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SPORCO: A Python package for standard and
convolutional sparse representations

Brendt Wohlberg‡∗

F

Abstract—SParse Optimization Research COde (SPORCO) is an open-source
Python package for solving optimization problems with sparsity-inducing regu-
larization, consisting primarily of sparse coding and dictionary learning, for both
standard and convolutional forms of sparse representation. In the current ver-
sion, all optimization problems are solved within the Alternating Direction Method
of Multipliers (ADMM) framework. SPORCO was developed for applications in
signal and image processing, but is also expected to be useful for problems in
computer vision, statistics, and machine learning.

Index Terms—sparse representations, convolutional sparse representations,
sparse coding, convolutional sparse coding, dictionary learning, convolutional
dictionary learning, alternating direction method of multipliers

Introduction

SPORCO is an open-source Python package for solving inverse
problems with sparsity-inducing regularization [MBP14]. This
type of regularization has become one of the leading techniques
in signal and image processing, with applications including image
denoising, inpainting, deconvolution, superresolution, and com-
pressed sensing, to name only a few. It is also a prominent
method in machine learning and computer vision, with applica-
tions including image classification, video background modeling,
collaborative filtering, and genomic data analysis, and is widely
used in statistics as a regression technique.

SPORCO was initially a Matlab library, but the implementa-
tion language was switched to Python for a number of reasons,
including (i) the substantial cost of Matlab licenses (particularly
in an environment that does not qualify for an academic discount),
and the difficulty of running large scale experiments on multiple
hosts with a limited supply of toolbox licenses, (ii) the greater
maintainability and flexibility of the object-oriented design possi-
ble in Python, (iii) the flexibility provided by NumPy in indexing
arrays of arbitrary numbers of dimensions (essentially impossible
in Matlab), and (iv) the superiority of Python as a general-purpose
programming language.

SPORCO supports a variety of inverse problems, including
Total Variation [ROF92] [All92] denoising and deconvolution,
and Robust PCA [CCS10], but the primary focus is on sparse
coding and dictionary learning, for solving problems with sparse
representations [MBP14]. Both standard and convolutional forms

* Corresponding author: brendt@ieee.org
‡ Theoretical Division, Los Alamos National Laboratory

Copyright © 2017 Brendt Wohlberg. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.
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Fig. 2: Convolutional sparse coding of an entire signal

of sparse representations are supported. In the standard form the
dictionary is a matrix, which limits the sizes of signals, images,
etc. that can be directly represented; the usual strategy is to
compute independent representations for a set of overlapping
blocks, as illustrated in Figure 1. In the convolutional form
[LS99][ZKTF10][Woh16d] the dictionary is a set of linear filters,
making it feasible to directly represent an entire signal or image.
The convolutional form is equivalent to sparse coding with a
structured dictionary constructed from translations of a smaller
generating dictionary, as illustrated in Figure 2. The support for
the convolutional form is one of the major strengths of SPORCO
since it is the only Python package to provide such a breadth of
options for convolutional sparse coding and dictionary learning.
Some features are not available in any other open-source package,
including support for representation of multi-channel images (e.g.
RGB color images) [Woh16b], and representation of arrays of
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arbitrary numbers of dimensions, allowing application to one-
dimensional signals, images, and video and volumetric data.

In the current version, all optimization problems are solved
within the Alternating Direction Method of Multipliers (ADMM)
[BPC+10] framework, which is implemented as flexible class
hierarchy designed to minimize the additional code that has to
be written to solve a specific problem. This design also simplifies
the process of deriving algorithms for solving variants of existing
problems, in some cases only requiring overriding one or two
methods, involving a few additional lines of code.

The remainder of this paper provides a more detailed overview
of the SPORCO library. A brief introduction to the ADMM opti-
mization approach is followed by a discussion of the design of the
classes that implement it. This is followed by a discussion of both
standard and convolutional forms of sparse coding and dictionary
learning, and some comments on the selection of parameters for
the inverse problems supported by SPORCO. The next section
addresses the installation of SPORCO, and is followed by some
usage examples. The remaining sections consist of a discussion of
the derivation of extensions of supported problems, a list of useful
support modules in SPORCO, and closing remarks.

ADMM

The ADMM [BPC+10] framework addresses optimization prob-
lems of the form

argminx,y f (x)+g(y) such that Ax+By = c . (1)

This general problem is solved by iterating over the following
three update steps:

x( j+1) = argminx f (x)+
ρ
2

∥∥∥Ax−
(
−By( j)+ c−u( j)

)∥∥∥
2

2

y( j+1) = argminy g(y)+
ρ
2

∥∥∥By−
(
−Ax( j+1)+ c−u( j)

)∥∥∥
2

2

u( j+1) = u( j)+Ax( j+1)+By( j+1)− c

which we will refer to as the x, y, and u, steps respectively.
The feasibility conditions (see Sec. 3.3 [BPC+10]) for the

ADMM problem are

Ax∗+By∗− c = 0

0 ∈ ∂ f (x∗)+ρ−1AT u∗

0 ∈ ∂g(u∗)+ρ−1BT u∗ ,

where ∂ denotes the subdifferential operator. It can be shown
that the last feasibility condition above is always satisfied by the
solution of the y step. The primal and dual residuals [BPC+10]

r = Ax( j+1)+By( j+1)− c

s = ρAT B(y( j+1)−y( j)) ,

which can be derived from the feasibility conditions, provide a
convenient measure of convergence, and can be used to define
algorithm stopping criteria. The u step can be written in terms of
the primal residual as

u( j+1) = u( j)+ r( j+1) .

It is often preferable to use normalized versions of these residuals
[Woh17], obtained by dividing the definitions above by their
corresponding normalization factors

rn = max(‖Ax( j+1)‖2,‖By( j+1)‖2,‖c‖2)

sn = ρ‖AT u( j+1)‖2 .

These residuals can also be used in a heuristic scheme [Woh17]
for selecting the critical penalty parameter ρ .

SPORCO ADMM Classes

SPORCO provides a flexible set of classes for solving problems
within the ADMM framework. All ADMM algorithms are derived
from class admm.admm.ADMM, which provides much of the
infrastructure required for solving a problem, so that the user need
only override methods that define the constraint components A,
B, and c, and that compute the x and y steps. This infrastructure
includes the computation of the primal and dual residuals, which
are used as convergence measures on which termination of the
iterations can be based.

These residuals are also used within the heuristic scheme,
referred to above for, automatically setting the penalty pa-
rameter. This scheme is controlled by the AutoRho entry in
the algorithm options dictionary object that is used to spec-
ify algorithm options and parameters. For example, to en-
able or disable it, set opt['AutoRho', 'Enabled'] to
True or False respectively, where opt is an instance of
admm.admm.ADMM.Options or one of its derived classes. It
should be emphasized that this method is not always successful,
and can result in oscillations or divergence of the optimization.
The scheme is enabled by default for classes for which it is
expected to give reasonable performance, and disabled for those
for which it is not, but these default settings should not be
considered to be particularly reliable, and the user is advised to
explicitly select whether the method is enabled to disabled.

Additional class attributes and methods can be defined to
customize the calculation of diagnostic information, such as the
functional value, at each iteration. The SPORCO documentation
includes a detailed description of the required and optional meth-
ods to be overridden in defining a class for solving a specific
optimization problem.

The admm.admm module also includes classes that are de-
rived from admm.admm.ADMM to specialize to less general
cases; for example, class admm.admm.ADMMEqual assumes
that A = I, B =−I, and c = 0, which is a very frequently occurring
case, allowing derived classes to avoid overriding methods that
specify the constraint. The most complex partial specialization
is admm.admm.ADMMTwoBlockCnstrnt, which implements
the commonly-occurring ADMM problem form with a block-
structured y variable,

argminx,y0,y1
f (x)+g0(y0)+g0(y1)

such that
(

A0
A1

)
x−
(

y0
y1

)
=

(
c0
c1

)
,

for solving problems that have the form

argminx f (x)+g0(A0x)+g1(A1x)

prior to variable splitting. The block components of the y variable
are concatenated into a single NumPy array, with access to the
individual components provided by methods block_sep0 and
block_sep1.

Defining new classes derived from admm.admm.ADMM or
one of its partial specializations provides complete flexibility in
constructing a new ADMM algorithm, while reducing the amount
of code that has to be written compared with implementing the
entire ADMM algorithm from scratch. When a new ADMM
algorithm is closely related to an existing algorithm, it is often
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much easier to derived the new class from that of the existing
algorithm, as described in the section Extending SPORCO.

Sparse Coding

Sparse coding in SPORCO is based on the Basis Pursuit DeNois-
ing (BPDN) problem [CDS98]

argminX (1/2)‖DX−S‖2
F +λ‖X‖1 ,

were D is the dictionary, S is the signal matrix, each column of
which is a distinct signal, X is the sparse representation, and
λ is the regularization parameter controlling the sparsity of the
solution. BPDN is solved via the equivalent ADMM problem

argminX (1/2)‖DX−S‖2
F +λ‖Y‖1 such that X = Y .

This algorithm is effective because the Y step can be solved in
closed form, and is computationally relatively cheap. The main
computational cost is in solving the X step, which involves solving
the potentially-large linear system

(DT D+ρI)X = DT S+ρ(Y −U) .

SPORCO solves this system efficiently by precomputing an LU
factorization of (DT D+ρI) which enables a rapid direct-method
solution at every iteration (see Sec. 4.2.3 in [BPC+10]). In
addition, if (DDT + ρI) is smaller than (DT D+ ρI), the matrix
inversion lemma is used to reduce the size of the system that is
actually solved (see Sec. 4.2.4 in [BPC+10]).

The solution of the BPDN problem is implemented by class
admm.bpdn.BPDN. A number of variations on this problem are
supported by other classes in module admm.bpdn.

Dictionary Learning

Dictionary learning is based on the problem

argminD,X (1/2)‖DX−S‖2
F +λ‖X‖1 s.t ‖dm‖2 = 1 ,

which is solved by alternating between a sparse coding stage, as
above, and a constrained dictionary update obtained by solving the
problem

argminD(1/2)‖DX−S‖2
2 s.t ‖dm‖2 = 1 .

This approach is implemented by class
admm.bpdndl.DictLearn. An unusual feature of this
dictionary learning algorithm is the adoption from convolutional
dictionary learning [BEL13] [Woh16d] [GCW17] of the very
effective strategy of alternating between a single step of each of
the sparse coding and dictionary update algorithms. To the best
of this author’s knowledge, this strategy has not previously been
applied to standard (non-convolutional) dictionary learning.

Convolutional Sparse Coding

Convolutional sparse coding (CSC) is based on a convolutional
form of BPDN, referred to as Convolutional BPDN (CBPDN)
[Woh16d]

argmin{xm}
1
2

∥∥∥∥∑
m

dm ∗xm− s
∥∥∥∥

2

2
+λ ∑

m
‖xm‖1 ,

which is implemented by class admm.cbpdn.ConvBPDN. Mod-
ule admm.cbpdn also contains a number of other classes im-
plementing variations on this basic form. As in the case of
standard BPDN, the main computational cost of this algorithm

is in solving the x step, which can be solved very efficiently
by exploiting the Sherman-Morrison formula [Woh14]. SPORCO
provides support for solving the basic form above, as well as a
number of variants, including one with a gradient penalty, and two
different approaches for solving a variant with a spatial mask W
[HHW15][Woh16a]

argmin{xm}
1
2

∥∥∥∥W
(

∑
m

dm ∗xm− s
)∥∥∥∥

2

2
+λ ∑

m
‖xm‖1 .

SPORCO also supports two different methods for convolutional
sparse coding of multi-channel (e.g. color) images [Woh16b]. The
one represents a multi-channel input with channels sc with single-
channel dictionary filters dm and multi-channel coefficient maps
xc,m,

argmin{xc,m}
1
2 ∑

c

∥∥∥∥∑
m

dm ∗xc,m− sc

∥∥∥∥
2

2
+λ ∑

c
∑
m
‖xc,m‖1 ,

and the other uses multi-channel dictionary filters dc,m and single-
channel coefficient maps xm,

argmin{xm}
1
2 ∑

c

∥∥∥∥∑
m

dc,m ∗xm− sc

∥∥∥∥
2

2
+λ ∑

m
‖xm‖1 .

In the former case the representation of each channel
is completely independent unless they are coupled via an
`2,1 norm term [Woh16b], which is supported by class
admm.cbpdn.ConvBPDNJoint.

An important issue that has received surprisingly little atten-
tion in the literature is the need to explicitly consider the represen-
tation of the smooth/low frequency image component when con-
structing convolutional sparse representations. If this component is
not properly taken into account, convolutional sparse representa-
tions tend to give poor results. As briefly mentioned in [Woh16d]
(Sec. I), the simplest approach is to lowpass filter the image to be
represented, computing the sparse representation on the highpass
residual. In this approach the lowpass component forms part of the
complete image representation, and should, of course, be added
to the reconstruction from the sparse representation in order to
reconstruct the image being represented. SPORCO supports this
separation of an image into lowpass/highpass components via
the function util.tikhonov_filter, which computes the
lowpass component of s as the solution of the problem

argminx (1/2)‖x− s‖2
2 +(λ/2)∑

i
‖Gix‖2

2 ,

where Gi is an operator computing the derivative along axis i of
the array represented as vector x, and λ is a parameter controlling
the amount of smoothing. In some cases it is not feasible to
handle the lowpass component via such a pre-processing strategy,
making it necessary to include the lowpass component in the CSC
optimization problem itself. The simplest approach to doing so
is to append an impulse filter to the dictionary and include a
gradient regularization term on corresponding coefficient map in
the functional [Woh16c] (Sec. 3). This approach is supported by
class admm.cbpdn.ConvBPDNGradReg, the use of which is
demonstrated in section Removal of Impulse Noise via CSC.

Convolutional Dictionary Learning

Convolutional dictionary learning is based on the problem

argmin{dm},{xk,m}
1
2 ∑

k

∥∥∥∥∑
m

dm ∗xk,m− sk

∥∥∥∥
2

2
+λ ∑

k
∑
m
‖xk,m‖1

s.t dm ∈C ,
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where C is the feasible set, consisting of filters with unit norm and
constrained support [Woh16d]. It is solved by alternating between
a convolutional sparse coding stage, as described in the previous
section, and a constrained dictionary update obtained by solving
the problem

argmin{dm}
1
2 ∑

k

∥∥∥∥∑
m

dm ∗xk,m− sk

∥∥∥∥
2

2
s.t. dm ∈C .

This approach is implemented by class ConvBPDNDictLearn
in module admm.cbpdndl. Dictionary learning with a spatial
mask W ,

argmin{dm},{xk,m}
1
2 ∑

k

∥∥∥∥W
(

∑
m

dm ∗xk,m− sk

)∥∥∥∥
2

2
+λ ∑

k
∑
m
‖xk,m‖1

s.t dm ∈C

is also supported by class ConvBPDNMaskDcplDictLearn in
module admm.cbpdndl.

Convolutional Representations

SPORCO convolutional representations are stored within NumPy
arrays of dimN + 3 dimensions, where dimN is the number of
spatial/temporal dimensions in the data to be represented. This
value defaults to 2 (i.e. images), but can be set to any other
reasonable value, such as 1 (i.e. one-dimensional signals) or 3
(video or volumetric data). The roles of the axes in these multi-
dimensional arrays are required to follow a fixed order: first
spatial/temporal axes, then an axis for multiple channels (singleton
in the case of single-channel data), then an axis for multiple input
signals (singleton in the case of only one input signal), and finally
the axis corresponding to the index of the filters in the dictionary.

Sparse Coding

For the convenience of the user, the D (dictionary) and S
(signal) arrays provided to the convolutional sparse coding
classes need not follow this strict format, but they are in-
ternally reshaped to this format for computational efficiency.
This internal reshaping is largely transparent to the user,
but must be taken into account when passing weighting ar-
rays to optimization classes (e.g. option L1Weight for class
admm.cbpdn.ConvBPDN). When performing the reshaping
into internal array layout, it is necessary to infer the intended
roles of the axes of the input arrays, which is performed by class
admm.cbpdn.ConvRepIndexing (this class is expected to be
moved to a different module in a future version of SPORCO). The
inference rules, which are described in detail in the documenta-
tion for class admm.cbpdn.ConvRepIndexing, are relatively
complex, depending on both the number of dimensions in the D
and S arrays, and on parameters dimK and dimN.

Dictionary Update

The handling of convolutional representations by the dictionary
update classes in module admm.ccmod are similar to those for
sparse coding, the primary difference being the the dictionary
update classes expect that the sparse representation inputs X are
already in the standard layout as described above since they are
usually obtained as the output of one of the sparse coding classes,
and therefore already have the required layout. The inference
of internal dimensions for these classes is handled by class
admm.ccmod.ConvRepIndexing (which is also expected to
be moved to a different module in a future version of SPORCO).

Problem Parameters

Most of the inverse problems supported by SPORCO have at
least one problem parameter (e.g. regularization parameter λ in
the BPDN and CBPDN problems) that determines the balance
between the different terms in the functional to be minimized. Of
these, the only problem that has a relatively reliable default value
for its parameter is RPCA (see class admm.rpca.RobustPCA).
Most of the classes implementing BPDN and CBPDN problems
do have default values for regularization parameter λ , but these
defaults should not be expected to provide even close to optimal
performance for specific applications, and may be removed in
future versions.

SPORCO does not support any statistical parameter esti-
mation techniques such as GCV [GHW79] or SURE [Ste81],
but the grid search function util.grid_search can be
very helpful in selecting problem parameters when a suitable
data set with ground truth is available. This function effi-
ciently evaluates a user-specified performance measure, in par-
allel, over a single- or multi-dimensional grid sampling the pa-
rameter space. Usage of this function is illustrated in the ex-
ample scripts examples/stdsparse/demo_bpdn.py and
examples/stdsparse/demo_bpdnjnt.py, which "cheat"
by evaluating performance by using the ground truth for the actual
problem being solved. In a more realistic setting, one would
optimize the parameters using the ground truth for a separate set
of data with the same properties as those of the data for the test
problem.

Installing SPORCO

The primary requirements for SPORCO are Python itself (version
2.7 or 3.x), and modules numpy, scipy, future, pyfftw, and mat-
plotlib. Module numexpr is not required, but some functions will
be faster if it is installed. If module mpldatacursor is installed,
plot.plot and plot.imview will support the data cursor
that it provides. Additional information on the requirements are
provided in the installation instructions.

SPORCO is available on GitHub and can be installed via pip:

pip install sporco

SPORCO can also be installed from source, either from the de-
velopment version from GitHub, or from a release source package
downloaded from PyPI.

To install the development version from GitHub do

git clone https://github.com/bwohlberg/sporco.git

followed by

cd sporco
python setup.py build
python setup.py test
python setup.py install

The install command will usually have to be performed with root
permissions, e.g. on Ubuntu Linux

sudo python setup.py install

The procedure for installing from a source package downloaded
from PyPI is similar.

A summary of the most significant changes between SPORCO
releases can be found in the CHANGES.rst file. It is strongly
recommended to consult this summary when updating from a
previous version.
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SPORCO includes a large number of usage examples, some
of which make use of a set of standard test images, which can be
installed using the sporco_get_images script. To download
these images from the root directory of the source distribution (i.e.
prior to installation) do

bin/sporco_get_images --libdest

after setting the PYTHONPATH environment variable to point to
the root directory of the source distribution; for example, in a
bash shell

export PYTHONPATH=$PYTHONPATH:`pwd`

from the root directory of the package. To download the images
as part of a package that has already been installed, do

sporco_get_images --libdest

which will usually have to be performed with root privileges.

Using SPORCO

The simplest way to use SPORCO is to make use of one of
the many existing classes for solving problems that are already
supported, but SPORCO is also designed to be easy to extend
to solve custom problems, in some cases requiring only a few
lines of additional code to extend an existing class to solve a
new problem. This latter, more advanced usage is described in the
section Extending SPORCO.

Detailed documentation is available. The distribution includes
a large number of example scripts and a selection of Jupyter
notebook demos, which can be viewed online via nbviewer, or
run interactively via mybinder.

A Simple Usage Example

Each optimization algorithm is implemented as a separate class.
Solving a problem is straightforward, as illustrated in the follow-
ing example, which assumes that we wish to solve the BPDN
problem

argminx (1/2)‖Dx− s‖2
F +λ‖x‖1

for a given dictionary D and signal vector s, represented by NumPy
arrays D and s respectively. After importing the appropriate
modules

import numpy as np
from sporco.admm import bpdn

we construct a synthetic problem consisting of a random dictio-
nary and a test signal that is generated so that it has a very sparse
representation, x0, on that dictionary

np.random.seed(12345)
D = np.random.randn(8, 16)
x0 = np.zeros((16, 1))
x0[[3,11]] = np.random.randn(2,1)
s = D.dot(x0)

Now we create an object representing the desired algorithm
options

opt = bpdn.BPDN.Options({'Verbose' : True,
'MaxMainIter' : 500,
'RelStopTol' : 1e-6})

initialize the solver object

lmbda = 1e-2
b = bpdn.BPDN(D, s, lmbda, opt)

and call the solve method

x = b.solve()

leaving the result in NumPy array x. Since the optimizer objects
retain algorithm state, calling solve again gives a warm start on
an additional set of iterations for solving the same problem (e.g. if
the first solve terminated because it reached the maximum number
of iterations, but the desired solution accuracy was not reached).

Removal of Impulse Noise via CSC

We now consider a more detailed and realistic usage exam-
ple, based on using CSC to remove impulse noise from a
color image. First we need to import some modules, including
print_function for Python 2/3 compatibility, NumPy, and a
number of modules from SPORCO:

from __future__ import print_function

import numpy as np
from scipy.misc import imsave

from sporco import util
from sporco import plot
from sporco import metric
from sporco.admm import cbpdn

Boundary artifacts are handled by performing a symmetric exten-
sion on the image to be denoised and then cropping the result to the
original image support. This approach is simpler than the boundary
handling strategies described in [HHW15] and [Woh16a], and for
many problems gives results of comparable quality. The functions
defined here implement symmetric extension and cropping of
images.

def pad(x, n=8):

if x.ndim == 2:
return np.pad(x, n, mode='symmetric')

else:
return np.pad(x, ((n, n), (n, n), (0, 0)),

mode='symmetric')

def crop(x, n=8):

return x[n:-n, n:-n]

Now we load a reference image (see the discussion on the
script for downloading standard test images in section Installing
SPORCO), and corrupt it with 33% salt and pepper noise. (The
call to np.random.seed ensures that the pseudo-random noise
is reproducible.)

img = util.ExampleImages().image('standard',
'monarch.png', zoom=0.5, scaled=True,
idxexp=np.s_[:, 160:672])

np.random.seed(12345)
imgn = util.spnoise(img, 0.33)

We use a color dictionary, as described in [Woh16b]. The impulse
denoising problem is solved by appending some additional filters
to the learned dictionary D0, which is one of those distributed
with SPORCO. The first of these additional components is a set of
three impulse filters, one per color channel, that will represent the
impulse noise, and the second is an identical set of impulse filters
that will represent the low frequency image components when
used together with a gradient penalty on the coefficient maps, as
discussed below.
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D0 = util.convdicts()['RGB:8x8x3x64']
Di = np.zeros(D0.shape[0:2] + (3, 3))
np.fill_diagonal(Di[0, 0], 1.0)
D = np.concatenate((Di, Di, D0), axis=3)

The problem is solved using class ConvBPDNGradReg in mod-
ule admm.cbpdn, which implements the form of CBPDN with
an additional gradient regularization term,

argmin{xm}
1
2

∥∥∥∥∑
m

dm ∗xm− s
∥∥∥∥

2

2
+λ ∑

m
‖xm‖1 +

µ
2 ∑

i
∑
m
‖Gixm‖2

2

where Gi is an operator computing the derivative along index i,
as described in [Woh16c]. The regularization parameters for the
`1 and gradient terms are lmbda and mu respectively. Setting
correct weighting arrays for these regularization terms is critical
to obtaining good performance. For the `1 norm, the weights on
the filters that are intended to represent the impulse noise are tuned
to an appropriate value for the impulse noise density (this value
sets the relative cost of representing an image feature by one of
the impulses or by one of the filters in the learned dictionary), the
weights on the filters that are intended to represent low frequency
components are set to zero (we only want them penalized by the
gradient term), and the weights of the remaining filters are set to
unity. For the gradient penalty, all weights are set to zero except
for those corresponding to the filters intended to represent low
frequency components, which are set to unity.

lmbda = 2.8e-2
mu = 3e-1
w1 = np.ones((1, 1, 1, 1, D.shape[-1]))
w1[..., 0:3] = 0.33
w1[..., 3:6] = 0.0
wg = np.zeros((D.shape[-1]))
wg[..., 3:6] = 1.0
opt = cbpdn.ConvBPDNGradReg.Options(

{'Verbose': True, 'MaxMainIter': 100,
'RelStopTol': 5e-3, 'AuxVarObj': False,
'L1Weight': w1, 'GradWeight': wg})

Now we initialize the cbpdn.ConvBPDNGradReg object and
call the solve method.

b = cbpdn.ConvBPDNGradReg(D, pad(imgn), lmbda, mu,
opt=opt, dimK=0)

X = b.solve()

The denoised estimate of the image is just the reconstruction from
all coefficient maps except those that represent the impulse noise,
which is why we subtract the slice of X corresponding the impulse
noise representing filters from the result of reconstruct.

imgdp = b.reconstruct().squeeze() \
- X[..., 0, 0:3].squeeze()

imgd = crop(imgdp)

Now we print the PSNR of the noisy and denoised images, and
display the reference, noisy, and denoised images. These images
are shown in Figures 3, 4, and 5 respectively.

print('%.3f dB %.3f dB' % (sm.psnr(img, imgn),
sm.psnr(img, imgd)))

fig = plot.figure(figsize=(21, 7))
plot.subplot(1,3,1)
plot.imview(img, fgrf=fig, title='Reference')
plot.subplot(1,3,2)
plot.imview(imgn, fgrf=fig, title='Noisy')
plot.subplot(1,3,3)
plot.imview(imgd, fgrf=fig, title='CSC Result')
fig.show()

Fig. 3: Reference image

Fig. 4: Noisy image

Finally, we save the low frequency image component estimate as
an NPZ file, for use in a subsequent example.

imglp = X[..., 0, 3:6].squeeze()
np.savez('implslpc.npz', imglp=imglp)

Extending SPORCO

We illustrate the ease of extending or modifying existing algo-
rithms in SPORCO by constructing an alternative approach to
removing impulse noise via CSC. The previous method gave good
results, but the weight on the filter representing the impulse noise
is an additional parameter that has to be tuned. This parameter
can be avoided by switching to an `1 data fidelity term instead of
including dictionary filters to represent the impulse noise, as in the
problem [Woh16c]

argmin{xm}

∥∥∥∥∑
m

dm ∗xm− s
∥∥∥∥

1
+λ ∑

m
‖xm‖1 . (2)

Ideally we would also include a gradient penalty term to assist
in the representation of the low frequency image component.
While this relatively straightforward, it is a bit more complex to
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Fig. 5: Denoised image (first method)

implement, and is omitted from this example. Instead of including
a representation of the low frequency image component within
the optimization, we use the low frequency component estimated
by the previous example, subtracting it from the signal passed
to the CSC algorithm, and adding it back to the solution of this
algorithm.

An algorithm for the problem in Equation (2) is not included
in SPORCO, but there is an existing algorithm that can easily be
adapted. CBPDN with mask decoupling, with mask array W ,

argmin{xm}
1
2

∥∥∥∥W
(

∑
m

dm ∗xm− s
)∥∥∥∥

2

2
+λ ∑

m
‖xm‖1 , (3)

is solved via the ADMM problem

argminx,y0,y1
(1/2)‖Wy0‖2

2 +λ‖y1‖1

such that
(

D
I

)
x−
(

y0
y1

)
=

(
s
0

)
, (4)

where x =
(

xT
0 xT

1 . . .
)T and Dx = ∑m dm ∗ xm. We can

express Equation (2) using the same variable splitting, as

argminx,y0,y1
‖Wy0‖1 +λ‖y1‖1

such that
(

D
I

)
x−
(

y0
y1

)
=

(
s
0

)
. (5)

(We don’t need the W for the immediate problem at hand, but
there isn’t a good reason for discarding it.) Since Equation (5)
has no f (x) term (see Equation (1)), and has the same constraint
as Equation (4), the x and u steps for these two problems are
the same. The y step for Equation (4) decomposes into the two
independent subproblems

y( j+1)
0 = argminy0

1
2
‖Wy0‖2

2 +
ρ
2

∥∥∥y0−(Dx( j+1)− s+u( j)
0 )
∥∥∥

2

2

y( j+1)
1 = argminy1

λ‖y1‖1 +
ρ
2

∥∥∥y1− (x( j+1)+u( j)
1 )
∥∥∥

2

2
.

The only difference between the ADMM algorithms for Equations
(4) and (5) is in the y0 subproblem, which becomes

y( j+1)
0 = argminy0

‖Wy0‖1 +
ρ
2

∥∥∥y0−(Dx( j+1)− s+u( j)
0 )
∥∥∥

2

2
.

Therefore, the only modifications we expect to make to the
class implementing the problem in Equation (3) are changing the
computation of the functional value, and part of the y step.

We turn now to the implementation for this example. The
module import statements and definitions of functions pad and
crop are the same as for the example in section Removal of
Impulse Noise via CSC, and are not repeated here. Our main task is
to modify cbpdn.ConvBPDNMaskDcpl, the class for solving
the problem in Equation (3), to replace the `2 norm data fidelity
term with an `1 norm. The y step of this class is

def ystep(self):
AXU = self.AX + self.U
Y0 = (self.rho*(self.block_sep0(AXU) - self.S)) \

/ (self.W**2 + self.rho)
Y1 = sl.shrink1(self.block_sep1(AXU),

(self.lmbda/self.rho)*self.wl1)
self.Y = self.block_cat(Y0, Y1)

super(ConvBPDNMaskDcpl, self).ystep()

where the Y0 and Y1 blocks of Y respectively represent y0 and
y1 in Equation (5). All we need do to change the data fidelity
term to an `1 norm is to modify the calculation of Y0 to be a soft
thresholding instead of the calculation derived from the existing
`2 norm. We also need to override method obfn_g0 so that the
functional values are calculated correctly, taking into account the
change of the data fidelity term. We end up with a definition of
our class solving Equation (2) consisting of only a few lines of
additional code

class ConvRepL1L1(cbpdn.ConvBPDNMaskDcpl):

def ystep(self):

AXU = self.AX + self.U
Y0 = sl.shrink1(self.block_sep0(AXU) - self.S,

(1.0/self.rho)*self.W)
Y1 = sl.shrink1(self.block_sep1(AXU),

(self.lmbda/self.rho)*self.wl1)
self.Y = self.block_cat(Y0, Y1)

super(cbpdn.ConvBPDNMaskDcpl, self).ystep()

def obfn_g0(self, Y0):

return np.sum(np.abs(self.W *
self.obfn_g0var()))

To solve the impulse denoising problem we load the reference
image and dictionary, and construct the test image as before. We
also need to load the low frequency component saved by the
previous example

imglp = np.load('implslpc.npz')['imglp']

Now we initialize an instance of our new class, solve, and
reconstruct the denoised estimate

lmbda = 3.0
b = ConvRepL1L1(D, pad(imgn) - imglp, lmbda,

opt=opt, dimK=0)
X = b.solve()
imgdp = b.reconstruct().squeeze() + imglp
imgd = crop(imgdp)

The resulting denoised image is displayed in Figure 6.

Support Functions and Classes

In addition to the main set of classes for solving inverse problems,
SPORCO provides a number of supporting functions and classes,
within the following modules:
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Fig. 6: Denoised image (second method)

• util: Various utility functions and classes, including a
parallel-processing grid search for parameter optimization,
access to a set of pre-learned convolutional dictionaries,
and access to a set of example images.

• plot: Functions for plotting graphs or 3D surfaces and vi-
sualizing images, providing simplified access to Matplotlib
functionality.

• linalg: Linear algebra and related functions, including
solvers for specific forms of linear system and filters for
computing image gradients.

• metric: Image quality metrics including standard met-
rics such as MSE, SNR, and PSNR.

• cdict: A constrained dictionary class that constrains
the allowed dict keys, and also initializes the dict with
default content on instantiation. All of the inverse problem
algorithm options classes are derived from this class.

Conclusion

SPORCO is an actively maintained and thoroughly documented
open source Python package for computing with sparse repre-
sentations. While the primary design goal is ease of use and
flexibility with respect to extensions of the supported algorithms,
it is also intended to be computationally efficient and able to solve
at least medium-scale problems. Standard sparse representations
are supported, but the main focus is on convolutional sparse
representations, for which SPORCO provides a wider range of
features than any other publicly available library. The set of
ADMM classes on which the optimization algorithms are based
is also potentially useful for a much broader range of convex
optimization problems.
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Software Transactional Memory in Pure Python

Dillon Niederhut‡∗

F

Abstract—There has been a growing interest in programming models for con-
currency. Strategies for dealing with shared data amongst parallel threads of
execution include immutable (as in Erlang) and locked (as in Python) data struc-
tures. A third option exists, called transactional memory (as in Haskell), which
includes thread-local journaling for operations on objects which are both mutable
and globally shared. Here, we present TraM, a pure Python implementation of
the TL2 algorithm for software transactional memory.

Index Terms—concurrency, threading, transactional memory

Introduction

Methods for sharing resources between multiple processes have
been of academic interest for quite some time [Lamport_1978].
Recently, the need for handling coincident events in client-server
interactions and the increasing scale of easily available data, espe-
cially in combination with the reduced momentum in increasing
the clock speed of CPUs, have promoted discussions of concurrent
software architecture [Lamport_et_al_1997]. In an ideal world, a
computationally intensive task could split its work across the cores
of a CPU in a way that does not require changes to the structure
of the task itself. However, sharing work or any other kind of data
in a concurrent system removes the guarantee that events occur
in a strict linear order, which in turn disrupts the atomiticity and
consistency inherent to single threads of control. To see concretely
how this might become a problem, consider the example below, in
which several Python threads are attempting to increment a global
counter1 .

from threading import Thread
import time
import random

unsafe_number = 0

def unsafe_example():
wait = random.random() / 10000
global unsafe_number
value = unsafe_number + 1
time.sleep(wait)
unsafe_number = value

In this particular example, we are forcing Python to behave
asynchronously by inserting sleeping calls, which allow the in-
terpreter to interrupt the execution of our "unsafe example", and
give control in the interpreter to another thread. This creates the

* Corresponding author: dillon.niederhut@gmail.com
‡ Enthought

Copyright © 2017 Dillon Niederhut. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

opportunity for inconsistent data, as the value of the "unsafe
number" might have changed between the time a thread reads
it, and the time a thread overwrites it. Thus, in the code below,
we would expect to see consistent output of the number 10, but
in practice will see something smaller, depending on the length of
the wait and the architecture of the system running the example2.
if __name__ == '__main__':

thread_list = []
for _ in range(10):

thread = Thread(target=unsafe_example)
thread_list.append(thread)

for thread in thread_list:
thread.start()

for thread in thread_list:
thread.join()

print(unsafe_number)

$ python run_test.py
$ 5
$ python run_test.py
$ 4
$ python run_test.py
$ 6

Models for handling shared data in memory, specifically, have in-
cluded restricting data structures into being immutable, or restrict-
ing access into those data structures with locking mechanisms. The
former solution is disadvantaged by the CPU and memory costs
of redundant data copies, while the latter suffers from deadlocks
and leaky abstractions [Peyton_2002].

A third approach involves the use of local operation jour-
nals that are validated before any data is modified in place
[Le_et_al_2016]. The strategy is similar to that used in database
transactions and self-correcting file systems, where atomicity,
consistency, and durability are enforced in part by maintaining
a history of changes that have been made to the copy of data in
memory but not yet persisted to the copy of data on disk. Within
a concurrent software application, each thread of control can keep
a similar history of proposed changes, and only modify the data
object shared across all threads once that journal of changes has
been approved. This strategy, where incremental changes in each
thread are applied all at once to shared, mutable structures, is
called software transactional memory (STM).

Software Transactional Memory

A specific implementation of STM, called Transactional Locking
Version II (TL2) was recently proposed which avoids most of
the copy-based and lock-based errors, along with the temporary
unsafety characteristic of earlier STM algorithms, by versioning
its data [Dice_et_al_2006]. Briefly, the algorithm works by setting
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up a local journal for each thread, where proposed modifications
to shared data are kept. If no other thread has modified the original
data structures during the time needed to calculate the proposed
changes, those changes are swapped in memory for the old version
of the internal data.

Under work loads that are predominantly read operations,
TL2 outperforms lock-based strategies because it employs non-
blocking reads. Under workloads that are dominated by writes
to shared data structures, TL2 outperforms immutable strategies
in that is possible to only copy pieces of a structure. The actual
performance gain varies based on workload characteristics and
number of CPUs, but a comparison against a coarse-grained
POSIX mutex strategy shows gains of more than an order of
magnitude; and, comparisons against previous implementations
of STM are faster by constant factors roughly between 2 and 5
[Dice_et_al_2006].

The Python Implementation

The TraM package (available at https://github.com/deniederhut/
tram) attempts to recreate the TL2 algorithm for transactional
memory pythonically, and is not a one-for-one transliteration of
the original Java implementation. The chief difference is that
it does not use a global counter whose state is maintained by
primitives in the language, but is instead using the system clock.
This comes with the additional cost of making system calls, but
prevents us from the necessity of building a concurrency strategy
inside our concurrency strategy, since the clock state must be
shared across all threads.

The algorithm starts by entering a retry loop, that will attempt
to conduct the transaction a limited number of times before raising
an exception. Ideally, this number is large enough that the retry
limit would only be reached in the event of a system failure.
def transaction(self, *instance_list, write_action,

read_action=None):
"""Conduct threadsafe operation"""
if read_action is None:

read_action = self.read
retries = self.retries
time.sleep(self.sleep) # for safety tests
while retries:

with self:
read_list = read_action(instance_list)
self.write(write_action(instance_list,

read_list))
self.sequence_lock(instance_list)
time.sleep(self.sleep) #
try:

self.validate()
time.sleep(self.sleep) #
self.commit()

except ValidationError:
pass

except SuccessError:
break

finally:
self.sequence_unlock(instance_list)

self.decrement_retries()

It then creates two thread local logs. In our Python implementa-
tion, this occurs inside of a context manager.
def __enter__(self):

"""initialize local logs"""
self.read_log = []
self.write_log = []

It then reads local copies of data into its read log, and writes
proposed changes into its write log. The algorithm itself is agnostic
to what the reading and writing operations actually do.

def write(self, pair_list):
"""Write instance-value pairs to write log"""
for instance, value in pair_list:

self.write_log.append(
Record(instance, value, time.time())

)

This makes it easy to extend TraM’s threadsafe objects by writing
decorated, transactional methods.

def __iadd__(self, other):
@atomic
def fun(data, *args, **kwargs):

return data + other
do = Action()
do.transaction(self, write_action=fun)
return self

The algorithm then compares the version numbers of the original
objects against the local data to see if they have been updated.

def validate(self):
"""Raise exception if any instance reads are
no longer valid
"""
for record in self.read_log:

if record.instance.version > record.version:
raise ValidationError

If not, a lock is acquired only long enough to accomplish two
instructions: pointing the global data structure to the locally
modified data; and, updating the version number.

def commit(self):
"""Commit write log to memory"""
for record in self.write_log:

record.instance.data = record.value
record.instance.version = record.version

raise SuccessError

If the read log is not validated, the entire operation is aborted and
restarted. This suggests that the worst case scenario for TL2 is
when several threads are attempting to write to a single object, as
the invalidated threads will waste resources cycling through the
retry loop.

