed by the connectivity, even if a weak

response linking the two parts of the stimulus could yet be present.

It is worth noting that due to the thresholding stage, this subjective interpo-

lation effect is strongly non-linear, as it cannot be explained by the sum of the

responses to the first (ti < t1) and second (ti > t2) part of the stimulus alone (see

Fig. 2.13). This is coherent with the findings in the work of Wu et al, where elec-

trophysiological experiments recorded a similar non-linear behavior of trajectory

interpolation for small values of ∆θ [138]. In that work, the cause of this effect is

left unexplained. Even if the stimulus paradigms are slightly different (they use a

field of moving dots with a null value of ∆T ), the result of the simulations allow

us to make some speculations.

A good qualitative description of the effects that the modeled excitatory con-

nectivity has on stimulus response can be found in Fig. 2.14, where for every

stimulus configuration I plot the difference

Ffac = F0(S3)− F0(S1)− F0(S2) (2.37)

where S3 is the full stimulus and S1 and S2 represent the first (S1(ti > t1) = 0)

and the second (S2(ti < t2) = 0) part of the stimulus. The visualization of the

output Ffac highlights the role that a trajectory-specialized cortical connectivity

could have in performing tasks of motion integration. The spatio-temporal exten-

sion of Ffac overM gets smaller for higher values of ∆T and ∆θ. The decay of the

facilitation effect is coherent with the observations made in [125] (where ∆θ = 0)

and [138] (where ∆T = 0), even if the experiments are methodologically different.

Moreover, even if, coherently with the results, some psychophysiological experi-

ments showed that a broken trajectory in noise is easily detectable [126, 109], as

far as I know little has been done to explore the effect of changing the duration

∆T of the temporal occluding gap.
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2.5.4 Discussion

Regarding the implementation of the model proposed in this chapter, I would

like to highlight functional meaning of the parameter couple (κ, α), driving the

diffusion along the fiber variables (θ, v) when calculating the kernels Γgv and Γg0 . In

particular, the parameter κ seems to be strongly related to the maximum perceived

curvature of illusory contours and trajectories, while α sets the maximum rate of

change of local velocity along admissible subjective contours (trajectories). It

would be interesting to try to fine-tune the parameters of the model in order to

reproduce quantitatively as precisely as possible the psychophysiological findings

found in literature. I aim to carry out this analysis in a future work.

It is worth noting that the physiological correlates of the first simulation are

not well documented and, as far as I know, no one has yet studied the neural

activity in cortical regions responding to subjective contours in motion. I suppose

that it would be a difficult issue to address, as multiple cortical layers, as V1,

V4 and MT/V5, may be involved [61]. Recently, some significative results have

been obtained with static illusory contours, using promising electrophysiological

techniques [84]. Those kinds of experiments, targeted to the detection of illusory

motion contours, could give additional clues about the neural computation that

governs the influence of spatio-temporal features in the detection of moving shapes

and boundaries.

As discussed in the beginning of Section 2.4, a possible physiological imple-

mentation of the geometry used in the second numerical simulation, could be a

trajectory-specialized cortico-cortical connectivity between neurons in the higher

visual areas. The advantages of having such an excitatory connectivity imple-

mented in the visual cortex could be very important in performing complex cog-

nitive tasks. For example, I assume that the brain could use the improvements in

contour detection with respect to the only SE(2) related functional architecture,



2.5. NUMERICAL SIMULATIONS 79

Figure 2.14: The non-linear effect of the facilitation by varying the stimulus param-

eters ∆T and ∆θ. Each subplot shows the isosurface of Ffac relative to different

stimulus instances (isolevels calculated as in Fig. 2.13). The non-linear effect of

the facilitating kernel Γg0 remains appreciable just for small values of ∆T and ∆θ,

rapidly decaying as the value of the characteristic stimulus parameters increases.

due to an additional information, that of velocity, that indeed in practical situa-

tion is a feature that is coherent on objects. The influence that the connectivity

arising from the proposed geometrical model has in the processing of visual tasks

such as spatio-temporal grouping or segmentation will be the subject of a future

work.
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Chapter 3

Spatio-temporal grouping

properties of the connectivity of

the visual cortex

3.1 Introduction

The importance of key global properties of the visual stimulus, such as neighbor-

ing or good continuation, for the execution of visual cognitive tasks like image

segmentation and grouping has been well understood since the beginning of the

century, when the phenomenological concepts of the Gestalt began to be defined

[124].

The study of these phenomena through psycho-physiological experiments lead

to the definition of association fields, entities that describe which properties the

stimuli near a given sample should have to be recognized as belonging to the

same perceptual unit – in the classical case, the property of local orientation [34].

Further phenomenological experiments demonstrated that also movement direction

and velocity are important features in order to perceive global shapes [92], and

81
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that similarly to what happens for the integration of spatial visual information, the

brain is also capable to easily predict stimulus trajectories, and to group together

elements having similar motion or apparent motion paths [118, 119, 125].

Several physiological experiments showed how these principles seem to be im-

plemented in the V1 of mammals, where long-range connections between two cells

is stronger when they respond to stimuli having similar position and orientation

[13]. Interpreting cortical columns as directional differential operators, Citti and

Sarti showed how this specialized functional organization of V1 for oriented stim-

uli, implemented by long-range horizontal connections, naturally leads to the def-

inition of Lie algebras operating within a sub-Riemannian space. In particular,

they modeled the position/orientation association fields with a family of integral

curves, obtained from the generators of the Lie algebra associated to a particular

direction-selective visual neuron, embedded in the R2 × S1 domain [19].

The spatio-temporal properties and organization of cortical visual neurons

though, together with the phenomenological findings on spatial and motion in-

tegration, suggest extensions of the model to include local stimulus velocity, and

give indications for the different geometries to be chosen in order to include the

elaboration of trajectories. Indeed, the mathematical instruments given by group

theory form a flexible framework in which the properties of different geometries

can be inherited and embedded in a layered fashion, coherently integrating more

their associated mechanisms.

While in the cited papers the geometry has been used to perform spatio-

temporal image completion, in this chapter I will focus on its grouping capabilities.

Indeed, while the grouping properties of the first kind of connections have been

previosly studied [88, 39, 60], little has been done to follow this path in the spatio-

temporal case. The aim of this chapter is to show that a connectivity pattern
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based also on local stimulus velocity can enhance the spatial (stationary) grouping

capabilities of a visual system.

In Section 2 I will describe the geometry arising from the study of the spatio-

temporal functional architecture in the visual cortex. The geometrical tools that I

will use trhoughout this chapter have been introduced in chapter 2. The notation

and the theoretical framework exposed in this section will also be used in Section

3.4, in order to propose a new version of the previously described connectivity

models.

In Section 3 I will recall the concept of spectral clustering and graph partition-

ing by means of locality-preserving embeddings of high-dimensional data sets in

the low-dimensional Euclidean eigenspace of a suitable affinity matrix, and then I

will use the connectivity properties of the proposed cortical-inspired geometry to

represent a visual stimulus living in the feature space of position/orientation to

build a cortical affinity matrix. I will also propose a simple clustering algorithm

that is able to perform grouping of elements and background/object separation

depending on the kernel used to build its input affinity matrix.

In Section 4 I will use the previously introduced spectral clustering algorithm

to automatically extract perceptual information from artificial stimuli living in the

extended cortical spaces described in Section 2, so to group together the points

in the lifted feature space that are coherent with the proposed cortical-inspired

geometry. I will show the effect of changing kernel parameters on the results of

the algorithm, and finally I will propose two different connectivity geometries that

the visual cortex could have implemented in order to perform spatio-temporal

segmentation of moving contours and shapes.
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3.2 The geometry of V1

In this section I resume the work presented in the previous chapters, where it

is shown how examining the functional architecture of the visual cortex naturally

leads to the definition of a contact structure on a sub-Riemannian manifold, whose

connectivity properties are able to explain some physiological and phenomenolog-

ical findings on spatio-temporal visual perception.

3.2.1 The cortical feature space M

It is well known since the fundamental studies of Hubel and Wiesel [51, 52] that

primary visual cortex (V1) is one of the first physiological layers along the visual

pathway to carry out geometrical measurements on the visual stimulus, decom-

posing it in a series of local feature components. In particular, the development of

suitable electrophysiological techniques [96] has made possible to reconstruct the

linear filtering behavior of V1 simple and complex cells, i.e. their spatio-temporal

receptive profiles (RPs).

Spatio-temporal RPs of V1 simple cells can be modeled by 3-dimensional Gabor

functions of the form

gσq,p(x, y, t) = e2πi(px(x−qx)+py(y−qy)+pt(t−qt))e
−
(

(x−qx)2

2σ2x
+

(y−qy)2

2σ2y
+

(t−qt)
2

2σ2t

)
, (3.1)

where q = (qx, qy, qt) is the spatio-temporal center of the Gabor filter, p = (px, py, pt)

is the spatio-temporal frequency and σ = (σx, σy, σt) is the spatio-temporal width.

It is worth noting that this model strictly captures the features of so-called in-

separable RPs, tuned for position, orientation and motion detection, depicted in

Fig. 3.1), while separable RPs have been treated elsewhere, see e.g. [20]. One

of the crucial features of (3.1) is minimization of the uncertainty of simultaneous

measurements in space-time and frequency [24].
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Figure 3.1: Isolevel surfaces of an inseparable receptive profile defined in space-

time, as the ones usually found in V1. Green and red surfaces enclose, respectively,

excitatory and inhibitory regions. The yellow line indicates the direction of the

local vector ~X5 (see text for details).



86 CHAPTER 3. PERCEPTION IN THE VISUAL CORTEX

Further analyses have also shown that the Gabor parameter distribution found

in cortical cells cover only a subset of the whole Gabor family. Such subsets are

optimized for the detection of the local features of orientation θ and speed v [20, 8],

defined as

θ = arctan
(
py
px

)
v = pt√

p2x+p2y

that can be interpreted as fundamental features of the visual stimulus. For this

reason I will not deal with the dependence on the spatial frequency κ =
√
p2
x + p2

y

or on the scale σ (see also Chapter 2), and consider RPs of the form

gσ,κq,θ (x, y, t) = e−2πiκ((x−qx) cos θ+(y−qy) sin θ+v(t−qt))e
−
(

(x−qx)2

2σ2x
+

(y−qy)2

2σ2y
+

(t−qt)
2

2σ2t

)

where κ and σ are considered as fixed.