Using a similar safety test, we can see that the TraM Int object
correctly handles separate threads attempting to update its internal
data, even when the actions performed by each thread cannot be
guaranteed to be atomic themselves.

from tram import Int

def safe_example():
global safe_number
safe_number += 1

if __name__ == '__main__':

thread_list = []
for _ in range(10):

thread = Thread(target=safe_example)
thread_list.append(thread)

for thread in thread_list:
thread.start()

for thread in thread_list:
thread.join()

print(safe_number)

$ python run_test.py
$ 10
$ python run_test.py
$ 10
$ python run_test.py
$ 10
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Future Directions

This implementation of TL2 is specifically limited by imple-
mentation details of CPython, namely the global interpreter lock
(GIL), which ensures that all actions are executed in a linear order
given a single Python interpreter. Python’s libraries for concurrent
operations, including threading and the more modern async*s, are
still executed within a single interpreter and are therefore under
control of the GIL. Python’s library for multiple OS threads,
multiprocessing, will perform operations in parallel, but has a
small number of data strucutures that are capable of being shared.

In our motivating example, we have tricked the interpreter into
behaving as if this is not the case. While it is probably not a good
idea to encourage software developers to play fast and loose with
concurrency, there is a lot to be said for compartmentalizing the
complexity of shared data into the shared data structures them-
selves. Concurrent programs are notoriously difficult to debug,
and part of that complexity has to do with objects leaking their
safety abstraction into the procedures trying to use them.

However, the work on creating a transactional branch of PyPy
shows that there is some interest in concurrent applications for
Python. PyPy’s implementation of STM is currently based on
a global processing queue, modeled after the threading module,
with the transactional algorithms written in C [Meier_et_al_2014].
We hope that presenting an additional abstraction for compos-
ing transactional objects will encourage the exploration of STM
specifically and concurrency generally, in the python community.
Even if this does not occur, seeing the algorithm written out in a
read-friendly language may serve as an education tool, especially
as a starting point for creating a more clever version of the
implementation itself.

As an algorithm for threadsafe objects, TL2 itself has two
major limitations. The first, mentioned above, is that the algorithm
depends on a version clock which is used to create a post-hoc, par-
tial synchronization of procedures. In the original implementation,
this is a shared, global, mutable counter, which is incremented
every time any object is updated. In this implementation, it is the
system clock, which is shared but no longer mutable by structures
inside the algorithm. Both strategies have drawbacks.

The second major limitation is that attaching versions to ob-
jects works fine for updating data, but not for deleting the object.
In garbage collected languages like Java and Python, we can rely
on the runtime to keep track of whether those objects are still
needed, and can remove them only after their last reference. Any
implementation in a language which without automated memory
management will need its own solution to the deletion of versioned
data to avoid memory leaks.
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BespON: Extensible config files with multiline strings,
lossless round-tripping, and hex floats

Geoffrey M. Poore‡∗

F

Abstract—BespON is a human-editable data format focused on expressive syn-
tax, lossless round-tripping, and advanced features for scientific and technical
tasks. Nested data structures can be represented concisely without multiple
levels of either brackets or significant whitespace. The open-source Python
implementation of BespON can modify data values while otherwise perfectly
preserving config file layout, including comments. BespON also provides doc
comments that can be preserved through arbitrary data modification. Additional
features include integers (binary, octal, decimal, and hex), floats (decimal and
hex, including Infinity and NaN), multiline string literals that only preserve in-
dentation relative to delimiters, and an extensible design that can support user-
defined data types.

Index Terms—configuration, data serialization, data interchange

Introduction

Many software projects need a human-editable data format, of-
ten for configuration purposes. For Python programs, INI-style
files, JSON [JSON], and YAML [YAML] are popular choices.
More recently, TOML [TOML] has become an alternative. While
these different formats have their strengths, they also have some
significant weaknesses when it comes to scientific and technical
computing.

This paper introduces BespON [BespON], a new human-
editable data format focused on scientific and technical features,
and the bespon package for Python [pkg:bespon]. An overview
of INI-style files, JSON, YAML, and TOML provides the motiva-
tion for BespON as well as context for its particular feature set.

Though this overview focuses on the features of each format,
it also considers Python support for round-tripping—for loading
data, potentially modifying it, and then saving it. While round-
tripping will not lose data, it will typically lose comments and
fail to preserve data ordering and formatting. Since comments
and layout can be important in the context of configuration, some
libraries provide special support for preserving them under round-
tripping. That allows manual editing to be avoided while still
minimizing the differences introduced by modifying data.

INI-style formats

Python’s configparser module [py:configparser] supports a
simple config format similar to Microsoft Windows INI files. For
example:

* Corresponding author: gpoore@uu.edu
‡ Union University

Copyright © 2017 Geoffrey M. Poore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

[key]
subkey = value

Because all values are interpreted as strings, any typed values
must be retrieved from the parsed data using getter functions
that perform type conversion, introducing significant potential
for ambiguity. Multiline string values that preserve newlines are
permitted, but all indentation and all trailing whitespace (including
a final newline) is stripped, so storing precise chunks of text for
tasks such as templating is difficult. Another issue is that the
format is not strictly specified, so that the Python 2 and Python
3 versions of the package are not fully compatible. This was a
primary reason for configparser being rejected in PEP 518
[PEP518] as a possible format for storing Python build system
requirements.

A more powerful and sophisticated INI-style format is pro-
vided by the configobj package [pkg:configobj]. All values
are still strings as with configparser, but the package also
provides a validator that allows the required format of a config file
to be specified, along with type conversions for each data element.
Multiline triple-quoted string literals are supported, though they
are somewhat limited since they lack backslash-escapes and thus
cannot contain triple-quoted strings or represent special char-
acters using escape sequences. One particularly nice feature of
configobj is round-trip support. Data can be loaded, modified,
and saved, while preserving the order of values and retaining
comments.

JSON

JSON [JSON] was designed as a lightweight interchange format.
Its focus on a small number of common data types has enabled
broad cross-language support, while its simple syntax is amenable
to fast parsing. With JSON syntax, the earlier example data
becomes:

{"key": {"subkey": "value"}}

Only dicts, lists, strings, numbers (floats), booleans, and null
(None) are supported, so binary data and other unsupported types
must be dealt with in an ad-hoc manner. As in the INI-style
formats, dict keys can only be strings.

For configuration purposes, JSON has disadvantages. It lacks
comments. Comments are not necessary in the common case of
exchanging JSON data between machines, but in human-edited
configuration data, they can be very useful. Similarly, JSON’s
brackets, braces, and quotation marks are sometimes criticized as
verbose for human editing (for example, [PEP518]). For scientific
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and technical tasks, JSON’s lack of an integer type and of floating-
point Infinity and NaN can be an issue. In fact, Python’s standard
library JSON implementation [py:json] explicitly does not comply
with the JSON specification by adding extensions for integer,
Infinity, and NaN support, and enabling these by default. Another
drawback is that a string in JSON must be on a single line; there
are no multiline string literals.

JSON’s simplicity and limitations are an advantage when it
comes to round-tripping data. Since there are no comments, a
primary source of complexity is avoided altogether. Since there is
only a single possible representation of most data if whitespace is
ignored, lossless round-tripping primarily amounts to preserving
indentation, line break locations, and the exact manner in which
numerical values are represented.

YAML

YAML [YAML] was designed as a general serialization format.
It can create a text-based representation of essentially arbitrary
data structures, including some programming language-specific
types. As a result, it supports integers (decimal, octal, hex), Infinity
and NaN floating-point values, Base64-encoded binary data, and a
variety of other data types. It also allows non-string dict keys. Its
use of significant whitespace to avoid JSON’s brackets and braces
is reminiscent of Python’s own avoidance of braces. In YAML
syntax, the example data could be represented without quotation
marks or braces:

key:
subkey: value

The serialization capabilities of YAML can actually be a
disadvantage by blurring the distinction between data and exe-
cutable code. PyYAML [pkg:PyYAML], perhaps the most com-
mon Python YAML implementation, can execute arbitrary code
during deserialization unless the special yaml.safe_load()
function is used. For example, during YAML loading it is possible
to run the default Python and include its --help output:

>>> yaml.load("""
help: !!python/object/apply:subprocess.check_output

[['python', '--help']]
""")

YAML libraries in other languages can exhibit similar behavior by
default; YAML deserialization was the source of a major security
vulnerability in Ruby on Rails in 2013 [RoR].

YAML has been criticized for its complexity (for example,
[PEP518] and [TOML]). This is partially due to the comparatively
long YAML specification and the plethora of features it defines.
For instance, most characters are allowed unquoted, but in a
context-dependent manner. When YAML loads "a#comment", it
returns the string a#comment, but add a space before the #, and
this becomes the string a followed by a line comment. Similarly,
Python’s None may be represented as null, Null, NULL, ~, or
as an empty value (for example, "k:" is identical to "k: null").
Some YAML issues were resolved in the transition from the ver-
sion 1.1 specification (2005) to version 1.2 (2009). Among other
things, the treatment of Yes, No, On, Off, and their lowercase
and titlecase variants as boolean values was removed. However,
since PyYAML is still based on the version 1.1 specification, the
impact of version 1.2 for Python users has been minimal, at least
until the ruamel.yaml package [pkg:ruamel.yaml] defaulted to
the version 1.2 specification in 2016.

YAML does provide multiline string literals. For example:

key: |
a multiline string
in which line breaks are preserved

The multiline string begins on the line after the pipe |, and
contains all text indented relative to the parent node (key in this
case). This is a simple and efficient approach with minimal syntax
for short snippets of text. It can become complex, however, if
whitespace or indentation are important. Since the multiline string
has no explicit ending delimiter, by default all trailing whitespace
except for the final line break is stripped. This may be customized
by using |- (remove all trailing whitespace, including the last line
break) or |+ (keep all trailing whitespace). Unfortunately, the |+
case means that the string content depends on the relative positive
of the next data element (or the end of the file, if the string is
not followed by anything). Similarly, there are complications if all
lines of the string contain leading whitespace or if the first line of
the string is indented relative to subsequent lines. In such cases,
the pipe must be followed immediately by an integer that specifies
the indentation of the string relative to the parent node (key in the
example).

All line breaks in multiline strings are normalized to line feeds
(\n). Because backslash-escapes are not allowed in multiline
strings, there is no way to wrap long lines, to specify other line
break characters explicitly, or to use code points that are prohibited
as literals in YAML files (for example, most control characters).

PyYAML provides no round-tripping support. The
ruamel.yaml package does provide round-trip features.
It can maintain comments, key ordering, and most styling so long
as dict keys and list values are not deleted. While it supports
modifying dict and list values, it does not provide built-in support
for renaming dict keys.

TOML

TOML [TOML] is a more recent INI-inspired format. In TOML,
the example data could be represented as:

[key]
subkey = "value"

TOML supports dicts (only with string keys), lists (only with all
elements of the same type), strings, floats, integers, and booleans,
plus date and time data. There are multiline string literals, both
raw (delimited by ''') and with backslash-escapes (delimited by
"""). Though these are very similar to Python multiline strings,
they do have the difference that a line feed (\n) immediately
following the opening delimiter is stripped, while it is retained
otherwise, even if only preceded by a space.

String keys may be unquoted if they match the pattern for
an ASCII identifier, and sections support what might be called
"key paths." This allows nested data to be represented in a very
compact manner without either brackets and braces or significant
indentation. For example:

[key.subkey]
subsubkey = "value"

would be equivalent to the JSON

{"key": {"subkey": {"subsubkey": "value"}}}

TOML aims to be obvious, minimal, and more formally stan-
dardized than typical INI-style formats. In many ways it succeeds.
It is used by Rust’s Cargo package manager [Cargo] and in May
2016 was accepted as the future format for storing Python build
system dependencies in PEP 518 [PEP518].
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For scientific and technical tasks, TOML has some drawbacks.
While there are integers, only decimal integers are supported.
Decimal floats are supported, but with the notable exception of
Infinity and NaN. Unlike YAML, multiline strings cannot be
indented for clarity, because any indentation becomes part of the
literal string content. There is no built-in support for any form of
encoded binary data, and no extension mechanism for unsupported
data types. These limitations may make sense in a format whose
expanded acronym contains "obvious" and "minimal," but they do
make TOML less appropriate for some projects.

In addition to these issues, some current features have the
potential to be confusing. Inline dicts of the form

{"key" = "value"}

are supported, but they are not permitted to break over multiple
lines. Meanwhile, inline lists are permitted to span multiple lines.
When unquoted true appears as a dict key, it is a string, because
only strings are allowed as keys. However, when it appears as a
value, it is boolean true. Thus, true = true is a mapping of a
string to a boolean.

Two of the more popular TOML implementations for Python
are the toml package [pkg:toml] and the pytoml package
[pkg:pytoml], which is being used in PEP 518. Currently, neither
provides any round-trip support.

Introducing BespON

"BespON" is short for Bespoken, or custom-made, Object No-
tation. It originally grew out of a need for a config format
with a key=value syntax that also offers excellent multiline
string support. I am the creator of PythonTeX [PythonTeX],
which allows executable code in Python and several other
programming languages to be embedded within LaTeX docu-
ments. Future PythonTeX-related software will need a LaTeX-
style key=value syntax for configuration. Because PythonTeX
involves a significant amount of templating with Python code,
a config format with multiline strings with obvious indentation
would also be very useful. Later, BespON was influenced by
some of my other software projects and by my work as a physics
professor. This resulted in a focus on features related to scientific
and technical computing.

• Integers, with binary, octal, and hexadecimal integers in
addition to decimal integers.

• Full floating-point support including Infinity and NaN, and
support for hexedecimal floating-point numbers.

• Multiline strings designed with templating and similar
tasks in mind.

• A binary data type.
• Support for lossless round-tripping including comment

preservation, at least when data is only modified.
• An extensible design that can allow for user-defined data

types.

The bespon package for Python [pkg:bespon] was first
released in April 2017, after over a year of development. It is
used in all examples below. Like Python’s json module [py:json],
bespon provides load() and loads() functions for loading
data from file-like objects or strings, and dump() and dumps()
functions for dumping data to file-like objects or strings. bespon
is compatible with Python 2.7 and 3.3+.

None and booleans

Python’s None and boolean values are represented in BespON as
none, true, and false. As in JSON and TOML, all keywords
are lowercase. For example:

>>> import bespon
>>> bespon.loads("[none, true, false]")
[None, True, False]

Numbers

Integers

BespON supports binary, octal, decimal, and hexadecimal inte-
gers. Non-decimal integers use 0b, 0o, and 0x base prefixes.
Underscores are allowed between adjacent digits and after a base
prefix, as in numbers in Python 3.6+ [PEP515]. For example:

>>> bespon.loads("[0b_1, 0o_7, 1_0, 0x_f]")
[1, 7, 10, 15]

Floats

Decimal and hexadecimal floating point numbers are supported,
with underscores as in integers. Decimal numbers use e or E for
the exponent, while hex use p or P, just as in Python float literals
[py:stdtypes]. Infinity and NaN are represented as inf and nan.

>>> bespon.loads("[inf, nan, 2.3_4e1, 0x5_6.a_fp-8]")
[inf, nan, 23.4, 0.3386077880859375]

The support for hexadecimal floating-point numbers is partic-
ularly important in scientific and technical computing. Dumping
and then loading a floating-point value in decimal form will
typically involve small rounding errors [py:stdtypes]. The hex
representation of a float allows the value to be represented exactly,
since both the in-memory and serialized representation use base 2.
This allows BespON files to be used in fully reproducible floating-
point calculations. When the bespon package dumps data, the
hex_floats keyword argument may be used to specify that all
floats be saved in hex form.

Strings

BespON provides both inline strings, which do not preserve literal
line breaks, and multiline strings, which do.

Raw and escaped versions of both are provided. Raw strings
preserve all content exactly. Escaped strings allow code points to
be represented with backslash-escapes. BespON supports Python-
style \xhh, \uhhhh, and \Uhhhhhhhh escapes using hex digits
h, as well as standard shorthand escapes like \r and \n. It also
supports escapes of the form \u{h...h} containing 1 to 6 hex
digits, as used in Rust [rs:tokens] and some other languages.

In addition, single-word identifier-style strings are allowed
unquoted.

Inline strings

Raw inline strings are delimited by a single backtick `, double
backticks ``, triple backticks ```, or a longer sequence that is a
multiple of three. This syntax is inspired by [Markdown]; the case
of single backticks is similar to Go’s raw strings [Go]. A raw inline
string may contain any sequence of backticks that is either longer
or shorter than its delimiters. If the first non-space character in a
raw string is a backtick, then the first space is stripped; similarly,
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if the last non-space character is a backtick, then the last space
is stripped. This allows, for example, the sequence ` ``` `
to represent the literal triple backticks ```, with no leading or
trailing spaces.

The overall result is a raw string syntax that can enclose
essentially arbitrary content while only requiring string modi-
fication (adding a leading or trailing space) in one edge case.
Other common raw string syntaxes avoid any string modification,
but either cannot enclose arbitrary content or require multiple
different delimiting characters. For example, Python does not
allow r"\". It does allow r"""\""", but this is not a complete
string representing the backslash; rather, it is the start of a raw
string that will contain the literal sequence \""" and requires """
as a closing delimiter [py:lexical]. Meanwhile, Rust represents the
literal backslash as r#"\"# in raw string syntax, while literal \#
would require r##"\#"## [rs:tokens].

Escaped inline strings are delimited by single quotation char-
acters, either a single quote ' or double quote ". These end at
the first unescaped delimiting character. Escaped inline strings
may also be delimited by triple quotation mark sequences '''
or """, or longer sequences that are a multiple of three. In these
cases, any shorter or longer sequence of the delimiting character
is allowed unescaped. This is similar to the raw string case, but
with backslash-escapes.

Inline strings may be wrapped over multiple lines, in a manner
similar to YAML. This allows BespON data containing long,
single-line strings to be embedded within a LaTeX, Markdown,
or other document without requiring either lines longer than 80
characters or the use of multiline strings with newline escapes.
When an inline string is wrapped over multiple line, each line
break is replaced with a space unless it is preceded by a code
point with the Unicode White_Space property [UAX44], in
which case it is stripped. For example:

>>> bespon.loads("""
'inline value
that wraps'

""")
'inline value that wraps'

When an inline string is wrapped, the second line and all subse-
quent lines must have the same indentation.

Multiline strings

Multiline strings also come in raw and escaped forms. Syntax
is influenced by heredocs in shells and languages like Ruby
[rb:literals]. The content of a multiline string begins on the line
after the opening delimiter, and ends on the line before the
closing delimiter. All line breaks are preserved as literal line feeds
(\n); even if BespON data is loaded from a file using Windows
line endings \r\n, newlines are always normalized to \n. The
opening delimiter consists of a pipe | followed immediately by
a sequence of single quotes ', double quotes ", or backticks
` whose length is a multiple of three. Any longer or shorter
sequence of quote/backtick characters is allowed to appear literally
within the string without escaping. The quote/backtick determines
whether backslash-escapes are enabled, following the rules for
inline strings. The closing delimiter is the same as the opening
delimiter with a slash / appended to the end. This enables opening
and closing delimiters to be distinguished easily even in the
absence of syntax highlighting, which is convenient when working
with long multiline strings.

In a multiline string, total indentation is not preserved. Rather,
indentation is only kept relative to the delimiters. For example:

>>> bespon.loads("""
|'''
first line
second line

|'''/
""")
' first line\n second line\n'

This allows the overall multiline string to be indented for clarity,
without the indentation becoming part of the literal string content.

Unquoted strings

BespON also allows unquoted strings. By default, only ASCII
identifier-style strings are allowed. These must match the regular
expression:

_*[A-Za-z][0-9A-Z_a-z]*

There is the additional restriction that no unquoted string may
match a keyword (none, true, false, inf, nan) or related
reserved word when lowercased. This prevents an unintentional
miscapitalization like FALSE from becoming a string and then
yielding true in a boolean test.

Unquoted strings that match a Unicode identifier pattern essen-
tially the same as that in Python 3.0+ [PEP3131] may optionally
be enabled. These are not used by default because they introduce
potential usability and security issues. For instance, boolean false
is represented as false. When unquoted Unicode identifier-
style strings are enabled, the final e could be replaced with the
lookalike code point \u0435, CYRILLIC SMALL LETTER IE.
This would represent a string rather than a boolean, and any
boolean tests would return true since the string is not empty.

Lists

Lists are supported using an indentation-based syntax similar to
YAML as well as a bracket-delimited inline syntax like JSON or
TOML.

In an indentation-style list, each list element begins with an
asterisk * followed by the element content. For example:

>>> bespon.loads("""
* first
* second
* third
""")
['first', 'second', 'third']

Any indentation before or after the asterisk may use spaces or tabs,
although spaces are preferred. In determining indentation levels
and comparing indentation levels, a tab is never treated as identical
to some number of spaces. An object that is indented relative to
its parent object must share its parent object’s indentation exactly.
This guarantees that in the event that tabs and spaces are mixed,
relative indentation will always be preserved.

In an inline list, the list is delimited by square brackets [],
and list elements are separated by commas. A comma is permitted
after the last list element (dangling comma), unlike JSON:

>>> bespon.loads("[first, second, third,]")
['first', 'second', 'third']

An inline list may span multiple lines, as long as everything it
contains and the closing bracket are indented at least as much as
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the line on which the list begins. When inline lists are nested,
the required indentation for all of the lists is simply that of the
outermost list.

Dicts

Dicts also come in an indentation-based form similar to YAML as
well as a brace-delimited inline syntax like JSON or TOML.

In an indentation-style list, keys and values are separated by
an equals sign, as in INI-style formats and TOML. For example:

>>> bespon.loads("""
key =

subkey = value
""")
{'key': {'subkey': 'value'}}

The rules for indentation are the same as for lists. A dict value
that is a string or collection may span multiple lines, but it must
always have at least as much indentation as its key if it starts on
the same line as the key, or more indentation if it starts on a line
after the key. This may be demonstrated with a multiline string:

>>> bespon.loads("""
key = |```

first line
second line

|```/
""")
{'key': ' first line\n second line\n'}

Because the multiline string starts on the same line as key, the
opening and closing delimiters are not required to have the same
indentation, and the indentation of the string content is relative to
the closing deliter.

In an inline dict, the dict is delimited by curly braces {}, and
key-value pairs are separated by commas:

>>> bespon.loads("""
{key = {subkey = value}}
""")
{'key': {'subkey': 'value'}}

As with inline lists, a dangling comma is permitted, as is spanning
multiple lines so long as all content is indented at least as much
as the line on which the dict begins. When inline dicts are nested,
the required indentation for all of the dicts is simply that of the
outermost dict.

Dicts support none, true, false, integers, and strings as
keys. Floats are not supported as keys by default, since this could
produce unexpected results due to rounding.

Key paths and sections

The indentation-based syntax for dicts involves increasing levels
of indentation, while the inline syntax involves accumulating
layers of braces. BespON provides a key-path syntax that allows
this to be avoided in some cases. A nested dict can be created with
a series of unquoted, period-separated keys. For example:

>>> bespon.loads("""
key.subkey.subsubkey = value
""")
{'key': {'subkey': {'subsubkey': 'value'}}}

Key path are scoped, so that once the indentation or brace level
of the top of the key path is closed, no dicts created by the key
path can be modified. Consider a nested dict three levels deep,
with the lowest level accessed via key paths:

>>> bespon.loads("""
key =

subkey.a = value1
subkey.b = value2

""")
{'key': {'subkey': {'a': 'value1', 'b': 'value2'}}}

Key paths starting with subkey can be used multiple times at the
indentation level where subkey is first used. Using subkey.c
at this level would be valid. However, returning to the indentation
level of key and attempting to use key.subkey.c would result
in a scope error. Scoping ensures that all data defined via key paths
with common nodes remains relatively localized.

Key paths can also be used in sections similar to INI-style
formats and TOML. A section consists of a pipe followed imme-
diately by three equals signs (or a longer series that is a multiple
of three), followed by a key path. Everything until the next section
definition will be placed under the section key path. For example:

>>> bespon.loads("""
|=== key.subkey
subsubkey = value
""")
{'key': {'subkey': {'subsubkey': 'value'}}}

This allows both indentation and layers of braces to be avoided,
while not requiring the constant repetition of the complete path to
the data that is being defined (key.subkey in this case).

Instead of ending a section by starting a new section, it is
also possible to return to the top level of the data structure using
an end delimiter of the form |===/ (with the same number of
equals signs as the opening section delimiter).

Tags

All of the data types discussed so far are implicitly typed; there
is no explicit type declaration. BespON provides a tag syntax that
allows for explicit typing and some other features. This may be
illustrated with the bytes type, which can be applied to strings
to create byte strings (Python bytes):

>>> bespon.loads("""
(bytes)> "A string in binary"
""")
b'A string in binary'

Similarly, there is a base16 type and a base64 type:

>>> bespon.loads("""
(base16)> "01 89 ab cd ef"
""")
b'\x01\x89\xab\xcd\xef'
>>> bespon.loads("""
(base64)> "U29tZSBCYXNlNjQgdGV4dA=="
""")
b'Some Base64 text'

When applied to strings, tags also support keyword argu-
ments indent and newline. indent is used to specify a
combination of spaces and tabs by which all lines in a string
should be indented to produce the final string. newline takes
any code point sequence considered a newline in the Unicode
standard [UnicodeNL], or the empty string, and replaces all literal
line breaks with the specified sequence. This simplifies the use
of literal newlines other than the default line feed (\n). When
newline is applied to a byte string, only newline sequences in
the ASCII range are permitted.
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>>> bespon.loads(r"""
(bytes, indent=' ', newline='\r\n')>
|'''
A string in binary
with a break
|'''/
""")
b' A string in binary\r\n with a break\r\n'

Aliases and inheritance

For configuration purposes, it would be convenient to have some
form of inheritance, so that settings do not need to be duplicated
in multiple dicts. The tag label keyword argument allows lists,
list elements, dicts, and dict values to be labeled. Then they can
be referenced later using aliases, which consist of a dollar sign $
followed by the label name. Aliases form the basis for inheritance.

Dicts support two keywords for inheritance. init is used to
specify one or more dicts with which to initialize a new dict. The
keys supplied by these dicts must not be overwritten by the keys
put into the new dict directly. Meanwhile, default is used to
specify one or more dicts whose keys are added to the new dict
after init and after values that are added directly. default
keys are only added if they do not exist; they are fallback values.

>>> d = bespon.loads("""
initial =

(dict, label=init)>
first = a

default =
(dict, label=def)>
last = z
k = default_v

settings =
(dict, init=$init, default=$def)>
k = v

""")
>>> d['settings']
{'first': 'a', 'k': 'v', 'last': 'z'}

If there multiple values for init or default, these could be
provided in an inline list of aliases:

[$alias1, $alias2, ...]

In similar manner, init can be used to specify initial ele-
ments in a list, and extend to add elements at the end. Other
features that make use of aliases are under development.

Immutability, confusability, and other considerations

BespON and the bespon package contain several features de-
signed to enhance usability and prevent confusion.

Nested collections more than 100 levels deep are prohibited by
default. In such cases, the bespon package raises a nesting depth
error. This reduces the potential for runaway parsing.

BespON requires that dict keys be unique; keys are never
overwritten. Similarly, there is no way to set and then modify
list elements. In contrast, the JSON specification only specifies
that keys "SHOULD be unique" [JSON]. Python’s JSON module
[py:json] allows duplicate keys, with later keys overwriting earlier
ones. Although YAML [YAML] specifies that keys are unique,
in practice PyYaml [pkg:PyYAML] allows duplicate keys, with
later keys overwriting earlier ones. TOML [TOML] also specifies
unique keys, and this is enforced by the toml [pkg:toml] and
pytoml [pkg:pytoml] packages.

When the last line of an inline or unquoted string contains
one or more Unicode code points with Bidi_Class R or AL

(right-to-left languages) [UAX9], by default no other data objects
or comments are allowed on the line on which the string ends. This
prevents a right-to-left code point from interacting with following
code points to produce ambiguous visual layout as a result of
the Unicode bidirectional algorithm [UAX9] that is implemented
in much text editing software. Consider an indentation-based dict
mapping Hebrew letters to integers (valid BespON):

"ℵ" =
1

"i" =
2

There is no ambiguity in that case. Now consider the same
data, but represented with an inline dict (still valid BespON):

{"\u05D0" = 1, "\u05D1" = 2}

There is still no ambiguity, but the meaning is less clear due to
the Unicode escapes. If the literal letters are substituted, this is the
rendering in most text editors (now invalid BespON):

{"2 = "i" ,1 = "ℵ}

Because the quotation marks, integers, comma, and equals
signs have no strong left-to-right directionality, everything after
the first quotation mark until the final curly brace is visually
laid out from right to left. When the data is loaded, though, it
will produce the correct mapping, since loading depends on the
logical order of the code points rather than their visual rendering.
By default, BespON prevents the potential for confusion as a
result of this logical-visual mismatch, by prohibiting data objects
or comments from immediately following an inline or unquoted
string with one or more right-to-left code points in its last line. For
the same reason, code points with the property Bidi_Control
[UAX9] are prohibited from appearing literally in BespON data;
they can only be produced via backslash-escapes.

Round-tripping

BespON has been designed with round-tripping in mind. Cur-
rently, the bespon package supports replacing keys and values
in data. For example:

>>> ast = bespon.loads_roundtrip_ast("""
key.subkey.first = 123 # Comment
key.subkey.second = 0b1101
key.subkey.third = `literal \string`
""")
>>> ast.replace_key(['key', 'subkey'], 'sk')
>>> ast.replace_val(['key', 'sk', 'second'], 7)
>>> ast.replace_val(['key', 'sk', 'third'],

'\\another \\literal')
>>> ast.replace_key(['key', 'sk', 'third'], 'fourth')
>>> print(ast.dumps())

key.sk.first = 123 # Comment
key.sk.second = 0b111
key.sk.fourth = `\another \literal`

This illustrates several features of the round-trip capabilities.

• Comments, layout, and key ordering are preserved exactly.
• Key renaming works even with key paths, when a given

key name appears in multiple locations.
• When a number is modified, the new value is expressed in

the same base as the old value by default.
• When a quoted string is modified, the new value is quoted

in the same style as the old value (at least when practical).



Con
fer

en
ce

Rea
dy

18 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2017)

• As soon as a key is modified, the new key must be used
for further modifications. The old key is invalid.

In the future, the bespon package will add additional round-
trip capabilities beyond replacing keys and values. One of the
challenges in round-tripping data is dealing with comments. Be-
spON supports standard line comments of the form #comment.
While these can survive round-tripping when data is added or
deleted, dealing with them in those cases is difficult, because line
comments are not uniquely associated with individual data objects.
To provide an alternative, BespON defines a doc comment that is
uniquely associated with individual data objects. Each data object
may have at most a single doc comment. The syntax is inspired
by string and section syntax, involving three hash symbols (or a
multiple of three). Both inline and multiline doc comments are
defined, and must come immediately before the data with which
they are associated (or immediately before its tag, for tagged data):

key1 = ### inline doc comment for value 1 ###
value1

key2 = |###
multiline doc comment

for value2
|###/
value2

Because doc comments are uniquely associated with individual
data elements, they will make possible essentially arbitrary ma-
nipulation of data while retaining all relevant comments.

Performance

Since the beginning, performance has been a concern for BespON.
The bespon package is pure Python. YAML’s history suggested
that this could be a significant obstacle to performance. PyYAML
[pkg:PyYAML] can be much slower than Python’s json module
[py:json] for loading equivalent data, in part because the JSON
module is implemented in C while the default PyYAML is pure
Python. PyYAML can be distributed with LibYAML [LibYAML],
a C implementation of YAML 1.1, which provides a significant
performance improvement.

So far, bespon performance is promising. The package uses
__slots__ and avoids global variables extensively, but other-
wise optimizations are purely algorithmic. In spite of this, under
CPython it can be only about 50% slower than PyYAML with
LibYAML. Under PyPy [PyPy], the alternative Python implemen-
tation with a just-in-time (JIT) compiler, bespon can be within
an order of magnitude of json’s CPython speed.

Figure 1 shows an example of performance in loading data.
This was generated with the BespON Python benchmarking code
[bespon:benchmark]. A sample BespON data set was assembled
using the template below (whitespace reformatted to fit column
width), substituting the template field {num} for integers in
range(1000) and then concatenating the results.

key{num} =
first_subkey{num} =
"Some text that goes on for a while {num}"

second_subkey{num} =
"Some more text that also goes on and on {num}"

third_subkey{num} =
* "first list item {num}"
* "second list item {num}"
* "third list item {num}"

Analogous data sets were generated for JSON, YAML, and
TOML, using the closest available syntax. Python’s json mod-

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

yaml

pytoml

toml

bespon

yaml (PyPy)

yaml, CLoader

bespon (PyPy)

json

0.9900

0.4384

0.1622

0.0936

0.0619

0.0589

0.0131

0.0015 JSON
BespON
YAML
TOML

Fig. 1: Performance of Python’s json module and the PyYAML,
toml, pytoml, and bespon packages in loading sample data. All
tests were performed under Ubuntu 16.04. All tests used Anaconda
Python 3.6.1 (64-bit) except those designated with "PyPy," which
used PyPy3.5 5.7.1 (64-bit). PyYAML was tested with its C library
implementation (CLoader) when available.

ule and the PyYAML, toml, pytoml, and bespon packages
were then used to load their corresponding data from strings 10
times. Load times were measured with Python’s timeit module
[py:timeit], and the minimum time for each package was recorded
and plotted in the figure.

An extended example

All examples shown so far have been short snippets loaded from
Python strings using bespon.loads(). Any of those examples
could instead have been saved in a text file, say data.bespon,
and loaded as

with open('data.bespon', encoding='utf8') as f:
data = bespon.load(f)

A longer example of a BespON file that could be loaded in this
manner is shown below. It illustrates most BespON features.

# Line comments can be round-tripped if data
# elements are only modified, not added or removed.

### This doc comment can always be round-tripped.###
# Only one doc comment is allowed per data element.
# The doc comment above belongs to the key below.
"key (\x5C escapes)" = 'value (\u{5C} escapes)'

`key (no \ escapes)` = ``value (no `\` escapes)``

# Unquoted ASCII identifier-style strings.
unquoted_key = unquoted_value

# Trailing commas are fine.
inline_dict = {key1 = value1, key2 = value2,}

# Decimal, hex, octal, and binary integers.
inline_list_of_ints = [1, 0x12, 0o755, 0b1010]

list_of_floats =
* 1.2e3
* -inf # Infinity and NaN are supported.
* 0x4.3p2 # Hex floats to avoid rounding.
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wrapped_string = """String with no whitespace
lines, with line breaks converted to spaces,
and "quotes" allowed by delimiters."""

multiline_raw_string = |```
Linebreaks are kept (as '\n') and leading
indentation is preserved relative to
delimiters (which are on lines by themselves).

|```/

multiline_escaped_string = |"""
The same idea as the raw multiline string,
but with backslash-escapes.
|"""/

typed_string = (bytes)> "byte string"

# Key-path style; same as "key1 = {key2 = true}"
key1.key2 = true

# Same as "section = {subsection = {key = value}}"
|=== section.subsection
key = value
|===/ # Back to root level. Can be omitted

# if sections never return to root.

Conclusion

BespON and the bespon package remain under development.
The bespon package is largely complete as far as loading

and dumping data are concerned. The standard, default data types
discussed above are fully supported, and it is already possible to
enable a limited selection of optional types.

The primary focus of future bespon development will be on
improving round-tripping capabilities. Eventually, it will also be
possible to enable optional user-defined data types with the tag
syntax.

BespON as a configuration format will primarily be refined in
the future through the creation of a more formal specification. The
Python implementation is written in such a way that a significant
portion of the grammar already exists in the form of Python
template strings, from which it is converted into functions and
regular expressions. A more formal specification will bring the
possibility of implementations in additional languages.

Working with BespON will also be improved through addi-
tional revision of the programming language-agnostic test suite
[bespon:test] and the syntax highlighting extension for Microsoft
Visual Studio Code [bespon:vscode]. The language-agnostic test
suite is a set of BespON data files containing hundreds of snippets
of BespON that is designed to test implementations for confor-
mance. It is used for testing the Python implementation before
each release. The VS Code syntax highlighting extension provides
a TextMate grammar [TextMate] for BespON, so it can provide a
basis for BespON support in other text editors in the future.
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LabbookDB - A Wet-Work-Tracking Database
Application Framework
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Abstract—LabbookDB is a relational database application framework for life sci-
ences—providing an extendable schema and functions to conveniently add and
retrieve information, and generate summaries. The core concept of LabbookDB
is that wet work metadata commonly tracked in lab books or spreadsheets is
more efficiently and more reliably stored in a relational database, and more
flexibly queried. We overcome the flexibility limitations of designed-for-analysis
spreadsheets and databases by building our schema around atomized physical
object interactions in the laboratory (and providing plotting- and/or analysis-
ready dataframes as a compatibility layer). We keep our database schema more
easily extendable and adaptable by using joined table inheritance to manage
polymorphic objects and their relationships. LabbookDB thus provides a wet
work metadata storage model excellently suited for explorative ex-post reporting
and analysis, as well as a potential infrastructure for automated wet work
tracking.

Index Terms—laboratory notebook, labbook, wet work, record keeping, inter-
net of things, reports, life science, biology, neuroscience, behaviour, relational
database, normalization, SQL

Introduction

The laboratory notebook (more commonly, lab book) is a long-
standing multi-purpose record—serving as a primary data trace,
as a calendar, diary, legal document, memory aid, organizer,
timetable, and also proposed as a rapid science communication
medium [Bra07]. It is of notable popularity in the natural sciences,
especially in the life sciences—where research largely consists
of “wet work” (i.e. real-world manipulation), which generally
leaves no data trace unless explicitly recorded. With the advent of
electronic data acquisition and storage, however, the lab book has
increasingly lost significance as a repository for actual data, and
has transformed into a metadata record. Notably, the modern lab
book has become a general repository of information, for which
simple array formats (e.g. tables, spreadsheets, or data matrices)
do not provide an adequate input and/or storage format.

Some scientists and science service providers seek to emu-
late the seemingly convenient lab book format in the electronic
medium—even providing support for sketching and doodling (e.g.
eLabFTW [CNM12]). Storing information in free-text or pictorial
form, however, exacerbates the incompatibility with electronic
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data analysis and reporting (which commonly requires consistent
array formats). This approach, rather than merely retarding infor-
mation flow by increasing the need for manual lookup and input,
can also increase the incidence of biased evaluation—most easily
as a consequence of notes being more often or more attentively
consulted, and judged by varied but not explicitly documented
standards, depending on the expectations of the researcher.

Conversely, researchers often force multidimensional and
relationship-rich experimental metadata into the familiar and
analysis-apt spreadsheet format. Under a list-like model, however,
relationships become spread over many cell combinations while
remaining untracked. This leads to information replication in
multiple entries, which in turn renders e.g. the task of updating
the correspondence between related cells non-trivial. These issues
are known as information redundancy and update anomalies,
respectively—and are prone to damage data integrity over time.
The temptation also arises to truncate input to only what is
considered essential at the time of the experiment. This runs the
risk of omitting information which may have been easily recorded
(even automatically) given a proper data structure, and which may
become crucial for closer ex-post deliberation of results.

The crux of the issue, which neither of these approaches
adequately addresses, is to store experimental metadata in a
fashion which befits its relationship-rich nature, while provid-
ing array-formatted data output for analysis, and spreadsheet-
formatted data for human inspection. Solutions which provide
such functionality for a comprehensive experimental environment
are few, and commonly proprietary and enterprise oriented (e.g.
iRATS, REDCap [HTT+09]). One notable exception is MouseDB
[Bri11], a database application framework built around mouse
tracking. This package is considerably more mature than our
present endeavour, yet more closely intended as a lab management
tool rather than a general lab book replacement. It makes a number
of differing structure choices, but given the permissive license
(BSD [Ini99]) of both projects, it is conceivable for functionalities
from one to be merged into another in the future.

The need for a wet work metadata system providing a better
internal data model and consistently structured outputs, is com-
pounded by the fact that such a system may also be better suited
for (semi)automatic record keeping. Rudimentary semiautomatic
tracking (via barcode-scanning) is already available for at least
one commercial platform (iRATS), and the concept is likely to
become of even more interest, as the internet of things reaches
the laboratory. This makes a well-formed open source relational
schema of object interactions accurately representing the physical
world pivotal in the development of laboratory record keeping.
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Methods

Database Management System

In order to cast complex laboratory metadata into tractable re-
lationships with high enough entry numbers for statistical anal-
ysis, as well as in order to reduce data redundancy and the
risk of introducing anomalies, we opt for a relational database
management system, as interfaced with via SQLAlchemy. The
scalability and input flexibility advantages of noSQL databases do
not apply well to the content at hand, as experimental metadata
is small, reliable, and slowly obtained enough to make scala-
bility a secondary concern and schema quality and consistency
a principal concern. Our robust but easily extendable schema
design encapsulates contributors’ wet work procedural knowledge,
and is valuable in excess of creating an efficient storage model;
as well-chosen predefined attributes facilitate reproducibility and
encourage standardization in reporting and comparability across
experiments.