This corresponds to a neural processing stage where the visual stimulus is lifted

from the spatio-temporal image space R2 × R+ to the extended 5-dimensional

feature space

M = R2 × R+ × S1 × R+ = {η = (qx, qy, qt, θ, v)} ,

where every point η ∈ M corresponds to a Gabor filter (3.1), up to the spatial

frequency and scale factors (see also Fig.3.2). The activity of V1 simple cells is

indeed modeled by the map

f 7→ F σ,κ(q, θ, v)
.
= 〈gσ,κq,θ , f〉L2(R3). (3.2)

3.2.2 Connectivity on M as a differential constraint

The functional behavior of V1 simple cells modeled by (3.2) can be interpreted as

a finite scale spatio-temporal directional derivative of the stimulus around position

q, performed along the direction

~Xθ,v = (cos θ, sin θ,−v)
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Figure 3.2: Schematization of the feature-wise organization of the primary visual

cortex. For each spatio-temporal point (x, y, t) of the image hyperplane there is a

two dimensional fiber of representing local orientation θ and local velocity v.

expressed in the coordinates {êx, êy, êt}. Accordingly, as discussed in Chapter 2,

this derivation is maximal along the direction of the gradient of f . This implies

that the lifting to M of any smooth level set of f is always orthogonal to the

vector field

~X = (cos θ, sin θ,−v, 0, 0) ∈ TM

expressed in the coordinates {êqx , êqy , êqt , êθ, êv}.
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Hence the present problem induces to consider as admissible surfaces on M

those whose tangent space at any point is spanned by the vector fields

~X1 = (− sin θ, cos θ, 0, 0, 0) , ~X2 = (0, 0, 0, 1, 0)

~X4 = (0, 0, 0, 0, 1) , ~X5 = (v cos θ, v sin θ, 1, 0, 0)
(3.3)

defining the orthogonal complement to ~X in TM. The four dimensional hy-

perplanes generated by {X1, X2, X4, X5} is called contact plane, and the whole

structure is named a contact structure. Contact structures have been used for

modeling the functional architecture of the visual cortex in several works, see e.g.

[89, 19].

Due to this contact structure, the connectivity among V1 cells on M was

modeled geometrically in Chapter 2 in terms of advection-diffusion processes along

the directions of the vector fields (3.3). Two corresponding stochastic processes

were introduced in order to provide concrete realizations of the mechanisms of

propagation of information along connections.

A first mechanism, aimed to model connectivity along lifted contours of a

spatial image at a fixed time, consists of a propagation along the direction ~X1 forced

by a diffusion over ~X2 and ~X4. This will be used for a single-frame segmentation

out of a spatio-temporal streaming. It lives on a codimension 1 submanifold ofM

at fixed time t0,

M0 = R2 × S1 × R+ = {ξ = (qx, qy, qt, θ, v) : qt = t0}
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and can be formally described by the following system of stochastic differential

equations 

dqx(s) = − sin θ(s) ds

dqy(s) = cos θ(s) ds

dθ(s) = κ dW1(s)

dv(s) = α dW2(s)

ξ(0) = ξ0

(3.4)

where W = (W1,W2) is a two dimensional Brownian motion and (κ, α) are the

corresponding diffusion constants.

A second mechanism, aimed to model connectivity among moving contours

of a spatio-temporal stimulus, will be used for spatio-temporal segmentation of

apparent point trajectories. It consists of a propagation along ~X5 again forced by

a diffusion over ~X2 and ~X4, and is described by

dqx(s) = v cos θ(s) ds

dqy(s) = v sin θ(s) ds

dqt(s) = ds

dθ(s) = κ dW1(s)

dv(s) = α dW2(s)

η(s = 0) = η0.

(3.5)

The construction of these processes takes into account the different role of the

spatio-temporal variables q, where is defined the stimulus, and that of the engrafted

variables (θ, v). Particularly, in the q variables we have advective processes while

in the (θ, v) variables we have diffusion. It is worth noting that this naturally

extend the process proposed by Mumford in [73] for the case of static images.

I can define for the processes (3.4) and (3.5) two probability densities that

a point on M0 or on M is reached by a random path. They can be computed
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as fundamental solutions of partial differential differential equations, derived in

Chapter 2 from the associated Fokker Planck equations. In particular, for the

process (3.4) I can obtain the corresponding connectivity kernel Γ0(ξ|ξ0) on M0

from

(X1 − κ2X2
2 − α2X2

4 )Γ0 = δ(ξ − ξ0) (3.6)

where as customary I have denoted with Xi the directional derivative along the

vector field ~Xi. Analogously, the process (3.5) defines connectivity kernels Γ(η|η0)

on M as solutions to

(X5 − κ2X2
2 − α2X2

4 )Γ = δ(η − η0). (3.7)

A crucial feature of the differential operators in equations (3.6) and (3.7) is

that they are hypoelliptic (see [50] and the discussion in Chapter 2). This implies

in particular that the resulting kernels Γ0 and Γ are smooth outside the pole and

nonzero everywhere on the manifolds M0 and M.

Hypoellipticity is due to the fact that the vector fields { ~X1, ~X2, ~X4} together

with their commutators span the whole tangent space of M0, while the vector

fields { ~X5, ~X2, ~X4} together with their commutators span the whole tangent space

ofM. Such span condition allows to connect any couple of points on the reference

manifolds with of integral curves of these reduced sets of tangent vectors, hence

defining an anisotropic geodesic distance [42] whose balls are squeezed in the direc-

tions of the commutators [75]. Moreover, the obtained connectivity kernels decay

to zero at infinity according to such a distance [100].

3.2.3 Discrete connectivity kernels

In order to use the connectivity properties of Γ0 and Γ to model the visual group-

ing capabilities of the visual cortex, I must define a numerical method for their
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calculation that is both accurate and efficient. While in [31] several representa-

tions of the exact solution to a problem analogous to (3.6) were presented, in this

work I will implement the fundamental solutions with standard Markov Chain

Monte Carlo methods (MCMC) [101], a technique that is suitable to treat also

the more involved case of equation (3.7). As written in Chapter 2, the comparison

of the resulting kernel numerical estimates with [31] confirms the accuracy of the

stochastic method. A deeper study of numerical accuracy, that goes out of the

scope of this thesis, will be published in a future work.

To get a stochastic estimate of the kernel Γ0, I must implement the calculation

of a random path originating from a point ξ0 = (x0, y0, θ0, v0) of the discretized

contact manifoldM0. This is done by discretizing (3.4) over the parameter s, and

without loss of generality I will use as step of the discretization ∆h = 1, so to

have, for unitary displacements over the image plane R2:

xh+1 − xh = − sin θ

yh+1 − yh = + cos θ

θh+1 − θh = δ(κ, 0)

vh+1 − vh = δ(α, 0)

, h ∈ {0, . . . , H} (3.8)

where H is the number of steps performed by the random path and δ(σ, µ) is a

generator of numbers taken from a normal distribution with mean µ and variance

σ2. Solving this finite difference n times will give n different realizations of the

stochastic path: the kernel estimate will then be obtained by assigning to each

region of the discretized contact domain a value proportional to the probability

that a path passes through it at step h, ρκ,α(ξi, h|ξ0, 0), and then integrating over

h:

Γ̂H,κ,α0 (ξ|ξ0) =
H∑
h=0

ρκ,α(ξi, h|ξ0, 0). (3.9)
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Note that with this notation I explicitly underline the role of the diffusion

constants κ and α and the path length limit H as fundamental parameters of the

estimate kernel Γ̂0, as later I will vary these parameters to build the analyses. In

Fig. 3.4 I show the effect of the variation of two of these parameters on the shape

and level of stochastic approximation of Γ̂0.

Similarly, the estimate of the kernel for particle motion integration can be calcu-

lated by discretizing the stochastic system (3.5), so that, for unitary displacements

over the image plane R2 in one time unit and starting point η0 = (x0, y0, t0, θ0, v0),

we have the random paths:



xh+1 − xh = +v cos θ

yh+1 − yh = +v sin θ

th+1 − th = 1

θh+1 − θh = δ(κ, 0)

vh+1 − vh = δ(α, 0)

, h ∈ {0, . . . , H} (3.10)

As before, integrating over h and counting for each region in the discrete domain

M how many paths passed through it, I can build the kernel estimate Γ̂H,κ,α(η|η0).

In Fig. 3.3 I show the isosurfaces of two projections of Γ̂0 and Γ̂. As can be

seen, these kernels reach their maximum values in the proximity of the horizontal

curves that originate from the same starting point. Thus, assuming that the fan

composed of integral curves with constant coefficients on θ and v can be considered

good models of spatio-temporal association fields, the kernel estimates Γ̂0 and Γ̂

can be interpreted as connectivity distributions onM0 andM, since they provide

stronger connections between points that may belong to the same kind of lifted

level set.

In the next sections I will make use also of the simpler connectivity kernel de-

scribed in [19], that is, the position-orientation probability distribution Γq defined
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Figure 3.3: Horizontal curves calculated as in [19] and in Chapter 2 compared to

the stochastic estimates Γ̂0 and Γ̂. Left: isosurface plot of the kernels (isovalues:

0.002 max Γ̂0 and 0.001 max Γ̂). Right: kernel projections relative to the variables

(x, y, θ) for Γ̂0 and b) (x, y, t) for Γ̂ are plotted in gray under the projections of

the horizontal curves (in yellow). This kernels were obtained by calculating the

evolution of 106 stochastic paths..
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Figure 3.4: Marginal distributions over the x − y plane of the stochastic kernel

estimates Γ̂H,κ,α0 for different values of parameters k and H. For visualization

purposes, the values were exponentiated by 1
4
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on the cortical contact manifold Mq = R2 × S1. The equations for its stochas-

tic estimate calculation are exactly the ones of Eq. (3.8), without the additional

engrafted variable of local velocity:
xh+1 − xh = − sin θ

yh+1 − yh = + cos θ

θh+1 − θh = δ(κ, 0)

, h ∈ {0, . . . , H} (3.11)

As before, the integration over the steps of the random walks and over the stochas-

tic paths lead to the definition:

Γ̂H,κq (ξ|ξ0) =
H∑
h=0

ρκ(ξi, h|ξ0, 0). (3.12)

3.3 Spectral analysis

Two examples of visual grouping are portrayed in the first column of Fig.3.5.

In the first row, three dense Gaussian distributions of 2-dimensional points are

embedded within a sparser set of random points uniformly scattered throughout

the domain. The human eye normally associates the points of the Gaussian point

clouds to three separate objects lying on a noisy environment. In the second row,

two dashed continuous lines are embedded in a field of segments having random

position and orientation. In this case, stimulus collinearity clearly gives rise to a

pop-out effect that makes the two lines easily distinguishable from the background.

This powerful effect was quantified with psycho-physiological experiments in [34],

and was firstly simulated using spectral techniques in [88, 63].

Though these examples show two very different grouping effects, the under-

lying mechanism is the same and can be generalized and formalized as follows:

given a set of points S = {x|x ∈ Rd} living in an arbitrary d-dimensional feature

space, the task of grouping together the points that are more similar to each other
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Figure 3.5: Left column: two sample data set of perceptual units embedded in a

random point field. Right column: result of k-means algorithm. The parameter

k, determining the number of clusters to find, was set to, respectively, 4 and 3,

as I know the number of perceptual units (including the noise/background) that I

want to find.
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(so that their ensemble can be considered as being an object) is carried out by

discriminating these groups from the rest. More formally, I want to search for K

disjoint subsets Si ⊂ S, with i ∈ {1, . . . , K}, where we have K− 1 relevant groups

of points and an additional group containing noise, that is, the ensemble of data

that cannot be associated to any other point.

The cognitive task of spatial or spatio-temporal visual grouping can be inter-

preted as a form of clustering. A vast literature is available on the theoretical and

practical aspects of several clustering algorithms: a survey of the main and most

known techniques can be found in [123].

It is widely known that this problem is not easily resolvable with popular and

efficient algorithms like k-means. In the second column of Fig.3.5 I show how its

direct implementation can lead to big clustering failures in both cases: for the

point clouds data set, I used the standard Euclidean distance in the image plane

R2, while for the segment data set I used the Euclidean distance in the extended

feature space R2×S1. Another downside of many clustering algorithms, including

k-means, is that the number of clusters have to be given as input, chosen by means

of a priori knowledge or some arbitrary heuristics.

Trying to solve these issues, a major branch of research on this subject has

been recently developed by studying the mechanisms of methods that analyze the

spectral properties of positive, semi-definite affinity matrices constructed from a

set of input data. The ensemble of these techniques can generally be subdivided

into two classes [58]: methods for locality-preserving embeddings of large data

sets, that project the data points onto the eigenspaces of the affintiy matrices

[22, 11, 102], and methods for data segregation and partitioning, that basically

perform an additional clustering step taking as input the projected data set [88,

131, 111, 70, 76].



98 CHAPTER 3. PERCEPTION IN THE VISUAL CORTEX

Here, I want to formalize and describe a spectral clustering method to perform

visual grouping, that is dependent on as few parameters as possible, including the

number of clusters into which subdivide the input data set. In section 4, I will

adopt this method to test and analyze the grouping properties of the geometry

described in section 2.

3.3.1 Spectral clustering for visual grouping

As previously mentioned, dimensionality reduction and clustering can be obtained

by inspectioning the spectral properties of a n×n affinity matrix A (for a data set

containing n points) whose elements aij have values proportional to the similarity

of point pi to point pj. The formalization of the concept of similarity strictly

depends on the domain in which the points are defined: in continuity with the

previous examples, without loss of generality we can think of n points pj
n
j=1 living

in a Euclidean space Rd, for which an affinity matrix can be built as:

A = aij = exp

(
‖pi − pj‖2

2σ2

)
, (3.13)

where σ is a scale parameter that has to be chosen upon the characteristics of the

data set to be clustered.

It has been originally shown by Perona that the first eigenvector of A can serve

as indicator vector for basic grouping purposes [88]. In fact, it can be shown that

simply by thresholding the first eigenvectors of the affinity matrix it is possible

to obtain a basic background/foreground contour separation, with the foreground

layer represented by the most salient eigenvalue (these results will be published

in a future paper). Basing upon this property, Perona formalized a partition-

ing algorithm that recursively separate the foreground information from the data

set. While this algorithm’s implementation is straightforward and efficient, it was
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demontrated that it can easily lead to clustering errors due to noise, non-linear

distributions or outliers [111, 123].

To overcome these issues, the affinity matrix can be normalized using the di-

agonal degree matrix D having elements

di =
n∑
j=1

aij. (3.14)

Though many authors have proposed different kinds of normalization, it has been

found that the one giving the best results is the one proposed by Meila and Shi

[70, 123], where the affinity matrix A is transformed into a Markov matrix P via

the row-wise normalization

P = D−1A, (3.15)

Thus this matrix won’t in general be symmetric, it can be shown that its eigen-

values {λj}nj=1 are real and satisfy 0 ≤ λj ≤ 1, and its eigenvectors {uj}nj=1 can

accordingly be chosen with real components [22, 58].

This matrix offers very nice interpretations of the clustering properties of its

eigenvectors. Suppose we have a graph G(V,E) - V being the set of vertices and

E the sets of edges connecting them - with n nodes and c connected components

{Gi}ci=1, where elements of a component have the same edge weight connecting

them. The resulting normalized affinity matrix P would be a block diagonal ma-

trix, and thus will have c non-null eigenvalues {λi}ci=1 = 1 and n−c null eigenvalues

{λi}ni=c+1, with piece-wise constant indicator eigenvectors {ui}ci=1 [111, 123].

In real applications, the affinity matrices are perturbed versions of the block

diagonal ones representing a clear partitioning, and thus we won’t generally have

ideally binary spectra. Anyway, if their connectivity is well defined, it is sufficient

for points in a cluster to be weakly connected mainly to their cluster neighbours, to

get a good approximation of the ideal case. Indeed, considering the affinity values

aij as the edges of a weighted undirected graph with n nodes, several authors
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demonstrated that the first egenvectors {ui}ci=1 of the normalized affinity matrix

P , corresponding to the ordered eigenvalues (λ1 > λ2 > . . . > λc) solve the relaxed

optimization problem of Normalized Cuts [111], thus giving a nice probabilistic

interpretation of the clustering problem.

Thus, since we know that the first eigenvectors of P possess clustering infor-

mation, we have to decide which ones we have to take into consideration. While

many authors proposed different solutions, like looking for the maximum eigengap

or trying to minimize a particular cost function [123, 140], the simplest and most

efficient way to go is to take all those ui whose λi > 1 − ε, where ε is a suitable

thresholding parameter. The more P is far from being similar to a block diago-

nal matrix, the more its spectrum will be far from be dichotomous, with ordered

λs decreasing more smoothly (see Fig. 3.6), in which case the sensitivity to small

changes on the values of ε becomes very high. To solve this issue, I will use another

property of P .

Due to the Markovian normalization of Eq. (3.15), the rows of the exponenti-

ated matrix P τ all sum to 1, so that row pτi can be interpreted as the transitional

probability of a random walk to go from point xj to point xi in τ steps. If the points

in a cluster are mainly connected, even weakly, to their cluster neighbors (that is,

the connectivity is geometrically well-defined), a random walk on the graph associ-

ated to the data set starting from one of those point will end inside the cluster with

a higher probability than outside of it. This property also permitted Coifman to

underline the relationship of P with heat diffusion with the definition of a diffusion

distance between the points that is dependent on the parameter τ [22, 58]. For the

scope of this thesis, it is sufficient to note that the values of P τ can be calculated

as simply as {λτi }ni=1, and by giving a sufficiently high value to the parameter τ

the spectrum of the exponentiated affinity matrix will tend to dichotomy, so to

avoid criticities on the choice of the thresholding parameter ε.
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Once selected the number q of eigenvectors to use, I have to chose how to

extract the clustering information. Because of the piece-wise constant structure

of the first eigenvectors of P τ , and the relationship of the Euclidean distance

between the points projected onto the eigenspace spanned by {ui}qi=1 to a more

general probabilistic distance [22, 58], many authors encourage the use of a simple

algorithm like k-means carried out on the projected data set. In this chapter,

thus I will use a variation of a much simpler and efficient clustering technique

based on the eigenvectors {ui}qi=1proposed in [55], tht is, for a data set of n points

{xi}ni=1 ∈ Rd, given the clustering parameters (ε, τ,M):

• Build the affinity matrix A upon an appropriate connectivity measure — for

example with Eq.(3.13).

• Calculate the normalized affinity matrix P = D−1A.

• Solve the eigenproblem PU = λU , where U is the matirx formed by the

column eigenvectors {ui}ni=1.

• Find the q eigenvalues {λτi }
q
i=1 > 1− ε.

• Take the eigenvectors {ui}qi=1 to form the n× q matrix Û = [u1 . . . uq].

• For j ∈ 1 . . . n, assign the data set point xi to the cluster labeled by the

position argmax {ui(j)}qi=1.

• Join together the clusters with less than M elements.

The results of the application of this algorithm for the two previously described

data sets are presented in Fig. 3.6. In both cases I used the gaussian kernel of

Eq.(3.13) to build the affinity matrices, considering positions in R2 and using

σ = 0.75 for the point data sets and σ = 5 for the segment data set. The param-

eters used for clustering were ε = 0.1, τ = 100 and M = 10. In the first case,
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Figure 3.6: Result of the proposed algorithm for the two example data sets. The

picture shows how a Gaussian kernel happens to be an optimal choice to cluster

groups of points living in the image plane R2, but results inadequate when trying

to separate boundaries or contours, naturally defined on the contact manifold

Mq = R2 × S1.
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the algorithm performs the clustering process correctly, finding automatically the

number of the main perceptual units and assigning the remaining elements to the

noise/background cluster. It is worth noting that the spectrum of the normal-

ized affinity matrix P τ counts many eigenvalues that are close to 1, each only

representing a single perceptual unit, that are mostly composed of few elements,

as it is indicated by the associated eigenvectors. The segment data set, on the

other hand, was not clustered correctly: this was predictable, as we have seen that

these kind of stimuli lives on the position-orientation cortical domain R2 × S1,

where to correctly assign a similarity measure between points I have to use the

sub-Riemannian geometry described in section 2.

3.3.2 The cortical affinity matrix

As I have described in Section 3.2 and in Chapter 2, the connectivity patterns

arising from many electrophysiological and phenomenological findings in V1 allow

to naturally define a cortical-inspired distance with a related notion of affinity

between points of a contact manifold M, that in the proposed model represent

cells in the visual cortex. As we have seen, this particular affinity measure can be

modeled by the probability distributions Γ0, and Γ, and I showed how to efficiently

implement their estimates Γ̂0 and Γ̂ by the integration of several stochastic paths

generated by the processes (3.4) and (3.5). For convenience, in this section I will

refer to these stochastic estimates using the original notation Γ0 and Γ.

As we have seen in the previous section, the notion of distance given by the

standard Euclidean geometry in the image plane lead us to good clustering results

when applied to Gaussian distribution of points, but fails in finding the R2 × S1

lifted level set of boundaries and contours. Thus, it seems reasonable for the

construction of the affinity matrix A to substitute the classical Gaussian kernel

with the stochastic kernels previously described. Note that in doing that, I assume
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a direct relationship between the concept of affinity and connectivity: the higher

is the probability that two points (ξi, ξj) ∈ Mq are connected, the higher is their

affinity or similarity.