Database Schema Design

The current database schema was generated from numerous bona
fide spreadsheet formats used at the Psychiatry University Clinic,
ETH, and University of Zurich. Iteratively, these spreadsheets are
being normalized to first, second, third, and fourth normal forms
(eliminating multivalued attributes, partial dependencies, transi-
tive dependencies, and multivalued dependencies, respectively)
[Cod74]. As the database schema of the current release (0.0.1)
consists of over 40 tables, and is expected to expand as more
facets of wet work are tracked, ensuring that relationships are
well-formed will remain an ongoing process. The perpetually non-
definitive nature of the database schema is also conditioned by the
continuous emergence of new wet work methods.

Record Keeping and Structure Migration

We use version tracking via Git to provide both a verifiable
primary input record, and the possibility to correct entries (e.g.
typos) in order to facilitate later database usage in analysis.
Version tracking of databases, however, is rendered difficult by
their binary format. To mitigate this issue, as well as the aforemen-
tioned continuous structure update requirement, we track modular
Python function calls which use the LabbookDB input application
programming interface (API) to generate a database—instead of
the database itself. We refer to this repository of Python function
calls as the “source code” of the database.

Input Design

The LabbookDB input API consists of Python functions which
interface with SQLAlchemy, and accept dictionary and string
parameters for new entry specification and existing entry iden-
tification, respectively. These Python functions are wrapped for
command line availability via argh—as sub-commands under the
master command LDB in order to conserve executable namespace.
Dictionaries are passed to the command line surrounded by sim-
ple quotes, and a LabbookDB-specific syntax was developed to
make entry identification considerably shorter than standard SQL
(though only arguably more readable).

Output Design

Outputs include simple human-readable command line reports
and spreadsheets, .pdf protocols, introspective graphs, and
dataframes. Dataframe ouput is designed to support both the

Pandas DataFrame format and export as .csv. The dataframe
conventions are kept simple and are perfectly understood by
BehavioPy [Chr16], a collection of plotting functions originally
developed as part of LabbookDB, but now branched off for more
general usage. The formatting of command line reports is built
by concatenating __str__ methods of queryable objects and
their immediate relationships, and is based on the most common
use cases for rapid monitoring. Contingent on the availability of
object-specific formatting guidelines, an interface is available for
generating human-readable, itemized .pdf protocols.

Scope

To accommodate for a developing schema, reduce dependencies,
and reduce usage difficulty, we opt to showcase LabbookDB as
a personal database system, using SQLite as an engine. As such,
the database is stored locally, managed without a client-server
model, and accessed without the need for authentication. The
scope thus extends to maximally a few users, which trust each
other with full access. This is an appropriate scope for most
research groups. Aditionally, this design choice enables single
researchers or clusters of researchers within a larger group to
autonomously try out, test, contribute to, or adopt LabbookDB
without significant overhead or the need for a larger institutional
commitment.

Quality Control

LabbookDB provides an outline for unit testing which ships in
the form of a submodule. Currently this is populated with a
small number of simple example tests for low-level functionality,
and is intended to grow as individual code units become more
hardened. Additionally, we provide extensive integration testing
which assures that the higher-level functionality of LabbookDB
remains consistent, and that databases can be regenerated from
updated source code as needed. The ever-increasing data required
for extensive integration testing is distributed independently of
LabbookDB and PIP, in a separate Git repository named Demolog
[Chr17b]. Both unit and integration tests are currently run contin-
uously with TravisCI.

Development Model

The database schema draws from ongoing input, testing, and the
wet work experience of many researchers associated with the
Institute of Biomedical Engineering and the Animal Imaging Cen-
ter at the ETH and University of Zurich. The development team
currently consists of one programmer (corresponding author), who
will maintain and actively develop LabbookDB at least until
2019—independently of community involvement. Beyond that
time point development may become contingent on the established
impact of the project, including number of contributors, academic
recognition of the metadata management system, adoption in the
scientific Python or biomedical community, or the prospect of
developing commercial tools to leverage the open source schema
and API.

Documentation

Project documentation is published via Read the Docs, and con-
tains a general project description, alongside installation instruc-
tions and a browsable listing of the API. The documentation model
is based primarly on docstrings, but also contains example func-
tions and example input stored in the corresponding submodule.
A number of fully reproducible minimal input (working with the
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Demolog data only) versions of these functions are also presented
in this paper.

Capabilities

The aforementioned integration testing data reposited as Demolog
[Chr17b] demonstrates the capabilities of this first LabbookDB
release in a concise fashion. Contingent on the presence of
LabbookDB 0.0.1 [Chr17a] and its dependencies on the system,
an example database can be built—and correspondingly described
subsequent entries can be executed locally. To set up the example
database, the following should be run from the terminal:
mkdir ~/src
cd ~/src
git clone https://bitbucket.org/TheChymera/demolog
cd demolog/from_python_code
./generate_db.py
mkdir ~/syncdata
cp meta.db ~/syncdata

Note that, for the examples to work, it is mandatory to create the
src and syncdata directories under the user’s home path.

Entry Insertion and Update

The Python API allows for clearly laid out entry insertion, via the
add_generic() function:
add_generic(db_location, parameters={

"CATEGORY":"Animal",
"sex":"m",
"ear_punches":"L",
"license":"666/2013",
"birth_date":"2016,7,21",
"external_ids":[

{"CATEGORY":"AnimalExternalIdentifier",
"database":"ETH/AIC",
"identifier":"5682",
},

{"CATEGORY":"AnimalExternalIdentifier",
"database":"UZH/iRATS",
"identifier":"M2889"
},

],
"genotypes":["Genotype:code.datg"],
})

Technically, all entries could be created in such a fashion. How-
ever, in order to better organize logging (e.g. quarterly, as in the
Demolog submodules), we provide an additional function for entry
update. Instead of editing the original animal input file to set e.g.
the death date, the animal entry can be updated via a separate
function call:
append_parameter(db_location,

entry_identification="Animal:external_ids."
"AnimalExternalIdentifier:database."
"ETH/AIC&#&identifier.5682",

parameters={
"death_date":"2017,5,13,17,25",
"death_reason":"end of experiment",
}

)

In this example an existing entry is selected in a compact fashion
using custom LabbookDB syntax.

Compact Syntax for Entry Selection

In order to compactly identifiy related for data input, we have de-
veloped a custom LabbookDB syntax. This syntax is automatically
parsed by the labbookdb.db.add.get_related_ids()
function, which is called internatlly by input functions. Notably,

understanding of this syntax is not required in order to use
reporting functions, and plenty of examples of its usage for input
can be seen in Demolog.

Custom LabbookDB syntax is not written as a wrapper for
SQL, but rather specifically designed to satisfy LabbookDB entry
selection use cases in a minimum number of characters. This is
primarily provided to facilitate database manipulation from the
command line, though it also aids in making database source code
more clearly laid out

Consider the string used to identify the entry to be updated in
the previous code snippet (split to fit document formatting):

"Animal:external_ids.AnimalExternalIdentifier:datab"
"ase.ETH/AIC&#&identifier.5682"

Under the custom LabbookDB syntax, the selection string always
starts with the entry’s object name (in the string at hand, Animal).
The object name is separated from the name of the attribute
to be matched by a colon, and the attribute name is separated
from the value identifying the existing entry by a period. The
value can be either a string, or—if the string contains a colon—it
is presumed to be another object (which is then selected by
using the same syntax). Multiple matching constraints can be
specified, by separating them via double ampersands. Inserting
one or multiple hashtags in between the ampersands indicates
at what level the additional constraint is to be applied. In the
current example, two ampersands separated by one hashtag mean
that an AnimalExternalIdentifier object is matched con-
tingent on a database attribute value of "ETH/AIC" and an
identifier attribute value of "5682". Had the ampersands
not been separated by a hashtag, the expression would have
prompted LabbookDB to apply the additional identifier
attribute constraint not to the AnimalExternalIdentifier
object, but one level higher, to the Animal object.

Command Line Reporting

Quick reports can be generated directly via the command line, e.g.
in order to get the most relevant aspects of an animal at a glance.
The following code should be executable locally in the terminal,
contingent on LabbookDB example database availability:

LDB animal-info -p ~/syncdata/meta.db 5682 ETH/AIC

The code should return an overview similar to the flollowing,
directly in the terminal:

Animal(id: 15, sex: m, ear_punches: L):
license: 666/2013
birth: 2016-07-21
death: 2017-05-13 (end of experiment)
external_ids: 5682(ETH/AIC), M2889(UZH/iRATS)
genotypes: DAT-cre(tg)
cage_stays:

cage 31, starting 2016-12-06
cage 37, starting 2017-01-10

operations:
Operation(2017-03-04 10:30:00: virus_injection)
Operation(2017-03-20 13:00:00: optic_implant)

treatments:
measurements:

Weight(2016-12-22 13:35:00, weight: 29.6g)
Weight(2017-03-30 11:48:00, weight: 30.2g)
fMRI(2016-12-22 13:35:49, temp: 35.0)
fMRI(2017-03-30 11:48:52, temp: 35.7)
Weight(2017-04-11 12:33:00, weight: 29.2g)
fMRI(2017-04-11 12:03:58, temp: 34.8)
Weight(2017-05-13 16:53:00, weight: 29.2g)
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Human Readable Spreadsheets

For a broader overview, LabbookDB can join tables from the
database in order to construct comprehensive human-readable
spreadsheet overviews. Storing information in a well-formed
relational structure allows for versatile and complex reporting
formats. In the following model, for instance, the “responsive
functional measurements” column is computed automatically from
the number of fMRI measurements and the number of occur-
rences of the "ICA failed to indicate response to
stimulus" irregularity on these measurements.

Contingent on the presence of LabbookDB and the example
database, the following lines of code should generate a dataframe
formatted in the same fashion as Table 1, and return it directly in
the terminal, or save it in .html format, respectively:

LDB animals-info ~/syncdata/meta.db
LDB animals-info ~/syncdata/meta.db -s overview

An example of the .html output can be seen in the Demolog
repository under the outputs directory.

Printable Protocol Output

LabbookDB can create .pdf outputs to serve as portable step-by-
step instructions suitable for computer-independent usage. This
capability, paired with the database storage of e.g. protocol
parameters means that one can store and assign very many
protocol variants internally (with a minuscule storage footprint),
and conveniently print out a preferred protocol for collaborators,
technicians, or students, without encumbering their workflow with
any unneeded complexity. The feature can be accessed from
the labbookdb.report.examples module. The following
code should be executable locally, contingent on LabbookDB and
example database availability:

from labbookdb.report.examples import protocol

class_name = "DNAExtractionProtocol"
code = "EPDqEP"
protocol("~/syncdata/meta.db", class_name, code)

This should create a DNAExtractionProtocol_EPDqEP.pdf
file identical to the one tracked in Demolog.

Introspection

LabbookDB ships with a module which generates graphi-
cal representations of the complex relational structures im-
plemented in the package. The feature is provided by the
labbookdb.introspection.schema module. The follow-
ing code should be executable locally, contingent on LabbookDB
availability:

from labbookdb.introspection.schema import generate

extent=[
"Animal",
"FMRIMeasurement",
"OpenFieldTestMeasurement",
"WeightMeasurement",
]

save_plot = "~/measurements_schema.pdf"
generate(extent, save_plot=save_plot)

This example should generate Figure 1 in .pdf format (though
.png is also supported).

Animal

★ id INTEGER

⚪ birth_date DATETIME

⚪ death_date DATETIME

⚪ death_reason VARCHAR

⚪ ear_punches VARCHAR

⚪ license VARCHAR

⚪ maximal_severtity INTEGER

⚪ sex VARCHAR

⚪ biopsies PROPERTY

⚪ cage_stays PROPERTY

⚪ external_ids PROPERTY

⚪ genotypes PROPERTY

⚪ measurements PROPERTY

⚪ observations PROPERTY

⚪ operations PROPERTY

⚪ treatments PROPERTY

FMRIMeasurement

★ id INTEGER

☆ anesthesia_id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

☆ scanner_setup_id INTEGER

⚪ date DATETIME

⚪ temperature FLOAT

⚪ type VARCHAR(50)

⚪ anesthesia PROPERTY

⚪ irregularities PROPERTY

⚪ laser_stimulations PROPERTY

⚪ operator PROPERTY

⚪ scanner_setup PROPERTY

animal_id

Measurement

OpenFieldTestMeasurement

★ id INTEGER

☆ animal_id INTEGER

☆ arena_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

⚪ center_luminostiy INTEGER

⚪ corner_luminostiy INTEGER

⚪ date DATETIME

⚪ edge_luminostiy INTEGER

⚪ type VARCHAR(50)

⚪ evaluations PROPERTY

⚪ irregularities PROPERTY

⚪ operator PROPERTY

animal_id

WeightMeasurement

★ id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

☆ weight_unit_id INTEGER

⚪ date DATETIME

⚪ type VARCHAR(50)

⚪ weight FLOAT

⚪ irregularities PROPERTY

⚪ operator PROPERTY

⚪ weight_unit PROPERTY

animal_id

Fig. 1: LabbookDB schema section, illustrating the polymorphic rela-
tionship between Animal objects and different Measurement variants.

Polymorphic Mapping and Schema Extension

In current research, it is common to subject animals to experimen-
tal procedures which are similar in kind, but which can be split
into categories with vastly different attributes. Prime examples
of such procedures are Measurements and Operations.
In Figure 1 we present how LabbookDB uses SQLAlchemy’s
joined table inheritance to link different measurement types to the
measurements attribute of the Animal class. Attributes com-
mon to all measurement types are stored on the measurements
table, as are relationships common to multiple measurements
(e.g. the relationship to the Animal class, instantiated in the
animal_id attribute).

One of the foremost requirements for a relational database
application to become a general purpose lab book replace-
ment is an easily extendable schema. The Measurement and
Operation base classes demonstrate how inheritance and poly-
morphic mapping can help extend the schema to cover new types
of work without changing existing classes. Polymorphism can
be extended to more classes, to further propagate this feature.
For instance, all measurement subjects in LabbookDB databases
are currenly recorded as Animal objects. This is adequate for
most rodents, however it remains inadequate for e.g. human
subects. The issue would best be resolved by creating a Subject
class, with attributes (including relationships) common to multiple
types of subjects, and then creating derived classes, such as
HumanSubject or MouseSubject to track more specific at-
tributes. Measurement and Operation assignments would be
seamlessly transferrable, as relationships between objects derived
from the Subject base class and e.g. the Operation base class
would be polymorphic.
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Animal_id ETH/AIC UZH/iRATS Genotype_code Animal_death_date responsive functional measurements

45 6258 M5458 datg 2017-04-20 18:30:00 0/0
44 6262 M4836 eptg None 2/2
43 6261 M4835 eptg 2017-04-09 18:35:00 0/0
42 6256 M4729 epwt None 0/0
41 6255 M4728 eptg None 2/2

TABLE 1: Example of a human-readable overview spreadsheet generated via the LabbookDB command line functionality.

Atomized Relationships

We use the expression “atomized relationships” to refer to the
finest grained representation of a relationship which can feasibly
be observed in the real world. In more common relational model
terms, higher atomization would correspond to higher normal
forms—though we prefer this separate nomenclature to emphasize
the preferential consideration of physical interactions, with an
outlook to more easily automatable wet work tracking. Similarly
to higher normal forms, increasingly atomized relationships give
rise to an increasingly complex relational structure of objects
with decreasing numbers of attributes. LabbookDB embraces the
complexity thus generated and the flexibility and exploratory
power it facilitates. Database interaction in LabbookDB is by
design programmatic, an thus ease of human readability of the
raw relational structure is only of subordinate concern to reporting
flexibility.

An example of relationship atomization is showcased in Fig-
ure 2. Here the commonplace one-to-many association between
Cage and Animal objects is replaced by a CageStay junction
table highlighting the fact that the relationship between Cage
and Animal is bounded by time, and that while it is many-
to-one at any one time point, in the overarching record it is,
in fact, many-to-many. This structure allows animals to share
a cage for a given time frame, and to be moved across cages
independently—reflecting the physical reality in animal housing
facilities. This complexity is seamlessly handled by LabbookDB
reporting functions, as seen e.g. in the command line reporting
example previously presented.

Conversely, atomization can result in a somewhat simpler
schema, as higher level phenomena may turn out to be special
cases of atomized interactions. By design (and in contrast to the
MouseDB implementation), we would not track breeding cages as
a separate entity, as the housing relationships are not distinct from
those tracked by the CageStay object. A separate object may
rather be introduced for breeding events—which need not overlap
perfectly with breeding cages.

Irregularity and Free Text Management

The atomized schema seeks to introduce structure wherever pos-
sible, but also provides a bare minimum set of free-text fields,
to record uncategorizable occurrences. Irregular events associated
with e.g. Measurement or Operation instances are stored
in the irregularities table, and linked by a many-to-many
relationship to the respective objects. This not only promotes
irregularity re-use, but also facilitates rudimentary manual pattern
discovery, and the organic design of new objects within the
schema.

Irregular events can also be recored outside of predetermined
interventions, via Observation objects. These objects have
their own date attribute, alongside free-text attributes, and a

Animal

★ id INTEGER

⚪ birth_date DATETIME

⚪ death_date DATETIME

⚪ death_reason VARCHAR

⚪ ear_punches VARCHAR

⚪ license VARCHAR

⚪ maximal_severtity INTEGER

⚪ sex VARCHAR

⚪ biopsies PROPERTY

⚪ cage_stays PROPERTY

⚪ external_ids PROPERTY

⚪ genotypes PROPERTY

⚪ measurements PROPERTY

⚪ observations PROPERTY

⚪ operations PROPERTY

⚪ treatments PROPERTY

CageStay

★ id INTEGER

☆ cage_id INTEGER

⚪ single_caged VARCHAR

⚪ start_date DATETIME

⚪ animals PROPERTY

⚪ cage PROPERTY

report_animals() METHOD

Cage

★ id INTEGER

⚪ environmental_enrichment VARCHAR

⚪ id_local VARCHAR

⚪ location VARCHAR

⚪ handling_habituations PROPERTY

⚪ measurements PROPERTY

⚪ stays PROPERTY

⚪ treatments PROPERTY

cage_id

cage_stay_associations

☆ animals_id INTEGER

☆ cage_stays_id INTEGER

animals_id cage_stays_id

Fig. 2: LabbookDB schema section, illustrating a more complex and
accurate representation of the relational structure linking animals and
cages in the housing facility.

value attribute, to more appropriately record a quantifiable trait
in the observation.

Plotting via BehavioPy

LabbookDB provides a number of powerful data selection
and processing functions, which produce consistently structured
dataframes that seamlessly integrate with the BehavioPy [Chr16]
plotting API. The forced swim test, for instance, is a preclinically
highly relevant behavioural assay [PDCB05], which LabbookDB
can document and evaluate. The following example code should be
executable locally, contingent on LabbookDB, example database,
and example data (included in Demolog) availability:
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ID Immobility Ratio Interval [1 min] Treatment

28 0.2635 3 Control
28 0.1440 2 Control
30 0.6813 3 Control
1 0.6251 6 Fluoxetine
32 0.6695 5 Fluoxetine
2 0.6498 6 Fluoxetine

TABLE 2: Example of LabbookDB processed data output for the
forced swim test. The format precisely matches the requirements of
BehavioPy plotting functions.
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Fig. 3: Timecourse plot of the forced swim test performed on mice in
different treatment groups—automatically generated by LabbookDB,
using plotting bindings from BehavioPy.

import matplotlib.pyplot as plt
from labbookdb.report.behaviour import forced_swim

start_dates = ["2017,1,31,22,0","2016,11,24,21,30"]
forced_swim("~/syncdata/meta.db", "tsplot",

treatment_start_dates=start_dates
save_df="~/fst_df.csv")

plt.show()

The above code prompts LabbookDB to traverse the complex
relational structure depicted in Figure 4, in order to join the values
relevant to evaluation of the forced swim test. Animal objects
are joined to Treatment.code values via their relationships
to Cage and CageStay objects. This relational structure is de-
termined by the administration of drinking water treatments at the
cage level, and thus their contingence on the presence of animals in
cages at the time of the treatment. Futher, Evaluation.path
values are joined to Animal objects (via their respective rela-
tionships to Measurement objects) in order to determine where
the forced swim test evaluation data is stored for every animal.
Subsequently, the annotated event tracking data is processed into
desired length time bins (here, 1 minute), and immobility ratios are
calculated per bin. Finally, the data is cast into a consistent and
easily readable dataframe (formatted in the same fashion as Table
2) which can be both saved to disk, or passed to the appropriate
BehavioPy plotting function, to produce Figure 3.

Discussion and Outlook

Record Keeping

Version tracking of database generation source code adequately
addresses the main record keeping challenges at this stage of the
project. Additionally, it has a number of secondary benefits, such
as providing comprehensive and up-to-date usage examples. Not
least of all, this method provides a very robust backup—as the
database can always be rebuilt from scratch. A very significant
drawback of this approach, however, is poor scalability.

As the amount of metadata reposited in a LabbookDB database
increases, the time needed for database re-generation may reach
unacceptable levels. Disk space usage, while of secondary con-
cern, may also become an issue. Going forward, better solutions
for record keeping should be implemented.

Of available options we would preferentially consider input
code tracking (if possible in a form which is compatible with
incremental execution) rather than output code tracking (e.g. in the
form of data dumps). This is chiefly because output code tracking
would be dependent not only of the data being tracked, but also
of the version of LabookDB used for database creation—ideally
these versioning schemes would not have to become convoluted.

Structure Migration

The long-term unsustainability of database source code tracking
also means that a more automated means of structure migration
should be developed, so that LabbookDB databases can be re-
cast from older relational structures into improved and extended
newer structures—instead of relying on source code editing and
regeneration from scratch. Possibly, this could be handled by
shipping an update script with every release—though it would be
preferable if this could be done in a more dynamic, rolling release
fashion.

Data Input

Data input via sequential Python function calls requires a signif-
icant amount of boilerplate code, and appears very intransparent
for users unaccustomed to the Python syntax. It also requires inter-
facing with an editor, minding syntax and formatting conventions,
and browsing directory trees for the appropriate file in which to
reposit the function calls.

While LabbookDB provides a command line interface to input
the exact same data with the exact same dictionary and string
conventions with arguably less boilerplate code, this input format
has not been implemented for the full database generation source
code. The main concern precluding this implementation is that the
syntax, though simplified form standard SQL, is not nearly simple
enough to be relied on for the robustness of thousands of manual
input statements generated on-site.

A better approach may be to design automated recording work-
flows, which prompt the researcher for values only, while applying
structure internally, based on a number of templates. Another
possibility would be to write a parser for spreadsheets, which
applies known LabbookDB input structures, and translates them
into the internal relational representation. This second approach
would also benefit from the fact that spreadsheets are already a
very popular way in which researchers record their metadata—and
could give LabbookDB the capability to import large numbers of
old records, with comparatively little manual intervention.

Not least of all, the ideal outlook for LabbookDB is to
automatically handle as much of the data input process as possible,
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Animal

★ id INTEGER

⚪ birth_date DATETIME

⚪ death_date DATETIME

⚪ death_reason VARCHAR

⚪ ear_punches VARCHAR

⚪ license VARCHAR

⚪ maximal_severtity INTEGER

⚪ sex VARCHAR

⚪ biopsies PROPERTY

⚪ cage_stays PROPERTY

⚪ external_ids PROPERTY

⚪ genotypes PROPERTY

⚪ measurements PROPERTY

⚪ observations PROPERTY

⚪ operations PROPERTY

⚪ treatments PROPERTY

ForcedSwimTestMeasurement

★ id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

⚪ date DATETIME

⚪ recording VARCHAR

⚪ recording_bracket VARCHAR

⚪ temperature FLOAT

⚪ type VARCHAR(50)

⚪ evaluations PROPERTY

⚪ irregularities PROPERTY

⚪ operator PROPERTY

animal_id

Cage

★ id INTEGER

⚪ environmental_enrichment VARCHAR

⚪ id_local VARCHAR

⚪ location VARCHAR

⚪ handling_habituations PROPERTY

⚪ measurements PROPERTY

⚪ stays PROPERTY

⚪ treatments PROPERTY

cage_id

Measurement

★ id INTEGER

☆ animal_id INTEGER

☆ cage_id INTEGER

☆ operator_id INTEGER

⚪ date DATETIME

⚪ type VARCHAR(50)

⚪ irregularities PROPERTY

⚪ operator PROPERTY

Evaluation

★ id INTEGER

☆ author_id INTEGER

☆ measurement_id INTEGER

⚪ path VARCHAR

⚪ author PROPERTY

measurement_id

CageStay

★ id INTEGER

☆ cage_id INTEGER

⚪ single_caged VARCHAR

⚪ start_date DATETIME

⚪ animals PROPERTY

⚪ cage PROPERTY

report_animals() METHOD

cage_idanimal_id cage_id

Treatment

★ id INTEGER

☆ protocol_id INTEGER

⚪ end_date DATETIME

⚪ start_date DATETIME

⚪ animals PROPERTY

⚪ cages PROPERTY

⚪ protocol PROPERTY

Protocol

★ id INTEGER

⚪ code VARCHAR

⚪ name VARCHAR

⚪ type VARCHAR(50)

⚪ authors PROPERTY

protocol_id

cage_stay_associations

☆ animals_id INTEGER

☆ cage_stays_id INTEGER

animals_id

cage_stays_id

treatment_cage_associations

☆ cages_id INTEGER

☆ treatments_id INTEGER

cages_id treatments_id

Fig. 4: LabbookDB schema section relevant for constructing a plottable forced swim test dataframe.

e.g. via specialized sensors, via semantic image [YJW+16] or
video evaluation, or via an entity-barcode-scanner (as currently
used by the iRATS system) . This poses nontrivial engineering
challenges in excess of relation modelling, and requires distinctly
more manpower than currently available. However, LabbookDB
is from the licensing point of view suitable for use in commercial
products, and additional manpower may be provided by science
service providers interested in offering powerful, transparent, and
extendable metadata tracking to their discerning customers.

Graphical User Interface

A notable special case of data input is the graphical user interface
(GUI). While we acknowledge the potential of a GUI to attract
scientists who are not confident users of the command line, we
both believe that such an outreach effort is incompatible with
the immediate goals of the project and that it is not typically an
attractive long-term outlook for scientific Python applications.

Particularly at this stage in development, manpower is limited,
and contributions are performed on a per-need basis (little code
was written which was not relevant to addressing an actual data
management issue). Presently our foremost outreach target are

researchers who posess the technical affinity needed to test our
schema at its fringes and contribute to—or comment on—our
code and schema. A GUI would serve to add further layers of
abstraction and make it more difficult for users to provide helpful
feedback in our technology development efforts.

In the long run, we would rather look towards developing more
automatic or implicit tracking of wet work, rather than simply
writing a GUI. Our outlook towards automation also means that
a GUI is likely to remain uninteresting for the use cases of the
developers themselves, which would make the creation of such an
interface more compatible with a commercial service model than
with the classical Free and Open Source user-developer model.
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Abstract—pyMolDyn is an interactive viewer of atomic systems defined in a unit
cell and is particularly useful for crystalline and amorphous materials. It identifies
and visualizes cavities (vacancies, voids) in simulation cells corresponding to all
seven 3D Bravais lattices, makes no assumptions about cavity shapes, allows
for atoms of different size, and locates the cavity centers (the centers of the
largest spheres not including an atom center). We define three types of cavity
and develop a method based on the split and merge algorithm to calculate all
three. The visualization of the cavities uses the marching cubes algorithm. The
program allows one to calculate and export pair distribution functions (between
atoms and/or cavities), as well as bonding and dihedral angles, cavity volumes
and surface areas, and measures of cavity shapes, including asphericity, acylin-
dricity, and relative shape anisotropy. The open source Python program is based
on GR framework and GR3 routines and can be used to generate high
resolution graphics and videos.

Index Terms—Cavity shape, volume, and surface area; Python; marching
cubes; split and merge

Introduction

The properties of many materials are influenced significantly or
even dominated by the presence of empty regions, referred to
as cavities, vacancies, or voids. In phase change materials, for
example, they play an essential role in the rapid and reversible
transformation between amorphous and crystalline regions of
chalcogenide semiconductors [AJ07], [AJ08], [AJ12]. In soft
matter, such as polymers, cavities can lead to structural failure and
are often crucial for diffusion of small molecules. Voids caused by
radiation (neutrons, x-rays) can lead to dramatic changes in the
strength of materials. It is essential to provide efficient algorithms
and programs to visualize cavities in the course of computer
simulations. We describe here methods developed in the context
of phase change materials, where the empty regions are rarely
larger than a few atomic volumes, and the term "vacancy" is also
in common use [LE11b]. The approach will be useful in other
contexts. The present manuscript is an extended and corrected
version of [Hetal17].

Geometrical algorithms to identify cavities have a long history
in the discussion of disordered materials. Bernal [Be64] discussed
liquid structures in terms of space-filling polyhedra and noted
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that "holes" or "pseudonuclei" would occur in general. Finney
[Fi70] extended this analysis by using the Dirichlet [Di50] or
Voronoi [Vo08] construction, where space is divided into regions
bounded by planes that bisect interatomic vectors perpendicularly.
This construction for a crystalline solid leads to the well-known
Wigner-Seitz cell. The polyhedron associated with an atom is
the smallest surrounding the atom in question, and its structural
features (volume, number of vertexes, etc.) can be used for
identification and characterization. A small Voronoi polyhedron
indicates an interstitial defect, and a local assembly of large
polyhedra could imply the existence of a cavity. This approach has
been used to analyze defect structures in simulations of radiation
damage [CL85] and the motion of vacancies in colloids [LAC13],
although the coordination number (the number of faces of the
Voronoi cell) is not necessarily a convenient measure of their
positions [LAC13]. Similar techniques have been applied to the
distinction between solute and solvent in a liquid, such as hydrated
peptide molecules [Vetal11].

Delaunay triangulation [De34], a division of space closely
related to the Dirichlet-Voronoi analysis, has been used to iden-
tify the "unoccupied space" [AMS92] or "cavities" [VBM15] in
polymer systems and to analyze their connectivity, and it has
been used to analyze the normal modes in a molecular dynamics
simulation of a glass [LMNS00]. Efficient programs are available
for performing Voronoi analyses (see, for example, Ref. [Ry09])
and its extension to Voronoi S-surfaces, which are appropriate for
systems with atoms of different sizes [MVLG06], [VNP]. Ref.
[MVLG06] contains many references to physical applications of
Dirichlet-Voronoi-Delaunay analyses. The present work and the
above approaches focus on the geometrical arrangement resulting
from a simulation, rather than determining other physical quanti-
ties such as local atomic pressures [LN88].

In the following section, we define essential terms and describe
the analysis, based on the "split and merge" [HP76] and "marching
cubes" [LC87], [NY06] algorithms, that we have used to study
three definitions of cavities:

• Regions (sometimes referred to as "domains") where each
point is outside spheres centered on the atoms. The radii of
the spheres are generally element-dependent, but an equal
cutoff for all elements (2.5 Å) was chosen in a study of
Ge/Sb/Te phase change materials [LE11b].

• "Center-based" cavities resulting from a Dirichlet-Voronoi
construction using the atomic positions and the cavity
centers.
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• "Surface-based" cavities [AJ07], where the boundaries are
determined by Dirichlet-Voronoi constructions from each
point on the domain surface to neighboring atoms, have
been used in numerous studies of phase change materials
[AJ12], [CBP10], [KAJ14].

The code, the ways to access it, and the online documentation
are described below, and an application demonstrates some of its
features.

Definitions and Algorithms

Essential input for a calculation of cavities and their properties
is the location of the atoms, which is often provided as a list
of coordinates and atom types within an appropriate unit cell.
However, the definition of a cavity is not unique and is a pre-
requisite for any study. Calculation of pair distribution functions
involving cavities (with atoms and with other cavities) means that
we must also associate appropriate coordinates with the center of
each cavity. We now define cavities and describe how we calculate
their centers.

Cavity domains and cavity centers

The first step is the discretization of the simulation cell by
creating a cuboid grid containing the cell bounding box and a
surrounding layer, which enables periodic boundary condition
to be implemented effectively. The resolution dmax refers to the
number of points along the longest edge, and two units are added
at each end of each cell edge. Each grid point outside the cell has
one equivalent point inside. If there are more than one equivalent
inside points, we choose the one closest to the origin or—if this is
still ambiguous—search for the smallest component in the order
x, y, z. Outside points are labeled with the index of the translation
vector pointing to the equivalent inside point. This step depends
only on the cell shape and the resolution of the discrete grid, and
the results can be cached and used for other data files.

As shown in Fig. 1(a), we now construct spheres centered on
each atom with radii specified for each atom type (element). In ear-
lier work on alloys of Ge/Sb/Te [AJ07], [AJ12] and Ag/In/Sb/Te
[Metal11], the radius was chosen to be the same (2.8 Å) for
all elements [rC in Fig. 1(a)]. Points outside the simulation cell
are replaced by equivalent points inside. All points outside these
spheres form "cavity domains" [yellow in Fig. 1(a)], and the
"cavity center" [X in the 2D scheme 1(b)] is the center of the
largest sphere that does not overlap a neighboring atom. It is
possible, for example in unusually long, thin cavities, that more
than one point satisfy this condition approximately equally well,
so that the center can switch between them as a simulation
proceeds.

Some structures are unusually sensitive to the choice of cutoff
radius rC and/or resolution, particularly when the cavity domains
are very small, and it is essential to carry out detailed tests before
performing production runs. The program provides a warning
when one or more cavity domains consist of a single cell of
the discretization grid. The calculation should be repeated with
a higher resolution to increase the number of numerically stable
cavity domains.

Domains and center-based cavities

A knowledge of the positions of the atoms and the cavity center
enables us to perform a Dirichlet-Voronoi construction (see above)

rc

(a)

(b)

Fig. 1: Construction for a 2D geometry of (a) "cavity domain" (yellow,
cutoff radius rC) and "surface-based cavity" (red), (b) cavity center
(X) and "center-based" cavity (red).

leading to the cavities shown as red in Fig. 1(b). Overlapping cav-
ities from different domains are merged to form "multicavities",
and the volumes and surface areas of cavities and cavity domains
are determined as follows.

Points in domains are grouped together by applying the split
and merge algorithm [HP76], which consists of three main steps
for periodic cells. First, the discrete grid is split recursively into
subgrids until they contain either atoms or domain points. Subgrids
containing atom points are not needed to determine the domains
and are ignored. During the split phase the direct neighbors of
each subgrid are recorded, and neighboring subgrid points are then
merged to form the cavity domains. As noted above, these domains
can be identified as cavities by choosing an appropriate cutoff
radius [LE11b].

Center-based cavities comprise points that are closer to domain
centers than to any atom, and their construction requires points
inside atomic spheres for which there is an atom no farther away
than the largest atomic sphere radius. The grid is split into cubes
with sides of at least this length, for which only atoms and surface
or center points inside neighboring cubes are relevant. If a point
is closer to the center of cavity domain i than to the nearest
atom, it is marked as part of cavity i. In the case of multicavities,
intersections are detected by checking the neighboring points of
the surface of a cavity. If two such points belong to different
cavities, the two cavities are parts of a common multicavity.

The surface of each domain, cavity, or multicavity is important
for calculating the surface area and for visualization, and it
is determined by applying a variation of the marching cubes
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algorithm [LC87], [NY06] to new grids based on those derived
above. Each grid contains the bounding box of a cavity domain or
multicavity, and each point in the grid is assigned the number of
neighboring points inside the domain or cavity. The algorithm then
constructs a surface containing all points with a non-zero count.
Neighboring grid points are grouped together into disjoint cubes,
and points with a count of 1 are found by interpolation along the
edges and connected to form triangles. The set of all such triangles
is the surface of a domain or cavity.

Surface-based cavities

The surface-based cavity [red in Fig. 1(a)] can be determined
as for center-based cavities, except that the Dirichlet-Voronoi
construction is performed from each point of the domain surface
to the neighboring atoms.

Analysis of structure and cavities

A range of quantities can be calculated for the atomic structure
(including bond and dihedral angles) and for each of the above
definitions of cavity. In addition to the volume VC, surface area,
and location of the center, we calculate the characteristic radius
rchar = (3VC/4π)1/3, which is the radius of a spherical cavity
with volume VC. We also evaluate and export pair distribution
functions (PDF) between all atom types and/or cavity centers.
Continuous representations can be generated using Gaussian,
Epanechnikov [Ep69], compact, triangular, box, right box, and
left box window functions. The corresponding kernels are listed in
the online documentation, and the default bandwidth σ is 0.4 in
all cases. Following earlier work [AMS92], [VBM15], [TS85], we
calculate the volume-weighted gyration tensor R, which describes
the second moment of the coordinates (x, y, z) of points inside a
cavity

R =
1

VC




xx xy xz
yx yy yz
zx zy zz


 .

Here xx = ∑nc
j v jx jx j, xy = ∑nc

j v jx jy j, . . . , v j is the volume of
cell j, and nc is the number of cells in cavity C. (x j,y j,z j) are
the Cartesian coordinates of the center of cell j relative to the
centroid or center of gyration of the cavity, which differs in general
from the center defined above. Measures of the size and shape
of individual cavities are the squared radius of gyration R2

g, the
asphericity η , the acylindricity c, and the relative shape anisotropy
κ2. These are defined as

R2
g = λ1 +λ2 +λ3

η =
(
λ1 −0.5(λ2 +λ3)

)
/(λ1 +λ2 +λ3)

c = (λ2 −λ3)/(λ1 +λ2 +λ3)

κ2 =
(
η2 +0.75c2)/R4

g,

where λ1, λ2, and λ3 are the ordered eigenvalues of R (λ1 ≥ λ2 ≥
λ3).

These quantities provide compact information about the sym-
metry and overall shape of a cavity and have been useful in
the context of diffusants in polymers [AMS92]. The asphericity
is always non-negative and is zero only when the cavity is
symmetric with respect to the three coordinate axes, e.g. for a
spherically symmetric or a cubic cavity. The acylindricity is zero
when the cavity is symmetric with respect to two coordinate axes,
e.g., for a cylinder. The relative shape anisotropy is bounded by
zero (spherical symmetry) and unity (all points collinear). The

calculation of these shape parameters requires particular care (and
more computer time) when cavities cross the boundaries of the
unit cell, and the default is not to calculate these parameters. The
parameters are also not calculated for (infinite) cavities that span
the simulation cell, and a warning is issued in this case.

Description of the Code

The program pyMolDyn is written in Python (2.7.13), uses
the graphical user interface Qt 5.8.0, the Python module PyQt5
(5.8.2), and the GR Framework and GR3 packages (0.24.0)
[HRH15] for 2D- and 3D-graphics, respectively. It has been tested
with NumPy (1.12.1). Numerically intensive sections are written
in C, compiled using Apple Clang 8.1.0 (macOS) or gcc 4.2.1
(Linux) and embedded using ctypes and extension modules. A
ready-to-use bundle for OS X (Mavericks, Yosemite, El Capitan)
and macOS Sierra is provided at:
http://pgi-jcns.fz-juelich.de/pub/downloads/software/pyMolDyn.
dmg
with installation scripts and a package repository for Linux [De-
bian 8 (Jessie), Ubuntu 16.04 LTS (Xenial Xerus), Centos 7.2,
Fedora 25, and OpenSUSE Leap 42.2] at:
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-main.html
Documentation is available in the same directory under pymoldyn-
doc.html, with links to the graphical user and command line inter-
faces. The source code is available via the public git repository:
http://github.com/sciapp/pyMolDyn.

The program supports unit cells of all seven 3D Bravais
lattices: triclinic (TRI), monoclinic (MON), orthorhombic (ORT),
tetragonal (TET), rhombohedral (RHO), hexagonal (HEX), and
cubic (CUB). These cells and the parameters required for their
definition are shown in Fig. 2. The bond length cutoffs in all
visualizations are 15% longer than the sum of the covalent radii of
the elements [OB], [Cetal08]. The default colors for the elements
are those used in Jmol/JSmol [Jmol] and other programs ("CPK",
Corey-Pauling-Koltun) [SF].

Each frame to be analyzed requires input in the .xyz-form,
which can be read by Jmol/JSmol and other packages. The first
lines of an .xyz file are typically:

<number of atoms>
<comment>
<element> <X> <Y> <Z>
...

where element is the symbol for the element in question, e.g.
SB or TE, and <X>, <Y>, and <Z> are the Cartesian coordinates
of the first atom. For each atom there is an input line with its
coordinates. In pyMolDyn, the second (usually comment) line
provides the necessary information concerning the Bravais lattice
and its parameters. In the case of a hexagonal lattice with a =
17.68942 and c = 22.61158 (in Å), for example, we write:
HEX 17.68943 22.61158
Additional comments on the first line (after the number of atoms
and a space) or the second line are ignored, and the space may be
used to store additional information.
The organization of the program and the workflow in practice are
clarified in the video linked after the title.

Application

The use of pyMolDyn is described in detail in the online doc-
umentation (see links above). To illustrate its usage, we take the
attached input file AgGeS-BOX.xyz, which shows a result of a
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Fig. 2: The unit cells of the seven 3D Bravais lattices, together with
the parameters that define them.

500-atom simulation of an amorphous alloy of Ag, Ge, and S
(Ag100Ge168S232) in a cubic box of size 21.799 Å [Aetal15]. The
first three lines of the input are then:

500
CUB 21.799
AG -7.738 ...

At this point, clicking "pyMolDyn/Preferences" (OS X, macOS)
or "File/Settings" (Linux) allows changes to be made to the de-
fault colors for background (black), bounding box (white), bonds
(grey), domains (green), and center-based (brown) and surface-
based cavities (blue), as well as the cutoff value rC for calculating
surface-based cavities. The default is 2.8 Å for all atoms (we
use 2.5 Å in the present application because of the relatively
small sulfur atoms), but distinct cutoff radii may be chosen for
each element. To guide this choice, the covalent radii for the
elements present are provided when setting up the calculation.
The resolution can be set by the user and is 384 in the present
application. The program is started with the command:

pymoldyn

The choice of file can be made after clicking "Open", after which
"Calculate" leads to the window shown in Fig. 3.

Fig. 3: Window prior to setting parameters for calculation.

The resolution and other quantities can then be changed
as needed in the appropriate box, after which "OK" starts the
calculation and leads to the screen shown in Fig. 4.

The program allows the generation of high-resolution images
for publications and presentations, as well as creating videos
that illustrate changes in structure (and cavities) as a function
of time. Statistics generated by the program include surface
areas and volumes (and the surface/volume ratio) of all cavities
and domains, pair distribution functions and partial PDF, the
distributions of bond types and of bond and dihedral angles, as
well as the shape parameters discussed above. Pair distribution
functions can be calculated and represented using seven window
functions, and properties of individual atoms and cavities may be
filtered. This information is available graphically, as an ASCII
file, or as hdf5 output. For more details, see https://pgi-jcns.fz-
juelich.de/portal/pages/pymoldyn-gui.html

A batch (command line interface) version is useful for gener-
ating multiple frames needed for videos and can be called via

pymoldyn --batch <filename>

Further information concerning the batch version is provided in
https://pgi-jcns.fz-juelich.de/portal/pages/pymoldyn-cli.html

Concluding Remarks

The open source program pyMolDyn identifies cavities (vacan-
cies, voids) in periodic systems of atoms in a unit cell with one of
the seven 3D Bravais lattices. The program makes no assumptions
about cavity shapes, allows for atoms of different sizes, and it
calculates cavities defined in three ways: (a) "domains" determined
by excluding spherical regions around each atom, (b) "center-
based" cavities determined by Dirichlet-Voronoi constructions for
atoms and cavity centers, and (c) Dirichlet-Voronoi constructions
for atoms and points of domain surfaces ("surface-based" cavities).
The "split and merge" and "marching cubes" algorithms are
utilized. The program is based on the GR3 and GR framework
software [HRH15] and the input files use the .xyz format used
in Jmol/JSmol and other packages.
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Fig. 4: Visualization of structure of Ag/Ge/S (silver: Ag, green: Ge, yellow: S) and surface-based cavities (blue).

resolution time

128 4.0 s
192 6.5 s
256 15.3 s
384 43.0 s
512 158.3 s

TABLE 1: Time consumption for calculating surface and center based
cavities for AgGeS-BOX.xyz on a 2.5 GHz Core i7 with 16 GB
RAM.

The size of systems that can be calculated depends on the
number of atoms, the necessary resolution, and on the computing
hardware (processor, memory) used. Systems with 500 atoms (for
example AgGeS-BOX.xyz) can be computed in minutes on a 2.5
GHz Intel Core i7 (see TABLE 1).

Up to a resolution of 512 points the memory consumption is
modest (4 GB of RAM are adequate). For higher resolutions over
10 GB of memory should be available.

Extensions to simplify calculations for isolated molecules and
to allow the easy use of many-core, large memory computers are
being implemented. We welcome suggestions and contributions
to this ongoing project. Full details are available on https://pgi-
jcns.fz-juelich.de/portal/pages/pymoldyn-main.html.
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Abstract—Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging
technique that allows the non-invasive study of brain function. It is based on
the hemodynamic variations induced by changes in cerebral synaptic activity
following sensory or cognitive stimulation. The measured signal depends on
the variation of blood oxygenation level (BOLD signal) which is related to brain
activity: a decrease in deoxyhemoglobin concentration induces an increase in
BOLD signal. The BOLD signal is delayed with respect to changes in synap-
tic activity, which can be modeled as a convolution with the Hemodynamic
Response Function (HRF) whose exact form is unknown and fluctuates with
various parameters such as age, brain region or physiological conditions.

In this paper we present PyHRF, a software to analyze fMRI data using a
Joint Detection-Estimation (JDE) approach. It jointly detects cortical activation
and estimates the HRF. In contrast to existing tools, PyHRF estimates the HRF
instead of considering it as a given constant in the entire brain. Here, we present
an overview of the package and showcase its performance with a real case in
order to demonstrate that PyHRF is a suitable tool for clinical applications.

Index Terms—BOLD response, fMRI, hemodynamic response function

Introduction

Neuroimaging techniques, such as functional Magnetic Resonance
Imaging (fMRI), allow the in vivo study of brain function by
measuring the cerebral response to sensory or cognitive stimula-
tion. For more than 20 years, the Blood-Oxygen-Level-Dependent
(BOLD) fMRI modality has being the technique most used by
neuroscientists to map the main functional regions and their links
in the healthy and diseased brain.

The BOLD signal [OLKT90] reflects the changes in deoxyhe-
moglobin concentration in the brain. Briefly, when brain activity
increases, local oxygen consumption in brain tissue increases,
slightly increasing the concentration of deoxyhemoglobin in blood
(see Fig. 1). Subsequently, cerebral blood flow is strongly upreg-
ulated locally by arteriolar vasodilation to replenish the tissue,
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increasing local blood oxygen saturation in veins and capillaries
above the initial level. Oxygenated and deoxygenated blood has
different magnetic properties. As a result, the above causes a
BOLD signal increase. Thus, the BOLD signal is an indirect
measure of cerebral activity based on physiological changes in
oxygen consumption, cerebral blood flow and cerebral blood
volume.

Fig. 1: fMRI BOLD signal [OLKT90]. The BOLD signal measures the
local changes in blood oxygenation ocurring during brain activity.

fMRI data is acquired by repeated imaging of the brain while
the subject or patient executes a task or receives a sensory stimulus
during repeated epochs separated by periods of rest. This data is
analyzed by correlating the measured time-varying BOLD signal
in each image location with a predicted BOLD signal, obtained
by convolving the known function representing the stimulus with
a Hemodynamic Response Function (HRF) modeling the delay in
the vascular response. Locations in the brain where this correlation
is statistically significant are considered to exhibit a neuronal
response to the task or stimulus, and thus to be involved in its
cognitive processing.

BOLD fMRI is non-invasive, non-ionizing, and gives access
in vivo to brain activity with a relatively high spatial resolution.
However, it is highly dependent of the HRF of the brain. The
BOLD signal does not give access to true physiological parameters
such as cerebral blood flow or cerebral blood volume, but rather
measures a mixture of these quantities that is difficult to untangle.
In this regard, BOLD is a very interesting tool in neuroscience,
but in general it is not widely used for clinical applications
because the impact of physiopathological situation on the HRF
and the response amplitude are unknown, hampering the BOLD
signal interpretation. For instance, the vascular response giving
rise to the BOLD signal is altered in normal ageing [FGM+14]
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Fig. 2: HRF computed using PyHRF from BOLD data in several parcels belonging, respectively from left to right, to visual (yellow, dark blue
and green parcels), auditory (cyan and light green parcels) and motor (red and purple parcels) regions.

and pathologies like Alzheimer’s disease [CVM+11] or Stroke
[AVT+14].

Most used open source libraries for the analysis of fMRI
data (e.g., SPM1, FSL2) consider the HRF as constant in all
the brain and the same for all subjects. However, several works
(see [BVC13] for a survey) show that the HRF changes across
different regions of the brain and across individuals, increasing
thus the possibility of obtaining false negatives and decreasing
the reliability of the results. The software PyHRF [VBR+14] was
developed to overcome the above limitation by analyzing fMRI
data using a Joint Detection-Estimation (JDE) approach.

In the JDE approach, the detection of the cortical activation
is achieved together with the estimation of the unknown HRF re-
sponse by analyzing non-smoothed data. This detection-estimation
is calculated on different parcels of interest paving the cerebral
volume. Therefore, PyHRF allows to navigate throughout the brain
and to focus on regions of interest during the experiment in order
to visualize the activations and their temporal behavior through
the estimated HRF. Over the last years, efforts have been made in
terms of image processing, user-friendliness and usability of the
PyHRF package to make it more easy to use by non experts and
clinicians.

Next, we present the PyHRF package. Then we illustrate
its use on real fMRI data. Finally, we conclude by discussing
directions of current/future work. An online Jupyter notebook
containing the results presented here can be found at http://www.
pyhrf.org/scipy2017_notebook.

PyHRF

PyHRF (http://www.pyhrf.org) is an open source tool imple-
mented in Python that allows to jointly detect activation and
estimate (JDE) the hemodynamic response function (HRF)
[MIV+08], which gives the temporal changes in the BOLD effect
induced by brain activity. This estimation is not easy in a voxel-
wise manner [PJG+03], and a spatial structure was added to JDE
[VRC10] in order to get reliable estimates. In this regard, HRF
estimation in JDE is parcel-wise and an input parcellation is
required. However, the use of the Markov Chain Monte Carlo

1. SPM official website: http://www.fil.ion.ucl.ac.uk/spm/software/
2. FSL official website: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

(MCMC) method for estimation added a huge computational load
to the solution, leading to the development of a faster method to
deal with the parameter estimation. Thus, a Variational Expecta-
tion Maximization (VEM) solution [CVF+13] was implemented.

JDE aims at improving activation detection by capturing the
correct hemodynamics, since using the wrong HRF function could
hide existing activations. The use of a canonical HRF is usually
sufficient for activation detection. However, HRF functions have
been found to have different shapes in different regions [HOM04],
and to have different delays in specific populations [BVC13]. They
change depending on pathologies such as stenosis.

Fig. 2 shows some HRF functions estimated by PyHRF from
BOLD data on a healthy adult. This data was acquired in a
block-design setting with visual, auditory and motor experimental
conditions. The parcels correspond to regions of the brain that are
known induce evoked activity in response to these experimental
conditions. Observe that the HRF estimated in the visual and
motor regions (first and third figure from left to right ) are well
approximated by the canonical HRF whereas in the auditory area
(second figure from left to right), the recovered hemodynamic
profiles peak earlier than the canonical shape.

Standard methods (e.g., GLM), with the posterior classical
statistics applied, give Statistical Parametric Maps (SPM) that
describe the significance of the activation in each region. JDE is
a Bayesian approach and estimates, for each parameter, posterior
probability functions. For this reason, we can compute Posterior
Probability Maps (PPMs) from the output of PyHRF. These PPMs
are not directly comparable to the classical SPM maps, but give
a similar measure of significance of activation. For instance, in
Fig. 4 we show the SPM and PPM maps for a visual experimental
condition in the same data used for Fig. 2. We used the pack-
age Nilearn (http://nilearn.github.io) to generate the brain maps
presented in this document.

In Fig. 3 we present the inputs and the outputs of PyHRF for
the analysis of BOLD data. It needs as inputs the data volume
(BOLD), the experimental paradigm, and a parcellation of the
brain. After running the JDE algorithm, the output will consist
of HRF functions per parcel, BOLD effect maps per experimental
condition, and PPMs per condition. In the next section, we will
describe in more details these elements and how to use PyHRF.
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Fig. 3: Inputs and outputs of PyHRF when analyzing BOLD data.

Fig. 4: A) PPM and B) SPM maps computed with JDE and GLM,
respectively. Scale is logarithmic.

Example of Use

To illustrate the use of PyHRF, we will describe the steps for
the analysis of BOLD data. A Jupyter notebook containing the
complete code is available at http://www.pyhrf.org/scipy2017_
notebook.

Getting fMRI BOLD Data

First of all, we need to get our fMRI BOLD data. In our
running example, we will analyze the dataset used in [GSB+13].
This dataset (ds000114) is open shared and it can be down-
loaded from https://openfmri.org/dataset/ds000114/. For conve-
nience, we implemented the method get_from_openfmri that
uses the library fetchopenfmri (https://github.com/wiheto/
fetchopenfmri) to download datasets from the site openfmri. For
instance, the following code downloads the dataset ds000114 to
the folder ~/data.

>>> dataset_path = get_from_openfmri('114', '~/data')
Dataset ds000114 already exists
/home/jariasal/data/openfmri/ds000114_R2.0.1

Briefly, in this dataset ten healthy subjects in their fifties were
scanned twice using an identical experimental paradigm. This
paradigm consists of five task-related fMRI time series: finger,
foot and lip movement; overt verb generation; covert verb gen-
eration; overt word repetition; and landmark tasks. For the sake
of simplicity, we will focus our analysis only on motor tasks
(i.e., finger, foot and lips movement). Fig. 5 shows the paradigm
containing only the three tasks mentioned above. As we can see
in the experimental paradigm, tasks do not overlap each other and
stimuli are presented to the subject during a certain time (i.e.,
block paradigm).

Fig. 5: Experimental paradigm of the dataset ds000114. We show
only the motor tasks of the dataset (finger, foot and lips movement).

fMRI BOLD Preprocessing

Once we have the BOLD volumes, we need to apply some
transformations to the images in order to correct for possible
errors that may have occurred along the acquisition. For instance,
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a BOLD volume (e.g., a whole brain) is usually not built at once
but using a series of successively measured 2D slices. Each slice
takes some time to acquire, so slices are observed at different time
points, leading to suboptimal statistical analysis.

We used the library Nipype (https://github.com/nipy/nipype)
to define and apply our preprocessing pipeline. This library allows
to use robust tools, such as SPM and FSL, in an easy manner.
The proposed workflow (see Fig. 6) starts by uncompressing the
images since they are in a nii.gz format (gunzip_func and
gunzip_anat nodes). After, it applies a slice timing operation
in order to make appear that all voxels of the BOLD volume have
been acquired at the same time. We then apply a realignment
in order to correct for head movements. Moreover, we apply a
coregistration operation in order to have the anatomical image
(high spatial resolution) in the same space as the BOLD images.
Finally, we normalize our images in order to transform them into
a standard space (a template).

Fig. 6: Preprocessing pipeline defined with Nipype and used in our
running example.

The pipeline described above was run for the images of all
subjects from the dataset (i.e., 10 subjects) on multiple proces-
sors, since Nipype uses the library joblib (https://github.com/
joblib/joblib). We used the acquisition parameters presented in
[GSB+13] to parameterize each preprocessing operation. For in-
stance, the number of slices for the volume, the time for acquiring
all slices (TR), and the order in which they were acquired (e.g.,
interleaved).

In the following snippet, we show a portion of the code to
define the slice timing task with Nipype.

>>> import nipype.interfaces.spm as spm
>>> import nipype.pipeline.engine as npe

# Acquisition parameters
>>> TR = 2.5
>>> NUM_SLICES = 30
>>> TA = TR - (TR / NUM_SLICES)
>>> REF_SLICE = 1

# interleaved slice order
>>> SLICE_ORDER = list(range(1, NUM_SLICES+1, 2) +

range(2, NUM_SLICES+1, 2))

# slice timing with SPM
>>> spm_st = spm.SliceTiming(num_slices=NUM_SLICES,

time_repetition=TR,
time_acquisition=TA,
slice_order=SLICE_ORDER,
ref_slice=REF_SLICE)

>>> slice_timing = npe.Node(spm_st,
name='slice_timing_node')

PyHRF Analysis (Inputs)

So far, we have prepared our functional and structural images for
BOLD analysis. It is important to note that PyHRF receives non-
smoothed images as input, thus we excluded this operation from
our preprocessing pipeline.

For the sake of simplicity, in our running example we only
analyze the 4th subject from our dataset. Additionally, we use the
package Nilearn to load and visualize neuroimaging volumes.
Fig. 7 shows the mean of the functional images of the 4th subject
after preprocessing.

Fig. 7: Mean of all preprocessed functional images (over time) of the
4th subject of the dataset ds000114.

As we explained before, the JDE framework estimates HRF
parcel-wise. This means that PyHRF needs a parcellation mask to
perform the estimation-detection. The package provides a Willard
atlas [RAM+15] (see Fig. 8) created from the files distributed by
Stanford (http://findlab.stanford.edu/functional_ROIs.html). This
atlas has a voxel resolution of 3x3x3 mm and a volume shape
of 53x63x52 voxels.

Fig. 8: Willard atlas [RAM+15].

We used the method get_willard_mask to resize the
original atlas to match the shape of the BOLD images to be
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session condition onset duration amplitude

0 Finger 10 15.0 1
0 Foot 40 15.0 1
0 Lips 70 15.0 1
0 Finger 100 15.0 1
0 Foot 130 15.0 1
0 Lips 160 15.0 1
0 Finger 190 15.0 1
0 Foot 220 15.0 1
0 Lips 250 15.0 1
0 Finger 280 15.0 1
0 Foot 310 15.0 1
0 Lips 340 15.0 1
0 Finger 370 15.0 1
0 Foot 400 15.0 1
0 Lips 430 15.0 1

TABLE 1: Experimental paradigm of the dataset ds000114 con-
taining only motor stimuli. The column organization of the file follows
the PyHRF format.

analyzed. In addition, this method saves the resampled mask in a
specified path. For instance, Fig. 8 shows the Willard atlas resized
to the shape of the functional image in Fig. 7. The following code
illustrates how to resize the Willard atlas provided by PyHRF to
match the shape of the image ~/data/bold.nii, and saves it
in the folder ~/pyhrf.
>>> willard = get_willard_mask('~/pyhrf',

'~/data/bold.nii')
/home/jariasal/pyhrf/mask_parcellation/willard_3mm.nii

PyHRF also needs the experimental paradigm as input. It must
be given as a csv file following the convention described
in the documentation (https://pyhrf.github.io/manual/paradigm.
html). For the sake of convenience, we used the method
convert_to_pyhrf_csv to read the paradigm file provided
by the dataset (a tsv file) and rewrite it using the PyHRF format.
Since each dataset has its own format for the paradigm, we give it
as an input to our method.
>>> columns_tsv = ['onset', 'duration', 'weight',

'trial_type']
>>> paradigm = convert_to_pyhrf_csv(

'~/data/paradigm.tsv', 0,
columns_tsv)

/tmp/tmpM3zBD5

Table 1 shows the experimental paradigm of the dataset
ds000114 written using the PyHRF format. Note that it only
contains motor stimuli since we are only interested in them for
our BOLD analysis.

PyHRF Analysis (Run)

Now we are ready to start our BOLD analysis with PyHRF. For
that, we need to define some important parameters of the under-
lying JDE model (e.g., beta, hrf-hyperprior, sigma-h,
drifts-type) and a folder to save the output (output).

Moreover, we need to specify if we want to estimate the HRF
response or use, for example, its canonical form. In our running
example, we will estimate the HRF (estimate-hrf) with a
time resolution (dt) of 1.25 s, a duration (hrf-duration) of
25.0 s, and we force to zero the beginning and ending of the
response (zero-constraint).

Once the parameters of the model have been de-
fined, we run our analysis by using the command-line tool
pyhrf_jde_vem_analysis provided by PyHRF. We can ex-
ecute the analysis using several processors (parallel) because
PyHRF uses the library joblib. The reader can found more
details about this command and its parameters in the PyHRF
documentation.
pyhrf_jde_vem_analysis [options] TR atlas_file \

paradigm_file bold_images

pyhrf_jde_vem_analysis \
--estimate-hrf \
--dt 1.25 \
--hrf-duration 25.0 \
--zero-constraint \
--beta 1.0 \
--hrf-hyperprior 1000 \
--sigma-h 0.1 \
--drifts-type cos \
--parallel \
--log-level WARNING \
--output /home/jariasal/pyhrf \
2.5 \
{$HOME}/pyhrf/mask_parcellation/willard_3mm.nii \
/tmp/tmpM3zBD5
{$HOME}/data/bold.nii

PyHRF Analysis (Output)

We show in Fig. 9 the active parcels (A), the PPMs (B), and
the estimated HRFs (C) generated by PyHRF for the motor task
Finger. Reading the description given in [GSB+13], this task
corresponds to finger tapping. Recall that PyHRF estimates a HRF
for each parcel and generates a PPM for each condition.

We compared the output of PyHRF with the thresholded statis-
tical maps shared on the site Neurovault (http://www.neurovault.
org/images/307/) for the same dataset and same task (see Fig.
9). While the experimental paradigm is not optimized for JDE
(standard block paradigm is not ideal to estimate different points of
the HRF course), we obtained similar results to standard statistical
analysis additionally providing the form of the HRF. As we can
observe, at cut z=60 both results (Fig. 9 B and D) are quite similar,
showing an activation in the supplementary motor area and the left
primary sensorimotor cortex.

Concluding Remarks

In this paper we presented PyHRF, a software to analyze fMRI
data using a Joint Detection-Estimation (JDE) approach of the
cerebral activity. It jointly detects cortical activation and estimates
the Hemodynamic Response Function (HRF), in contrast to exist-
ing tools, that consider the HRF as constant over the brain and
over subjects, thus aiming to improve the reliability of the results.

PyHRF is an open source software that has evolved rapidly
over the last few years. As we showed, it allows to generate
Posterior Probability Maps (PPMs) to describe the significance
of the activation in each region of the brain. Moreover, PyHRF
uses efficient estimation methods in order to provide a fast tool.
Currently, the package does not provide finely tuned values for the
parameters of the JDE model, leaving the user the cumbersome
task of finding the best values for the estimation.

Since 2013, PyHRF has started to evolve to deal with func-
tional Arterial Spin Labelling (fASL) [VWV+13] data, including
a physiological prior to make the perfusion estimation more robust
[FPVS+14] [FPFC15b]. A fast solution for fASL based on VEM
was proposed in [FPFC15c], with similar results to the solution
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Fig. 9: A) Active parcels, B) PPMs, and C) estimated HRFs generated by PyHRF for the dataset ds000114 and the finger tapping task. D)
Shows the thresholded statistical maps shared on the site Neurovault for the same dataset and task. The cut z=60 shows a high activation
in the supplementary motor area and the left primary sensorimotor cortex.

based on stochastic simulation techniques [FPFC15a]. Moreover,
many efforts have been made in terms of image processing, user-
friendliness and usability of the PyHRF tool to make it more easy
to use by non experts and clinicians.

In the years to come, we plan to develop a light viewer to
explore the results of PyHRF interactively. Moreover, we aspire to
make the package compatible with Python 3 and extend its use to
the analysis of fMRI data on small animals.
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SciSheets: Providing the Power of Programming With
The Simplicity of Spreadsheets

Alicia Clark‡, Joseph L. Hellerstein§∗

F

Abstract—Digital spreadsheets are arguably the most pervasive environment
for end user programming on the planet. Although spreadsheets simplify many
calculations, they fail to address requirements for expressivity, reuse, complex
data, and performance. SciSheets (from "scientific spreadsheets") is an open
source project that provides novel features to address these requirements:
(1) formulas can be arbitrary Python scripts as well as expressions (formula
scripts), which addresses expressivity by allowing calculations to be written as
algorithms; (2) spreadsheets can be exported as functions in a Python module
(function export), which addresses reuse since exported codes can be reused
in formulas and/or by external programs and improves performance since cal-
culations can execute in a low overhead environment; and (3) tables can have
columns that are themselves tables (subtables), which addresses complex data
such as representing hierarchically structured data and n-to-m relationships.
Our future directions include refinements to subtables, github integration, and
plotting. At present, SciSheets can do robust demos, but it is not yet beta code.

Index Terms—software engineering

1. Introduction

Digital spreadsheets are the "killer app" that ushered in the
PC revolution. This is largely because spreadsheets provide a
conceptually simple way to do calculations that (a) closely as-
sociates data with the calculations that produce the data and (b)
avoids the mental burdens of programming such as control flow,
data dependencies, and data structures. Over 800M professionals
author spreadsheet formulas as part of their work [MODE2017],
which is over 50 times the number of software developers world
wide [THIB2013].

We categorize spreadsheet users as follows:

• Novices want to evaluate equations, but they do not have
the prior programming experience necessary to create
reusable functions and longer scripts. Spreadsheet formu-
las work well for Novices since: (a) they can ignore data
dependencies; (b) they can avoid flow control by using
"copy" and "paste" for iteration; and (c) data structures are
"visual" (e.g., rectangular blocks).
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• Scripters feel comfortable with expressing calculations
algorithmically using for and if statements; and they
can use simple data structures such as lists and pandas
DataFrames. However, Scripters rarely encapsulate
code into functions, preferring "copy" and "paste" to get
reuse.

• Programmers know about sophisticated data structures,
modularization, reuse, and testing.

Our experience is primarily with technical users such as
scientists. Most commonly, we encounter Novices and Scripters
with limited prior programming experience. We do not expect
these groups of users to take advantage of spreadsheet macro
capabilities (e.g., Visual Basic for Microsoft Excel or AppScript
in Google Sheets); we anticipate this functionality to be taken
advantage of only by Programmers.

Based on this experience, we find existing spreadsheets lack
several key requirements. First, they lack the expressivity re-
quirement in that (a) they only permit a limited set of functions to
be used in formulas (e.g., so that static dependency checking can
be done); and (b) they only support formulas that are expressions,
not scripts. In particular, the latter means that Scripters cannot
express calculations as algorithms, and Novices cannot write
linear workflows to articulate a computational recipe. A second
consideration is the reuse requirement. Today, it is impossible
to reuse spreadsheet formulas in other spreadsheet formulas or
in software systems. Third, current spreadsheet systems cannot
handle the complex data requirement, such as manipulating
data that are hierarchically structured or data that have n-to-m
relationships. Finally, existing spreadsheets cannot address the
performance requirement in that spreadsheets scale poorly with
the size of data and the number of formulas.

Academic computer science has recognized the growing im-
portance of end-user programming (EUP) [BURN2009]. Even so,
there is little academic literature on spreadsheets, arguably the
most pervasive EUP environment on the planet. [MCLU2006]
discusses object oriented spreadsheets that introduce a sophis-
ticated object model, but the complexity of this proposal is
unlikely to appeal to Novices. [JONE2003] describes a way
that users can implement functions within a spreadsheet to get
reuse. However, the approach imposes a significant burden on
the user, and does not address reuse of formulas outside the
spreadsheet environment. Industry has had significant interest in
innovating spreadsheets. Google Fusion Tables [GONZ2010] and
the "Tables" feature of Microsoft Excel [MICROSOF] use column
formulas to avoid a common source of error, copying formulas as
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rows are added/deleted from a table. The Pyspread [PYSPREAD]
project uses Python as the formula language, but Pyspread for-
mulas cannot be Python scripts. A more radical approach is taken
by Stencila [STENCILA], a document system that provides ways
to execute code that updates tables (an approach that is in the
same spirit as Jupyter Notebooks [PERE2015]). Stencila supports
a variety of languages including JavaScript, Python, and SQL.
However, Stencila lacks features that spreadsheet users expect:
(a) closely associating data with the calculations that produce
the data and (b) avoiding considerations of data dependencies in
calculations.

This paper introduces SciSheets [SCISHEETS], a new spread-
sheet system with the objective of providing the power of program-
ming with the simplicity of spreadsheets. The name SciSheets is
a contraction of the phrase "Scientific Spreadsheet", a nod to the
users who motivated the requirements that we address. That said,
our target users are more broadly technical professionals who do
complex calculations on structured data. We use the term scisheet
to refer to a SciSheets spreadsheet. We note in passing that our
focus for scisheets is on calculations, not document processing
features such as formatting and drawing figures.

SciSheets addresses the above requirements by introducing
several novel features.

• Formula Scripts. Scisheet formulas can be arbitrary Python
scripts as well as expressions. This addresses expressivity
by allowing calculations to be written as algorithms.

• Function Export. Scisheets can be exported as functions
in a Python module. This addresses reuse since exported
codes can be reused in SciSheets formulas and/or by
external programs. Further, performance is improved by
the export feature since calculations execute in a low
overhead environment.

• Subtables. Tables can have columns that are themselves
tables (columns within columns). This addresses the com-
plex data requirement, such as representing hierarhically
structured data and n-to-m relationships.

The remainder of the paper is organized as follows. Section 2
describes the requirements that we consider, and Section 3 details
the SciSheets features that address these requirements. The design
of SciSheets is discussed in Section 4, and Section 5 discusses
features planned for SciSheets. Our conclusions are contained in
Section 6.

2. Requirements

This section presents examples that motivate the requirements of
expressivity, reuse, and complex data.

Our first example is drawn from biochemistry labs studying
enzyme mediated chemical reactions. Commonly, the Michaelis-
Menten [BERG2002] Model of enzyme activity is used in which
there is a single chemical species, called the substrate, that
interacts with the enzyme to produce a new chemical species (the
product). Two properties of enzymes are of much interest: the
maximum reaction rate, denoted by VMAX , and the concentration
KM of substrate that achieves a reaction rate equal to half of VMAX .

To perform the Michaelis-Menten analysis, laboratory data are
collected for different values of the substrate concentrations S and
associated reaction rates V . Then, a calculation is done to obtain
the parameters VMAX and KM using the following recipe.

1. Compute 1/S and 1/V , the inverses of S and V .

Fig. 1: Data view for an Excel spreadsheet that calculates Michaelis-
Menten Parameters.

Fig. 2: Formulas used in Fig. 1.

2. Compute the intercept and slope of the regression of
1/V on 1/S.

3. Calculate VMAX and KM from the intercept and slope.

Fig. 1 shows an Excel spreadsheet that implements this recipe
with column names that correspond to the variables in the recipe.
Fig. 2 displays the formulas that perform these calculations.
Readability can be improved by using column formulas (e.g., as
in Fusion Tables). However, two problems remain. Novices cannot
explicitly articulate the computational recipe; rather, the recipe is
implicit in the order of the columns. Even more serious, there is
no way to reuse these formulas in other formulas (other than error-
prone copy-and-paste), and there is no way to reuse formulas in
an external program.

We consider a second example to illustrate problems with
handling non-trivial data relationships in spreadsheets. Fig. 3
displays data that a university might have for students in two
departments in the School of Engineering, Computer Science
& Engineering (CSE) and Biology. The data are organized into
two tables (CSE and Biology) grouped under Engineering,
with separate columns for student identifiers and grades. These
tables are adjacent to each other to facilitate comparisons between
students. However, the tables are independent of each other in
that we should be able to insert, delete, and hide rows in one
table without affecting the other table. Unfortunately, existing
spreadsheet systems do not handle this well; inserting, deleting,

Fig. 3: Illustrative example of student grade data from two depart-
ments in the School of Engineering. CSE and Biology are separate
tables that are grouped together for convenience of analysis. In
existing spreadsheet systems, users cannot perform row operations
such as insert, delete, and/or hide on one subtable without affecting
the other subtable.
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Fig. 4: Column popup menu in a scisheet for the Michaelis-Menten
calculation.

or hiding a row in one table affects every table that overlaps that
row in the spreadsheet. Note that arranging the tables vertically
does not help since the problem becomes inserting, deleting, and
hiding columns. We could arrange the tables in a diagonal, but this
makes it difficult to make visual comparisons between tables.

3. Features

This section describes SciSheets features that address the require-
ments of expressivity, reuse, complex data, and performance. We
begin with a discussion of the SciSheets user interface in Section
3.1. Then, Sections 3.2, 3.3, and 3.4 present formula scripts (which
addresses expressivity), function export (which addresses reuse
and performance), and subtables (which addresses complex data)
respectively.

3.1 User Interface

Fig. 4 displays a scisheet that performs the Michaelis-Menten
calculations as we did in Fig. 1. Note that columns containing
a formula have a name annotated with an *.

A scisheet has the familiar tabular structure of a spreadsheet.
However, unlike existing spreadsheets, SciSheets knows about
the elements of a scisheet: tables, columns, rows, and cells. In
SciSheets, there are two types of columns. Data columns contain
data values; subtable columns contain a table. The name of a data
column is a Python variable that can be referenced in formulas.
These column variables are numpy Arrays. This means that
formulas can be written using column names to express vector
calculation using a rich set of operators that properly handle
missing data (e.g., using NaN values).

SciSheets users interact directly with the scisheet element
appropriate for the desired action. A left click on a scisheet
element results in a popup menu. For example, in Fig. 4 we
see the column popup for INV_S. Users select an item from
the popup, and this may in turn present additional menus. The
popup menus for row, column, and table have common items for
insert, delete, hide/unhide. Columns additionally have a formula
item. The scisheet popup has items for saving and renaming the
scisheet as well as undoing/redoing operations on the scisheet. The
cell popup is an editor for the value in the cell.

Fig. 5 displays the results of selecting the formula item from
the popup menu in Fig. 4 for the column INV_S. A simple line
editor is displayed. The formula is an expression that references
the column S.

3.2 Formula Scripts and Formula Evaluation

SciSheets allows formulas to be scripts with arbitrary Python
statements. For example, Fig. 6 displays a script that contains the

Fig. 5: Formula for computing the inverse of the input value S.

Fig. 6: Formula for the complete calculation of VMAX and KM . The
formula is a simple script, allowing a Novice to see exactly how the
data in the scisheet are produced.

entire computational recipe for the Michaelis-Menten calculation
described in Section 2. This capability greatly increases the ability
of spreadsheet users to describe and document their calculations.

The formula scripts feature has a significant implication on
how formulas are evaluated. Since a formula may contain arbi-
trary Python codes including eval expressions, we cannot use
static dependency analysis to determine data dependencies. Thus,
formula evaluation is done iteratively. But how many times must
this iteration be done?

Consider an evaluation of N formula columns assuming that
there are no circular references or other anomalies in the formulas.
Then, at most N iterations are needed for convergence since on
each iteration at least one column variable is assigned its final
value. If after N iterations, there is an exception, (e.g., a column
variable does not have a value assigned), this is reported to the
user since there is likely an error in the formulas. Otherwise, the
scisheet is updated with the new values of the column variables.
Actually, we can do better than this since if the values of column
variables converge after loop iteration M < N (and there is no
exception), then formula evaluation stops. We refer to the above
workflow as the formula evaluation loop.

SciSheets augments the formula evaluation loop by providing
users with the opportunity to specify two additional formulas. The
prologue formula is executed once at the beginning of formula
evaluation; the epilogue formula is executed once at the end of
formula evaluation. These formulas provide a way to do high
overhead operations in a one-shot manner, a feature that assists
the performance requirement. For example, a user may have a
prologue formula that reads a file (e.g., to initialize input values
in a table) at the beginning of the calculation, and an epilogue
formula that writes results at the end of the calculation. Prologue
and epilogue formulas are modified through the scisheet popup
menu.

At present, variable names have a global scope within the
scisheet. This is often a desirable feature. For example, in Fig.
6, values computed in one column formula are assigned to another
column. However, as discussed in Section 5, there are some
interesting use cases for having subtable name scoping, a feature
that we are implementing.

3.3. Function Export

A scisheet can be exported as a function in a Python module.
This feature addresses the reuse requirement since exported codes
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Fig. 7: Menu to export a scisheet as a function in a Python module.

can be used in scisheet formulas and/or external programs. The
export feature also addresses the performance requirement since
executing standalone code eliminates many overheads.

At first glance, it may seem that being able to export a
scisheet as a function is in conflict with an appealing feature of
spreadsheets--that data are closely associated with the calculations
that produce the data. It is a central concern of SciSheets to
preserve this feature of spreadsheets. Thus, users specify formulas
for columns and/or for table prologues and epilogues without
regard to how code might be exported. SciSheets automatically
structures code for export.

Fig. 7 displays the scisheet popup menu for function export.
The user sees a menu with entries for the function name, inputs (a
list of column names), and outputs (a list of column names).

Function export produces two files. The first is the Python
module containing the exported function. The second is a Python
file containing a test for the exported function.

We begin with the first file. The code in this file is structured
into several sections:

• Function definition and setup
• Formula evaluation
• Function close

The function definition and setup contain the function defi-
nition, imports, and the scisheet prologue formula. Note that the
prologue formula is a convenient place to import Python packages.
# Function definition
def michaelis(S, V):
from scisheets.core import api as api
s = api.APIPlugin('michaelis.scish')
s.initialize()
_table = s.getTable()
# Prologue
s.controller.startBlock('Prologue')
# Begin Prologue
import math as mt
import numpy as np
from os import listdir
from os.path import isfile, join
import pandas as pd
import scipy as sp
from numpy import nan # Must follow sympy import
# End Prologue
s.controller.endBlock()

In the above code, the imported package
scisheets.core.api contains the SciSheets runtime.

The object s is constructed using a serialization of the scisheet
that is written at the time of function export. scisheets are
serialized in a JSON format to a file that has the extension
.scish.

We see that prologue formulas can be lengthy scripts. For
example, one scisheet developed with a plant biologist has a
prologue formula with over fifty statements. As such, it is essential
that syntax and execution errors are localized to a line within the
script. We refer to this as the script debuggability requirement.
SciSheets handles this requirement by using the paired state-
ments s.controller.startBlock('Prologue') and
s.controller.endBlock(). These statements "bracket" the
script so that if an exception occurs, SciSheets can compute the
line number within the script for that exception.

Next, we consider the formula evaluation loop. Below is the
code that is generated for the beginning of the loop and the
evaluation of the formula for INV_S.

s.controller.initializeLoop()
while not s.controller.isTerminateLoop():
s.controller.startAnIteration()
# Formula evaluation blocks
try:
# Column INV_S
s.controller.startBlock('INV_S')
INV_S = 1/S
s.controller.endBlock()
INV_S = s.coerceValues('INV_S', INV_S)

except Exception as exc:
s.controller.exceptionForBlock(exc)

s.controller.initializeLoop() snapshots column
variables. s.controller.isTerminateLoop() counts
loop iterations, looks for convergence of column variables, and
checks to see if the last loop iteration has an exception. Each
formula column has a pair of try and except statements
that execute the formula and record exceptions. Note that loop
execution continues even if there is an exception for one or
more formula columns. This is done to handle situations in
which formula columns are not ordered according to their data
dependencies.

Last, there is the function close. The occurrence of an excep-
tion in the formula evaluation loop causes an exception with the
line number in the formula in which the (last) exception occurred.
If there is no exception, then the epilogue formula is executed, and
the output values of the function are returned (assuming there is
no exception in the epilogue formula).

if s.controller.getException() is not None:
raise Exception(s.controller.formatError(

is_absolute_linenumber=True))
s.controller.startBlock('Epilogue')
# Epilogue (empty)
s.controller.endBlock()
return V_MAX,K_M

The second file produced by SciSheets function export contains
test code. Test code makes use of unittest with a setUp
method that assigns self.s the value of a SciSheets runtime
object.

def testBasics(self):
S = self.s.getColumnValue('S')
V = self.s.getColumnValue('V')
V_MAX,K_M = michaelis(S,V)
self.assertTrue(

self.s.compareToColumnValues('V_MAX', V_MAX))
self.assertTrue(

self.s.compareToColumnValues('K_M', K_M))
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Fig. 8: A scisheet that processes many CSV files.