I will proceed, thus, with the construction of the affinity matrix in the case of

the segment sample data set of Fig. 3.6 using the kernel ΓH,κq as defined in Section

3. In general, for each stimulus like the one presented in the example (where to

every point in R2×S1 is assigned an activity equal to either 1 or 0) we will have n

active points within the whole contact manifold Mq, permitting us to define the

n× n similarity matrix Aq as

Aq = aq(i, j) = ΓH,κq (ξi|ξj) =

∑H
h=0 ρ

κ(ξi, h|ξj, 0)

max ΓH,κq

., (3.16)

where (i, j) ∈ {0 . . . n}. The normalization obtained by dividing for the maximum

kernel value allow us to formally define the relationship between the concepts

of connectivity and affinity. This way, the point couple of maximum connection

probability (in this model, the points with themselves) will have a unique maximum

affinity value, that I arbitrarily set to 1. The definition of affinity matrices for

stimuli living in the extended contact manifolds M0 and M, given Eq. (3.16), is

straightforward.

As the kernels described in Section 3 are a stochastic estimation of the theo-

retical solutions of the associated Fokker-Planck operators, in general we will not

have a symmetric affinity matrix, though the kernel methods of spectral cluster-

ing and dimensionality reduction assume that the underlying affinity matrices are

positive-definite real symmetric. To make the algorithm work, we thus obtain a

symmetric matrix Â by transposition:

Âq = âq(ij) =
aq(i, j) + aq(j, i)

2
. (3.17)

Note that in doing this, I am just adjusting the stochastic errors to replicate the

simmetry of the theoretical solutions. By using symmetrical kernels, derived from
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the geometrical properties of the contact structure of the model, I am assuming

that the modeled long-range horizontal connection between cells in the visual cor-

tex are reciprocal. This is actually what happens in reality, as repeatedly found

by different studies [13, 56].

The results of the application of the spectral clustering algorithm on the cor-

tical affinity matrix are displayed in Fig. 3.7, and they show us that a good

(geometrically and semantically correct) definition of distance or affinity between

points of a complex domain can influence positively on the grouping capabilities

of the method. In particular, I show 3 results obtained by using different sets of

kernel parameters (H, κ). The clustering parameters used here and in the exam-

ples of the next sections were ε = 0.05, τ = 150 and T = 3. I maintained those

parameters for all the tests, so to correctly analyze the differences in the grouping

properties stricly relative to the kernels.

In the first case (top plots) I used H = 40 steps and an orientation diffusion

coefficient κ = 0.0140 (the same value of the curvature of the semi-circular object).

The algorithm clearly succeeds in distinguishing the two perceptual units from each

other, and correctly assigns the remaining elements to the same background/noise

partition, as I expect that the human eye would actually do. Changing the two

parameters, though, greatly influences the results.

In the second case for example (middle plots), I reduced the value of the dif-

fusion constant to κ = 0.0035: while the algorithm correctly retrieves the straight

contour and distinguish the units from the background, the semi-circle gets over-

partitioned. Note that, in fact, as in the previous case the affinity matrix is close

to being a block diagonal matrix, but in this case the represented connected com-

ponents of the sub-graph relative to the two objects are more than two.

Setting again the diffusion coefficient to the original value, in the third case

I increased the step value to H = 100. Note that as the stimulus R2 domain
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Figure 3.7: Result of the proposed algorithm for the second example data set

and different parameters for the kernel Γq. Note how different kernel parameters

modify the look of the affinity matrix, of its spectrum, and of the resulting data

set partitioning.
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is 200 × 200 pixel wide, this means that every segment in the example could

potentially have a non-null connectivity value with almost an half of the other

segments, if the co-circularity conditions are satisfied. Indeed, by observing Aq,

I notice high affinity values between the objects and the random noise and in

between the background elements. Again, even if the straight line is correctly

retrieved as a single object, two random elements, approximately co-circular with

the beginning of the line, are uncorrectly interpeted as being part of the object.

Furthermore, the semi-circular contour gets again over-segmented, and many of

the randomly collinear points, very far from each other, are interpreted as being a

perceptual unit.

Since the stochastic kernel are good models of long-range horizontal cortical

connectivity, it’s interesting to better understand the origin of these differences in

their grouping capabilities, as they could let us explore and better define their role

in the cognitive process of spatio-temporal visual grouping. In the next section, I

will carry out a simple parametric analysis of the stochastic kernels Γq, Γ0 and Γ

using the same spectral clustering algorithm described for the examples above.

3.4 Grouping properties of Γq, Γ0 and Γ

In this section I try to simulate some of the cited grouping capabilities of the brain

by assuming a central role played by horizontal connections in the cortical areas

V1 and V5/MT of the visual cortex.

3.4.1 Spatial grouping using Γq or Γ0

The perceptual bias towards collinear stimuli has classically been associated to the

long-range horizontal connections linking cells in V1 having similar preferences in

stimulus orientation. This specialized form of intra-striate connectivity pattern is
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found across many species, including cats [56], tree shrews [15], and primates [4],

the main difference being the specificity and the spatial extent of the connections.

Furthermore, axons seem to follow the retinotopic cortical map anisotropically,

with the axis of anisotropy being related to the orientation tuning of the originating

cell [13]. Assuming that spatial integration, grouping and shape perception are

fundamentally modulated by the position and the orientation of the elements in

the visual space, here I use the clustering algorithm by building the affinity matrix

Aq as previosly described using the kernel Γq.

But other prominent features of the visual stimulus, namely temporal dynam-

ics, seem to play an important role in the spatial integration of oriented elements.

The receptive fields (RFs) of orientation-selective cells in V1 have classically been

modeled with two-dimensional Gabor functions [53, 54], which basically compute

a local approximation of the directional derivative of the visual stimulus, mini-

mizing the uncertainty between localization in position and spatial frequency [24].

In addition to stimulus orientation, cells in the striate areas are also selective for

the direction of motion orthogonal to the cell’s preferred orientation. These kind

od preference is directly analyzable if one reconstructs the temporal dynamics of

a neuron spatio-temporal RF, representing the motion pattern that would most

excite the neuron [26]. These preferences are also structurally mapped in the cor-

tical surface, with nearby neurons being tuned for similar motion direction [132],

and it has been shown that excitatory horizontal connections in the V1 of the

ferret are strictly iso-direction-tuned [99]. Modeling the grouping effect of these

connectivities by building the affinity matrix A0 using the extended kernel Γ0, I

want to analyze the influence of local velocuty on the detection of contours.

A set of points defined on the cortical manifolds Mq = R2 × S1 and M0 =

R2 × S1 × R+ can be represented on the image plane by segments having orien-

tation θ and moving with local velocity v in the corresponding ~X3 direction. In
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Figure 3.8: An example of the stimuli living in R2 × S1 ×R+ used in the tests for

spatial grouping. The top row represents the stimulus with respect to the feature

of orientation, while the bottom row represents the stimulus with respect to the

feature of velocity. The perceptual units in this case have curvature k = 0.023

and the local velocity of istantaneous deformation changes sinusoidally along the

contours.
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particular, a set of points C = {ξi}ni=1 ∈ M0 whose θ ∈ S1 values are mutually

cocircular and whose v ∈ R+ values have low differences for neighboring points

can be semantically regarded as a deforming contour or boundary. For the sake of

clarity, I focused the first analyses on stimuli composed of two sets of this kind,

together with r points placed at random coordinates within Mq and M0. The

two perceptual units are always circles or circle arcs, so that both contours are

characterized by a constant curvature value k, like the ones pictured in Fig. 3.8.

I will refer to these stimuli with the notation Skr .

The analysis consists in the application of the method described in the previous

section, with the same tuning parameters used for the three examples (i.e., ε =

0.05, τ = 150 and T = 3), on a set of different stimuli Skr , using various kernel

parameter couples (H, κ). For each iteration I then evaluate the goodness of the

grouping results by calculating a percentage error measure

EP =
E1 + E2 + E3

n
, (3.18)

where n is the total number of points in the stimulus, and the numerator is obtained

by summing together the number of points that were incorrectly assigned to the

noise/background set (E1), the number of random points that were incorrectly

recognized as part of a perceptual unit (E2 ), and the points pertaining to an over-

or under-partitioned contour (E3). In order to correctly compare results obtained

by partitioning stimuli with a different number of random points, I calculated the

mean percentage error measure ÊP by averaging EP over 100 repetitions, where

for each repetition I changed the random part of the stimulus and calculated new

kernel stochastic estimates Γq and Γ0.

In Fig. 3.9a I show the results of the analysis of S0.056
200 ∈ R2 × S1, that is

the stimulus in the space-orientation manifold composed of the perceptual units

with the highest curvature and the highest number of random elements that I used

in the analysis. The plot axes correspond to the kernel parameters (κ,H) with
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Figure 3.9: Parametric analysis for visual grouping in R2 × S1 and R2 × S1 ×R+.

a) Grouping results of the algorithm applied to the stimulus S0.056
120 , every region of

the image indicating one couple of kernel parameters (κ,H). The color intensity

of each region is proportional to the mean percentage of misinterpreted points,

calculated over 100 repeats. While taking local contour velocity greatly reduce

grouping errors due to noise, the main effect of the added variable v on kernel

parameters, compared to the position-orientation case, is to give low error indices

also with a high number of kernel steps h.
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which I have run the clustering algorithm, while color intensities represent the

mean percentage error measure ÊP . From the color map we can visually notice

some significative patterns: first of all, it is clear that the only set of kernel pa-

rameters capable to give a low grouping error value is κ = 0.056, H = 20, that is,

the same curvature value of the contours in the stimulus and the shortest stochas-

tic path length. Maintaining the kernel parameter H set to its minimum value

and decreasing the kernel diffusion coefficient κ we have a constant error value

ÊP , whose dominating component is given by E1 and E3. This means that, a

change in the width of the fan of stochastic curves generating Γq (in this case,

a reduction) impairs the connectivity between high curvature contour elements,

so that the algorithm would see them as separate units and assign part or all of

them to the background/noise set. It is worth noting that, regardless of the kernel

diffusion coefficient, increasing the parameter H negatively impacts the goodness

of the grouping, this time mainly because of the error component E2. This was

predictable, as longest stochastic path lengths can generate affinities between ele-

ments very distant from each other, a condition that with a high number of random

elements can induce the algorithm in recognizing them as part of a distant con-

tour. This gives its worse effects when both κ and H have high values, because

with the associated kernel a point in Mq can potentially be connected to distant

elements having a very different orientation. In such cases, also the error compo-

nent E3 gives its contribute, as the two perceptual units can be under-partitioned

and interpreted as one unique object, having each one reciprocally affine contour

elements.