Fig. 9: Column formula for K_M in Fig. 8 that is a script to process a
list of CSV files.

The above test compares the results of running the exported
function michaelis on the input columns S and V with the
values of output columns V_MAX and K_M.

The combination of the features function export and formula
scripts is extremely powerful. To see this, consider a common pain
point with spreadsheets - doing the same computation for different
data sets. For example, the Michaelis-Menten calculation in Fig.
1 needs to be done for data collected from many experiments that
are stored in several comma separated variable (CSV) files. Fig.
8 displays a scisheet that does the Michaelis-Menten calculation
for the list of CSV files in the column CSV_FILE. (This list
is computed by the prologue formula based on the contents of
the current directory.) Fig. 9 displays a script that reuses the
michaelis function exported previously to compute values for
K_M and V_MAX. Thus, whenever new CSV files are available,
K_M and V_MAX are calculated without changing the scisheet in
Fig. 8.

3.4. Subtables

Subtables provide a way for SciSheets to deal with complex data
by having tables nested within tables.

We illustrate this by revisiting the example in Fig. 3. Fig. 10
displays a scisheet for these data in which CSE and Biology are
independent subtables (indicated by the square brackets around
the names of the subtables). Note that there is a column named

Fig. 10: The table Engineering has two subtables CSE and
Biology. The subtables are independent of one another, which is
indicated by the square brackets around their names and the presence
of separate row columns.

Fig. 11: Menu to insert a row in one subtable. The menu is accessed
by left-clicking on the "3" cell in the column labelled "row" in the
CSE subtable.

Fig. 12: Result of inserting a row in the CSE subtable. Note that the
Biology substable is unchanged.

row for each subtable since the rows of CSE are independent of
the rows of Biology.

Recall that in Section 2 we could not insert a row into CSE
without also inserting a row into Biology. SciSheets addresses
this requirement by providing a separate row popup for each
subtable. This is shown in Fig. 11 where there is a popup for
row 3 of CSE. The result of selecting insert is displayed in Fig.
12. Note that the Biology subtable is not modified when there
is an insert into CSE.

4. Design

SciSheets uses a client-server design. The client runs in the
browser using HTML and JavaScript; the server runs Python using
the Django framework [DJANGOPR]. This design provides a zero
install deployment, and leverages the rapid pace of innovation in
browser technologies.

Our strategy has been to limit the scope of the client code to
presentation and handling end-user interactions. When the client
requires data from the server to perform end-user interactions
(e.g., populate a list of saved scisheets), the client uses AJAX
calls. The client also makes use of several JavaScript packages
including JQuery [JQUERYPR], YUI DataTable [YUIDATAT],
and JQueryLinedText [JQUERYLI].

The SciSheets server handles the details of user requests,
which also requires maintaining the data associated with scisheets.
Fig 13 displays the core classes used in the SciSheets server. Core
classes have several required methods. For example, the copy
method makes a copy of the object for which it is invoked. To do
this, the object calls the copy method of its parent class as well,
and this is done recursively. Further, the object must call the copy
method for core objects that are in its instance variables, such as
ColumnContainer which has the instance variable columns
that contains a list of Column objects. Other examples of required
methods are isEquivalent, which tests if two objects have the
same values of instance variables, and deserialize, which
creates objects based on data serialized in a JSON structure.
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Fig. 13: SciSheets core classes.

Next, we describe the classes in Fig. 13. Tree implements
a tree that is used to express hierarchical relationships such
as between Table and Column objects. Tree also provides
a mapping between the name of the scisheet element and
the object associated with the name (e.g., to handle user re-
quests). ColumnContainer manages a collections of Table
and Column objects. Column is a container of data values.
Table knows about rows, and it does formula evaluation using
evaluate(). UITable handles user requests (e.g., renaming a
column and inserting a row) in a way that is independent of the
client implementation. DTTable provides client specific services,
such as rendering tables into HTML using render().

The classes NameSpace (a Python namespace) and
ColumnVariable are at the center of formula evaluation. The
evaluate() method in Table generates Python code that is
executed in a Python namespace. The SciSheets runtime creates
an instance of ColumnVariable for each Column in the
scisheet being evaluated. ColumnVariable puts the name of
its corresponding Column into the namespace, and assigns to this
name a numpy Array that is populated with the values of the
Column.

Last, we consider performance. There are two common causes
of poor performance in the current implementation of SciSheets.
The first relates to data size. At present, SciSheets embeds data
with the HTML document that is rendered by the browser. We
will address this by downloading data on demand and caching
data locally.

The second cause of poor performance is having many iter-
ations of the formula evaluation loop. If there is more than one
formula column, then the best case is to evaluate each formula
column twice. The first execution produces the desired result (e.g.,
if the formula columns are in order of their data dependencies);
the second execution confirms that the result has converged. Some
efficiencies can be gained by using the prologue and epilogue
features for one-shot execution of high overhead operations (e.g.,
file I/O). In addition, we are exploring the extent to which
SciSheets can automatically detect if static dependency checking
can be used so that formula evaluation is done only once.

Clearly, performance can be improved by reducing the number
of formula columns since this reduces the maximum number of
iterations of the formulation evaluation loop. SciSheets supports
this strategy by permitting formulas to be scripts. This is a
reasonable strategy for a Scripter, but it may work poorly for a
Novice who is unaware of data dependencies.

5. Future Work

This section describes several features that are under development.

5.1 Subtable Name Scoping

This feature addresses the reuse requirement. Today, spreadsheet
users typically employ copy-and-paste to reuse formulas. This
approach has many drawbacks. First, it is error prone since there
are often mistakes as to what is copied and where it is pasted.
Second, fixing bugs in formulas requires repeating the same error
prone copy-and-paste.

It turns out that a modest change to the subtable feature can
provide a robust approach to reuse through copy-and-paste. This
change is to have a subtable define a name scope. This means that
the same column name can be present in two different subtables
since these names are in different scopes.

We illustrate the benefits of subtable name scoping. Consider
Fig. 10 with the subtables CSE and Biology. Suppose that the
column GradePtAvg in CSE is renamed to GPA so that both
CSE and Biology have a column named GPA. Now, consider
adding the column TypicalGPA to both subtables; this column
will have a formula that computes the mean value of GPA. The
approach would be as follows:

1. Add the column TypicalGPA to CSE.
2. Create the formula np.mean(GPA) in
TypicalGPA. This formula will compute the
mean of the values of the GPA column in the CSE
subtable (because of subtable name scoping).

3. Copy the column TypicalGPA to subtable
Biology. Because of subtable name scoping, the for-
mula np.mean(GPA) will reference the column GPA
in Biology, and so compute the mean of the values of
GPA in the Biology subtable.

Now suppose that we want to change the calculation of
TypicalGPA to be the median instead of the mean. This is
handled as follows:

1. The user edits the formula for the column
TypicalGPA in subtable CSE, changing the formula
to np.median(GPA).

2. SciSheets responds by asking if the user wants the
copies of this formula to be updated as well.

3. The user answers "yes", and the formula is changed
for TypicalGPA in subtable Biology.

Note that we would have the same result in the above proce-
dure if the user had in step (1) modified the Biology subtable.

5.2 Github Integration

A common problem with spreadsheets is that calculations are
difficult to reproduce because some steps are manual (e.g., menu
interactions). Additionally, it can be difficult to reproduce a
spreadsheet due to the presence of errors. We refer to this as
the reproducibility requirement. Version control is an integral
part of reproducibility. Today, a spreadsheet file as a whole can be
version controlled, but this granularity is too coarse. More detailed
version control can be done manually. However, this is error
prone, especially in a collaborative environment. One automated
approach is a revision history, such as Google Sheets. However,
this technique fails to record the sequence in which changes were
made, by whom, and for what reason.

The method of serialization used in SciSheets lends itself well
to github integration. Scisheets are serialized as JSON files with
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Fig. 14: Mockup showing how a scisheet can be split into two
branches (e.g., for testing and/or feature exploration).

Fig. 15: Mockup displaying two scisheets can be merged (assuming
no merge conflicts).

separate lines used for data, formulas, and structural relationships
between columns, tables, and the scisheet. Although the structural
relationships have a complex representation, it does seem that
SciSheets can be integrated with the line oriented version control
of github.

We are in the process of designing an integration of SciSheets
with github that is natural for Novices and Scripters. The scope
includes the following use cases:

• Branching. Users should be able to create branches to
explore new calculations and features in a scisheet. Fig.
14 shows how a scisheet can be split into two branches.
As with branching for software teams, branching with a
spreadsheet will allow collaborators to work on their part
of the project without affecting the work of others.

• Merging. Users will be able to utilize the existing
github strategies for merging documents. In addition, we
intend to develop a visual way for users to detect and re-
solve merge conflicts. Fig. 15 illustrates how two scisheets
can be merged. Our thinking is that name conflicts will
be handled in a manner similar to that used in pandas
with join operations. Our implementation will likely be
similar to the nbdime package developed for merging and
differencing Jupyter notebooks [NBDIME].

• Differencing. Users will be able to review the history of
git commit operations. Fig. 16 displays a mockup of a
visualization of the history of a scisheet. The user will

Fig. 16: Mockup visualization of the change history of a scisheet. The
versions in green show when columns have been added; the versions
in red show when columns have been removed.

be able to select any point in history (similar to git
checkout). This functionality will allow collaborators
to gain a greater understanding of changes made.

5.3 Plotting

At present, SciSheets does not support plotting. However, there
is clearly a plotting requirement for any reasonable spreadsheet
system. Our approach to plotting will most likely be to leverage the
bokeh package [BOKEHPRO] since it provides a convenient way
to generate HTML and JavaScript for plots that can be embedded
into HTML documents. Our vision is to make plot a function
that can be used in a formula. A plot column will have its cells
rendered as HTML.

6. Conclusions

SciSheets is a new spreadsheet system with the guiding principle
of providing the power of programming with the simplicity of
spreadsheets. Our target users are technical professionals who do
complex calculations on structured data.

SciSheets addresses several requirements that are not handled
in existing spreadsheet systems, especially the requirements of
expressivity, reuse, complex data, and performance. SciSheets ad-
dresses these requirements by introducing several novel features.

• Formula Scripts. Scisheet formulas can be Python scripts,
not just expressions. This addresses expressivity by allow-
ing calculations to be written as algorithms.

• Function Export. Scisheets can be exported as functions
in a Python module. This addresses reuse since exported
codes can be reused in SciSheets formulas and/or by
external programs. Further, performance is improved by
the export feature since calculations execute in a low
overhead environment.

• Subtables. Tables can have columns that are themselves
tables (columns within columns). This addresses the com-
plex data requirement, such as representing n-to-m rela-
tionships.

Table 1 displays a comprehensive list of the requirements we
plan to address and the corresponding SciSheets features.

One goal for SciSheets is to make users more productive with
their existing workflows for developing and evaluating formulas.
However, we also hope that SciSheets becomes a vehicle for
elevating the skills of users, making Novices into Scripters and
Scripters into Programmers.
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Requirement SciSheets Feature

• Expressivity • Python formulas
• Formula scripts

• Reuse • Function export
• Subtable name scop-

ing

• Complex Data • Subtables

• Performance • Function export
• Prologue, Epilogue
• Load data on demand
• Conditional static de-

pendency checking

• Plotting • Embed bokeh compo-
nents

• Script Debugga-
bility

• Localized exceptions

• Reproducibility • github integration

TABLE 1: Summary of requirements and SciSheets features that
address these requirements. Features in italics are planned but not
yet implemented.

At present, SciSheets is capable of doing robust demos.
Some work remains to create a beta. We are exploring possible
deployment vehicles. For example, rather than having SciSheets
be a standalone tool, another possibility is integration with Jupyter
notebooks.

REFERENCES

[BERG2002] Berg, Jermey et al. Biochemistry, W H Freeman, 2002.
[BOKEHPRO] Bokeh Project. http://bokeh.pydata.org/.
[BURN2009] Burnett, M. What is end-user software engineering and why

does it matter?, Lecture Notes in Computer Science, 2009
[DJANGOPR] Django Project. http://www.djangoproject.com.
[GONZ2010] Google Fusion Tables: Web-Centered Data Management and

Collaboration, Hector Gonzalez et al., SIGMOD, 2010.
[JONE2003] Jones, S., Blackwell, A., and Burnett, M. i A user-centred

approach to functions in excel, SIGPLAN Notices, 2003.
[JQUERYLI] JQueryLinedText. https://github.com/aw20/JQueryLinedText.
[JQUERYPR] JQuery Package. https://jquery.com/.
[MCCU2006] McCutchen, M., Itzhaky, S., and Jackson, D. Object spread-

sheets: a new computational model for end-user development of
data-centric web applications, Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 2006.

[MICROSOF] Microsoft Corporation. Overview of Excel tables,
https://support.office.com/en-us/article/Overview-of-Excel-
tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c.

[MODE2017] MODELOFF - Financial Modeling World Championships,
http://www.modeloff.com/the-legend/.

[NBDIME] nbdime, https://github.com/jupyter/nbdime.
[PERE2015] Perez, Fernando and Branger, Brian. Project Jupyter: Computa-

tional Narratives as the Engine of Collaborative Data Science,
http://archive.iPython.org/JupyterGrantNarrative-2015.pdf.

[PYSPREAD] Manns, M. PYSPREAD, http://github.com/manns/pyspread.
[SCISHEET] SciSheets, https://github.com/ScienceStacks/SciSheets.
[STENCILA] Stencila, https://stenci.la/.
[THIB2013] Thibodeau, Patrick. India to overtake U.S. on number of devel-

opers by 2017, COMPUTERWORLD, Jul 10, 2013.
[YUIDATAT] Yahoo User Interface DataTable. https://yuilibrary.com/yui/

docs/datatable/.



Con
fer

en
ce

Rea
dy

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2017) 49

The Sacred Infrastructure for Computational
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Abstract—We present a toolchain for computational research consisting of
Sacred and two supporting tools. Sacred is an open source Python framework
which aims to provide basic infrastructure for running computational experiments
independent of the methods and libraries used. Instead, it focuses on solving
universal everyday problems, such as managing configurations, reproducing
results, and bookkeeping. Moreover, it provides an extensible basis for other
tools, two of which we present here: Labwatch helps with tuning hyperparameters,
and Sacredboard provides a web-dashboard for organizing and analyzing runs
and results.

Index Terms—reproducible research, Python, machine learning, database,
hyperparameter optimization

Introduction

A major part of machine learning research typically involves
a significant number of computational experiments run with
many different hyperparameter settings. This process holds many
practical challenges, such as bookkeeping and maintaining repro-
ducibility. To make matters worse, experiments often run on diverse
and heterogeneous environments, ranging from laptops to cloud
computing nodes. Due to deadline pressure and the inherently
unpredictable nature of research, there is usually little incentive
for researchers to build robust infrastructures. As a result, research
code often evolves quickly and compromises essential aspects like
bookkeeping and reproducibility.

Many tools exist for tackling different aspects of this process,
including databases, version control systems, command-line inter-
face generators, tools for automated hyperparameter optimization,
spreadsheets, and so on. Few, however, integrate these aspects into
a unified system, so each tool has to be learned and used separately,
each incurring its overhead. Since there is no common basis to
build a workflow, the tools people create will be tied to their
particular setup. This impedes sharing and collaboration on tools
for major problems like optimizing hyperparameters, summarizing
and analyzing results, rerunning experiments, distributing runs,
etc..
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Sacred aims to fill this gap by providing central infrastructure
for running computational experiments. We hope that it will help
researchers and foster the development of a rich collaborative
ecosystem of shared tools. In the following, we briefly introduce
Sacred and two supporting tools: Labwatch integrates a convenient
unified interface to several automated hyperparameter optimizers,
such as random search, RoBO, and SMAC. Sacredboard offers a
web-based interface to view runs and organize results.

Sacred

Sacred1 is an open source Python framework that bundles solutions
for some of the most frequent challenges of computational research.
It does not enforce any particular workflow and is independent of
the choice of machine learning libraries. Designed to remain useful
even under deadline pressure, Sacred aims to offer maximum
convenience while minimizing boilerplate code. By combining
these features into a unified but flexible workflow, Sacred enables
its users to focus on research, and still capture all the relevant
information for each run. Its standardized configuration process
allows smooth integration with other tools, such as Labwatch for
hyperparameter optimization. Through storage of run information
in a central database, comprehensive query and sorting functionality
for bookkeeping becomes available. This further enables down-
stream analysis and allows other tools, such as Sacredboard, to
provide a powerful user interface for organizing results.

Overview

The core abstraction of Sacred is the Experiment class that
needs to be instantiated for each computational experiment. It
serves as the central hub for defining configuration, functions,
and for accessing the other features. To adopt Sacred, all that is
required is to instantiate an Experiment and to decorate the
main function to serves as entry-point. A minimal example could
look like this:
from sacred import Experiment
ex = Experiment()

@ex.automain
def main():

... # <= experiment code here
return 42

This experiment is ready to be run and would return a result
of 42. It already features an automatically generated command
line interface, collects relevant information about dependencies

1. https://github.com/IDSIA/Sacred
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and the host system, and can do bookkeeping. The experiment is
extendable in several ways to define (hyper-) parameters that can
later be externally changed.

The experiment can be run through its command-line interface,
or directly from Python by calling ex.run(). Both modes offer
the same ways for passing options, setting parameters, and adding
observers. Once this experiment is started, Sacred will 1) interpret
the options, 2) evaluate the parameter configuration, 3) gather
information about dependencies and host, and 4) construct and call
a Run object that is responsible for executing the main function.
In the previous minimal example the output would look like this:

WARNING - my_example - No observers have been added
INFO - my_example - Running command 'main'
INFO - my_example - Started
INFO - my_example - Result: 42
INFO - my_example - Completed after 0:00:00

For each run, relevant information such as parameters, package
dependencies, host information, source code, and results are
automatically captured. The Run also captures the stdout, custom
information, and fires events at regular intervals that can be
monitored for bookkeeping, by optional observers. Several built-in
observers are available for databases, disk storage, or sending out
notifications.

Configuration

An important goal of Sacred is to make it convenient to define,
update and use hyperparameters, which we will call the configura-
tion of the experiment. The main way to set up the configuration is
through functions decorated with @ex.config:

@ex.config
def cfg():

nr_hidden_units = 512
optimizer = 'sgd'
learning_rate = 0.1
log_dir = 'log/NN{}'.format(nr_hidden_units)

When running an experiment, Sacred executes these functions and
adds their local variables to the configuration. This syntactically
convenient way of defining parameters leverages the full expres-
siveness of Python, including complex expressions, function calls,
and interdependent variables. Alternatively, plain dictionaries or
external configuration files can also be used.

To make parameters readily available throughout the code,
Sacred employs the technique of dependency injection: any function
decorated by @ex.capture can directly accept any configuration
entry as a parameter. Whenever such a function is called, Sacred
will automatically pass those parameters by name from the
configuration. This allows for the flexible and convenient use
of the hyperparameters throughout the experiment code:

@ex.capture
def set_up_optimizer(loss, optimizer, learning_rate):

OptClass = {
'sgd': tf.train.GradientDescentOptimizer,
'adam': tf.train.AdamOptimizer}[optimizer]

opt = OptClass(learning_rate=learning_rate)
return opt.minimize(loss)

When calling the setup_optimizer function, both the
optimizer and the learning_rate arguments are optional.
If omitted, they will be filled in automatically from the configu-
ration. These injected values can be mixed freely with standard
parameters, and injection follows the priority: 1) explicitly passed
arguments 2) configuration values 3) default values.

The main benefit of config parameters is that they can be
controlled externally when running an experiment. This can happen
both from the command line
>> python my_experiment.py with optimizer='adam'
... learning_rate=0.001

or from Python calls:
from my_experiment import ex
ex.run(config_updates={'nr_hidden_units': 64})

Sacred treats these values as fixed while executing the config
functions. In this way, they influence dependent values as you
would expect. Thus in our example log_dir would be set to
"log/NN64" .

Groups of config values that should be saved or set together
can be collected in so-called named configurations. These are
defined analogously to configurations using a function decorated
by @ex.named_config (or dictionaries/config files):
@ex.named_config
def adam():

optimizer = 'adam'
learning_rate = 0.001

Named configs can be added both from the command line and from
Python, after which they are treated as a set of updates:
>> python my_experiment.py with adam

Reproducibility

An important goal of Sacred is to collect all necessary information
to make computational experiments reproducible while remaining
lightweight enough to be used for each run, even during develop-
ment. In this respect it differs from environment capturing tools
such as ReproZip [CRSF16], CDE [Guo12], PTU [PMF13] and
CARE [JVD14]. These tools ensure reproducibility by tracking
and storing all data files and libraries used during a run at the
system level. Sacred in contrast uses heuristics to capture the
source code and for determining versions of used packages, collects
limited but customizable information about the host system, and
offers support for manually adding relevant data files. It explicitly
excludes system libraries that are not python packages, data files
that are not specifically added by the user, and hardware other than
the CPU and GPU. This trade-off allows Sacred to run efficiently
regarding computational overhead and required storage capacity
at the expense of reproducibility on systems that differ too much
from the original host. The focus is on the ability of the researcher
to reproduce their results. For distributing the code, we advise the
use of one of the above-mentioned environment capturing tools.

The source code of an experiment is arguably the most
important piece of information for reproducing any result. Un-
fortunately, research code often has to be rapidly adapted under
deadline pressure. A typical pattern in practice is, therefore,
to quickly change something and start a run, without properly
committing the changes into a VCS system. To deal with such
an unstructured implementation workflow, Sacred doesn’t rely on
any VCS system (In contrast to Sumatra [Dav12]) and instead
automatically detects and stores the source files alongside the run
information2. Source files are gathered by inspecting all imported
modules and keeping those defined within the (sub-)directories
of the main script. This heuristic works well for flat use-cases
that consist only of a few sources but fails to detect files that
are imported deeper in the dependency tree. For cases of more
complex source code structure Sacred also supports a stricter
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Git-based workflow and can automatically collect the current
commit and state of the repository for each run. The optional
--enforce-clean flag forces the repository to be clean (not
contain any uncommitted changes) before the experiment can be
started. Relevant dependencies can also always be added manually
by calling ex.add_source_file(FILENAME).

Similarly, Sacred collects information about the package depen-
dencies, by inspecting the imported modules. For all modules that
are do not correspond to local source files or builtins, it uses several
heuristics to determine the version number. First, it checks the
__version__ property and variations thereof. If that fails it uses
the (much slower) Python package resource API to This detection
will catch all dependencies imported from the main file of the
experiment but will miss dependencies deeper down the dependency
graph and any dynamic imports that happen only during runtime.
Here again, further dependencies can be added manually using
ex.add_package_dependency(NAME, VERSION)

Sacred also collects information about the host system including
the hostname, type and version of the operating system, Python
version, and the CPU. Optionally, it supports information about
GPU, environment variables, and can be easily extended to collect
custom information.

Randomness

Randomization is an important part of many machine learning al-
gorithms, but it inherently conflicts with the goal of reproducibility.
The solution, of course, is to use pseudo-random number generators
(PRNG) that take a seed and generate seemingly random numbers
in a deterministic fashion. However, setting the seed to a fixed value
as part of the code makes all the runs deterministic, which can be
an undesired effect. Sacred solves this problem by generating a new
seed that is stored as part of the configuration for each run. It can
be accessed from the code in the same way as every other config
entry. Furthermore, Sacred automatically seeds the global PRNGs
of the random and numpy modules when starting an experiment,
thus making most sources of randomization reproducible without
any intervention from the user.

Bookkeeping

Sacred accomplishes bookkeeping through the observer pattern
[GHJV94]: The experiment publishes all the collected information
in the form of events, to which observers can subscribe. Observers
can be added dynamically from the command line or directly in
code:
from sacred.observers import MongoObserver
ex.observers.append(MongoObserver.create("DBNAME"))

Events are fired when a run is started, every 10 seconds during a run
(heartbeat), and once it stops (either successfully or by failing). The
information is thus already available during runtime, and partial
data is captured even in the case of failures. The most important
events are:

Started Event
Fired when running an experiment, just before the main
method is executed. Contains configuration values,
start time, package dependencies, host information,
and some meta information.

Heartbeat Event

2. It does, however, avoid duplicating files that remain unchanged to reduce
storage requirements.

Fired continuously every 10 seconds while the exper-
iment is running. Contains the beat time, captured
stdout/stderr, custom information, and preliminary
result.

Completed Event
Fired once the experiment completes successfully.
Contains the stop time and the result.

Failed Event
Fired if the experiment aborts due to an exception.
Contains the stop time and the stack trace.

Sacred ships with observers that store all the information from
these events in a MongoDB, SQL database, or locally on disk.
Furthermore, there are two observers that can send notifications
about runs via Telegram [DD17] or Slack [Sla17], respectively.
Moreover, the observer interface is generic and supports easy
addition of custom observers.

The recommended observer is the MongoObserver, which
writes to a MongoDB [Mon17]. MongoDB is a noSQL database,
or more precisely a Document Database: it allows the storage of
arbitrary JSON documents without the need for a schema as in a
SQL database. These database entries can be queried based on their
content and structure. This flexibility makes it a good fit for Sacred
because it permits arbitrary configuration of each experiment that
can still be queried and filtered later on. This feature, in particular,
has been very useful in performing large-scale studies such as the
one in previous work [GSK+15]. A slightly shortened example
database entry corresponding to our minimal example from above
could look like this:

{"_id": 1,
"captured_out": "[...]",
"status": "COMPLETED",
"start_time": "2017-05-30T20:34:38.855Z",
"experiment": {

"mainfile": "minimal.py",
"sources": [["minimal.py", "ObjectId([...])"]],
"repositories": [],
"name": "minimal",
"dependencies": ["numpy==1.11.0",

"sacred==0.7.0"],
"base_dir": "/home/greff/examples"},

"result": 42,
"info": {},
"meta": {"command": "main",

"options": ["..."]},
"format": "MongoObserver-0.7.0",
"resources": [],
"host": {"os": "Linux-3.16.0-4-amd64-x86_64",

"cpu": "Intel(R) Core(TM) i5-4460 CPU",
"hostname": "zephyr",
"ENV": {},
"python_version": "3.4.2"},

"heartbeat": "2017-05-30T20:34:38.902Z",
"config": {"seed": 620395134},
"command": "main",
"artifacts": [],
"stop_time": "2017-05-30T20:34:38.901Z"
}

Labwatch

Finding the correct hyperparameter for machine learning algo-
rithms can sometimes make the difference between state-of-the-art
performance and performance that is as bad as random guessing.
It is often done by trial and error despite a growing number of
tools that can automate the optimization of hyperparameters. Their
adoption is hampered by the fact that each optimizer requires
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the user to adapt their code to a certain interface. Labwatch3

simplifies this process by integrating an interface to a variety of
hyperparameter optimizers into Sacred. This allows for easy access
to hyperparameter optimization in daily research.

LabAssistant

At the heart of Labwatch is the so-called LabAssistant, which con-
nects the Sacred experiment with a hyperparameter configuration
search space (in short: searchspace) and a hyperparameter opti-
mizer through a MongoDB database. For bookkeeping, it leverages
the database storage of evaluated hyperparameter configurations,
which allows parallel distributed optimization and also enables
the use of post hoc tools for assessing hyperparameter importance
(e.g. fANOVA [HHLBa]). When using Labwatch, the required
boilerplate code becomes:
from sacred import Experiment
from labwatch.assistant import LabAssistant
from labwatch.optimizers import RandomSearch

ex = Experiment()
a = LabAssistant(experiment=ex,

database_name="labwatch",
optimizer=RandomSearch)

Search Spaces

In general, Labwatch distinguishes between categorical hyper-
parameters that can have only discrete choices and numerical
hyperparameters that can have either integer or float values. For
each hyperparameter, the search space defines a prior distribution
(e.g. uniform or Gaussian) as well as its type, scale (e.g. log scale,
linear scale) and default value.

Search spaces follow the same interface as Sacred’s named
configurations:
@ex.config
def cfg():

batch_size = 128
learning_rate = 0.001

@a.searchspace
def search_space():

learning_rate = UniformFloat(lower=10e-3,
upper=10e-2,
default=10e-2,
log_scale=True)

batch_size = UniformNumber(lower=32,
upper=64,
default=32,
type=int,
log_scale=True)

This search_space can likewise be specified when executing
the Experiment through the command line:
>> python my_experiment.py with search_space

Labwatch then triggers the optimizer to suggest a new configuration
based on all configurations that are stored in the database and have
been drawn from the same search space.

Multiple Search Spaces

Labwatch also supports multiple search spaces, which is convenient
if one wants to switch between optimizing different sets of
hyperparameters. Assume that we only want to optimize the
learning rate and keep the batch size fixed, we can create a second
smaller search space:

3. https://github.com/automl/labwatch

@a.searchspace
def small_search_space():

learning_rate = UniformFloat(lower=10e-3,
upper=10e-2,
default=10e-2,
log_scale=True)

This can be run in the same way as before by just swapping out
the name of the searchspace:
>> python my_experiment.py with small_search_space

The optimizer will now only suggest a value for the learning
rate and leaves all other hyperparameters, such as the batch size,
untouched.

Hyperparameter Optimizers

Labwatch offers a simple and flexible interface to a variety of
state-of-the-art hyperparameter optimization methods, including:

• Random search is probably the simplest hyperparameter
optimization method [BB12]. It just samples hyperparame-
ter configurations randomly from the corresponding prior
distributions. It can be used in discrete as well as continuous
search spaces and can easily be run in parallel.

• Bayesian optimization fits a probabilistic model to capture
the current belief of the objective function [SSW+16],
[SLA]. To select a new configuration, it uses a utility
function that only depends on the probabilistic model to
trade off exploration and exploitation. There are different
ways to model the objective function:
Probably the most common way is to use a Gaussian pro-
cess to model the objective function, which tendn to work
well in low (<10) dimensional continuous search spaces
but do not natively work with categorical hyperparameters.
Furthermore, due to their cubic complexity, they do not
scale well with the number of function evaluations. We
used RoBO4 as an implementation, which is based on the
George GP library [AFG+14].
SMAC is also a Bayesian optimization method, but uses
random forest instead of Gaussian processes to model the
objective function [HHLBb]. Random forest natively allow
to work in high dimensional mixed continuous and discrete
input spaces but seem to work less efficient compared
to Gaussian processes in low-dimensional continuous
searchspaces [EFH+13].
More recently, Bayesian neural networks have been used for
Bayesian optimization [SRS+15], [SKFH16]. Compared to
Gaussian processes, they scale very well in the number of
function evaluation as well as in the number of dimensions.
Here we use the Bohamiann approach [SKFH16], which
is also implemented in the RoBO framework.

For each of these optimizers, Labwatch provides an adapter
that integrates them into a common interface:
class Optimizer(object):

def suggest_configuration(self):
# Run the optimizer and
# return a single configuration
return config

def update(self, configs, costs, runs):
# Update the internal

4. https://github.com/automl/RoBO
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Fig. 1: Sacredboard user interface

# state of the optimizer
pass

This allows researchers to easily integrate their own hyperparameter
optimization method into Labwatch. They only need to implement
an adapter that provides the suggest_configuration()
method which returns a single configuration to Sacred, and the
update() method, which gets all evaluated configuration and
costs, and updates the internal state of the optimizer.

Sacredboard

Sacredboard provides a convenient way for browsing runs of
experiments stored in a Sacred MongoDB database. It consists
of a lightweight flask-based web server that can be run on any
machine with access to the database. The hosted web-interface
shows a table view of both running and finished experiments, which
are automatically updated. Sacredboard shows the current state and
results, and offers a detail view that includes configuration, host
information, and standard output of each run. At the moment, it
relies exclusively on the MongoDB backend of Sacred, but in the
future, we hope to support other options for bookkeeping as well.

Filtering

Experiments can be filtered by status to, for example, quickly
remove failed experiments from the overview. Sacredboard also
supports filtering by config values, in which case the user specifies
a property name and a condition. By default, the name refers to a
variable from the experiment configuration, but by prepending
a dot (.), it can refer to arbitrary stored properties of the
experiment. Possible conditions include numerical comparisons
(=, 6=,<,>,≥,≤) as well as regular expressions. Querying ele-
ments of dictionaries or arrays can be done using the dot notation
(e.g. .info.my_dict.my_key). A few useful properties to
filter on include: the standard output (.captured_out), exper-
iment name (.experiment.name), the info dictionary con-
tent (.info.custom_key), hostname (.host.hostname)
and the value returned from the experiment’s main function
(.result). These filters can be freely combined.

The Details View

Clicking on any of the displayed runs expands the row to a details-
view that shows the hyperparameters used, information about the
machine, the environment where the experiment was run, and the

Fig. 2: Sacredboard detail view

standard output produced by the experiment. The view is organised
as a collapsible table, allowing dictionaries and arrays to be easily
browsed.

Connecting to TensorBoard

Sacredboard offers an experimental integration with Tensor-
Board — the web-dashboard for the popular TensorFlow li-
brary [Goo]. Provided that the experiment was annotated with
@sacred.stflow.LogFileWriter(ex) as in our example
below and a TensorFlow log has been created during the run, it is
possible to launch TensorBoard directly from the Run detail view.

Plotting Metrics

Sacredboard can visualize metrics such as accuracy or loss if
they are tracked using Sacreds metrics interface. Metrics can be
tracked through the Run object, which is accessible by adding the
special _run variable to a captured function. This object provides
a log_scalar method than can be called with an arbitrary
metric name, its value, and (optionally) the corresponding iteration
number:
_run.log_scalar("test.accuracy", 35.25, step=50)

The values for each metric are aggregated into a list of step index
and values, where the last step number is autoincremented if
the step parameter is omitted. Sacredboard will display metrics
collected in this form as plots in the details view.

Example

In this section, we combine everything for the machine-learning-
equivalent of a hello world program: MNIST classification. Here we
use the current development version of Sacred and the Tensorflow
and Keras libraries.

Header

First, we import the required packages and functions. Then an
Experiment and a LabAssistant are instantiated:
import tensorflow as tf
from tensorflow import placeholder
from tensorflow.examples.tutorials.mnist import \

input_data

from keras import backend as K
from keras.layers import Dense
from keras.objectives import categorical_crossentropy
from keras.metrics import categorical_accuracy

import sacred
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import labwatch
from labwatch.optimizers import RandomSearch

ex = sacred.Experiment()
la = labwatch.LabAssistant(ex, optimizer=RandomSearch)

Configuration and Searchspace

Now we can define the configuration of the experiment. Note that
we specify six parameters and that the log_dir depends on the
hidden_units:
@ex.config
def cfg():

hidden_units = 512
batch_size = 32
nr_epochs = 100
optimizer = 'sgd'
learning_rate = 0.1
log_dir = 'log/NN{}'.format(hidden_units)

We also make use of a named_config to group together the
adam optimizer with a reduced learning rate. In this way, we can
start the experiment by specifying with adam and have both
parameters changed.
@ex.named_config
def adam():

optimizer = 'adam'
learning_rate = 0.001

Finally, we define a searchspace over learning_rate and
hidden_units, naturally treated in log-space. Now we can
run our experiment using with search_space and have these
two parameters set to suggestions by our hyperparameter optimizer
(here RandomSearch).
@la.searchspace
def search_space():

learning_rate = UniformFloat(0.001, 1.0,
log_scale=True)

hidden_units = UniformInt(32, 512,
log_scale=True)

Captured Functions

Sacreds config injection allows us to use the configuration pa-
rameters in any captured function. So here we use this feature to
define two helper functions that set up our neural network model
and our optimizer. Note that the set_up_optimizer function
also takes the loss, which is not part of the configuration and has
therefore to be passed normally:
@ex.capture
def build_model(hidden_units):

img = placeholder(tf.float32, shape=(None, 784))
label = placeholder(tf.float32, shape=(None, 10))

h = Dense(hidden_units, activation='relu')(img)
preds = Dense(10, activation='softmax')(h)

loss = tf.reduce_mean(
categorical_crossentropy(label, preds))

accuracy = tf.reduce_mean(
categorical_accuracy(label, preds))

return img, label, loss, accuracy

@ex.capture
def set_up_optimizer(loss, optimizer, learning_rate):

OptClass = {
'sgd': tf.train.GradientDescentOptimizer,
'adam': tf.train.AdamOptimizer}[optimizer]

opt = OptClass(learning_rate=learning_rate)
return opt.minimize(loss)

Main Method

Finally, the main method combines everything and serves
as the entry point for execution. We’ve decorated it with
@sacred.stflow.LogFileWriter(ex) to automatically
capture the log directory used for the FileWriter in the
appropriate format for Sacredboard. The main method is also
automatically a captured function, and takes three of the config-
uration values as parameters. It also accepts a special parameters
_run which grants access to the current Run object. Note that
we call the other captured functions without passing any of the
configuration values, since they will be filled in automatically.
@ex.automain
@sacred.stflow.LogFileWriter(ex)
def main(batch_size, nr_epochs, log_dir, _run):

# initialize tensorflow and load data
sess = tf.Session()
K.set_session(sess)
mnist = input_data.read_data_sets('MNIST_data',

one_hot=True)

# call captured functions for model and optimizer
img, label, loss, acc = build_model()
train_step = set_up_optimizer(loss)

# set up FileWriter for later use of Tensorboard
summary_writer = tf.summary.FileWriter(log_dir)
summary_writer.add_graph(tf.get_default_graph())

# initialize variables and main loop
sess.run(tf.global_variables_initializer())
for epoch in range(nr_epochs):

batch = mnist.train.next_batch(batch_size)
_, l, a = sess.run([train_step, loss, acc],

feed_dict={label: batch[1],
img: batch[0]})

# add loss and accuracy as metrics
_run.log_scalar("train.cross_entropy", l)
_run.log_scalar("train.accuracy", a, epoch)

# return test accuracy as final result
return sess.run(acc, feed_dict={

img: mnist.test.images,
label: mnist.test.labels})

Related Work

We are aware of only a few projects that have a focus similarly
broad as Sacred, the closest one being Sumatra [Dav12]. Both
projects are very similar in that they collect and store information
about sources, dependencies, configurations, and host information.
Their main difference is that Sumatra comes as a command line
tool for running experiments "from the outside", while Sacred
was designed as a Python package to be used from within the
experiment script. So while Sacred is limited to Python scripts,
Sumatra can track any executable as long as its command line
interface matches a certain structure. This, on the other hand, allows
sacred to provide many conveniences like the flexible configuration
system with configuration injection, automatic seeding of random
number generators, support for live updated custom information,
and integration with 3rd party libraries like Tensorflow. It also
means that Sacred scripts are self-sufficient, while Sumatra relies
on a separate outside project-configuration stored in a hidden
.smt directory. Another subtle but important difference is that
Sumatra relies mainly on SQL for storing run information, while
Sacred favors MongoDB. The use of this schema-free database
enables querying Sacred runs based on dynamic structure such as
configuration entries (even nested ones) and custom information.
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Workflow management systems such as Taverna [WHF+13],
Kepler [ABJ+04], Vistrails [BCC+05], and Galaxy [GRH+05] can
also capture provenance information and ensure reproducibility.
They let the user define a workflow based on standardized
components, often through a graphical user interface without any
direct programming. Implementing a custom component is usually
difficult, which restricts their usefulness to the supported ones
and thus to their intended domain. The line between workflow
management and free-form programming blurs with tools like
Reskit [IP17] and FBLearner Flow [Dun16]. Sacred, however,
is targeted at general machine learning audience, and therefore
works with arbitrary python instead of some set of standardized
components.

Experiment databases [VBPH12], [SWGCM14], [emp17] rep-
resent a related bodey of work by making an effort to unify the
process and storage of machine learning problems and experiments
by expressing them in a common language. By standardizing
that language, they improve comparability and communicability
of the results. The most well-known example might be the
OpenML project [VvRBT14]. This standardization has benefits,
but also imposes certain restrictions on the conducted experiments.
Therefore, to keep Sacred as general as possible, we chose not
to build it ontop of an experiment database. That being said, we
believe there is a lot of value in adding (optional) interfaces to
experiment databases to Sacred.

There are several tools such as noWorkflow [PBMF15],
ProvenanceCurious [HAW13], and others [BGS08] to extract fine-
grained provenance information from python scripts. Whereas
Sacred treats the executed code mostly as a black box, these tools
use inspection and tracing techniques to extract function call graphs
and data flow. This information is then often stored in the form of
the Open Provenance Model in a relational database and enables
in-depth analysis of the performed computations.

Some other projects, including FGLab [Aru17], the proprietary
Aetros [Aet17], and Neptune [dee17], focus on providing a
dashboard. Jobman [Job12] is a Python library for scheduling lots
of machine learning experiments which also helps in organizing
hyperparameter searches and bookkeeping. Several projects exist
with a focus on capturing the entire environment of an experiment
to ensure its reproducibility. They include tools such as ReproZip
[CRSF16], CDE [Guo12], PTU [PMF13], CARE [JVD14]. They
trace dependencies on an operating system level and help in
packaging everything that is needed to rerun an experiment exactly.

Conclusion

Sacred is an open source Python framework which aims to
provide infrastructure for computational experiments with minimal
boilerplate code and maximum convenience. This paper presented
its key features and demonstrated how they interact to tackle
some of the basic problems of computational experimentation, like
managing parameters, bookkeeping, and reproducibility. We hope
that through convenience and modularity, Sacred will help to build
a rich ecosystem of tools. Two such supporting tools are Labwatch
and Sacredboard. Labwatch interfaces the powerful configuration
system of sacred with several hyperparameter optimization libraries,
thus significantly simplifying the tuning of configurations. Sacred-
board, on the other hand, provides a web-based interface to view
recorded runs, facilitating a live overview of all the experiments.

Future Work

Sacred has been useful for many researchers already, but there are
still many possible improvements on our roadmap. This includes
support for more complex experimental setups, like having separate
training and evaluation scripts as is common with large Tensorflow
models. Similarly, it would be interesting to offer support and a
clear workflow for the continuation of aborted runs.

While Sacred helps to capture relevant information about
experiments, it does not offer much support for organizing and
analyzing results. To tackle this we plan to provide a unified
interface for querying the records created by different observers.
This semi-standardized format will enable the creation of general
analysis tools, and extend the applicability of existing tools like
Sacredboard.

Another important direction is to automate the process of
actually reproducing Sacred experiments. As of now the researcher
has to manually reconstruct the environment, copy the stored
source files and run with the saved configuration parameters.
An integration with environment capturing tools ReproZip could
allow for creating packages that can be rerun on any system in a
completely automated fashion.

Finally, we plan on improving the support of Sacred for
scheduling and distributing runs. It already supports "queueing
up" experiments, which only creates a database entry containing
the sources, desired configuration, and the status QUEUED. In the
future, we hope to include workers that can be run on different
machines and which will fetch queued runs from the database
and execute them. This way, Sacred could offer basic support for
distributing computations.
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FigureFirst: A Layout-first Approach for Scientific
Figures

Theodore Lindsay‡, Peter T. Weir§, Floris van Breugel¶∗

F

Abstract—One major reason that Python has been widely adopted as a sci-
entific computing platform is the availability of powerful visualization libraries.
Although these tools facilitate discovery and data exploration, they are difficult
to use when constructing the sometimes-intricate figures required to advance
the narrative of a scientific manuscript. For this reason, figure creation often
follows an inefficient serial process, where simple representations of raw data
are constructed in analysis software and then imported into desktop publishing
software to construct the final figure. Though the graphical user interface of
publishing software is uniquely tailored to the production of publication quality
layouts, once the data are imported, all edits must be re-applied if the analysis
code or underlying dataset changes. Here we introduce a new Python package,
FigureFirst, that allows users to design figures and analyze data in a paral-
lel fashion, making it easy to generate and continuously update aesthetically
pleasing and informative figures directly from raw data. To accomplish this,
FigureFirst acts as a bridge between the Scalable Vector Graphics (SVG) format
and Matplotlib [Hunter08] plotting in Python. With FigureFirst, the user specifies
the layout of a figure by drawing a set of rectangles on the page using a
standard SVG editor such as Inkscape [Altert13]. In Python, FigureFirst uses
this layout file to generate Matplotlib figures and axes in which the user can
plot the data. Additionally, FigureFirst saves the populated figures back into the
original SVG layout file. This functionality allows the user to adjust the layout
in Inkscape, then run the script again, updating the data layers to match the
new layout. Building on this architecture, we have implemented a number of
features that make complex tasks remarkably easy including axis templates;
changing attributes of standard SVG items such as their size, shape, color, and
text; and an API for adding JessyInk [Jagannathan12] extensions to Matplotlib
objects for automatically generating animated slide presentations. We have used
FigureFirst to generate figures for publications [Lindsay17] and provide code
and the layouts for the figures presented in this manuscript at our GitHub page:
http://flyranch.github.io/figurefirst/.

Index Terms—plotting, figures, SVG, Matplotlib

Introduction

Visualization has long been a critical element in the iterative
process of science. Skill with the pen allowed the early pioneers
of the scientific revolution to share, explain, and convince: Galileo
was trained in the Florentine Accademie delle Arti del Disegno;
and the intricate drawings of Da Vinci and Vesalius served to
overturn Galen’s entrenched theories—with Vesalius’s historic
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textbook paving the way for William Harvey’s discovery of a
unified circulatory system [Aird11].

Although new web-enabled media formats are emerging to
provide alternative mechanisms for scientific communication, the
static printed publication remains the centerpiece of scientific
discourse. A well-designed sequence of data-rich figures makes it
easy for other researchers across disciplines to follow the narrative,
assess the quality of the data, criticize the work, and remember the
conclusions. In fact, the importance of the narrative in organizing
and structuring the logic of research has led some to propose
that writing the manuscript should be a more integral part of
the original design and execution of experiments [Whitesides04].
According to this view, the researcher should create a text outline,
as well as a visual story-board, long before all the data have been
collected and analyzed. As new results come to light, the story-
board is updated with new data and new experiments.

From a practical standpoint, taking this iterative approach
with data-rich figures is challenging because desktop publishing
and illustration software is not integrated with scientific analysis
software, and using the Matplotlib API to directly specify plotting
details is time consuming (Fig. 1). A few of the commercial
software packages such as MATLAB(TM) and SigmaPlot(TM)
provide some graphical tools to assist in figure layout, but these
are severely limited compared to those available in vector graphics
software such as Inkscape or Adobe Illustrator(TM), especially
when creating multi-panel figures. For this reason, figure gener-
ation usually follows a unidirectional workflow in which authors
first write code to analyze and plot the raw data, and only later do
they import the figures into desktop publishing software for final
editing and styling for press.

We created the open-source FigureFirst library to enable
interoperability between open-source plotting and analysis tools
available in Python (e.g. Matplotlib) and the graphical user inter-
face provided by Scalable Vector Graphics (SVG) editors such
as the open-source application Inkscape. By drawing a series
of boxes in a blank SVG document, a researcher may rapidly
generate a prototype of a multi-panel figure, and then populate this
figure using powerful analysis and plotting functions in Python.
The FigureFirst library allows the user to insert these plots back
into the prototype SVG document, completing the loop between
visualization and analysis. As data are collected, individual sub-
panels in the figure may be populated, moved, resized or removed
as the events of the ongoing study warrant. In this manner, the
library facilitates a more iterative approach to this key aspect of
the scientific method. Finally, by embedding information about the
scripts used to generate the final figures within the SVG document
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Fig. 1: Figurefirst allows the plotting axes in a multi-panel figure to be
quickly placed in a flexible and meaningful way. (A) A plot of the iris
dataset created using the Matplotlib and gridspec API. (B) The same
data plotted using FigureFirst. Note that the less rigid placement of
axes helps highlight the inherent structure of the data. The full 27-line
script used to create this panel can be found in the Summary and
Future Directions section.

itself, FigureFirst makes it possible to store an automatically
updated and complete log of the transformation from raw data
to a publication quality figure, encapsulating the analysis routine
within the final figure. Thus, every step of the process may be kept
under version control and published along with the manuscript,
greatly increasing the transparency and reproducibility of the final
publication.

Below we provide a short overview of the interface to the
library in the Basic Usage section. We discuss more details on
how to generate a layout file using Inkscape and xml tags in the
Groups and Templates section. The Architecture section contains
a more detailed description of the library for those interested in
contributing to the project.

Basic Usage

With FigureFirst creating a new figure generally involves four
steps:

1) Design the layout file. (Fig. 2A) Fundamentally this
step entails decorating a specific subset of the objects

in the SVG file with xml tags that identify what objects
FigureFirst should expose to Python. For instance, the
user specifies a Matplotlib axis by tagging an SVG
<rect/> with the <figurefirst:axis> tag. If
using Inkscape, we facilitate this step with a number
of optional Inkscape extensions (Fig. 3).

2) Import the layout into Python. (Fig. 2B) Construct a
FigureLayout object with the path to the layout file
and then call the make_mplfigures() method of
this object to generate Matplotlib figures and axes
as specified in the layout.

3) Plot data. (Fig. 2C) All the newly created figure
axes are available within the axes dictionary of the
FigureLayout object.

4) Save to SVG. SVG graphics are merged with Mat-
plotlib figures, allowing complex vector art to be quickly
incorporated as overlays or underlays to your data pre-
sentation.

As an example, to generate Figure 2 we used Inkscape
to construct a .SVG document called ’workflow_layout.SVG’
containing a layer with three gray rectangles. We then used
the tag axis Inkscape extension (Figure 3) to identify each
<rect/> with a <figurefirst:axes> tag that has a
unique name as an attribute. For instance, we tagged the gray
rectangle that became panel C with <figurefirst:axis
figurefirst:name="plot_data" />. In this example
we have drawn in the axes spines and included this with the
arrows and other annotations on a separate layer in the .SVG file to
illustrate one way to use vector art overlays in a layout document.

In Python we may then use the FigureFirst module to plot
some data to this axis using the following code:

1 import figurefirst as fifi
2 layout = fifi.FigureLayout('workflow_layout.SVG')
3 layout.make_mplfigures()
4 fifi.mpl_functions.kill_all_spines(layout)
5 x = np.linspace(0,2*pi); y = np.sin(x)
6 layout.axes['plot_data'].plot(x,y)
7 layout.save('workflow.SVG')

Lines 2 and 3 are responsible for parsing the layout document
and generating the Matplotlib figures. In line 4 we pass the
layout to a helper function in the mpl_functions submodule
that removes the axes spines from all the axes contained within
the layout. Lines 5-6 plot the data and line 7 saves the layout
to a new SVG document called ’workflow.SVG’ with all the
Matplotlib axes associated with this figure inserted into a new
layer. Because usually one will want to use Matplotlib to generate
the axis spines we have included an auxiliary submodule called
mpl_functions that contains a number of utility functions
that operate on figures generated from layouts to apply consistent
spine-styles and formats accross the axes of a figure. The rest of
the figure panels were also generated in Python by simply calling
layout['panel_name'].imshow(screenshot_image).
Note that there is nothing keeping us from using this new
document as a layout document itself, enabling the placement of
vector graphics objects in relation to plotted features.

Groups and Templates

Because the figurefirst:name attribute of the tagged
<rect> will be used as the key in the layout.axes dictionary in
Python, each panel in this example must be given a unique name.
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Fig. 2: Overview of the iterative layout-based approach to figure
creation using FigureFirst. (A) The user designs a figure layout
in SVG, specifying the location and aspect-ratio of plotting axes.
Additional vector art such as arrows or stylized axes spines can be
included in the layout document. (B) FigureFirst interprets the layout
document and generates Matplotlib axes and figures that the user can
use to plot in Python. (C) When saving, the generated plots are merged
with the original layout to incorporate the non-Matplotlib graphics.
Note that this approach allows changes to the figure layout or analysis
code to be applied at any point in the workflow.

Generating these names can be a cumbersome requirement be-
cause scientific data often have a nested or hierarchical structure.
Moreover, we found that when generating the code to plot a figure,
it is useful if the organization of the layout document reflects
the underlying data. Thus, we have provided two mechanisms
to allow a hierarchical structure in the labels associated with a
layout: groups and templates. Though the interfaces for working
with these objects differ, they both generate a nested structure in
the layout.axes dictionary.

When using groups, the hierarchy is specified in SVG
by enclosing a set of tagged axes within the <g> container
that itself is tagged with <figurefirst:group> using a

Fig. 3: Screenshots of Inkscape illustrating the two mechanisms for
applying the correct xml tags, which are used by FigureFirst to
generate Matplotlib axes. (A) A dialog box allows the user to tag a
rectangle as a FigureFirst axis. (B) The user can edit the document’s
XML directly using Inkscape’s XML editor.

figurefirst:name attribute. The axes are then exposed to
the user in Python within the layout.axes dictionary keyed
by tuples that contain the path in the hierarchy e.g. myaxes =
layout.axes[(groupname, axisname)].

Though groups allow for arbitrary nesting structure within
the layout, it is common in scientific figures for a single display
motif to be replicated multiple times in a multi-panel figure. For
instance, one might want to plot data from a series of similar
experiments performed under different conditions. In this case,
the template feature allows for rapid design and modification of
the layout without the need to tag each individual axis.

To illustrate the template feature, consider the task of making
a more complex figure that describes three behavioral metrics for
three different animal groups. With FigureFirst, the user can draw
the layout for one of the groups, and then use this layout as a
template for the other two (Fig. 4A-B). Later one can add, remove,
or change the relative sizes of the axes in all three figures simply
by editing the single template. In this example, each of the three
groups was created using a new Matplotlib figure, which was
then saved to a separate layer in the SVG file (Fig. 4C). Below
is an excerpt of the code used to load the layout from Figure
3A, iterating through three groups and plotting the relevant data
into a separate layer for each group (Fig. 4B-C). The complete
code is available on our github page as a Jupyter notebook:
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Fig. 4: Creating and rearranging multi-panel figures using FigureFirst’s template feature. (A) Layout for a figure. (B) Output. (C) Inkscape
screenshot illustrating the layered structure. (D) Rearranged layout. (E) Output for the new layout (code remains identical). The code used to
generate these figures is available as a Jupyter Notebook on our github page: https://github.com/FlyRanch/FigureFirst/blob/master/examples/
figure_groups_and_templates/figure_templates_example.ipynb

https://github.com/FlyRanch/FigureFirst/blob/master/examples/
figure_groups_and_templates/figure_templates_example.ipynb.
1 import figurefirst as fifi
2 layout = fifi.FigureLayout(template_filename)
3 layout.make_mplfigures()
4

5 for group in ['group1', 'group2', 'group3']:
6 for ax in ['ax1', 'ax2', 'ax3']:
7 mpl_axis = layout.axes[(group, ax)]
8 mpl_axis.plot(x_data, y_data,
9 color=colors[group])

10

11 layout.append_figure_to_layer(
12 layout.figures[group], group)
13

14 layout.write_svg(output_filename)

Additional SVG/Python interoperability

The decorator language we use for the FigureFirst xml tags is
general, and we extended it to provide a simple mechanism for
passing additional information back and forth between Python and
SVG. This enables a few additional features we refer to as axis
methods, path specs, xml passing, Python tracebacks and SVG
items.

The axis methods feature allows the user to include
Python code in the layout document to be applied to
all the corresponding Matplotlib axes en mass when the
layout.apply_mpl_methods() function is called in
Python. Axis methods are enabled by adding an appropriate
attribute to the <figurefirst:axis> tag. The value of this
attribute will be parsed and passed as arguments to the method.
For instance to specify the y limits of an axis to (0, 250)
add the figurefirst:set_ylim="0,250" attribute to the
corresponding <figurefirst:axis> tag.

In keeping with the notion that vector editing software is
better suited for designing the visual landscape of a figure
than code, we created the <figurefirst:pathspec> or
<figurefirst:patchspec> tag to create a way for users
to generate a palette of line and patch styles within the layout
document and pass these to plotting functions in Python. Using
this feature, a user can explore different stroke widths, colors and
transparencies in Inkscape and then quickly pass these styles as
keyword arguments to Matplotlib plotting functions.

The two tools described above allow the user to pass informa-
tion from SVG to Python; we have also implemented features that
allow data to be passed from Python back into SVG. For instance



Con
fer

en
ce

Rea
dy

FIGUREFIRST: A LAYOUT-FIRST APPROACH FOR SCIENTIFIC FIGURES 61

Fig. 5: Additional features that use FigureFirst as an interface layer between SVG and Python. (A-B) SVGitems allows the attributes of SVG
objects in the layout document to be to be edited and modified in Python. In the layout (A) the text item I1, the three small <rects/> as well as
the three <path/> objects are tagged with <figurefirst:SVGitem figurefirst:name=somename> allowing the text and color
of the objects to be changed in the final output shown in B. (C-D) Using <figurefirst:pathspec> and <figurefirst:patchspec>
a palette of line or patch styles respectively, can be defined in SVG (C) and then passed as keyword arguments to Matplotlib plotting functions
to generate the plot in D. (E) FigureFirst simplifies keeping track of when, how, and why your figures are created by embedding the time
modified, user notes, and full traceback directly into each FigureFirst generated layer.

the pass_xml() method of the layout class can be used to iden-
tify axes as slides in a JessyInk (https://launchpad.net/jessyink)
presentation, or attach mouseover events or even custom javascript
routines to a plotted path.

FigureFirst can also expose many types of SVG objects includ-
ing text, patches, and circles to Python by tagging the object with
the <figurefirst:SVGitem> tag (Fig. 5C-D). This makes it
possible to use the Inkscape user interface to place labels, arrows,
etc. while using Python to edit their attributes based on the data.

When quickly prototyping analysis and figures, it is easy to
lose track of when you have updated a figure, and what code you
used to generate it. FigureFirst allows the user to embed traceback
information, time modified, and custom notes into the SVG file
directly using the following option. See Figure 4E for a screenshot
of the Inkscape output.
layout.append_figure_to_layer(layout.figures[group],

group,
save_traceback=True,
notes=notes[group])

In the future, we plan to expand the traceback capability by
optionally linking the traceback to a github page so that when
a FigureFirst generated SVG file is shared, other viewers can
quickly find the code and data used to generate the figure.
This option would directly and automatically link the scientific
publication with the data and software, thereby facilitating open
science with minimal user overhead. Alternatively, for simple and
standalone Python scripts, it would be possible to embed the
scripts directly into the xml.

Architecture

FigureFirst uses a minimal Document Object Model interface
(xml.dom.minidom) to parse and write to an SVG file. We define
a set of xml tags that the user may use to decorate a subset of
SVG objects. Our library then exposes these objects to Python,
where they are used, for example, to generate Matplotlib axes. We
use the <figurefirst:> namespace in our xml to ensure that
these tags will not collide with any other tags in the document.

When constructing a figurefirst.FigureLayout, Fig-
ureFirst parses the SVG document and transforms tagged SVG
elements into a Python object that holds the key graphical data
specified by SVG. For instance, as mentioned above, a box
tagged with <figurefirst:axis> will be used to create a
FigureFirst.Axis object that contains the x,y position of
the origin, as well as the height and width of the tagged box.
In the case that the tagged SVG objects are subject to geometric
transforms from enclosing containers, FigureFirst will compose
the transforms and apply them to the origin, height, and width
coordinates of the Matplotlib axes so that the resulting Matplotlib
figure matches what is seen by the user when the layout is rendered
in Inkscape.

Within a figurefirst.FigureLayout object, axes ob-
jects are organized within a grouping hierarchy specified by
the SVG groups or Inkscape layers that enclose the tagged
box. Like the axes, these groups and layers are exposed to
FigureFirst using xml tags: <figurefirst:group> and
<figurefirst:figure> respectively.

We use Inkscape layers as the top level of the grouping
hierarchy. Each layer generatea a new Matplotlib figure instance
that holds the enclosed <figurefirst:axis> objects, and the
dimensions of these figures are determined by the dimensions of
the SVG document. Additional levels of grouping are specified by
tagging groups with the <figurefirst:group> tag. In the
case that a <figurefirst:figure> tag is not indicated, all
the axes of the document are collected into the default figure with
the name 'none'.

The <figurefirst:figure> tag can also be used at
the level of groups and individual boxes to support figure
templates. Templates allow a sub-layout prototype to be repli-
cated multiple times within the context of a larger docu-
ment. To use templates a group of <figurefirst:axis>
boxes is tagged with a <figurefirst:figure> tag.
This template is then targeted to single boxes that are
tagged with the <figurefirst:figure> that contains a
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<figurefirst:template> attribute indicating the name of
the template to use. The template is subsequently scaled and
translated to fit within the bounds of the target.

Summary and Future Directions

Matplotlib provides a rich and powerful low-level API that allows
exquisite control over every aspect of a plot. Although high level
interfaces such as subplot and gridspec that attempt to simplify the
layout of a figure exist, these do not always meet the demands of a
visualization problem. For example, consider Fig. 1 where we plot
the raw data and marginal distributions from Fisher’s iris dataset
[Fisher36]. In Fig. 1A we use the gridspec API to construct a 2X4
grid, and then define the axes within the constraints of this grid.
Compare this to Fig. 1B where we use figurefirst to plot into a
layout. Not only does careful placing of the plotting axes make
better use of the figure space, but the spacing emphasizes certain
comparisons over others. Of course, it is entirely possible to con-
struct a nearly identical figure using the Matploltib API, however
this would require writing functions that manually specify each
axis location or contain a considerable amount of layout logic. In
addition to being rather lengthy, it would be difficult to write these
functions in a way that generalizes across figures. In contrast, as
shown below, only 27 lines of code were required to load the data
and plot Fig. 1B using FigureFirst. Note that nearly all the styling
information is encapsulated within the layout document. In fact,
in the case of the marginal distributions, we use the names from
the layout to index into our Python data structure (line 21), thus
the layout even specifies what data to plot and where.

1 from sklearn import datasets
2 import numpy as np
3 import figurefirst as fifi
4 d = datasets.load_iris()
5 data = dict()
6 for n,v in zip(d.feature_names,d.data.T):
7 data[tuple(n.split()[:2][::-1])] = v
8 layout = fifi.FigureLayout('example_layout.svg')
9 layout.make_mplfigures()

10 kwa = layout.pathspecs['petal'].mplkwargs()
11 layout.axes['raw'].scatter(data['width','petal'],
12 data['length','petal'],
13 **kwa)
14 kwa = layout.pathspecs['sepal'].mplkwargs()
15 layout.axes['raw'].scatter(data['width','sepal'],
16 data['length','sepal'],
17 **kwa)
18 for key in layout.axes.keys() :
19 if key in data.keys():
20 kwa = layout.pathspecs[key[1]].mplkwargs()
21 counts,b = np.histogram(data[key],
22 np.arange(0,11))
23 layout.axes[key].fill_between(
24 b[:-1]+0.5,0,counts,**kwa)
25 layout.apply_mpl_methods()
26 fifi.mpl_functions.set_spines(layout)
27 layout.save('example.svg')

The use of layout documents to structure graphical elements is
common in many domains of computer science, including the
design of graphical user interfaces and the organization of web
pages. FigureFirst takes this concept and applies it to the construc-
tion of scientific figures. This approach makes it possible to update
figures with new data independently (saving computational time).
Often when working on a scientific figure early in the process, the
overall layout and figure size is unknown. Or perhaps the figure
needs to be reformatted for a different journal’s size, or for a
poster or slide format. With FigureFirst these changes are as easy

as rearranging the rectangles in Inkscape, and rerunning the same
code (Fig. 4D-E). This workflow exemplifies the key contribution
of FigureFirst: separating figure layout from data analysis, so that
the software is not cluttered with code to generate the layout, and
allowing for quick reorganization.

Thus far, we have focused our development efforts on using
FigureFirst in conjunction with Inkscape. Inkscape is convenient
in that it is (a) open source, (b) has a strong feature set, (c) uses
the open SVG standard, (d) is available for all major operating
systems, and (e) has a built-in xml editor. In principle, however,
any SVG-compatible graphical layout software can be used (e.g.
Adobe Illustrator). In the future, we plan to test other user
interfaces to help increase our user base. Adobe Illustrator un-
fortunately does not use the same open SVG standard as Inkscape,
so adding full support for Illustrator will require signficant effort,
though it is possible and we will continue to explore that direction.
Furthermore, developing a Javascript-based SVG editor that could
easily decorate a SVG file with FigureFirst tags could then be
employed as a Jupyter notebook extension to facilitate quick Fig-
ureFirst layout creation within a Jupyter session. In the meantime,
layouts can be created externally and the following code can be
used to display the output.SVG in the notebook:
from IPython.display import display,SVG
display(SVG(output.svg))

Presently, the most serious performance issue with FigureFirst is
that large Matplotlib collections are difficult for Inkscape to render
efficiently. This can be circumvented by utilizing the Matplotlib
axis method <set_rasterization_zorder(N)> to raster-
ize large collections of patches. Other SVG rendering engines,
such as the ones used by Google Chrome and Adobe Illustrator,
have fewer problems, suggesting that this is a solvable issue.

As described previously in the Additional SVG/Python Inter-
operability section, we have implemented a simple method of
embedding Python traceback information into the output SVG
generated by FigureFirst. Linking this traceback with online repos-
itories and data will make it possible for readers to easily access
the data and code in an organized way, rearrange the presentation
for their own needs, or apply the same analysis to a new dataset.
In this way, FigureFirst simultaneously decouples the tasks of
layout, analysis, and data sharing, while keeping them intimately
connected, making open science easy and hassle free.
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Parallel Analysis in MDAnalysis using the Dask
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Abstract—The analysis of biomolecular computer simulations has become a
challenge because the amount of output data is now routinely in the terabyte
range. We evaluated if this challenge can be met by a parallel map-reduce
approach with the Dask parallel computing library for task-graph based com-
puting coupled with our MDAnalysis Python library for the analysis of molecular
dynamics (MD) simulations. We performed a representative performance evalu-
ation, taking into account the highly heterogeneous computing environment that
researchers typically work in together with the diversity of existing file formats
for MD trajectory data. We found that the underlying storage system (solid state
drives, parallel file systems, or simple spinning platter disks) can be a deciding
performance factor that leads to data ingestion becoming the primary bottleneck
in the analysis work flow. However, the choice of the data file format can mitigate
the effect of the storage system; in particular, the commonly used Gromacs XTC
trajectory format, which is highly compressed, can exhibit strong scaling close to
ideal due to trading a decrease in global storage access load against an increase
in local per-core CPU-intensive decompression. Scaling was tested on a single
node and multiple nodes on national and local supercomputing resources as well
as typical workstations. Although very good strong scaling could be achieved for
single nodes, good scaling across multiple nodes was hindered by the persistent
occurrence of "stragglers", tasks that take much longer than all other tasks, and
whose ultimate cause could not be completely ascertained. In summary, we
show that, due to the focus on high interoperability in the scientific Python eco
system, it is straightforward to implement map-reduce with Dask in MDAnalysis
and provide an in-depth analysis of the considerations to obtain good parallel
performance on HPC resources.

Index Terms—MDAnalysis, High Performance Computing, Dask, Map-Reduce,
MPI for Python

Introduction

MDAnalysis is a Python library that provides users with access to
raw simulation data and enables structural and temporal analysis
of molecular dynamics (MD) trajectories generated by all major
MD simulation packages [GLB+16], [MADWB11]. MD trajecto-
ries are time series of positions (and sometimes also velocities)
of the simulated atoms or particles; using statistical mechanics
one can calculate experimental observables from these time series
[FS02], [MM14]. The size of these trajectories is growing as the
simulation times are being extended beyond micro-seconds and
larger systems with increasing numbers of atoms are simulated.
The amount of data to be analyzed is growing rapidly into the
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terabyte range and analysis is increasingly becoming a bottleneck
in MD workflows [CR15]. Therefore, there is a need for high
performance computing (HPC) approaches for the analysis of MD
trajectory data [TRB+08], [RCI13].

MDAnalysis does not yet provide a standard interface for
parallel analysis; instead, various existing parallel libraries such as
Python multiprocessing, joblib, and mpi4py [DPS05], [DPKC11]
are currently used to parallelize MDAnalysis-based code on a
case-by-case basis. Here we evaluated performance for parallel
map-reduce [DG08] type analysis with the Dask parallel comput-
ing library [Roc15] for task-graph based distributed computing on
HPC and local computing resources. Although Dask is able to
implement much more complex computations than map-reduce,
we chose Dask for this task because of its ease of use and because
we envisage using this approach for more complicated analysis
applications whose parallelization cannot be easily expressed as a
simple map-reduce algorithm.

As the computational task we performed a common task in
the analysis of the structural dynamics of proteins: we computed
the time series of the root mean squared distance (RMSD) of
the positions of all Cα atoms to their initial coordinates at time
0; for each time step ("frame") in the trajectory, rigid body
degrees of freedom (translations and rotations) have to be removed
through an optimal structural superposition that minimizes the
RMSD [MM14] (Figure 1). A range of commonly used MD file
formats (CHARMM/NAMD DCD [BBIM+09], Gromacs XTC
[AMS+15], Amber NCDF [CCD+05]) and different trajectory
sizes were benchmarked.

We looked at different HPC resources including national
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Fig. 1: Calculation of the root mean square distance (RMSD) of
a protein structure from the starting conformation via map-reduce
with Dask. A RMSD as a function of time, with partial time series
colored by trajectory block. B Dask task graph for splitting the RMSD
calculation into three trajectory blocks.
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supercomputers (XSEDE TACC Stampede and SDSC Comet),
university supercomputers (Arizona State University Research
Computing Saguaro), and local resources (Gigabit networked
multi-core workstations). The tested resources are parallel and het-
erogeneous with different CPUs, file systems, high speed networks
and are suitable for high-performance distributed computing at
various levels of parallelization. Different storage systems such as
solid state drives (SSDs), hard disk drives (HDDs), network file
system (NFS), and the parallel Lustre file system (using HDDs)
were tested to examine the effect of I/O on the performance.
The benchmarks were performed both on a single node and
across multiple nodes using the multiprocessing and distributed
schedulers in the Dask library.

We previously showed that the overall computational cost
scales directly with the length of the trajectory, i.e., the weak
scaling is close to ideal and is fairly independent from other factors
[KB17]. Here we focus on the strong scaling behavior, i.e., the
dependence of overall run time on the number of CPU cores used.
Competition for access to the same file from multiple processes
appears to be a bottleneck and therefore the storage system is an
important determinant of performance. But because the trajectory
file format dictates the data access pattern, overall performance
also depends on the actual data format, with some formats being
more robust against storage system specifics than others. Overall,
good strong scaling performance could be obtained for a single
node but robust across-node performance remained challenging.
In order to identify performance bottlenecks we examined sev-
eral other factors including the effect of striping in the parallel
Lustre file system, over-subscribing (using more tasks than Dask
workers), the performance of the Dask scheduler itself, and we
also benchmarked an MPI-based implementation in contrast to the
Dask approach. From these tests we tentatively conclude that poor
across-nodes performance is rooted in contention on the shared
network that may slow down individual tasks and lead to poor
load balancing. Nevertheless, Dask with MDAnalysis appears to
be a promising approach for high-level parallelization for analysis
of MD trajectories, especially at moderate CPU core numbers.

Methods

We implemented a simple map-reduce scheme to parallelize pro-
cessing of trajectories over contiguous blocks. We tested libraries
in the following versions: MDAnalysis 0.15.0, Dask 0.12.0 (also
0.13.0), distributed 1.14.3 (also 1.15.1), and NumPy 1.11.2 (also
1.12.0) [VCV11].
import numpy as np
import MDAnalysis as mda
from MDAnalysis.analysis.rms import rmsd

The trajectory is split into n_blocks blocks with inital frame
start and final frame stop set for each block. The calculation
on each block (function block_rmsd(), corresponding to the
map step) is delayed with the delayed() function in Dask:
from dask.delayed import delayed

def analyze_rmsd(ag, n_blocks):
"""RMSD of AtomGroup ag, parallelized n_blocks"""
ref0 = ag.positions.copy()
bsize = int(np.ceil(

ag.universe.trajectory.n_frames \
/ float(n_blocks)))

blocks = []
for iblock in range(n_blocks):

start, stop = iblock*bsize, (iblock+1)*bsize

out = delayed(block_rmsd, pure=True)(
ag.indices, ag.universe.filename,
ag.universe.trajectory.filename,
ref0, start, stop)

blocks.append(out)
return delayed(np.vstack)(blocks)

In the reduce step, the partial time series from each block are
concatenated in the correct order (np.vstack, see Figure 1 A);
because results from delayed objects are used, this step also has to
be delayed.

As computational load we implement the calculation of the
root mean square distance (RMSD) of the Cα atoms of the protein
adenylate kinase [SB14] when fitted to a reference structure using
an optimal rigid body superposition [MM14], using the qcprot
implementation [LAT10] in MDAnalysis [GLB+16]. The RMSD
is calculated for each trajectory frame in each block by iterating
over u.trajectory[start:stop]:

def block_rmsd(index, topology, trajectory, ref0,
start, stop):

u = mda.Universe(topology, trajectory)
ag = u.atoms[index]
out = np.zeros([stop-start, 2])
for i, ts in enumerate(

u.trajectory[start:stop]):
out[i, :] = ts.time, rmsd(ag.positions, ref0,

center=True, superposition=True)
return out

Dask produces a task graph (Figure 1 B) and the computation of
the graph is executed in parallel through a Dask scheduler such as
dask.multiprocessing (or dask.distributed):

from dask.multiprocessing import get

u = mda.Universe(PSF, DCD)
ag = u.select_atoms("protein and name CA")
result = analyze_rmsd(ag, n_blocks)
timeseries = result.compute(get=get)

The complete code for benchmarking as well as an
alternative implementation based on mpi4py is available
from https://github.com/Becksteinlab/Parallel-analysis-in-the-
MDAnalysis-Library under the MIT License.

The data files consist of a topology file adk4AKE.psf
(in CHARMM PSF format; N = 3341 atoms) and a trajectory
1ake_007-nowater-core-dt240ps.dcd (DCD format)
of length 1.004 µs with 4187 frames; both are freely available
from figshare at DOI 10.6084/m9.figshare.5108170 [SB17]. Files
in XTC and NCDF formats are generated from the DCD on the
fly using MDAnalysis. To avoid operating system caching, files
were copied and only used once for each benchmark. All results
for Dask distributed were obtained across three nodes on different
clusters.

Trajectories with different number of frames per trajectory
were analyzed to assess the effect of trajectory file size. These tra-
jectories were generated by concatenating the base trajectory 50,
100, 300, and 600 times and are referred to as, e.g., "DCD300x"
or "XTC600x". Run time was analyzed on single nodes (1–24
CPU cores) and up to three nodes (1–72 cores) as function of
the number of cores (strong scaling behavior) and trajectory sizes
(weak scaling). However, here we only present strong scaling data
for the 300x and 600x trajectory sizes, which represent typical
medium size results. For an analysis of the full data including
weak scaling results set see the Technical Report [KB17].

The DCD file format is a binary representation for 32-bit
floating point numbers (accuracy of positions about 10−6 Å) and



Con
fer

en
ce

Rea
dy

66 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2017)

the DCD300x trajectory has a file size of 47 GB (DCD600x is
twice as much); XTC is a lossy compressed format that effectively
rounds floats to the second decimal (accuracy about 10−2 Å,
which is sufficient for typical analysis) and XTC300x is only 15
GB. Amber NCDF is implemented with netCDF classic format
version 3.6.0 (same accuracy as DCD) and trajectories are about
the same size as DCD. DCD and NCDF natively allow fast
random access to frames or blocks of frames, which is critical
to implement the map-reduce algorithm. XTC does not natively
support frame seeking but MDAnalysis implements a fast frame
scanning algorithm for XTC files that caches all frame offsets and
so enables random access for the XTC format, too [GLB+16]. In
MDAnalysis 0.15.0, Amber NCDF files are read with the Python
netCDF4 module that wraps the netcdf C library; in the upcoming
MDAnalysis 0.17.0, netCDF v3 files are read with the pure Python
scipy.io.netcdf module, which tends to read netCDF v3
files about five times faster than netCDF4, and hence results for
NCDF presented here might change with more recent versions of
MDAnalysis.

Performance was quantified by measuring the average time
per trajectory frame to load data from storage into memory (I/O
time per frame, tI/O), the average time to complete the RMSD
calculation (compute time per frame, tcomp), and the total wall
time for job execution tN when using N CPU cores. Strong scaling
was assessed by calculating the speed up S(N) = t1/tN and the
efficiency E(N) = S(N)/N.

Results and Discussion

Trajectories from MD simulations record snapshots of the posi-
tions of all particles at regular time intervals. A snapshot at a
specified time point is called a frame. MDAnalysis only loads a
single frame into memory at any time [GLB+16], [MADWB11]
to allow the analysis of large trajectories that may contain, for
example, nframes = 107 frames in total. In a map-reduce approach,
N processes will iterate in parallel over N chunks of the trajectory,
each containing nframes/N frames. Because frames are loaded
serially, the run time scales directly with nframes and the weak
scaling behavior (as a function of trajectory length) is trivially
close to ideal as seen from the data in [KB17]. Weak scaling
with the system size also appears to be fairly linear, according to
preliminary data (not shown). Therefore, in the following we focus
exclusively on the harder problem of strong scaling, i.e., reducing
the run time by employing parallelism.

Effect of File Format on I/O Performance

We first sought to quantify the effect of the trajectory format on the
analysis performance. The overall run time depends strongly on
the trajectory file format as well as the underlying storage system
as shown for the 300x trajectories in Figure 2; results for other
trajectory sizes are similar (see [KB17]) except for the smallest
50x trajectories where possibly caching effects tend to improve
overall performance. Using DCD files with SSDs on a single node
(Figure 2 A) is about one order of magnitude faster than the other
formats (Figure 2 B, C) and scales near linearly for small CPU
core counts (N ≤ 12). However, DCD does not scale at all with
other storage systems such as HDD or NFS and run time only
improves up to N = 4 on the Lustre file system. On the other hand,
the run time with NCDF and especially with XTC trajectories
improves linearly with increasing N, with XTC on Lustre and
N = 24 cores almost obtaining the best DCD run time of about 30
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Fig. 2: Comparison of total job execution time tN for different file
formats (300x trajectory size) using Dask multiprocessing on a single
node (1–24 CPU cores, A – C) and Dask distributed on up to three
nodes (1–72 CPU cores, D – F). The trajectory was split into M
blocks and computations were performed using N = M CPU cores.
The runs were performed on different resources (ASU RC Saguaro,
SDSC Comet, TACC Stampede, local workstations with different
storage systems (locally attached HDD, remote HDD (via network
file system, NFS), locally attached SSD, Lustre parallel file system
with a single stripe). A, D CHARMM/NAMD DCD. B, E Gromacs
XTC. C, F Amber NetCDF.
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Fig. 3: Comparison of I/O time tI/O per frame between different file
formats (300x trajectory size) using Dask multiprocessing on a single
node (A – C) and Dask distributed on multiple nodes (D – F). A, D
CHARMM/NAMD DCD. B, E Gromacs XTC. C, F Amber NetCDF.
All parameters as in Fig. 2.

s (SSD, N = 12); at the highest single node core count N = 24,
XTC on SSD performs even better (run time about 25 s). For larger
N on multiple nodes, only a shared file system (Lustre or NFS)
based on HDD was available. All three file formats only show
small improvements in run time at higher core counts (N > 24) on
the Lustre file system on supercomputers with fast interconnects
and no improvements on NFS over Gigabit (Figure 2 D–F).