Fig. 3.9b resumes the same kind of grouping analysis carried out with 30 dif-

ferent stimuli Skr ∈ Mq. The first thing we can notice is the correlation between

the stimulus contour curvature k and the smallest possible value of the kernel dif-

fusion coefficient κ that does not present influences by the error component E1.
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Furthermore, while values smallest than these minimums lead to over-partitioned

or unrecognized contours, increasing κ does not impairs the contour grouping ca-

pability of the algorithm, even if at wider κs the error component E2 will grow

together with the number of random elements in the space r and the length of

the stochastic paths H. These correlations generally remain true also when sig-

nificantly changing the parameters of the algorithm (data not shown). From this

observation I can infer that the spread of the connectivity kernel Γq, governed by

the diffusion coefficient κ, set a first functional constraint on its grouping capabili-

ties. In general thus, I can say that object contours cannot be correctly segmented

or recognized by the algorithm if the connectivity used to assign the affinity be-

tween their elements has a diffusion coefficient significantly below the contour’s

curvature.

In a second experiment, I repeated the same analysis with the same parameters

with stimuli Skr defined in the extended space M0 = R2 × S1 × R+, thus using

the kernel stochastic estimate Γ0 to build the affinity matrix between points. Each

point composing these stimuli has a non-negative component of local velocity taken

from the set {v|v ∈ R, 0 ≤ v ≤ Vm}. I assigned to the elements of the perceptual

units velocity values coherently with shape deformation. In particular, I let the

values change sinusoidally, with a semi-period of L, i.e. the length of the contour,

so that, parametrizing the curve of the stimulus by using the arc parameter s:

v(s) =
Vm
2

sin(
πs

L
) +

Vm
2
, (3.19)

For the sake of clarity, as we have seen in the previous experiment the grouping

constraint that exist for the diffusion coefficient of the fiber variable θ, assuming

that the same type of constraint would act also on the fiber variable v I set the

local velocity diffusion coefficient α as

α = 2 max

∣∣∣∣dv(s)

ds

∣∣∣∣ =
π

L
Vm, (3.20)
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so that grouping capabilities will be preserved even at the maximum local speed

change rate along the contour. For the analysis, I set Vm = 5 and let the

noise/background elements of the stimuli have random velocity values within the

range (0, Vm).

In Fig. 3.9c I show the grouping results obtained by analyzing the stimuli

Skr ∈ M0. Note that the stimuli differ from the ones defined on R2 × S1 just for

the addition of the fiber variable v to each point in the space. From a first visual

inspection, we can see that, while the correlation constraint between the contour

curvature k and the orientation diffusion coefficient κ is still present, the influence

of the error component E2 at the highest values of κ and H is significantly reduced,

if not almost completely eliminated for the stimuli having fewer random elements.

This is mainly due to the fact that when considering just the orientation of a

segment, two aligned samples p1 and p2 moving in opposite directions (θ2 = θ1 +π)

result to be very affine to each other, while they should be considered very different

objects. When velocity information is added, on the other hand, this ambiguity

ceases to exist, as the directions of moving segments cover the whole S1 domain

without repetitions.

The beneficial effect of the additional fiber variable v on the grouping capabil-

ities of the algorithm is also evidenced in Fig. 3.9d, where, in order to obtain an

error measure to globally and quantitatively compare the results obtained with Γq

and Γ0, I integrated the three error components E1, E2 and E3 over all the stimuli,

the kernel parameters and the repetitions. From this plot we can clearly see that

while both kernels tend to confuse the perceptual units with noise approximately

in the same way (E1), information on local velocity greatly improves the behavior

of the algorithm in the presence of noise, correctly assigning the random elements

to the background, as I have previously commented (E2). Furthermore, the third

group of bars shows us that by using Γ0 in the grouping algorithm helps to avoid
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Figure 3.10: Results of the proposed algorithm for data set with perceptual units

with different curvatures. Left column: results obtained by using the position-

orientation connectivity given by Γq. Right column: results obtained by using

the position-orientation-velocity connectivity given by Γ0. It is worth noting that

the affinity matrices built with Γ0 are more clean than those built with Γq: they

generally avoid spurious affinities between perceptual units and noise, while main-

taining the approximate object block diagonal structure that is essential for a

correct clustering.
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the under-partitioning of the stimulus when the parameters (κ,H) of the kernel

make it a long range, widespread connectivity tool.

Some punctual examples of the mentioned improvement in the grouping capa-

bilities are pictured in Fig. 3.10: in all three cases, the use of Γ0 instead of Γq

concurs in reducing different kinds of grouping errors of the algorithm. The con-

sistency and generality of these results show the strong effects of augmenting the

dimensionality of the visual space on visual perception and object recognition, thus

suggesting an additional functionality, that of noise/surround suppression, for the

presence of specialized neurons and connectivities in in the first visual cortical ar-

eas of mammals, such as neurons optimized for the measurement of local velocities

(see Chapter 1) and long-range horizontal connections between movement-sensitive

cells [56, 132] in V1.

3.4.2 Spatio-temporal grouping using Γ0 and Γ

At the physiological level, the estimation of stimulus motion is an elaboration

process that has classically been associated with neurons in visual area MT/V5,

for their high selectivity in direction of movement and their extended sensitivities

to a wide range of stimulus velocities [68, 98]. Extra-striate areas are retinotopi-

cally organized, and the horizontal connectivity pattern is highly structured, with

anisotropic and asymmetric connectivity bundles reaching columns of cells tuned

for similar orientation and direction preference [65]. This highly organized func-

tional architecture can be related to the different spatial symmetries of the spatial

surround suppression found by Xiao et al, who found cells with inhibitory regions

placed on one or both sides of the axis of motion direction [139].

Though the importance of this area in complex motion and depth perception,

grouping and segmentation is widely recognized, decades of neurophysiology have

undiscovered just a little part of the mechanisms therein implemented. Even the
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Figure 3.11: An instantiation of the stimulus living in R2×R+× S1×R+ used in

the tests for spatio-temporal grouping of moving shapes. The circle has curvature

k = 0.02 and its velocity is 7, 5 units/frame, that is twice that of the bars (3, 75

units/frame).

functional difference for the estimation of motion with the primary visual cortex,

which serves as its major input and to which projects strong feedback connections,

has not yet been clearly outlined [16]. More generally, striate and extra-striate

cortical areas seem to cooperate, and surround modulation in V1 can be given by

the connectivity patterns implemented in both areas by means of fast feedforward

and feedback inter-areal projections [5].

The stimulus that I use in this simulation is the one pictured in Fig. 3.11: I

created a set o points ηi = (xi, yi, ti, θi, vi) ∈M = R2×R+×S1×R+, represented

in the figures by segments moving in time for a total of nt = 32 frames, forming a

circular shape of curvature k = 0.02 and two bars translating in opposite directions.
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Note again that the fiber cohordinate of local velocities vi of each point represents

just the projection onto ~X3 of the real velocity vector, driving the rigid movement

of the circle and of the bars. Similarly to what I did in the previous example, the

total number n of points in the stimulus if obtained by adding a variable number

r of noise/background elements, each one having a rigid motion path in their ~X3

direction that remains consistent over all the stimulus frames. In this case, the

aim of the grouping algorithm will be to carry out a segmentation of the complete

spatio-temporal surfaces representing the moving objects.

In Section 2, I have described two different connectivity kernels, one model-

ing the interactions between points of a motion contour (Γ0), and one specifically

modeled for motion integration of point trajectories (Γ). As the domain on which

the first kernel is defined,M0, doesn’t include a temporal dimension, it is straight-

forward to conclude that to carry out the detection of contours and shapes over

time, i.e. to perform the grouping of the spatio-temporal surfaces depicted in Fig.

3.11, I need to combine the influence of both definitions of affinity between points.

At the psychophysiological level, Ledgeway et al confirmed the presence of more

than one grouping law governing the detection of contours, with different underly-

ing implementing structures, and that the composition of them is compatible with

the probability summation hypothesis [60]. Thus, to account for the interaction

between striate (V1) and extra-striate (V5/MT) connectivities, I decided to sum

together the connection probability between points of the manifold by building two

distinct n× n affinity matrices. For the first I use the kernel for motion contours,

Γ0, to assign affinities between the points at the same temporal position:

A0 = av(i, j) =
Γ0(ξi|ξj)
max Γ0

, ξi, ξj ∈M0 = R2 × S1 × R+, (3.21)

so that we have av(i, j) = 0 for all the points ηi and ηj with temporal coordinates

ti 6= tj. A second affinity matrix is then calculated by assigning affinities between
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Figure 3.12: Affinity matrix Axt of the spatio-temporal stimulus of Fig.3.11 without

background/noise elements. Due to the intrinsic causality of Γ, the matrix is real

positive but not symmetric. This will have no consequences for the clustering

algorithm, as described in the text.
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points using Γ on the entire 5-dimensional manifold M:

A = at(i, j) =
Γ(ηi|ηj)
max Γ

, ηi, ηj ∈M = R2 × R+ × S1 × R+ (3.22)

Sticking to the assumption of probability summation of [60], thus, I create a global

n×n affinity matrix Axt = A0 +A. It is worth noting that, due to the characteris-

tics of the model, I am assuming an instantaneous effect of the connectivity defined

with Γ0, meaning high horizontal transmission velocities at the physiological level.

On the other hand, this kind of connectivity could be thought as an approxima-

tion of the steady state of an unmodeled feedback/feedforward interaction system

between movement-sensitive cells of the visual cortex.

Another important thing to note is that the kernel Γ intrinsically implements

causality, so that at(i, j) = 0 if ti > tj and A, Axt are strongly asymmetric matrices

(see Fig. 3.12). At first thought, this could potentially affect the efficiency of

the grouping algorithm, as the previously cited dimensionality reduction methods

have always been defined for real positive symmetric affinity matrices. Indeed,

the first eigenvectors of the transition probability matrix PG = D−1
G Axt will in

general be complex. Even if the operation of symmetrizing the matrix by using its

transpose, by generating a reversible Markov chain on an undirected graph, might

seem a reasonable and practical solution, it has been shown that it leads to a

strong loss of information, thus preventing any algorithm from a correct grouping

or partitioning of the data set to cluster [71]. Following these issues, here I use

the method proposed in [87] by changing the algorithm accordingly, so that the

clustering is not carried out by taking the first q eigenvectors of PG, {ui}qi=1, but

the composition of their real and imaginary parts:

{ūi}qi=1 = <{{ui}qi=1}+ ={{ui}qi=1}. (3.23)

The results obtained by using the modified algorithm for various instances of

the circle/bars stimulus, each time by varying the number of background/noise
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Figure 3.13: Results obtained by using Γ0 and Γ. The grouping is succesful at

all noise/background conditions apart from r = 100, where the algorithm fails by

over-partitioning the countours of the moving circle.
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elements r, are displayed in Fig.3.13. The parameters chosen to run the algorithm

were ε = 0.01, τ = 150 and T = 3nt, and the number of stochastic paths was set to

H = 40 for both Γ0 andΓ. While the diffusion coefficients of Γ0 were set accordingly

to the logic used in the previous analysis, for Γ I used a larger α parameter, to take

into account the considerations made in [46], where it is specified that changes in

the local velocity of a motion contour impairs the perception of the visual unit

significantly less if the velocity is tangential to the contour, thus defining a partial

trajectory. In particular all the results shown in the next figures were obtained by

setting κv = κt = 0.7 for both kernels, and a diffusion coefficient over velocity of

αv = 0.5 and αt = 1.

From the figure it is possible to see how the composition of the kernels with

which I built the affinity matrix Axt allows to correctly recognize the spatio-

temporal surfaces relative to the moving circle and the bars, and to separate

clearly their boundaries from the background (always plotted in black for clar-

ity) and between themselves. When the number r of random elements was lower

than 25, I always obtained the correct clustering for various stimulus instances.

For higher noise values, though, the algorithm began to give poor grouping results,

as pictured in the bottom row of Fig.3.13 in the case of r = 100 random segments.

The example with r = 50 was the best grouping result I obtained among many

clustering failures.

It is worth noting that even in the case with the highest noise values, the bars

are always correctly retrieved, so in that case the algorithm is failing to detect only

contours with higher curvature confusing them with the background segments, thus

leading to an over-partitioning of the perceptual units. In general, though, I show

that the connectivity kernels defined by the proposed cortical-inspired geometrical

model applied to a simple spectral clustering algorithm are able to carry out a

non-trivial grouping task. To better understand the powerful mechanics involved
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in the calculations, let’s consider for example that the only segments of the circle

that present a positive affinity value with their corresponding points at future

temporal positions are the ones having an orientation value near ±π
2
, as only for

them the vector field ~X5 of connectivity propagation has the same direction of the

global movement of the shape.

In fact, while the ability and the reliability of visual neurons in areas V1 and

MT/V5 in measuring local stimulus orientation and speed have been studied ex-

tensively, the majority of cells in those areas respond solely to the local charac-

teristics they are tuned for. In doing so, the measurements available in the first

stages of the visual cortex are subject to the well-known aperture problem: with

no information other than the local direction of movement, it cannot be said much

about the real direction and speed of the object to which that local measurement

refers. For a continuously moving contour, for example, classical orientation- and

direction-selective cortical cells measure, for each position along the contour, just

the velocity component that is orthogonal to the contour tangent direction at that

point (see Fig. 3.14, left plot). In the framework presented throughout the thesis,

this is modeled so that the fiber variable of local velocity refers to movements in

the ~X3 direction.

Even if this component alone is ambiguous and generally not sufficient for mak-

ing global assumptions, in this section we have seen that spatio-temporal grouping

is still possible. To analyze the influence of the locality of the velocity/orientation

measurement on grouping, in the following section I tested the algorithm by first

solving the problem of aperture, and then using the recovered global information

to partition the visual space.
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Solving the aperture problem using Γ0

The ability of the visual cortex in resolving the aperture problem has been widely

investigated, both from the phenomenological and the physiological point of view.

In [62, 112], it was observed that the velocity of a moving line is often underes-

timated when its orientation diverges from being orthogonal to the direction of

movement, and that this bias is dependent on line orientation, speed, contrast

and length. The study of the temporal dynamics of neurons in visual area MT

showed that after an orientation-selective transient response, the cells begin to

being activated by stimuli moving in the preferred direction, irrespective to their

orientation [82]. As demonstrated in [83], this kind of neurons is also found in

V1, and their capability to decode real movement directions strongly depends on

the information presented in their receptive field surround. In that experiment,

the cells managed to resolve the aperture problem more easily if the line used as

stimulus didn’t extend too far beyond their classical receptive field. In [44, 64] this

notion has been extended by the finding that a consistent subpopulation of cells

in V1 is capable to measure global directions even if the oriented stimulus length

was well beyond receptive field surround.

The cortical mechanisms underlying the capability of resolving the aperture

problem by integrating motion information are still unclear. All of the cited stud-

ies, together with some of the models proposed in literature (see [78, 113, 103])

stress the importance to rely on unambiguous measurements, such as the output

of motion end-stopping cells, in order to recover real motion. While this is true in

the case of a line moving continuously in space, we don’t always need a disconti-

nuity along a contour to estimate its axis of motion when its tangent orientations

vary smoothly, think for example to the translating circle of Fig. 3.11. The lit-

erature is rich of models that are capable to solve the geometrical problem also

known as intersection of constraints (IOC) using multiple neural layers linked by
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Figure 3.14: Local versus global velocity fields plotted for the points belonging

to the stimulus at a given temporal position. In the global case, the elements

pertaining to the circles all share the object’s direction φ and velocity ω.

feed-forward, feed-back and horizontal connections. In particular, the most widely

accepted model of V5/MT neuron integrates the responses of the subset of local

movement-selective V1 cell whose orientation and velocity preferences are coher-

ent with a specific global direction and speed [64]. Since the model was originally

defined in the spatio-temporal Fourier space, the pooling region over space of the

input was initially modeled with an iso-tropic Gaussian kernel. Recently, though,

it has been shown that the V5/MT cells can pool input signals from non-trivial

neighborhood regions that are strongly anisotropic, with a possible preference for

geometrical patterns [103].

Following those observations, here I want to simulate a part of the cortical

elaboration of global spatio-temporal features by assuming that the connectivity

in V1 modeled by Γ0 strongly influences the integration of local measurements.

First of all, I solve the IOC system associated to each couple of points in the
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stimulus, so to build two matrices of estimated global velocity components

Vx = vx(i, j) =
vi cos θj−vj cos θi

sin(θj−θi)

Vy = vy(i, j) =
vi sin θj−vj sin θi

sin(θj−θi) ,
(3.24)

where for point couples having θi = θj the velocity components of the two segments

were simply averaged. Note that in this case I am addressing the problem of

aperture with an implementation that is the reverse of the supposed physiological

one: for each point ξi, we have n − 1 global estimates that reflect the feature

preferences of MT/V5 cells. Among those possibilities, I want to chose the one

that would most probably generate a response from the extra-striate neurons, by

choosing a method to weigh, or pool, the inputs from the each point’s surround.

To do so I average all the global estimates, weighing them with the horizontal

connectivity model Γ0 by first modifying and normalizing A0, so that self-similarity

is excluded from the weighted mean

Ps = D−1
s As, (3.25)

where As = A0 − I and Ds is the diagonal degree matrix of As. Since in this

way the rows of Ps all sum to 1, obtaining the wighted average is as simple as

multiplying it element-wise with Vx and Vy

vx(i) =
n∑
j=1

vx(i, j)pv(i, j)

vy(i) =
n∑
j=1

vy(i, j)pv(i, j),
(3.26)

so that I can assign two new fiber variables to each point of the stimulus, indicating

its real (global) direction and velocity of movement:

φi = atan2(vx(i), vy(i))

ωi =
√
vx(i)2 + vy(i)2.

(3.27)



3.4. GROUPING PROPERTIES OF ΓQ, Γ0 AND Γ 127

In Fig.3.14 I show the resulting velocity vector field compared to the one of local

velocities. While for the elements of the bars θi = φi and vi = ωi, the segments

composing the circle and the background have different associated directions and

velocities. In particular we see that this method assigns to all the elements of the

circle the values (φ, ω) of the entire shape, irrespective of their local orientation θ.

Note that the object’s direction has been assigned also to a background element

(on the left), as its local features matched significantly the connectivity conditions

imposed by the circle.

A second model for spatio-temporal grouping

Once I have calculated the global velocity of each point of the stimulus, I can

define a new manifold, Mg, composed of the three spatio-temporal base variables

(x, y, t) and the fiber variables (φ, ω). Similarly to what I described in the first

section, in this space we can think about a propagation along the direction

~Xg
5 = (ω cosφ, ω sinφ, 1, 0, 0), (3.28)

forced by a diffusion over the new fiber variables. The propagation will be described

by an analogous stochastic differential system, but in this case the diffusion coeffi-

cients κ and α will drive the two dimensional Brownian motion over, respectively,

φ and ω. The stochastic process associated to the system leads as before to the

definition of a connectivity kernel Γg on Mg, giving us the probability that two

points of the manifold are connected by a random path generated by one of them.

Using the new kernel, I can build a modified affinity matrix for the points of the

stimulus defined on Mg,

Agt = agt (i, j) =
Γg(ηi|ηj)
max Γg

, ηi, ηj ∈Mg = R2 × R+ × S1 × R+ (3.29)

to add to the previously calculated A0 in order to proceed with the clustering

algorithm.
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Figure 3.15: Results obtained by using Γ0 and Γg. Grouping capabilities are

maintained even at the highest number of background random elements, even if

the circle seem to be recognized only in the late part of the stimulus.
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The results of this analysis carried out on the same stimuli of the previous

experiment are displayed in Fig.3.15. The diffusion coefficients κ and α were not

changed. The plots clearly show that also by using the kernel Γg, the spectral

clustering algorithm is capable of grouping the elements of the circle and the bars

in space-time. Furthermore, this time the objects are being correctly recognized

also at the highest random/background noise condition, with r = 100, even if some

of the random elements have been assigned to a perceptual unit.

Thus, while the underlying physiological mechanism of motion integration is

still an open subject of research, assuming that the algorithm for spatio-temporal

visual grouping is a valid methodology to test the characteristics of different con-

nectivity kernels, I showed two possible geometries that are both capable of solv-

ing the segmentation problem of recognizing moving contours and shapes from

background/noise. My preliminary results seem to suggest that by delevolping a

geometry based on estimated global velocity, we get a reduced sensitivity to noise.

Future experiments, though, should concentrate on analyzing the grouping effect

of the kernel parameters H, κ and α, by carrying out a statistical analysis similar

to the one proposed in this chapter for the connectivity in M0.