In order to explain the differences in performance and scaling
of the file formats, we analyzed the time to load the coordinates
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Fig. 4: I/O pattern for reading frames in parallel from com-
monly used MD trajectory formats. A Gromacs XTC file format. B
CHARMM/NAMD DCD file format and Amber NCDF format.

of a single frame from storage into memory (tI/O) and the time to
perform the computation on a single frame using the in-memory
data (tcomp). As expected, tcomp is independent from the file format,
nframes, and N and only depends on the CPU type itself (mean
and standard deviation on SDSC Comet 0.098±0.004 ms, TACC
Stampede 0.133 ± 0.000 ms, ASU RC Saguaro 0.174 ± 0.000
ms, local workstations 0.225± 0.022 ms, see [KB17]). Figure 3,
however shows how tI/O (for the 300x trajectories) varies widely
and in most cases, is at least an order of magnitude larger than
tcomp. The exception is tI/O for the DCD file format using SSDs,
which remains small (0.06±0.04 ms on SDSC Comet) and almost
constant with N ≤ 12 (Figure 3 A) and as a result, the DCD
file format shows good scaling and the best performance on a
single node. For HDD-based storage, the time to read data from
a DCD frame increases with the number of processes that are
simultaneously trying to access the DCD file. XTC and NCDF
show flat tI/O with N on a single node (Figure 3 B, C) and even
for multiple nodes, the time to ingest a frame of a XTC trajectory
is almost constant, except for NFS, which broadly shows poor
performance (Figure 3 E, F).

Depending on the file format the loading time of frames into
memory will be different, as illustrated in Figure 4. The XTC file
format is compressed and has a smaller file size when compared
to the other formats. When a compressed XTC frame is loaded
into memory, it is immediately decompressed (see Figure 4 A).
During decompression by one process, the file system allows the
next process to load its requested frame into memory. As a result,
competition for file access between processes and overall wait time
is reduced and tI/O remains almost constant, even for large number
of parallel processes (Figure 3 B, E). Neither DCD nor NCDF
files are compressed and multiple processes compete for access to
the file (Figure 4 B) although NCDF files is a more complicated
file format than DCD and has additional computational overhead.
Therefore, for DCD the I/O time per frame is very small as
compared to other formats when the number of processes is small
(and the storage is fast), but even at low levels of parallelization,
tI/O increases due to the overlapping of per frame trajectory data
access (Figure 3 A, D). Data access with NCDF is slower but due
to the additional computational overhead, is amenable to some
level of parallelization (Figure 3 C, F).

Strong Scaling Analysis for Different File Formats

We quantified the strong scaling behavior by analyzing the speed-
up S(N); as an example, the 300x trajectories for multiprocessing
and distributed schedulers are show in Figure 5. The DCD format
exhibits poor scaling, except for N ≤ 12 on a single node and
SSDs (Figure 5 A, D) and is due to the increase in tI/O with N, as
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Fig. 5: Speed-up S for the analysis of the 300x trajectory on HPC
resources using Dask multiprocessing (single node, A – C) and
distributed (up to three nodes, D – F). The dashed line shows the
ideal limit of strong scaling. All other parameters as in Fig. 2.
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Fig. 6: Detailed analysis of timings for the 600x XTC trajectory on
HPC resources using Dask distributed. All other parameters as in
Fig. 2. A Total time to solution (wall clock), tN for N trajectory blocks
using Ncores = N CPU cores. B Sum of the I/O time per frame tI/O
and the (constant) time for the RMSD computation tcomp (data not
shown). C Difference tN −nframes(tI/O + tcomp), accounting for the cost
of communications and other overheads.

discussed in the previous section. The XTC file format scales close
to ideal on N ≤ 24 cores (single node) for both the multiprocessing
and distributed scheduler, almost independent from the underlying
storage system. The NCDF file format only scales well up to 8
cores (Figure 5 C, F) as expected from tI/O in Figure 3 C, F.

For the XTC file format, tI/O is is nearly constant up to N = 50
cores (Figure 3 E) and tcomp also remains constant up to 72 cores.
Therefore, close to ideal scaling would be expected for up to 50
cores, assuming that average processing time per frame tcomp+tI/O
dominates the computation. However, based on Figure 5 E, the
XTC format only scales well up to about 24 cores, which suggests
that this assumption is wrong and there are other computational
overheads.

To identify and quantify these additional overheads, we ana-
lyzed the performance of the XTC600x trajectory in more detail
(Figure 6); results for other trajectory sizes are qualitatively
similar. The total job execution time tN differs from the total
compute and I/O time, N (tcomp + tI/O). This difference measures
additional overheads that we did not consider so far. It increases
with trajectory size for all file formats and for all machines (for
details refer to [KB17]) but is smaller for SDSC Comet and TACC
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Fig. 7: Evidence for uneven distribution of task execution times,
shown for the XTC600x trajectory on SDSC Comet on the Lustre
file system. A Task stream plot showing the fraction of time spent on
different parts of the task by each worker, obtained using the Dask
web-interface. (54 tasks for 54 workers that used N = 54 cores).
Green bars ("Compute") represent time spent on RMSD calculations,
including trajectory I/O, red bars show data transfer. A "straggler"
task (#32) takes much longer than any other task and thus determines
the total execution time. B Comparison between timing measurements
from instrumentation inside the Python code (average compute and
I/O time per task nframes/N (tcomp + tI/O), max[nframes/N (tcomp + tI/O)],
and tN) and Dask web-interface for N = 30 and N = 54 cores.

Stampede than compared to other machines. The difference is
small for the results obtained using the multiprocessing scheduler
on a single node but it is substantial for the results obtained using
distributed scheduler on multiple nodes.

In order to obtain more insight into the underlying network
behavior both at the Dask worker level and communication level
and in order to pinpoint the origin of the overheads, we used the
web-interface of the Dask library, which is launched together with
the Dask scheduler. Dask task stream plots such as the example
shown in Figure 7 A typically show one or more straggler tasks
that take much more time than the other tasks and as a result
slow down the whole run. Stragglers do not actually spend more
time on the RMSD computation and trajectory I/O than other
tasks, as shown by comparing the average compute and I/O time
for a single task i, nframes/N(tcomp,i + tI/O,i), with the maximum
over all tasks maxi[nframes/N(tcomp,i + tI/O,i)] (Figure 7 B). These
stragglers are observed at some repeats when the number of cores
is more than 24. However, we do not always see these stragglers
which shows the importance of collecting statistics and looking
at the average value of several repeats (5 in the present study).
For example, for N = 30 at one repeat no straggler was observed
but, the statistics show poor perforrmance as also seen in Figure

6 A and B. However, as seen in the example for N = 54 for one
repeat, the maximum compute and I/O time as measured inside
the Python code is smaller than the maximum value extracted
from the web-interface (and the Dask scheduler) (Figure 7 B). The
maximum compute and I/O value from the scheduler matches the
total measured run time, indicating that stragglers limit the overall
performance of the run. The timing of the scheduler includes
waiting due to network effects, which would explain why the
difference is only visible when using multiple nodes where the
node interconnect must be used.

Challenges for Good HPC Performance

All results were obtained during normal, multi-user, production
periods on all machines, which means that jobs run times are
affected by other jobs on the system. This is true even when the
job is the only one using a particular node, which was the case in
the present study. There are shared resources such as network file
systems that all the nodes use. The high speed interconnect that
enables parallel jobs to run is also a shared resource. The more
jobs are running on the cluster, the more contention there is for
these resources. As a result, the same job run at different times
may take a different amount of time to complete, as seen in the
fluctuations in task completion time across different processes.
These fluctuations differ in each repeat and are dependent on
the hardware and network. There is also variability in network
latency, in addition to the variability in underlying hardware in
each machine, which may also cause the results to vary across
different machines. Since our map-reduce problem is pleasantly
parallel, each or a subset of computations can be executed by
independent processes. Furthermore, all of our processes have
the same amount of work to do, namely one trajectory block
per process, and therefore our problem should exhibit good load
balancing. Therefore, observing the stragglers shown in Figure 7
A is unexpected and the following sections aim to identify possible
causes for their occurrence.

Performance Optimization

We tested different features of the computing environment to
identify causes of stragglers and to improve performance and
robustness, focusing on the XTC file format as the most promising
candidate so far. We tested the hypothesis that waiting for file ac-
cess might lead to stalled tasks by increasing the effective number
of accessible files through "striping" in the Lustre parallel file
system. We investigated the hypothesis that the Dask distributed
scheduler might be too slow to schedule the tasks and we looked
at improved load balancing by over-subscribing Dask workers.

Effect of Lustre Striping: As discussed before, the overlap-
ping of data requests from different processes can lead to higher
I/O time and as a result poor performance. tI/O strongly affects
performance since it is much larger than tcomp in all multi-node
scenarios. Although the XTC format showed the best performance,
for multiple nodes tI/O increased for it, too (Figure 3 E). In Lustre,
a copy of the shared file can be in different physical storage
devices (object storage targets, OSTs). Single shared files can
have a stripe count equal to the number of nodes or processes
which access the file. We set the stripe count equal to three, which
is equal to the number of nodes used for our benchmark using the
distributed scheduler. This might improve performance, since all
the processes from each node will have a copy of the file and as
a result the contention due to many data requests should decrease.
Figure 8 show the speed up and I/O time per frame plots obtained
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Fig. 8: Effect of striping with the Lustre distributed file system.
The XTC600x trajectory was analyzed on HPC resources (ASU RC
Saguaro, SDSC Comet) with Dask distributed and a Lustre stripe
count of three, i.e., data were replicated across three servers. One
trajectory block was assigned to each worker, i.e., the number of tasks
equaled the number of CPU cores. A Speed-up. B Average I/O time
per frame, tI/O.
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Fig. 9: Detailed timings for three-fold Lustre striping (see Fig. 8 for
other parameters). A Total time to solution (wall clock), tN for M
trajectory blocks using N = M CPU cores. B tcomp + tI/O, average sum
of the I/O time (tI/O, Fig. 8 B) and the (constant) time for the RMSD
computation tcomp (data not shown). C Difference tN − nframes(tI/O +
tcomp), accounting for communications and overheads that are not
directly measured.

for XTC file format (XTC600x) when striping is activated. I/O
time remains constant for up to 72 cores. Thus, striping improves
tI/O and makes file access more robust. However, the timing plots
in Figure 9 still show a time difference between average total
compute and I/O time and job execution time that remains due to
stragglers and as a result the overall speed-up is not improved.
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Fig. 10: Benchmark of Dask scheduler throughput on TACC Stam-
pede. Performance is measured by the number of empty pass tasks
that were executed in a second. The scheduler had to launch 100,000
tasks and the run ended when all tasks had been run. A single
node with different schedulers; multithreading and multiprocessing
are almost indistinguishable from each other. B multiple nodes with
the distributed scheduler and 1 worker process per node. C multiple
nodes with the distributed scheduler and 16 worker processes per
node.

Scheduler Throughput: In order to test the hypothesis
that straggler tasks were due to limitations in the speed of the
Dask scheduler, we performed scheduling experiments with all
Dask schedulers (multithreaded, multiprocessing and distributed)
on TACC Stampede (16 CPU cores per node). In each run, a total
of 100,000 zero workload (pass) tasks were executed in order
to measure the maximum scheduling throughput; each run itself
was repeated ten times and mean values together with standard
deviations were reported. Figure 10 A shows the throughput of
each scheduler over time on a single Stampede node, with Dask
scheduler and worker being located on the same node. The most
efficient scheduler is the distributed scheduler, which manages
to schedule 20,000 tasks per second when there is one worker
process for each available core. The distributed scheduler with
just one worker process and a number of threads equal to the
number of available cores has lower peak performance of about
2000 tasks/s and is able to schedule and execute these 100,000
tasks in 50 s. The multiprocessing and multithreading schedulers
behave similarly, but need much more time (about 200 s) to finish
compared to distributed.

Figure 10 B shows the distributed scheduler’s throughput over
time for increasing number of nodes when each node has a single
worker process and each worker launches a thread to execute a
task (maximum 16 threads per worker). No clear pattern for the
throughput emerges, with values between 2000 and 8000 tasks/s.
Figure 10 C shows the same execution with Dask distributed set
up to have one worker process per core, i.e., 16 workers per node.
The scheduler never reaches its steady throughput state, compared
to Figure 10 B so that it is difficult to quantify the effect of the
additional nodes. Although a peak throughput between 10,000 to
30,000 tasks/s is reported, overall scheduling is erratic and the
total 100,000 tasks are not completed sooner than for the case
with 1 worker per node with 16 threads. It appears that assigning
one worker process to each core will speed up Dask’s throughput
but more work would need to be done to assess if the burst-like
behavior seen in this case is an artifact of the zero workload test.

Either way, the distributed and even the multiprocessing sched-
uler are sufficiently fast as to not cause a bottleneck in our map-
reduce problem and are probably not responsible for the stragglers.

Effect of Over-Subscribing: In order to make our code
more robust against uncertainty in computation times we explored
over-subscribing the workers, i.e., to submit many more tasks
than the number of available workers (and CPU cores, using one
worker per core). Over-Subscription might allow Dask to balance
the load appropriately and as a result cover the extra time when
there are some stragglers. We set the number M of tasks to be
three times the number of workers, M = 3N, where the number of
workers N equaled the number of CPU cores; now each task only
works on nframes/M frames. To reduce the influence of tI/O on the
benchmark, Lustre-striping was activated and set to three, equal to
the number of nodes used.

For XTC600x, no substantial speed-up is observed due to over-
subscribing (compare Figure 11 A to 8 A), although fluctuations
are reduced. As before, the I/O time is constant up to 72 cores
due to striping (Figure 11 B). However, a time difference between
average total compute and I/O time and job execution time (Figure
12) reveals that over-subscribing does not help to remove the
stragglers and as a result the overall speed-up is not improved.
Figure 13 shows a time comparison for different parts of the
calculations. The overhead in the calculations is small up to 24
cores (single node). For lower N, the largest fraction of time is
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Fig. 11: Effect of three-fold over-subscribing distributed workers.
The XTC600x trajectory was analyzed on HPC resources (Lustre
stripe count of three) and local NFS using Dask distributed where
M number of trajectory blocks (tasks) is three times the number of
worker processes, M = 3N, and there is one worker per CPU core. A
Speed-up S. B I/O time tI/O per frame.
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Fig. 12: Detailed timings for three-fold over-subscribing distributed
workers. A Total time to solution (wall clock), tN . B tcomp + tI/O, aver-
age sum of tI/O (Fig. 11 B) and the (constant) computation time tcomp
(data not shown) per frame. C Difference tN − nframes(tI/O + tcomp),
accounting for communications and overheads that are not directly
measured. Other parameters as in Fig. 11.

spent on the calculation of RMSD arrays and I/O) (computation
time) which decreases as the number of cores increases from
1 to 72. However, when extending to multiple nodes the time
for overheads and communication increases, which reduces the
overall performance.

In order to better quantify the scheduling decisions and to have
verification of stragglers independent from the Dask web interface,
we implemented a Dask scheduler reporter plugin (freely available
from https://github.com/radical-cybertools/midas), which captures
task execution events from the scheduler and their respective
timestamps. We analyzed the execution of XTC300x on TACC
Stampede with three-fold over-subscription (M = 3Ncores) and
measured how many tasks were submitted per worker process.
Table 1 shows that although most workers executed three tasks
as would be expected for three-fold over-subscription, between
0 and 17% executed four tasks and others only one or two.
This variability is also borne out in detail by Figure 14, which
shows how RMSD blocks were submitted per worker process in
each run. Therefore, over-subscription does not necessarily lead
to a balanced execution and might add additional execution time;
unfortunately, over-subscription does not get rid of the straggler
tasks.

1 6 8 12 18 24 30 36 42 48 54 60 66 72

compute + I/O
communication,
overheads

Fig. 13: Time comparison for three-fold over-subscribing distributed
workers (XTC600x on SDSC Comet on Lustre with stripe count three).
Bars indicate the mean total execution time tN (averaged over five
repeats) as a function of available worker processes, with one worker
per CPU core. Time for compute + I/O (red, see Fig. 12 B) dominates
for smaller core counts (up to one node, 24) but is swamped by
communication (time to gather the RMSD arrays computed by each
worker for the reduction) and overheads (blue, see see Fig. 12 C)
beyond a single node.

RMSD
Blocks

Run 1 Run 2 Run 3 Run 4 Run 5

1 0 0 1 0 0
2 8 5 7 7 2
3 48 54 47 50 60
4 8 5 9 7 2

TABLE 1: Number of worker processes that executed 1, 2, 3, or 4 of
tasks (RMSD calculation over one trajectory block) per run. Executed
on TACC Stampede utilizing 64 cores

Comparison of Performance of Map-Reduce Job Between MPI for
Python and Dask Frameworks

The investigations so far indicated that stragglers are responsible
for poor scaling beyond a single node. These delayed processes
were observed on three different HPC systems and on different
days, so they are unlikely to be infrastructure specific. In order
to rule out the hypothesis that Dask is inherently limited in
its applicability to our problem we re-implemented our map-
reduce problem with MPI based on the Python mpi4py [DPS05],
[DPKC11] module. The comparison was performed with the
XTC600x trajectory on SDSC Comet.

The overall performance is very similar to the Dask implemen-
tation: it scales almost ideally up to 24 CPU cores (a single node)
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Fig. 14: Task Histogram of RMSD with MDAnalysis and Dask with
XTC 300x over 64 cores on Stampede with 192 trajectory blocks.
Each histogram corresponds to an independent repeat of the same
computational experiment. For each worker process ID, the number
of tasks submitted to that process is shown.
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Fig. 15: A Speed-up and B efficiency plots for benchmark performed
on XTC600x on SDSC Comet using MPI for Python. Five repeats are
run for each block size and the reported values are the mean values
and standard deviations.

but then drops to a very low efficiency (Figure 15). A detailed
analysis of the time spent on computation versus communication
(Figure 16 A) shows that the communication and overheads are
negligible up to 24 cores (single node) and only moderately
increases for larger N. The largest fraction of the calculations
is always spent on the calculation of RMSD arrays with I/O
(computation time). Although the computation time decreases
with increasing number of cores for a single node, it increases
again when increasing N further, in a pattern similar to what we
saw earlier for Dask.

Figure 16 B compares the execution times across all MPI ranks
for 72 cores. There are several processes that are about ten times
slower than the majority of processes. These stragglers reduce the
overall performance and are always observed when the number of
cores is more than 24 and the ranks span multiple nodes. Based on
the results from MPI for Python, Dask is probably not responsible
for the occurrence of the stragglers.

We finally also wanted to ascertain that variable execution time
is not a property of the computational task itself and replaced the
RMSD calculation with optimal superposition (based on the itera-
tive qcprot algorithm [LAT10]) with a completely different, fully
deterministic metric, namely a simple all-versus-all distance cal-
culation based on MDAnalysis.lib.distances.distance_array. The
distance array calculates all distances between the reference co-
ordinates at time 0 and the coordinates of the current frame and
provides a comparable computational load. Even with the new
metric the same behavior was observed in the MPI implementation
(data not shown) and hence we can conclude that the qcprot
RMSD calculation is not the reason why we are seeing the
stragglers.

Conclusions

Dask together with MDAnalysis makes it straightforward to
implement parallel analysis of MD trajectories within a map-
reduce scheme. We show that obtaining good parallel performance
depends on multiple factors such as storage system and trajectory
file format and provide guidelines for how to optimize trajectory
analysis throughput within the constraints of a heterogeneous
research computing environment. Performance on a single node
can be close to ideal, especially when using the XTC trajectory
format that trades I/O for CPU cycles through aggressive compres-
sion, or when using SSDs with any format. However, obtaining
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Fig. 16: A Time comparison on different parts of the calculations
obtained using MPI for Python. In this aggregate view, the time
spent on different parts of the calculation are combined for different
number of processes tested. The bars are subdivided into different
contributions (compute (RMSD computation and I/O), communica-
tion, remaining overheads), with the total reflecting the overall run
time. Reported values are the mean values across 5 repeats. A inset
Total job execution time along with the mean and standard deviations
across 5 repeats. The calculations are performed on XTC 600x using
SDSC Comet. B Comparison of job execution time across processor
ranks for 72 CPU cores obtained using MPI for python. There are
several stragglers that slow down the whole process.

good strong scaling beyond a single node was hindered by the
occurrence of stragglers, one or few tasks that would take much
longer than all the other tasks. Further studies are necessary to
identify the underlying reason for the stragglers observed here;
they are not due to Dask or the specific computational test
case, and they cannot be circumvented by over-subscribing. Thus,
implementing robust parallel trajectory analysis that scales over
many nodes remains a challenge.
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MatchPy: A Pattern Matching Library

Manuel Krebber‡∗, Henrik Bartels‡, Paolo Bientinesi‡
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Abstract—Pattern matching is a powerful tool for symbolic computations, based
on the well-defined theory of term rewriting systems. Application domains in-
clude algebraic expressions, abstract syntax trees, and XML and JSON data.
Unfortunately, no lightweight implementation of pattern matching as general and
flexible as Mathematica exists for Python [Pö16], [Hao14], [Sch14], [Jen15].
Therefore, we created the open source module MatchPy which offers similar
pattern matching functionality in Python using a novel algorithm which finds
matches for large pattern sets more efficiently by exploiting similarities between
patterns.

Index Terms—pattern matching, symbolic computation, discrimination nets,
term rewriting systems

Introduction

Pattern matching is a powerful tool which is part of many
functional programming languages as well as computer algebra
systems such as Mathematica. It is useful for many applications
including symbolic computation, term simplification, term rewrit-
ing systems, automated theorem proving, and model checking. In
this paper, we present a Python-based pattern matching library and
its underlying algorithms.

The goal of pattern matching is to find a match substitu-
tion given a subject term and a pattern which is a term with
placeholders [BN98]. The substitution maps placeholders in the
pattern to replacement terms. A match is a substitution that can
be applied to the pattern yielding the original subject. As an
example consider the subject f (a) and the pattern f (x) where x is a
placeholder. Then the substitution σ = {x 7→ a} is a match because
σ( f (x))= f (a). This form of pattern matching without any special
properties of function symbols is called syntactic matching. For
syntactic patterns, the match is unique if it exists.

Among the existing systems, Mathematica [WR16] arguably
offers the most expressive pattern matching. Its pattern matching
offers similar expressiveness as Python’s regular expressions, but
for symbolic tree structures instead of strings. While pattern
matching can handle nested expressions up to arbitrary depth,
regular expressions cannot properly handle such nesting. Patterns
are used widely in Mathematica, e.g. in function definitions or for
manipulating terms. It is possible to define custom function sym-
bols which can be associative and/or commutative. Mathematica
also offers sequence variables which can match a sequence of
terms instead of a single one. These are especially useful when
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working with variadic function symbols. Mathics [Pö16] is an
open source computer algebra system written in Python that aims
to replicate the syntax and functionality of Mathematica.

To our knowledge, no existing work covers pattern matching
with function symbols which are either commutative or associative
but not both at the same time. However, there are functions
with those properties, e.g. matrix multiplication or arithmetic
mean. Most of the existing pattern matching libraries for Python
only support syntactic patterns. Associativity, commutativity and
sequence variables make multiple distinct matches possible for a
single pattern. In addition, pattern matching with either associa-
tivity or commutativity is NP-complete in both cases [BKN87].
While the pattern matching in SymPy [MSP+17] can work with
associative/commutative functions, it is limited to finding a single
match. Nonetheless, for some applications it is interesting to find
all possible matches for a pattern, e.g. because matches need to
be processed further recursively to solve an optimization problem.
Furthermore, SymPy does not support sequence variables and is
limited to a predefined set of mathematical operations.

In many applications, a fixed set of patterns is matched
repeatedly against different subjects. The simultaneous match-
ing of multiple patterns is called many-to-one matching, as
opposed to one-to-one matching which denotes matching with
a single pattern. Many-to-one matching can gain a significant
speed increase compared to one-to-one matching by exploiting
similarities between patterns. This has already been the sub-
ject of research for both syntactic [Chr93], [Grä91], [NWE97]
and associative-commutative pattern matching [KL91], [BCR93],
[LM94], [BCR+95], [Eke95], [KM01], but not with the full
feature set described above. Discrimination nets [BW84] are the
state-of-the-art solution for many-to-one matching. Our goal is
to generalize this approach to support all the aforementioned
features.

In this paper, we present the open-source library for Python
MatchPy which provides pattern matching with sequence variables
and associative/commutative function symbols. In addition to
standard one-to-one matching, MatchPy also includes an efficient
many-to-one matching algorithm that uses generalized discrimi-
nation nets. First, we give an overview of what MatchPy can be
used for. Secondly, we explain some of the challenges arising
from the non-syntactic pattern matching features and how we
solve them. Then we give an overview of how many-to-one
matching is realized and optimized in MatchPy. Next, we present
our experiments where we observed significant speedups of the
many-to-one matching over one-to-one matching. Finally, we draw
some conclusions from the experiments and propose future work
on MatchPy.
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Usage Overview

MatchPy can be installed using pip and all necessary classes can
be imported from the toplevel module matchpy. Expressions in
MatchPy consist of constant symbols and operations. For patterns,
wildcards can also be used as placeholders. We use Mathematica’s
notation for wildcards, i.e. we append underscores to wildcard
names to distinguish them from symbols.

MatchPy can be used with native Python types such as list
and int. The following is an example of how the subject [0,
1] can be matched against the pattern [x_, 1]. The expected
match here is the replacement 0 for x_. We use next because we
only want to use the first (and in this case only) match of the
pattern:
>>> x_ = Wildcard.dot('x')
>>> next(match([0, 1], Pattern([x_, 1])))
{'x': 0}

In addition to regular (dot) variables, MatchPy also supports
sequence wildcards. They can match a sequence of arguments
and we denote them with two or three trailing underscores for
plus and star wildcards, respectively. Star wildcards can match
an empty sequence, while plus wildcards require at least one
argument to match. The terminology is borrowed from regular
expressions where *, + and . are used for similar concepts.
>>> y___ = Wildcard.star('y')
>>> next(match([1, 2, 3], Pattern([x_, y___])))
{'x': 1, 'y': (2, 3)}

In the following, we omit the definition of new variables as they
can be done in the same way. In addition to native types, one
can also define custom operations by creating a subclass of the
Operation class:
class MyOp(Operation):
name = 'MyOp'
arity = Arity.variadic
associative = True
commutative = True

The name is a required attribute, while the others are optional and
influence the behavior of the operations. By default, operations
are variadic and neither commutative nor associative. Nested
associative operations have to be variadic and are automatically
flattened. Furthermore, regular variables behave similar to se-
quence variables as arguments of associative functions, because
the associativity allows arbitrary parenthesization of arguments:
>>> next(match(MyOp(0, 1, 2), Pattern(MyOp(x_, 2))))
{'x': MyOp(0, 1)}

The argument of commutative operations are automatically sorted.
Note that patterns with commutative operations can have multiple
matches, because their arguments can be reordered arbitrarily.
>>> list(match(MyOp(1, 2), Pattern(MyOp(x_, z_))))
[{'x': 2, 'z': 1}, {'x': 1, 'z': 2}]

We can use the CustomConstraint class to create a constraint
that checks whether a is smaller than b:
a_lt_b = CustomConstraint(lambda a, b: a < b)

The lambda function gets called with the variable substitutions
based on their name. The order of arguments is not important and
it is possible to only use a subset of the variables in the pattern.
With this constraint we can define a replacement rule that basically
describes bubble sort:
>>> pattern = Pattern([h___, b_, a_, t___], a_lt_b)
>>> rule = ReplacementRule(pattern,

lambda a, b, h, t: [*h, a, b, *t])

Operation Symbol Arity Properties

Multiplication × variadic associative
Addition + variadic associative,

commutative
Transposition T unary
Inversion −1 unary
Inversion and Transposition −T unary

TABLE 1: Linear Algebra Operations

The replacement function gets called with all matched variables
as keyword arguments and needs to return the replacement. This
replacement rule can be used to sort a list when applied repeatedly
with replace_all:

>>> replace_all([1, 4, 3, 2], [rule])
[1, 2, 3, 4]

Sequence variables can also be used to match subsequences that
match a constraint. For example, we can use the this feature to
find all subsequences of integers that sum up to 5. In the following
example, we use anonymous wildcards which have no name and
are hence not part of the match substitution:

>>> x_sums_to_5 = CustomConstraint(
... lambda x: sum(x) == 5)
>>> pattern = Pattern([___, x__, ___], x_sums_to_5)
>>> list(match([1, 2, 3, 1, 1, 2], pattern))
[{'x': (2, 3)}, {'x': (3, 1, 1)}]

More examples can be found in MatchPy’s documentation
[Kre17a].

Application Example: Finding matches for a BLAS kernel

BLAS is a collection of optimized routines that can compute spe-
cific linear algebra operations efficiently [LHKK79], [DCHH88],
[DCHD90]. As an example, assume we want to match all subex-
pressions of a linear algebra expression which can be computed by
the ?TRMM BLAS routine. These have the form α × op(A)×B
or α ×B× op(A) where op(A) is either the identity function or
transposition, and A is a triangular matrix. For this example, we
leave out all variants where α 6= 1.

In order to model the linear algebra expressions, we use the
operations shown in Table 1. In addition, we have special symbol
subclasses for scalars, vectors and matrices. Matrices also have a
set of properties, e.g. they can be triangular, symmetric, square,
etc. For those patterns we also use a special kind of dot variable
which is restricted to only match a specific kind of symbol. Finally,
we construct the patterns using sequence variables to capture the
remaining operands of the multiplication:

A_ = Wildcard.symbol('A', Matrix)
B_ = Wildcard.symbol('B', Matrix)
A_is_triangular = CustomConstraint(
lambda A: 'triangular' in A.properties)

trmm_patterns = [
Pattern(Times(h___, A_, B_, t___),
A_is_triangular),

Pattern(Times(h___, Transpose(A_), B_, t___),
A_is_triangular),

Pattern(Times(h___, B_, A_, t___),
A_is_triangular),

Pattern(Times(h___, B_, Transpose(A_), t___),
A_is_triangular),

]
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With these patterns, we can find all matches for the ?TRMM
routine within a product. In this example, M1, M2 and M3 are
matrices, but only M3 is triangular:
>>> expr = Times(Transpose(M3), M1, M3, M2)
>>> for i, pattern in enumerate(trmm_patterns):
... for substitution in match(expr, pattern):
... print('{} with {}'.format(i, substitution))
0 with {A -> M3, B -> M2, t -> (), h -> ((M3)^T, M1)}
1 with {A -> M3, B -> M1, t -> (M3, M2), h -> ()}
2 with {A -> M3, B -> M1, t -> (M2), h -> ((M3)^T)}

As can be seen in the output, a total of three matches are found.

Design Considerations

There are plenty of implementations of syntactic matching and
the algorithms are well known. Implementing pattern matching
for MatchPy poses some challenges such as associativity and
commutativity.

Associativity/Sequence variables

Associativity enables arbitrary grouping of arguments for match-
ing: For example, 1 + a + b matches 1 + x_ with {x 7→
a+ b} because we can group the arguments as 1 + (a + b).
Basically, when regular variables are arguments of an associative
function, they behave like sequence variables. Both can result
in multiple distinct matches for a single pattern. In contrast,
for syntactic patterns there is always at most one match. This
means that the matching algorithm needs to be non-deterministic
to explore all potential matches for associative terms or terms
with sequence variables. We employ backtracking with the help
of Python generators to enable this. Associative matching is NP-
complete [BKN87].

Commutativity

Matching commutative terms is difficult because matches need
to be found independent of the argument order. Commutative
matching has been shown to be NP-complete, too [BKN87]. It
is possible to find all matches by matching all permutations of
the subjects arguments against all permutations of the pattern
arguments. However, with this naive approach, a total of n!m!
combinations have to be matched where n is the number of subject
arguments and m the number of pattern arguments. It is likely
that most of these combinations do not match or yield redundant
matches.

Instead, we interpret the arguments as a multiset, i.e. an or-
derless collection that allows repetition of elements. Also, we use
the following order for matching the subterms of a commutative
term:

1. Constant arguments
2. Matched variables, i.e. variables that already have a

value assigned in the current substitution
3. Non-variable arguments
4. Repeat step 2
5. Regular variables
6. Sequence variables
Each of those steps reduces the search space for successive

steps. This also means that if one step finds no match, the
remaining steps do not have to be performed. Note that steps 3, 5
and 6 can yield multiple matches and backtracking is employed to
check every combination. Since step 6 is the most involved, it is
described in more detail in the next section.

Sequence Variables in Commutative Functions

The distribution of n subjects subterms onto m sequence variables
within a commutative function symbol can yield up to mn distinct
solutions. Enumerating all of the solutions is accomplished by
generating and solving several linear Diophantine equations. As an
example, lets assume we want to match f(a, b, b, b) with
f(x___, y__, y__) where f is commutative. This means
that the possible distributions are given by the non-negative integer
solutions of these equations:

1 = xa +2ya

3 = xb +2yb

xa determines how many times a is included in the substitution for
x. Because y__ requires at least one term, we have the additional
constraint ya + yb ≥ 1. The only possible solution xa = xb = yb =
1∧ ya = 0 corresponds to the match substitution {x 7→ (a,b),y 7→
(b)}.

Extensive research has been done on solving linear Diophan-
tine equations and linear Diophantine equation systems [Wei60],
[Bon67], [Lam88], [CF89], [AHL00]. In our case the equations
are actually independent expect for the additional constraints for
plus variables. Also, the non-negative solutions can be found more
easily. We use an adaptation of the algorithm used in SymPy which
recursively reduces any linear Diophantine equation to equations
of the form ax+by = d. Those can be solved efficiently with the
Extended Euclidian algorithm [MVO96]. Then the solutions for
those can be combined into a solution for the original equation.

All coefficients in those equations are likely very small since
they correspond to the multiplicity of sequence variables. Simi-
larly, the number of variables in the equations is usually small as
they map to sequence variables. The constant is the multiplicity of
a subject term and hence also usually small. Overall, the number
of distinct equations that are solved is small and the solutions are
cached. This reduces the impact of the sequence variables on the
overall run time.

Optimizations

Since most applications for pattern matching repeatedly match a
fixed set of patterns against multiple subjects, we implemented
many-to-one matching for MatchPy. The goal of many-to-one
matching is to utilize similarities between patterns to match them
more efficiently. In this section, we give a brief overview of the
many-to-one matching algorithm used by MatchPy. Full details
can be found in the master thesis [Kre17b].

Many-to-one Matching

MatchPy includes two additional algorithms for matching:
ManyToOneMatcher and DiscriminationNet. Both en-
able matching multiple patterns against a single subject much
faster than matching each pattern individually using match. The
latter can only be used for syntactic patterns and implements a
state-of-the-art deterministic discrimination net. A discrimination
net is a data structure similar to a decision tree or a finite au-
tomaton [Chr93], [Grä91], [NWE97]. The ManyToOneMatcher
utilizes a generalized form of non-deterministic discrimination
nets that support sequence variables and associative function
symbols. Furthermore, as elaborated in the next section, it can
also match commutative terms.

In Figure 1, an example for a non-deterministic discrimination
net is shown. It contains three patterns that match Python lists:
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[1]

]

[1, x ]]
x

1

[y , 0]]0

y

[

Fig. 1: Example Discrimination Net.

One matches the list that consists of a single 1, the second one
matches a list with exactly two elements where the last element
is 0, and the third pattern matches any list where the first element
is 1. Note, that these patterns can also match nested lists, e.g. the
second pattern would also match [[2, 1], 0].

Matching starts at the root and proceeds along the transitions.
Simultaneously, the subject is traversed in preorder and each sym-
bol is checked against the transitions. Only transitions matching
the current subterm can be used. Once a final state is reached,
its label gives a list of matching patterns. For non-deterministic
discrimination nets, all possibilities need to be explored via back-
tracking. The discrimination net allows to reduce the matching
costs, because common parts of different pattern only need to be
matched once. For non-matching transitions, their whole subtree is
pruned and all the patterns are excluded at once, further reducing
the match cost.

In Figure 1, for the subject [1, 0], there are two paths and
therefore two matching patterns: [y_, 0] matches with {y 7→ 1}
and [1, x___] matches with {x 7→ 0}. Both the y-transition and
the 1-transition can be used in the second state to match a 1.

Compared to existing discrimination net variants, we added
transitions for the end of a compound term to support variadic
functions. Furthermore, we added support for both associative
function symbols and sequence variables. Finally, our discrimi-
nation net supports transitions restricted to symbol classes (i.e.
Symbol subclasses) in addition to the ones that match just a spe-
cific symbol. We decided to use a non-deterministic discrimination
net instead of a deterministic one, since the number of states of
the later would grow exponentially with the number of patterns.
While the DiscriminationNet also has support for sequence
variables, in practice the net became to large to use with just a
dozen patterns.

Commutative Many-to-one Matching

Many-to-one matching for commutative terms is more involved.
We use a nested CommutativeMatcher which in turn uses
another ManyToOneMatcher to match the subterms. Our ap-
proach is similar to the one used by Bachmair and Kirchner in their
respective works [BCR+95], [KM01]. We match all the subterms
of the commutative function in the subject with a many-to-one
matcher constructed from the subpatterns of the commutative
function in the pattern (except for sequence variables, which
are handled separately). The resulting matches form a bipartite
graph, where one set of nodes consists of the subject subterms
and the other contains all the pattern subterms. Two nodes are
connected by an edge iff the pattern matches the subject. Such
an edge is also labeled with the match substitution(s). Finding
an overall match is then accomplished by finding a maximum
matching in this graph. However, for the matching to be valid, all
the substitutions on its edges must be compatible, i.e. they cannot
have contradicting replacements for the same variable. We use

x1

x2

a 1

a 2

Patterns Subjects

x1

x2

a 1

a 2

Patterns Subjects

Fig. 2: Example for Order in Bipartite Graph.

the Hopcroft-Karp algorithm [HK73] to find an initial maximum
matching. However, since we are also interested in all matches
and the initial matching might have incompatible substitutions, we
use the algorithm described by Uno, Fukuda and Matsui [FM94],
[Uno97] to enumerate all maximum matchings.

To avoid yielding redundant matches, we extended the bipartite
graph by introducing a total order over its two node sets. This
enables determining whether the edges of a matching maintain
the order induced by the subjects or whether some of the edges
"cross". Formally, for all edge pairs (p,s),(p′,s′) ∈M we require
(s ≡ s′ ∧ p > p′) =⇒ s > s′ to hold where M is the matching,
s,s′ are subjects, and p, p′ are patterns. An example of this is
given in Figure 2. The order of the nodes is indicated by the
numbers next to them. The only two maximum matchings for
this particular match graph are displayed. In the left matching,
the edges with the same subject cross and hence this matching
is discarded. The other matching is used because it maintains the
order. This ensures that only unique matches are yielded. Once
a matching for the subpatterns is obtained, the remaining subject
arguments are distributed to sequence variables in the same way
as for one-to-one matching.

Experiments

To evaluate the performance of MatchPy, we conducted exper-
iments on an Intel Core i5-2500K 3.3 GHz CPU with 8GB of
RAM. Our focus is on relative performance of one-to-one and
many-to-one matching rather than the absolute performance.

Linear Algebra

The operations for the linear algebra problem are shown in Table
1. The patterns all match BLAS kernels similar to the example
pattern which was previously described. The pattern set consists of
199 such patterns. Out of those, 61 have an addition as outermost
operation, 135 are patterns for products, and 3 are patterns for
single matrices. A lot of these patterns only differ in terms of
constraints, e.g. there are ten distinct patterns matching A× B
with different constraints on the two matrices. By removing the
sequence variables from the product patterns, these pattern can be
made syntactic when ignoring the multiplication’s associativity.
In the following, we refer to the set of patterns with sequence
variables as LinAlg and the set of syntactic product patterns as
Syntactic.

The subjects were randomly generated such that matrices
had random properties and each factor could randomly be trans-
posed/inverted. The number of factors was chosen according to
a normal distribution with µ = 5. The total subject set consisted
of 70 random products and 30 random sums. Out of the pattern
set, random subsets were used to examine the influence of the
pattern set size on the matching time. Across multiple subsets
and repetitions per subject, the mean match and setup times
were measured. Matching was performed both with the match
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Fig. 3: Timing Results for LinAlg.
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Fig. 4: Comparison for LinAlg.

function and the ManyToOneMatcher (MTOM). The results
are displayed in Figure 3.

As expected, both setup and match times grow with the pattern
set size. The growth of the many-to-one match time is much slower
than the one for one-to-one matching. This is also expected since
the simultaneous matching is more efficient. However, the growth
of setup time for the many-to-one matcher beckons the question
whether the speedup of the many-to-one matching is worth it.