It is also worth noting the tendency of the algorithm to correctly recognize all

the elements of the circle as being part of the same object mainly after a certain

temporal position. Even if this behavior was detected in some instances also

when using Γ, the consinstency with which I obtain this effect with Γg suggests to

explore more deeply the relationships between the algorithm parameter τ , used by

Coifman to explain non-linear diffusion on the graphs represented by real positive

affinity matrices, and the temporal base bariable t. A possible extension of the

geometrical model proposed in Chapter 2, that adds the temporal variable to Γ0

to model real cortical propagation, and that analyze the effect of that modification

on visual grouping capabilities, could be the object of a future work.
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Conclusions

The field of cognitive neuroscience is a very fascinating area of research, containing

a wide range of subjects from many disciplines, such as physiology, psychology,

mathematical modeling, computer science, etc. In particular, a full and complete

understanding of the mechanics underlying visual cognition could have a strong

impact in a huge variety of sectors, like medical and biomedical science or more

generally, image analysis.

In this work I tried to explore many aspects of cognitive visual science, each

one based on different academic fields, proposing mathematical models capable

to reproduce both neurophysiological and phenomenological results that were de-

scribed in the recent literature. The structure of my thesis is mainly composed

of three chapters, corresponding to the three main areas of research on which I

focused my work. The results of each work put the basis for the following, and

their ensemble form an homogeneous and large-scale survey on the spatio-temporal

properties of the architecture of the visual cortex of mammals.

Starting from the very basis of neurophysiology of the primary visual cortex, in

Chapter 1 I explored the spatio-temporal characteristics of the direction-selective

cells in V1, by reconstructing a data set of spatio-temporal receptive profiles be-

longing to both simple and complex cells. The available raw data were cat record-

ings recollected with three different experimental procedures (oriented bars, natu-

ral stimuli, 1D Gaussian noise). The RF profiles were then fitted using a 3D Gabor

131



132 CHAPTER 3. CONCLUSIONS

model, which has the property of minimizing uncertainty on stimulus localization

simultaneously over both space and time.

It has been established that RF size has an upper and an inferior limit. The

scale factor is indeed one of the main physiological constraints limiting the subset

of Gabor functions used in the primary visual cortex to process visual information,

and the range of sizes effectively present in the cortex is much narrower than the

one defined by the spatial limit boundaries. Spatial and temporal frequencies

measured by a single neuron are also important parameters linked to the spatial

and temporal sizes, and somewhat constrained by them, as I have previously seen.

Nevertheless, the limits in the parameters that are found within V1 are much

stronger than the ones dictated by physical reality or logical assumptions. It ap-

pears that only a relatively small portion of the entire 3D Gabor model family is

used by the cortex and some of the parameters show very strong linear correlations

or non-linear relationships between each other. Some of these relationships have al-

ready been described in the literature, but few studies have been carried out on the

time-space simultaneous cross-correlations between properties of cells belonging to

V1 as a whole, describing a general spatio-temporally organized architecture.

These results are also consistent with the anatomical studies that show V1

to be one of the main inputs to the MT (Middle-Temporal) area, also known as

V5, whose neurons are highly selective for stimulus velocities. RF profiles of cells

belonging to this movement-dedicated area of the cortex are represented within

the spatio-temporal Fourier plane by skewed elongated ellipsoids that follow iso-

velocity lines with relative precision [91]. Indeed, the relationship between spatial

and temporal parameters, found in this work by modeling RF profiles of simple

and complex cortical cells with three-dimensional Gabor functions, seem to form

an ideal basic architecture for building elements that have similar responses to the

ones present in the MT area.
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Possible future developments could include the confirmation of these findings

through specifically targeted experimental procedures; the construction of a math-

ematical framework able to better describe the functional spatio-temporal architec-

ture of V1, introducing for example a formal uncertainty principle for the velocity

variable; the design of a numerical simulation of the visual information process-

ing labor done within the cortical stage; and finally, the construction of solid

algorithms for the compression and the processing of movies or image sequences,

based on the efficiency rules followed by the brain throughout the visual pathway.

Then in Chapter 2, I proposed a model of cortical functional architecture for

the processing of spatio-temporal visual information. Motion features are detected

first by simple and complex cells with RP modeled by 2D+time Gabor filters.

Linear filtering with such a profiles lifts the visual stimulus from the base space

R3 to the phase space R6 comprising spatial and temporal frequencies, in which a

Liouville form can be defined.

I defined a 5D phase space with fixed frequency by taking a reduction of the

previous differential form. Then, exploiting the commutation properties of the

horizontal basis, I regarded the tangent space of the contact manifoldM as a pos-

sible constraint acting on the connectivity between points, giving the definition of

admissible integral, or horizontal, curves. Possible linear combinations of the hor-

izontal basis that are compatible with the definition of admissible curve have been

studied, in order to model the possible lifting of the visual stimuli as association

fields, in the sense of [34]. I considered the corresponding deterministic integral

curves for two modeling limit cases: contours in motion and trajectories of a point

in motion.

Then I considered horizontal stochastic paths, i.e. trajectories of points that

always move along the tangent space of M and are allowed to change the value

associated to the fiber variables (θ, v) in a random, equidistributed way. I have
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seen that the resulting integrations over the evolution parameter of the paths

coincide with the kernels of the Fokker Planck operators defined on the geometries.

Both deterministic curves and stochastic kernels inherit the symmetries of the non

associative reduced Galilean group as described in Appendix.

After a discussion about the compatibility of the presented theoretical frame-

work with various phenomenological and psycho-physiological findings on visual

perception and cognition reported in the literature, I introduced the stochastic

kernels as facilitation inducers in a neural population activity model.

Suitable numerical simulations have been carried out, by processing pre-determined

artificial stimuli with the neural population activity model previously described,

showing that the Fokker Planck stochastic kernels endow the model with the ca-

pability of completion and continuation of contours in motion and trajectories of

points, coherently with the phenomenological experiments of Rainville [92] and

Wu et al [138]. In conclusion, results have shown that the proposed functional ge-

ometry is compatible with existing psychophysical and physiological experiments,

even if a complete knowledge about the effective neural implementation needs

supplementary empirical data.

In Chapter 3, I described and implemented a clustering algorithm in order

to test the visual grouping properties of the connectivity kernels that were pre-

viously introduced. In particular, I used one of the most recent dimensionality

reduction methods [58, 22] to perform spectral clustering on the spatio-temporal

cortical feature space of position, orientation and velocity, by using the stochastic

cortical kernels Γ, Γ0 and Γt instead of the classical Gaussian kernel to assign a

similarity measure to each couple of points. The algorithm is capable of grouping

together elements belonging to a single contour or shape moving in time, forming

a spatio-temporal surface, distinguishing them from a noisy background composed

of randomly placed elements.
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The first analysis that I carried out was based on phenomenological findings

that abrupt changes in local velocity can drastically impair the perception of a

contour, even if its elements are collinear to each other [92]. The grouping results

of the algorithm confirmed that if the affinity between points in the cortical fea-

ture space is assigned not only following their position in R2×S1, but also taking

local velocity into account, we get a strongly reduced negative influence of ran-

dom elements and a significantly lower percentage of grouping errors due to over-

or under-partitioning, thus allowing the horizontal connectivity to be spatially

extended without suffering noise, as it happens in the visual cortex [13].

A second analysis extended the algorithm in order to use also the connectivity

kernel for motion integration, to test if its combination with Γ0, that is defined as

an instantaneous connectivity, could be capable to segment entire spatio-temporal

surfaces drawn by contours and shapes moving in time. The connectivity model

was also modified, defining a new affinity kernel Γg, so to take into account global

direction and velocity information at each point, and to compare the algorithm

outcome with its local counterpart. The results showed that the integration of

local informations about movement, with the use of Γ0 and Γt, manage to give a

good segmentation at global scale, even if by integrating global information in the

first place by using Γg noise seems to be less effective.

The neurophysiological counterparts of the proposed connectivities have been

discovered and confirmed only in part, while it is not yet completely clear if they

may have multiple functional roles. The models proposed in this thesis may be

regarded more as perceptual and phenomenological modeling than strictly phys-

iological models of cortical connectivity, even if in Chapter 2 their use for the

simulation of neural population response lead to the reproduction of physiological

non-linearities that were previously unexplained. At the physiological level, the

mechanisms involved in the perception of complex shapes and motion patterns are
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likely to be implemented differently (see for example the proposed method to esti-

mate global velocity at the end of Chapter 3, against the functionality of V5/MT

neurons described and modeled in [103, 113]).

Finally, the flexibility and the generality of the geometrical framework where

I defined the mathematical tools used in this work, make possible to extend and

to define many new differential constraints on the cortical feature space, leading

to new stochastic connectivity kernels, that are a powerful tool to explore, com-

pare and parametrize the actual horizontal connections in the visual cortex. For

example, it would be interesting to introduce the scale or color variables in the

geometry, defining their implications on the connectivity between points, for it

has been suggested in the literature that different stimulus scales are probably

processed by different connectivity networks [60], or to slightly modify the model

to try to reproduce additional neurophysiological findings. Furthermore, the re-

sults of my work could be used as a suggestion for future phenomenological or

electro-physiological experiments, trying to tune the model’s parameters in order

to fit real visual perception and cognition behaviors.
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[42] Gromov, M.: Carnot-Carathéodory spaces seen from within. Progr. Math.

144, 79-323 (1996).



142 BIBLIOGRAPHY

[43] Grzywacz, N.M., Watamaniuk, S.N.J., McKee, S.P.: Temporal coherence the-

ory for the detection and measurement of visual motion. Vision Res. 35(22),

3183-203 (1995)

[44] Guo, K., Robertson, R., Nevado, A., Pulgarin, M., Mahmoodi, S., Young,

M.P.: Primary visual cortex neurons that contribute to resolve the aperture

problem. Neuroscience 138(4), 1397-1406 (2006)

[45] Hartline, H.K.: The response of single optic nerve

bers of the vertebrate eye to illumination of the retina. J. Physiol. 121, 400-415

(1938)

[46] Hess, R.F., Ledgeway, T.: The detection of direction-defined and speed-

defined spatial contours: One mechanism or two? Vision Research 43, 597606

(2003)

[47] Hladky, R.K., Pauls, S.D.: Minimal Surfaces in the Roto-Translation Group

with Applications to a Neuro-Biological Image Completion Model. J. Math

Imaging Vis 36, pp. 1-27 (2010)

[48] Hoffman, W.C.: The Lie Algebra of Visual Perception. Journal of Mathemat-

ical Psychology 3, 65-98 (1966)

[49] Hoffman, W.C.: The visual cortex is a contact bundle. Appl. Math. Comput.

32, 137-167 (1989)
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tures de contact et contours subjectifs modaux. Math. Sci. Hum. 145, 5-101

(1999)

[90] Petkov, N., Subramanian, E.: Motion detection, noise reduction, texture sup-

pression and contour enhancement by spatiotemporal Gabor filters with sur-

round inhibition. Biol. Cybern. 97(5-6), 423-439 (2007)

[91] Priebe, N.J., Casanello, C.R., Lisberger, S.G.: The neural representation of

speed in macaque area MT/V5. J. Neurosc. 23, 5650-5661 (2003)

[92] Rainville, S.J.M., Wilson, H.R.: Global shape coding for motion-defined

radial-frequency contours. Vision Res. 45(25-26), 3189-201 (2005)

[93] Reid, R.C., Soodak, R.E., Shapley, R.M.: Directional selectivity and spa-

tiotemporal structure of receptive fields of simple cells in cat striate cortex.

J. Neurophysiol. 66, 505-529 (1991)

[94] Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields

in macaque primary visual cortex. J. Neurophysiol. 88(1), 455-463 (2002)

[95] Ringach, D.L., Hawken, M.J., Shapley, R.: Receptive field structure of neu-

rons in monkey primary visual cortex revealed by stimulation with natural

image sequences. J. Vision 2, 12-24 (2002)

[96] Ringach, D., Shapley, R.: Reverse correlation in neurophysiology. Cognitive

Science 28(2), 147-166 (2004)

[97] Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to

visual stimuli. Vision Research 5, 583-601 (1965)

[98] Rodman, H.R., Albright, T.D.: Coding of visual stimulus velocity in area MT

of the macaque. Vis. Res. 27(12), 20352048 (1987)



148 BIBLIOGRAPHY

[99] Roerig, B., Kao, J.P.: Organization of intracortical circuits in relation to

direction preference maps in ferret visual cortex. J Neurosci. 19(24) (1999)

[100] Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpo-

tent Lie groups. Acta Math. 137, 247320 (1977)

[101] Robert, C.P., Casella, G.: Monte Carlo statistical methods. Springer, 2nd

Edition (2004)

[102] Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear

embedding. Science, 290(5500), 2323-2326 (2000)

[103] Rust, N.C., Mante, V., Simoncelli, E.P., Movshon, J.A.: How MT cells an-

alyze the motion of visual patterns. Nature Neurosc. 9(11), 1421-1431 (2006)

[104] Sabinin, L.V.: Smooth quasigroups and loops. Kluwer (1999)

[105] Sanguinetti, G., Citti, G., Sarti, A.: Image Completion Using a Diffusion

Driven Mean Curvature Flowin A Sub-Riemannian Space. VISAPP (2)’08,

46-53 (2008).

[106] Sanguinetti, G., Citti, G., Sarti, A.: A model of natural image edge co-

occurrence in the rototranslation group. J. Vis. 10(14) (2010)

[107] Sarti, A., Citti, G., Petitot, J.: The symplectic structure of the primary

visual cortex. Biol. Cybern. 98, 33-48 (2008)

[108] Sasaki, S.K., Ohzawa, I.: Internal spatial organization of receptive fields of

complex cells in the early visual cortex. J. Neurophysiol. 98, 1194-1212 (2007)

[109] Scholl, B.J., Pylyshyn, Z.W.: Tracking multiple items through occlusion:

clues to visual objecthood. Cogn. Psychol. 38(2), 259-290 (1999)



BIBLIOGRAPHY 149

[110] Sherrington, C.S.: The integrative action of the nervous system. C. Scribner

and Sons, New York (1906)

[111] Shi, J., Malik, J.: Normalied cuts and image segmentation. Proc. IEEE Conf.

Comp. Vis. and Pattern Recogn, 731-737 (1997)

[112] Series, P., Georges, S., Lorenceau, J., Fregnac, Y.: Orientation dependent

modulation of apparent speed: a model based on the dynamics of feed-forward

and horizontal connectivity in V1 cortex. Vis. Res. 42(25), 2781-2797 (2002)

[113] Simoncelli, E.P., Heeger, D.J.: A model of neuronal responses in visual area

MT. Vis. Res. 38(5), 743-761 (1998)

[114] Sorba, P.: The Galilei group and its connected subgroups. J. Math. Phys

17(6), 941-953 (1976)

[115] Tan, Z., Yao, H.: The spatiotemporal frequency tuning of LGN receptive

field facilitates neural discrimination of natural stimuli. J. Neurosc. 29, 11409-

11416 (2009)

[116] Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E., Gallant,

J.L.: Estimating spatio-temporal receptive fields of auditory and visual neu-

rons from their responses to natural stimuli. Network 12, 289-316 (2001)

[117] Touryan, J., Lau, B., Dan, Y.: Isolation of relevant visual features from

random stimuli for cortical complex cells. J. Neurosc. 22 10811-10818 (2002)

[118] Verghese, P., Watamaniuk, S.N.J., McKee, S.P., Grzywacz, N.M.: Local mo-

tion detectors cannot account for the detectability of an extended trajectory

in noise. Vision Res. 39(1), 19-30 (1999)



150 BIBLIOGRAPHY

[119] Verghese, P., McKee, S.P., Grzywacz, N.M.: Stimulus configuration deter-

mines the detectability of motion signals in noise. J. Opt. Soc. Am. A 17(9),

1525-34 (2000)

[120] Verghese, P., McKee, S.P.: Predicting future motion. J. Vis. 2(5) (2002)

[121] Verghese, P., McKee, S.P.: Motion grouping impairs speed discrimination.

Vis. Res. 46(8-9), 1540-1546 (2006)

[122] Visiome Network website. http://visiome.neuroinf.jp.

[123] Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing

17(4), 395-416 (2007)

[124] Wagemans, J., Elder, H. J., Kubovy, M., Palmer, S. E., Peterson, M. A.,

Singh, M., von der Heydt, R.: A Century of Gestalt Psychology in Visual

Perception: I. Perceptual grouping and Figure-Ground Organization. Psychol

Bull. 138(6), 1172-217 (2012).

[125] Watamaniuk, S.N.J.: The predictive power of trajectory motion. Vision Res.

45(24), 2993-3003 (2005)

[126] Watamaniuk, S.N.J., MkKee, S.P.: Seeing motion behind occluders. Nature

377(6551), 729-30 (1995)

[127] Watamaniuk, S.N.J., McKee, S.P., Grzywacz, N.M.: Detecting a trajectory

embedded in random-direction motion noise. Vision Res. 35(1), 65-77 (1995)

[128] Watson, A.B., Ahumada, A.J. Jr: A look at motion in the frequency domain.

J. K. Tsotsos (Ed.). Motion: Perception and representation, 1-10 (1983)

[129] Watson, A.B., Ahumada, A.J. Jr: Model of human visual-motion sensing. J.

Opt. Soc. Am. A 2, 322-342 (1985)



BIBLIOGRAPHY 151

[130] Watson, A.B., Ahumada, A.J. Jr, Farrell, J.A.: Window of visibility: a

psychophysical theory of fidelity in time-sampled visual motion displays. J.

Opt. Soc. Am. A 3, 300-307 (1986)

[131] Weiss, Y.: Segmentation using eigenvectors: a unifying view. Proc. IEEE

Int. Conf. on Comp. Vis, 975-982 (1999)

[132] Weliky, M., Bosking, W.H., Fitzpatrck, D.: A systematic map of direction

preference in primary visual cortex. Nature 379(6567), 725-728 (1996)

[133] Weng, C., Yeh, C., Stoelzel, C.R., Alonso, J.M.: Receptive field size and re-

sponse latency are correlated within the cat visual thalamus. J. Neurophysiol.

93, 3537-3547 (2005)

[134] Wertheimer, M.: Laws of organization in perceptual forms. Ellis, Willis D.

(Ed). A source book of Gestalt psychology, 71-88 (1938)

[135] Whitaker, D., Levi, D.M., Kennedy, G.J.: Integration across time determines

path deviation discrimination for moving objects. PLoS One 3(4) (2008)

[136] Williams, L.R., Jacobs, D.W.: Stochastic completion fields. ICCV Proceed-

ings (1995)

[137] Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in local-

ized populations of model neurons. Biophys. J. 12, 1-24 (1972)

[138] Wu, W., Tiesinga, P.H., Tucker, T.R., Mitroff, S.R., Fitzpatrick, D.: Dy-

namics of population response to changes of motion direction in primary visual

cortex. J. Neurosci. 31(36), 12767-77 (2011)

[139] Xiao, D.K., Raiguel, S., Marcar, V., Orban, G.A.: The spatial distribution

of the antagonistic surround of MT/V5 neurons. Cereb. Cortex 7(7), 662-677

(1997)



152 BIBLIOGRAPHY

[140] Zelnik-manor, L., Perona, P.: Self-tuning spectral clustering. Advances in

Neural Information Processing Systems 17, 1601-1608 (2004)

[141] Zucker, S.W.: Differential geometry from the Frenet point of view: boundary

detection, stereo, texture and color. In: Paragios, N., Chen, Y., Faugeras, O.

(eds.) Handbook of Mathematical Models in Computer Vision, pp. 357-373.

Springer, US (2006)

[142] Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of

stochastic completion fields using shiftable-twistable functions. Journal of

Mathematical Imaging and Vision 21 (2), 135-154 (2004)


	Introduction
	The perception and representation of motion in V1
	Introduction
	Methods
	RF reconstruction
	RFs fitting with the 3D Gabor model

	Results
	Parameters distribution
	Spatio-temporal uncertainty


	Models of functional architecture in the visual cortex
	Introduction
	The geometry of spatio-temporal dynamics
	Spatio-temporal receptive profiles
	Admissible tangent space as constraint on the connectivity on M
	The output of the receptive profiles

	Curves and kernels of connectivity
	Generators of lifted curves
	Curves and kernels for contours in motion
	Moving contours as deterministic integral curves
	Stochastic kernel

	Curves and kernels for point trajectories
	Point trajectories as deterministic integral curves
	Stochastic kernel


	Neural propagation of boundaries and trajectories
	Modeling neural activity

	Numerical simulations
	The feedforward and extracellular activity in response to a stimulus
	Experiment 1 - Contours in motion
	Experiment 2 - Motion integration
	Discussion


	Spatio-temporal grouping properties of the connectivity of the visual cortex
	Introduction
	The geometry of V1
	The cortical feature space M
	Connectivity on M as a differential constraint
	Discrete connectivity kernels

	Spectral analysis
	Spectral clustering for visual grouping
	The cortical affinity matrix

	Grouping properties of q, 0 and 
	Spatial grouping using q or 0
	Spatio-temporal grouping using 0 and 
	Solving the aperture problem using 0
	A second model for spatio-temporal grouping



	Conclusions
	Bibliography