Figure 4 depicts both the speedup and the break even point for
many-to-one matching for LinAlg. The first graph indicates that
the speedup of many-to-one matching increases with larger pattern
sets. But in order to profit from that speedup, the setup cost of
many-to-one matching must be amortized. Therefore, the second
graph shows the break even point for many-to-one matching in
terms of number of subjects. If for a given number of patterns and
subjects the corresponding point is above the line, then many-to-
one matching is overall faster. In this example, when matching
more than eight times, many-to-one matching is overall always
faster than one-to-one matching.

For the syntactic product patterns we compared the
match function, the ManyToOneMatcher (MTOM) and the
DiscriminationNet (DN). Again, randomly generated sub-
jects were used. The resulting speedups and break even points are
displayed in Figure 5.

In this case, the discrimination net is the fastest overall
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Fig. 5: Comparison for Syntactic.
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any . . . any ) )

Fig. 6: AST of the isinstance pattern.

reaching a speedup of up to 60. However, because it also has the
highest setup time, it only outperforms the many-to-one matcher
after about 100 subjects for larger pattern set sizes. In practice, the
discrimination net is likely the best choice for syntactic patterns, as
long as the discrimination net does not grow to large. In the worst
case, the size of the discrimination net can grow exponentially in
the number of patterns.

Abstract Syntax Trees

Python includes a tool to convert code from Python 2 to Python
3. It is part of the standard library package lib2to3 which has
a collection of "fixers" that each convert one of the incompatible
cases. To find matching parts of the code, those fixers use pattern
matching on the abstract syntax tree (AST). Such an AST can
be represented in the MatchPy data structures. We converted
some of the patterns used by lib2to3 both to demonstrate the
generality of MatchPy and to evaluate the performance of many-
to-one matching. Because the fixers are applied one after another
and can modify the AST after each match, it would be difficult to
use many-to-one matching for lib2to3 in practice.

The following is an example of such a pattern:
power<

'isinstance'
trailer< '(' arglist< any ',' atom< '('

args=testlist_gexp< any+ >
')' > > ')' >

>

It matches an isinstance expression with a tuple as second
argument. Its tree structure is illustrated in Figure 6. The corre-
sponding fixer cleans up duplications generated by previous fixers.
For example isinstance(x, (int, long)) would be converted
by another fixer into isinstance(x, (int, int)), which in
turn is then simplified to isinstance(x, int) by this fixer.

Out of the original 46 patterns, 36 could be converted to
MatchPy patterns. Some patterns could not be converted, because
they contain features that MatchPy does not support yet. The
features include negated subpatterns (e.g. not atom<'(' [any]

')'>) and subpatterns that allow an aritrary number of repetitions
(e.g. any (',' any)+).

Furthermore, some of the AST patterns contain alternative
or optional subpatterns, e.g. power<'input' args=trailer<'('

[any] ')'>>. These features are also not directly supported by
MatchPy, but they can be replicated by using multiple patterns.
For those lib2to3 patterns, all combinations of the alternatives
were generated and added as invividual patterns. This resulted in
about 1200 patterns for the many-to-one matcher that completely
cover the original 36 patterns.
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For the experiments, we used a file that combines the examples
from the unittests of lib2to3 with about 900 non-empty lines.
We compared the set of 36 patterns with the original matcher
and the 1200 patterns with the many-to-one matcher. A total of
about 560 matches are found. Overall, on average, our many-
to-one matcher takes 0.7 seconds to find all matches, while the
matcher from lib2to3 takes 1.8 seconds. This yields a speedup
of approximately 2.5. However, the construction of the many-to-
one matcher takes 1.4 seconds on average. However, this setup
cost will be amortized by the faster matching for sufficiently large
ASTs. The setup time can also mostly be eliminated by saving the
many-to-one matcher to disk and loading it once required.

Compared to the one-to-one matching in MatchPy, the many-
to-one matching achieves a speedup of about 60. This is due to
the fact that for any given subject less than 1% of patterns match.
By taking into account the setup time of the many-to-one matcher,
the break even point for it is at about 200 subjects.

Conclusions

We have presented MatchPy, a pattern matching library for Python
with support for sequence variables and associative/commutative
functions. This library includes algorithms and data structures
for both one-to-one and many-to-one matching. Because non-
syntactic pattern matching is NP-hard, in the worst case the
pattern matching times grows exponentially with the length of
the pattern. Nonetheless, our experiments on real world examples
indicate that many-to-one matching can give a significant speedup
over one-to-one matching. However, the employed discrimination
nets come with a one-time construction cost which needs to be
amortized to benefit from their speedup. In our experiments, the
break even point for many-to-one matching was always reached
well within the typical number of subjects for the respective
application. Therefore, many-to-one matching is likely to result
in a compelling speedup in practice.

For syntactic patterns, we also compared the syntactic discrim-
ination net with the many-to-one matcher. As expected, discrim-
ination nets are faster at matching, but also have a significantly
higher setup time. Furthermore, the number of states can grow
exponentially with the number of patterns, making them unsuitable
for some pattern sets. Overall, if applicable, discrimination nets
offer better performance than a many-to-one matcher.

Which pattern matching algorithm is the fastest for a given ap-
plication depends on many factors. Hence, it is not possible to give
a general recommendation. Yet, the more subjects are matched
against the same pattern set, the more likely it is that many-to-one
outperforms one-to-one matching. In the experiments, a higher
number of patterns lead to an increase of the speedup of many-
to-one matching. In terms of the size of the many-to-one matcher,
the growth of the net was sublinear in our experiments and still
feasible for large pattern sets. The efficiency of using many-to-
one matching also heavily depends on the actual pattern set, i.e.
the degree of similarity and overlap between the patterns.

Future Work

We plan on extending MatchPy with more powerful pattern
matching features to make it useful for an even wider range
of applications. The greatest challenge with additional features
is likely to implement them for many-to-one matching. In the
following, we discuss some possibilities for extending the library.

Additional pattern features

In the future, we plan to implement similar functionality to the
Repeated, Sequence, and Alternatives functions from
Mathematica. These provide another level of expressive power
which cannot be fully replicated with the current feature set
of MatchPy. Another useful feature are context variables as
described by Kutsia [Kut06]. They allow matching subterms at
arbitrary depths which is especially useful for structures like
XML. With context variables, MatchPy’s pattern matching would
be as powerful as XPath [RDS17] or CSS selectors [RJE17] for
such structures. Similarly, function variables which can match a
function symbol would also be useful for those applications.

Integration

Currently, in order to use MatchPy, existing data structures must
be adapted to provide their children via an iterator. Where that is
not possible, for example because the data structures are provided
by a third party library, translation functions need to be applied.
Also, some native data structures such as dicts are currently not
supported directly. Therefore, it would be useful, to have a better
way of using existing data structures with MatchPy.

In particular, easy integration with SymPy is an important goal,
since it is a popular tool for working with symbolic mathematics.
SymPy already implements a form of pattern matching which
is less powerful than MatchPy. It lacks support for sequence
variables, symbol wildcards and constraints. Each constant symbol
in SymPy can have properties that allow it to be commutative or
non-commutative. One benefit of this approach is easier modeling
of linear algebra multiplication, where matrices and vectors do
not commute, but scalars do. Better integration of MatchPy with
SymPy would provide the users of SymPy with more powerful
pattern matching tools. However, Matchpy would require selective
commutativity to be fully compatible with SymPy. Also, SymPy
supports older Python versions, while MatchPy requires Python
3.6.

Performance

If pattern matching is a major part of an application, its running
time can significantly impact the overall speed. Reimplement-
ing parts of MatchPy as a C module would likely result in a
substantial speedup. Alternatively, adapting part of the code to
Cython could be another option to increase the speed [BBS09],
[WLØ09]. Furthermore, generating source code for a pattern set
similar to parser generators for formal grammars could improve
matching performance. While code generation for syntactic pat-
tern matching has been the subject of various works [Aug85],
[FM01], [Mar08], [MRV03], its application with the extended
feature set of MatchPy is another potential area of future research.
Also, additonal research on the viability of pattern matching with
increasingly complex and large subjects or patterns is desirable.
Parallelizing many-to-one matching is also a possibility to increase
the overall speed which is worth exploring.

Functional pattern matching

Since Python does not have pattern matching as a language
feature, MatchPy could be extended to provide a syntax similar
to other functional programming languages. However, without a
switch statement as part of the language, there is a limit to the
syntax of this pattern expression. The following is an example of
what such a syntax could look like:
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with match(f(a, b)):
if case(f(x_, y_)):

print("x={}, y={}".format(x, y)))
elif case(f(z_)):

....

There are already several libraries for Python which implement
such a functionality for syntactic patterns and native data struc-
tures (e.g. MacroPy [Hao14], patterns [Sch14] or PyPatt [Jen15]).
However, the usefulness of this feature needs further evaluation.
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Abstract—By 2020 roughly 200 million people worldwide will suffer from pho-
toreceptor diseases such as retinitis pigmentosa and age-related macular de-
generation, and a variety of retinal sight restoration technologies are being
developed to target these diseases. One technology, analogous to cochlear im-
plants, uses a grid of electrodes to stimulate remaining retinal cells. Two brands
of retinal prostheses are currently approved for implantation in patients with
late stage photoreceptor disease. Clinical experience with these implants has
made it apparent that the vision restored by these devices differs substantially
from normal sight. To better understand the outcomes of this technology, we
developed pulse2percept, an open-source Python implementation of a computa-
tional model that predicts the perceptual experience of retinal prosthesis patients
across a wide range of implant configurations. A modular and extensible user
interface exposes the different building blocks of the software, making it easy for
users to simulate novel implants, stimuli, and retinal models. We hope that this
library will contribute substantially to the field of medicine by providing a tool to
accelerate the development of visual prostheses.

Index Terms—bionic vision, retinal implant, pulse2percept, prosthesis

Introduction

Two frequent causes of blindness in the developed world are
age-related macular degeneration (AMD) and retinitis pigmentosa
(RP) [BBB+84], [Gro04]. Both of these diseases have a hereditary
component, and are characterized by a progressive degeneration of
photoreceptors in the retina that lead to gradual loss of vision.

Microelectronic retinal prostheses have been developed in an
effort to restore sight to RP and AMD patients. Analogous to
cochlear implants, these devices function by electrically stimulat-
ing surviving retinal neurons in order to evoke neuronal responses
that are transmitted to the brain and interpreted by patients as
visual percepts (Fig. 1). Two of these devices are already approved
for commercial use, and a number of other companies have either
started or are planning to start clinical trials of devices in the
near future. Other types of technologies, such as optogenetics and
genetic modification are also areas of active research. Blinded
individuals may potentially be offered a wide range of sight
restoration options within a decade [FCL15].
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§ Institute for Neuroengineering, University of Washington
¶ eScience Institute, University of Washington

Copyright © 2017 Michael Beyeler et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
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Fig. 1: Electronic retinal prosthesis. Light from the visual scene is
captured by an external camera and transformed into electrical pulses
delivered through microelectrodes to stimulate the retina.

One major challenge in the development of retinal prostheses
is predicting what patients will see when they use their devices.
Interactions between implant electronics and the underlying neu-
rophysiology cause nontrivial perceptual distortions in both space
and time [FB15], [BRBFss] that severely limit the quality of the
generated visual experience.

Our goal was to develop a simulation framework that could
describe the visual percepts of retinal prosthesis patients over
space and time. We refer to these simulations as ‘virtual patients’,
analogous to the virtual prototyping that has proved so useful in
other complex engineering applications.

Here we present an open-source implementation of these
models as part of pulse2percept, a BSD-licensed Python-based
simulation framework [BSD17] that relies on the NumPy and
SciPy stacks, as well as contributions from the broader Python
community. Based on the detailed specification of a patient’s
implant configuration, and given a desired electrical stimulus, the
model predicts the perceptual distortions experienced by ‘virtual
patients’ over both space and time.

We hope that this library will contribute substantially to the
field of medicine by providing a tool to accelerate the development
of visual prostheses. Researchers may use this tool to improve
stimulation protocols of existing implants or to aid development of
future devices. In addition, this tool might guide government agen-
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cies, such as the FDA and Medicare, in making reimbursement
decisions. Furthermore, this tool can be used to guide patients and
doctors in their decision as to when or whether to be implanted,
and which device to select.

The remainder of this paper is organized as follows: We
start by introducing the neuroscience background necessary to
understand the interactions between implant electronics and the
underlying neurophysiology. We then detail the computational
model that underlies pulse2percept, before we give a simple usage
example and go into implementation details. We then review
our solutions to various technical challenges, and conclude by
discussing the broader impact for this work for computational
neuroscience and neural engineering communities in more detail.

Background

The first steps in seeing begin in the retina, where a mosaic of
photoreceptors converts incoming light into electrochemical sig-
nals that encode the intensity of light as a function of position (two
dimensions), wavelength, and time [Rod98]. The electrochemical
signal is passed on to specialized neuronal circuits consisting of
a variety of cell types (such as bipolar, amacrine, and horizontal
cells), which act as feature detectors for basic sensory properties,
such as spatial contrast and temporal frequency. These sensory
features are then encoded in parallel across approximately 1.5
million retinal ganglion cells, which form the output layer of the
retina. Each ganglion cell relays the electrical signal to the brain
via a long axon fiber that passes from the ganglion cell body to
the optic nerve and on to the brain.

Diseases such as RP and AMD are characterized by a pro-
gressive degeneration of photoreceptors, gradually affecting other
layers of the retina [HPdJ+99], [MNS08]. In severe end-stage RP,
roughly 95% of photoreceptors, 20% of bipolar cells, and 70%
of ganglion cells degenerate [SHd+97]. In addition, the remaining
cells undergo corruptive re-modeling in late stages of the disease
[MJWS03], [MJ03], so that little or no useful vision is retained.

Microelectronic retinal prostheses have been developed in an
effort to restore sight to individuals suffering from RP or AMD.
Analogous to cochlear implants, the goal of retinal prostheses
is to electrically stimulate surviving bipolar or ganglion cells
in order to evoke neuronal responses that are interpreted by
the brain as visual percepts. The electrical stimulus delivers
charge to the cell membrane that depolarizes the neuron and
opens voltage-sensitive ion channels. This bypasses the natural
presynaptic neurotransmitter excitation and causes the activated
neurons to stimulate their postsynaptic targets. Therefore, selective
spatiotemporal modulation of retinal neurons with an array of
electrodes should allow a prosthesis to coordinate retinal activity
in place of natural photoreceptor input [WWH16].

Several types of retinal prostheses are currently in develop-
ment. These vary in their user interface, light-detection method,
signal processing, and microelectrode placement within the retina
(for a recent review see [WWH16]). As far as our model is con-
cerned, the critical factor is the placement of the microelectrodes
on the retina (Fig. 2). The three main locations for microelectrode
implant placement are epiretinal (i.e., on top of the retinal surface,
above the ganglion cells), subretinal (i.e., next to the bipolar cells
in the space of the missing photoreceptors), and suprachoroidal
(i.e., between the choroid and the sclera). Each of these approaches
is similar in that light from the visual scene is captured via a
camera and transformed into electrical pulses delivered through
electrodes to stimulate the retina.

Fig. 2: Diagram of the retina and common locations of retinal
prosthesis microelectrode arrays. Retinitis pigmentosa causes severe
photoreceptor degeneration. Epiretinal electrode arrays are placed in
the vitreous, next to the optic fiber layer (OFL). Subretinal arrays
are placed by creating a space between the choroid and remaining
retinal tissue. Suprachoroidal arrays are placed behind the choroid.
pulse2percept allows for simulation of processing in the inner nuclear
layer (INL), ganglion cell layer (GCL), and optic fiber layer (OFL).
Based on "Retina layers" by Peter Hartmann, CC BY-SA 3.0.

As mentioned above, two devices are currently approved for
commercial use and are being implanted in patients across the US
and Europe: the Argus II device (epiretinal, Second Sight Medical
Products Inc., [dCDH+16]) and the Alpha-IMS system (subretinal,
Retina Implant AG, [SBSB+15]). At the same time, a number of
other companies have either started or are planning to start clinical
trials in the near future, potentially offering a wide range of sight
restoration options for the blind within a decade [FCL15].

However, clinical experience with existing retinal prostheses
makes it apparent that the vision provided by these devices differs
substantially from normal sight. Interactions between implant
electronics and the underlying neurophysiology cause nontrivial
perceptual distortions in both space and time [FB15], [BRBFss]
that severely limit the quality of the generated visual experience.
For example, stimulating a single electrode rarely produces the
experience of a ‘dot’ of light, instead leading to percepts that
vary drastically in shape, varying in description from ‘blobs’, to
‘streaks’ and ‘half-moons’. The percept produced by stimulating
a single electrode with a continuous pulse train also fades over
time, usually disappearing over a course of seconds. As a result,
patients do not report seeing an interpretable world. One patient
describes it as like: "... looking at the night sky where you have
millions of twinkly lights that almost look like chaos" [Pre15].

Previous work by our group has focused on development
of computational models to describe some of these distortions
for a small number of behavioral observations in either space
[NFH+12] or time [HGW+09]. Here we present a model that
can describe spatial distortions, temporal nonlinearities, and spa-
tiotemporal interactions reported across a wide range of condi-
tions, devices, and patients.
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Fig. 3: Full model cascade. A simulated electrical stimulus is processed by a series of linear filtering and nonlinear processing steps that
model the spatial (A, B) and temporal sensitivity (C-F) of the retinal tissue. An Argus I device is shown (16 electrodes of 260 or 520 microns
diameter arranged in a checkerboard pattern). The output of the model is a prediction of the visual percept in both space and time (example
frame shown), which can be compared to human patients’ drawings.

Computational Model of Bionic Vision

Analogous to models of cochlear implants [Sha89], the goal of
our computational model is to approximate, via a number of linear
filtering and nonlinear processing steps, the neural computations
that convert electrical pulse trains across multiple electrodes into
a perceptual experience in space and time.

Model parameters were chosen to fit data from a variety of
behavioral experiments in patients with prosthetic devices. For
example, in threshold experiments patients were asked to report
whether or not they detected a percept. Across many trials, the
minimum stimulation current amplitude needed to reliably detect
the presence of a percept on 80% of trials was found. This
threshold was measured across a variety of pulse trains that varied
across dimensions such as frequency, duty cycle, and duration. In
other experiments patients reported the apparent brightness or size
of percepts on a rating scale. In others patients drew the shapes
of the percepts evoked by stimulation. The model has been shown
to generalize across individual electrodes, patients, and devices,
as well as across different experiments. Detailed methods of how
the model was validated can be found in [HGW+09], [NFH+12],
[BRBFss]. Here we provide a brief overview of the model cascade.

The full model cascade for an Argus I epiretinal prosthesis is
illustrated in Fig. 3. The Argus I device simulated here consists
of electrodes of 260 µm and 520 µm diameter, arranged in a
checkerboard pattern (Fig. 3 A). In this example, input to the
model is a pair of simulated pulse trains phase-shifted by δ ms,
which are delivered to two individual simulated electrodes.

The first stages of the model describe the spatial distortions
resulting from interactions between the electronics and the neu-
roanatomy of the retina. We assume that the current density caused
by electrical stimulation decreases as a function of distance from
the edge of the electrode [ABK+08]:

c(d) =
α

α +dn (1)

where d is the 3D Euclidean distance to the electrode edge, α =
14000 and the exponent n= 1.69. Current fields for two stimulated
electrodes are shown, Fig. 3 A (the hotter the color, the higher the
current).

Due to the fact that epiretinal implants sit on top of the optic
fiber layer (Fig. 2), they do not only stimulate ganglion cell bodies
but also ganglion cell axons. It is critical to note that, perceptually,
activating an axon fiber that passes under a stimulated electrode
is indistinguishable from the percept that would be elicited by
activating the corresponding ganglion cell body. The produced
visual percept will appear in the spatial location in visual space for
which the corresponding ganglion cell and axon usually encodes
information. Ganglion cells send their axons on highly stereotyped

pathways to the optic disc (green lines in Fig. 3 B), which have
been mathematically described [JNS+09]. As a result, electrical
stimulation of axon fibers leads to predictable visual ‘streaks’ or
‘comet trails’ that are aligned with the axonal pathways.

We therefore convert the spatial map of current densities into
a tissue activation map by accounting for axonal stimulation. We
model the sensitivity of axon fibers as decreasing exponentially as
a function of distance from the corresponding ganglion cell bodies.
The resulting tissue activation map across the retinal surface is
shown as a heatmap in Fig. 3 B (the hotter the color, the larger the
amount of tissue stimulation).

The remaining stages of the model describe temporal non-
linearities. Every pixel of the tissue activation map is modulated
over time by the applied electrical pulse train in order to predict a
perceived brightness value that varies over time. This involves
applying a series of linear filtering (Fig. 3 C, D, and F) and
nonlinear processing (Fig. 3 E) steps in the time domain that
are designed to approximate the processing of visual information
within the retina and visual cortex.

Linear responses in Fig. 3 C, D, and F are modeled as temporal
low-pass filters, or ‘leaky integrators’, using gamma functions of
order n:

δ (t,n,τ) =
exp(−t/τ)
τ(n−1)!

( t
τ

)n−1
(2)

where t is time, n is the number of identical, cascading stages, and
τ is the time constant of the filter.

The first temporal processing step convolves the timeseries of
tissue activation strengths f (t) at a particular spatial location with
a one-stage gamma function (n = 1, time constant τ1 = 0.42 ms)
to model the impulse response function of retinal ganglion cells
(Fig. 3 C):

r1(t) = f (t)∗δ (t,1,τ1), (3)

where ∗ denotes convolution.
Behavioral data suggests that the system becomes less sensi-

tive as a function of accumulated charge. This is implemented by
calculating the amount of accumulating charge at each point of
time in the stimulus, c(t), and by convolving this accumulation
with a second one-stage gamma function (n = 1, time constant
τ2 = 45.3 ms; Fig. 3 D). The output of this convolution is scaled
by a factor ε1 = 8.3 and subtracted from r1 (Eq. 3):

r2(t) = r1(t)− ε1
(
c(t)∗δ (t,1,τ2)

)
. (4)

The response r2(t) is then passed through a stationary nonlinearity
(Fig. 3 E) to model the nonlinear input-output relationship of
ganglion cell spike generation:

r3(t) = r2(t)
α

1+ exp δ−maxt r2(t)
s

(5)
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where α = 14 (asymptote), s = 3 (slope), and δ = 16 (shift) are
chosen to match the observed psychophysical data.

Finally, the response r3(t) is convolved with another low-pass
filter described as a three-stage gamma function (n = 3, τ3 = 26.3
ms) intended to model slower perceptual processes in the brain
(Fig. 3 F):

r4(t) = ε2r3(t)∗δ (t,3,τ3), (6)

where ε2 = 1000 is a scaling factor used to scale the output to
subjective brightness values in the range [0, 100].

The output of the model is thus a movie of brightness values
that corresponds to the predicted perceptual experience of the
patient. An example percept generated is shown on the right-hand
side of Fig. 3 (‘predicted percept’, brightest frame in the movie).

Implementation and Results

Code Organization

The pulse2percept project seeks a trade-off between optimizing
for computational performance and ease of use. To facilitate ease
of use, we organized the software as a standard Python package,
consisting of the following primary modules:

• api: a top-level Application Programming Interface.
• implants: implementations of the details of different

retinal prosthetic implants. This includes Second Sight’s
Argus I and Argus II implants, but can easily be extended
to feature custom implants (see Section Extensibility).

• retina: implementation of a model of the retinal dis-
tribution of nerve fibers, based on [JNS+09], and an im-
plementation of the temporal cascade of events described
in Eqs. 2-6. Again, this can easily be extended to custom
temporal models (see Section Extensibility).

• stimuli: implementations of commonly used electrical
stimulation protocols, including methods for translating
images and movies into simulated electrical pulse trains.
Again, this can easily be extended to custom stimulation
protocols (see Section Extensibility).

• files: a means to load/store data as images and videos.
• utils: various utility and helper functions.

Basic Usage

Here we give a minimal usage example to produce the percept
shown on the right-hand side of Fig. 3.

Convention is to import the main pulse2percept module
as p2p. Throughout this paper, if a class is referred to with the
prefix p2p, it means this class belongs to the main pulse2percept
library (e.g., p2p.retina):
1 import pulse2percept as p2p

p2p.implants: Our goal was to create electrode im-
plant objects that could be configured in a highly flexible manner.
As far as placement is concerned, an implant can be placed at a
particular location on the retina (x_center, y_center) with
respect to the fovea (in microns), and rotated as you see fit (rot):
2 import numpy as np
3 implant = p2p.implants.ArgusI(x_center=-800,
4 y_center=0,
5 h=80,
6 rot=np.deg2rad(35))

Here, we make use of the ArgusI array type, which provides pre-
defined values for array type (‘epiretinal’) and electrode diameters.
In addition, the distance between the array and the retinal tissue

can be specified via the height parameter (h), either on a per-
electrode basis (as a list) or using the same value for all electrodes
(as a scalar).

The electrodes within the implant can also be
specified. An implant is a wrapper around a list of
p2p.implants.Electrode objects, which are accessible
via indexing or iteration (e.g., via [for i in implant]).
This allows for specification of electrode diameter, position,
and distance to the retinal tissue on a per-electrode basis. Once
configured, every Electrode object in the implant can also
be assigned a name (in the Argus I implant, they are A1 - A16;
corresponding to the names that are commonly used by Second
Sight Medical Products Inc.). The first electrode in the implant
can be accessed both via its index (implant[0]) and its name
(implant['A1']).

Once the implant is created, it can be passed to the simulation
framework. This is also where you specify the back end (currently
supported are ‘serial’, ‘joblib’ [Job16], and ‘dask’ [Das16]):
7 sim = p2p.Simulation(implant, engine='joblib',
8 num_jobs=8)

The simulation framework provides a number of setter functions
for the different layers of the retina. These allow for flexible
specification of optional settings, while abstracting the underlying
functionality.

p2p.retina: This includes the implementation of a
model of the retinal distribution of nerve fibers, based on
[JNS+09], and implementations of the temporal cascade of events
described in Eqs. 2-6.

Things that can be set include the spatial sampling rate of the
optic fiber layer (ssample) as well as the spatial extent of the
retinal patch to be simulated (given by the corner points [xlo,
ylo] and [xhi, yhi]). If the coordinates of the latter are not
given, a patch large enough to fit the specified electrode array will
be automatically selected:
9 ssample = 100 # microns

10 num_axon_samples = 801
11 sim.set_optic_fiber_layer(ssample=ssample,
12 num_axon_samples=801)

Similarly, for the ganglion cell layer we can choose one of the
pre-existing cascade models and specify a temporal sampling rate:

13 tsample = 0.005 / 1000 # seconds
14 sim.set_ganglion_cell_layer('Nanduri2012',
15 tsample=tsample)

As its name suggest, 'Nanduri2012' implements the model
detailed in [NFH+12]. Other options include 'Horsager2009'
[HGW+09] and 'latest'.

It’s also possible to specify your own (custom) model, see
Section Extensibility below.

p2p.stimuli: A stimulation protocol can be specified
by assigning stimuli from the p2p.stimuli module to specific
electrodes. An example is to set up a pulse train of particular
stimulation frequency, current amplitude and duration. Because
of safety considerations, all real-world stimuli must be balanced
biphasic pulse trains (i.e., they must have a positive and negative
phase of equal area, so that the net current delivered to the tissue
sums to zero).

It is possible to specify a pulse train for each electrode in the
implant as follows:

16 # Stimulate two electrodes, others set to zero
17 stim = []
18 for elec in implant:
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Fig. 4: Model input/output generated by the example code. (A) An
epiretinal Argus I array is placed near the fovea, and two electrodes
(‘C1’ and ‘B3’) are stimulated with 50 Hz, 20 uA pulse trains. The
plot is created by lines 34-36. Note that the retinal image is flipped, so
that the upper hemisphere corresponds to the upper visual field. (B)
Predicted visual percept (example frame shown). The plot is created
by line 41.

19 if elec.name == 'C1' or elec.name == 'B3':
20 # 50 Hz, 20 uA, 0.5 sec duration
21 pt = p2p.stimuli.PulseTrain(tsample,
22 freq=50.0,
23 amp=20.0,
24 dur=0.5)
25 else:
26 pt = p2p.stimuli.PulseTrain(tsample, freq=0)
27 stim.append(pt)

However, since implants are likely to have electrodes numbering in
the hundreds or thousands, this method will rapidly become cum-
bersome when assigning pulse trains across multiple electrodes.
Therefore, an alternative is to assign pulse trains to electrodes via
a dictionary:

28 stim = {
29 'C1': p2p.stimuli.PulseTrain(tsample, freq=50.0,
30 amp=20.0, dur=0.5)
31 'B3': p2p.stimuli.PulseTrain(tsample, freq=50.0,
32 amp=20.0, dur=0.5)
33 }

At this point, we can highlight the stimulated electrodes in the
array:

34 import matplotlib.pyplot as plt
35 %matplotlib inline
36 sim.plot_fundus(stim)

The output can be seen in Fig. 4 A.
Finally, the created stimulus serves as input to

sim.pulse2percept, which is used to convert the pulse
trains into a percept. This allows users to simulate the predicted
percepts for simple input stimuli, such as stimulating a pair of
electrodes, or more complex stimuli, such as stimulating a grid of
electrodes in the shape of the letter A.

At this stage in the model it is possible to consider which
retinal layers are included in the temporal model, by selecting
from the following list (see Fig. 2 for a schematic of the anatomy):

• 'OFL': optic fiber layer (OFL), where ganglion cell axons
reside,

• 'GCL': ganglion cell layer (GCL), where ganglion cell
bodies reside, and

• 'INL': inner nuclear layer (INL), where bipolar cells
reside.

A list of retinal layers to be included in the simulation is then
passed to the pulse2percept method:

37 # From pulse train to percept
38 percept = sim.pulse2percept(stim, tol=0.25,
39 layers=['GCL', 'OFL'])

This allows the user to run simulations that include only the
layers relevant to a particular simulation. For example, axonal
stimulation and the resulting axon streaks can be ignored by
omitting 'OFL' from the list. By default, all three supported
layers are included.

Here, the output percept is a p2p.utils.TimeSeries
object that contains the time series data in its data container.
This time series consists of brightness values (arbitrary units in [0,
100]) for every pixel in the percept image.

Alternatively, it is possible to retrieve the brightest (mean over
all pixels) frame of the time series:

40 frame = p2p.get_brightest_frame(percept)

Then we can plot it with the help of Matplotlib (Fig. 4 B):
41 plt.imshow(frame, cmap='gray')

p2p.files: pulse2percept offers a collection of func-
tions to convert the p2p.utils.TimeSeries output into a
movie file via scikit-video [Sci17] and ffmpeg [FFm10].

For example, a percept can be stored to an MP4 file as follows:
42 # Save movie at 15 frames per second
43 p2p.files.save_video(percept, 'mypercept.mp4',
44 fps=15)

For convenience, pulse2percept provides a function to load a video
file and convert it to the p2p.utils.TimeSeries format:

45 # Load video as TimeSeries of size (M x N x T),
46 # M: height, N: width, T: number of frames
47 video = p2p.files.load_video('mypercept.mp4')

Analogously, pulse2percept also provides functionality to go
directly from images or videos to electrical stimulation on an
electrode array:

48 from_img = p2p.stimuli.image2pulsetrain('myimg.jpg',
49 implant)
50 from_vid = p2p.stimuli.video2pulsetrain('mymov.avi',
51 implant)

These functions are based on functionality provided by scikit-
image [S v14] and scikit-video [Sci17], respectively, and come
with a number of options to specify whether brightness should be
encoded as pulse train amplitude or frequency, at what frame rate
to sample the movie, whether to maximize or invert the contrast,
and so on.

Extensibility

As described above, our software is designed to allow for implants,
retinal models, and pulse trains to be customized. We provide
extensibility mainly through mechanisms of class inheritance.



Con
fer

en
ce

Rea
dy

86 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2017)

Retinal Implants: Creating a new implant involves in-
heriting from p2p.implants.ElectrodeArray and pro-
viding a property etype, which is the electrode type (e.g.,
'epiretinal', 'subretinal'):

52 import pulse2percept as p2p
53

54 class MyImplant(p2p.implants.ElectrodeArray):
55

56 def __init__(self, etype):
57 """Custom electrode array
58

59 Parameters
60 ----------
61 etype : str
62 Electrode type, {'epiretinal',
63 'subretinal'}
64 """
65 self.etype = etype
66 self.num_electrodes = 0
67 self.electrodes = []

Then new electrodes can be added by utilizing the
add_electrodes method of the base class:

68 myimplant = MyImplant('epiretinal')
69 r = 150 # electrode radius (um)
70 x, y = 10, 20 # distance from fovea (um)
71 h = 50 # height from retinal surface (um)
72 myimplant.add_electrodes(r, x, y, h)

Retinal cell models: Any new ganglion cell model is
described as a series of temporal operations that are carried out
on a single pixel of the image. It must provide a property called
tsample, which is the temporal sampling rate, and a method
called model_cascade, which translates a single-pixel pulse
train into a single-pixel percept over time:

73 class MyGanglionCellModel(p2p.retina.TemporalModel):
74 def model_cascade(self, in_arr, pt_list, layers,
75 use_jit):
76 """Custom ganglion cell model
77

78 Parameters
79 ----------
80 in_arr : array_like
81 2D array <#layers x #time points> of
82 effective current values at a single
83 pixel location.
84 pt_list : list
85 List of pulse train `data` containers.
86 layers : list
87 List of retinal layers to simulate.
88 Choose from:
89 - 'OFL': optic fiber layer
90 - 'GCL': ganglion cell layer
91 - 'INL': inner nuclear layer
92 use_jit : bool
93 If True, applies just-in-time (JIT)
94 compilation to expensive computations
95 for additional speedup (requires Numba)
96 """
97 return p2p.utils.TimeSeries(self.tsample,
98 in_arr[0, :])

This method can then be passed to the simulation framework:

99 mymodel = MyGanglionCellModel()
100 sim.set_ganglion_cell_layer(mymodel)

It will then automatically be selected as the implemented ganglion
cell model when sim.pulse2percept is called.

Stimuli: The smallest stimulus building block provided by
pulse2percept consists of a single pulse of either positive current
(anodic) or negative current (cathodic), which can be created via
p2p.stimuli.MonophasicPulse. However, as described

above, any real-world stimulus must consist of biphasic pulses
with zero net current. A single biphasic pulse can be created
via p2p.stimuli.BiphasicPulse. A train of such pulses
can be created via p2p.stimuli.PulseTrain. This setup
gives the user the opportunity to build their own stimuli by
creating pulse trains of varying amplitude, frequency, and inter-
pulse intervals.

In order to define new pulse shapes and custom stimuli, the
user can either inherit from any of these stimuli classes or directly
from p2p.utils.TimeSeries. For example, a biphasic pulse
can be built from two monophasic pulses as follows:

101 from pulse2percept.stimuli import MonophasicPulse
102

103 class MyBiphasicPulse(p2p.utils.TimeSeries):
104

105 def __init__(self, pdur, tsample):
106 """A charge-balanced pulse with a cathodic
107 and anodic phase
108

109 Parameters
110 ----------
111 tsample : float
112 Sampling time step in seconds.
113 pdur : float
114 Single-pulse phase duration (seconds).
115 """
116 on = MonophasicPulse('anodic', pdur, tsample,
117 0, pdur)
118 off = MonophasicPulse('cathodic', pdur,
119 tsample, 0, pdur)
120 on.append(off)
121 utils.TimeSeries.__init__(self, tsample, on)

Implementation Details

pulse2percept’s main technical challenge is computational cost:
the simulations require a fine subsampling of space, and span
several orders of magnitude in time. In the space domain the
software needs to be able to simulate electrical activation of
individual retinal ganglion cells on the order of microns. In the
time domain the model needs to be capable of dealing with pulse
trains containing individual pulses on the sub-millisecond time
scale that last over several seconds.

Like the brain, we solve this problem through parallelization.
Spatial interactions are confined to an initial stage of processing
(Fig. 3 A, B), after which all spatial computations are parallelized
using two back ends (Joblib [Job16] and Dask [Das16]), with both
multithreading and multiprocessing options.

However, even after parallelization, computing the temporal
response remains a computational bottleneck. Initial stages of the
temporal model require convolutions of arrays (e.g., Eqs. 2 and 3)
that describe responses of the model at high temporal resolution
(sampling rates on the order of 10 microseconds) for pulse trains
lasting for at least 500 milliseconds. These numerically-heavy
sections of the code are sped up using a conjunction of three
strategies. First, as described above, any given electrode generally
only stimulates a subregion of the retina. As a consequence, when
only a few electrodes are active, we can often obtain substantial
speed savings by ignoring pixels which are not significantly stim-
ulated by any electrode (see tolerance parameter tol on line 38 of
the example code). Second, electrical stimulation is often carried
out at relatively low pulse train frequencies of less than 50 Hz.
Since the individual pulses within the pulse train are usually very
short (~75-450 microseconds), input pulse trains tend to be sparse.
We can exploit this fact to speed up computation time by avoiding
direct convolution with the entire time-series whenever possible,
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Fig. 5: Computational performance. (A) Compute time to generate an ‘effective stimulation map’ is shown as a function of the number of
spatial sampling points used to characterize the retina. (B) Speedup factor (serial execution time / parallel execution time) is shown as a
function of the number of CPU cores. Execution times were collected for the an Argus II array (60 electrodes) simulating the letter ‘A’ (roughly
40 active electrodes, 20 Hz/20 uA pulse trains) over a period of 500 ms (tsample was 10 microseconds, ssample was 50 microns). Joblib
and Dask parallelization back ends gave similar results.

and instead relying on a custom-built sparse convolution function.
Preprocessing of sparse pulse train arrays allows us to carry out
temporal convolution only for those parts of the time-series that
include nonzero current amplitudes. Finally, these convolutions are
sped up wih LLVM-base compilation implemented using Numba
[LPS15].

Computational Performance

We measured computational performance of the model for both
spatial and temporal processing using a 12-core Intel Core i7-
5930K operating at 3.50 GHz (64GB of RAM).

The initial stages of the model scale as a function of the
number of spatial sampling points in the retina, as shown in
Fig. 5 A. Since the spatial arrangement of axonal pathways
does not depend on the stimulation protocol or retinal implant,
pulse2percept automatically stores and re-uses the generated spa-
tial map depending on the specified set of spatial parameters.

The remainder of the model is carried out in parallel, with
the resulting speedup factor shown in Fig. 5 B. Here, the speedup
factor is calculated as the ratio of single-core execution time and
parallel execution time. On this particular machine, the maximum
speedup factor is obtained with eight cores, above which the
simulation shifts from being CPU bound to being memory bound,
leading to a decrease in speedup. At its best, simulating typical
stimulation of an Argus II over a timecourse of 500 milliseconds
(at 50 microns spatial resolution and 10 ms temporal resolution)
required 79 seconds of execution time. According to line profiling,
most of the time is spent executing the slow convolutions (Fig. 3
D, F), thus heavily relying on the computational performance of
the SciPy implementation of the Fast Fourier Transform. Due to
the current design constraints (see Discussion), the software is
better suited for rapid prototyping rather than real-time execution
- although we aim to alleviate this in the future through GPU
parallelization (via CUDA [KPL+12] and Dask [Das16]) and
cluster computing (via Spark [Apa16]).

Software availability and development

All code can be found at https://github.com/uwescience/
pulse2percept, with up-to-date source code documentation avail-
able at https://uwescience.github.io/pulse2percept. In addition, the

latest stable release is available on the Python Package Index and
can be installed using pip:
$ pip install pulse2percept

The library’s test suite can be run as follows:
$ py.test --pyargs pulse2percept --doctest-modules

All code presented in this paper is current as of the v0.2 release.

Discussion

We presented here an open-source, Python-based framework for
modeling the visual processing in retinal prosthesis patients. This
software generates a simulation of the perceptual experience of
individual prosthetic users - a ‘virtual patient’.

The goal of pulse2percept is to provide open-source simula-
tions that can allow any user to evaluate the perceptual experiences
likely to be produced across both current and future devices.
Specifically, the software is designed to meet four software design
specifications:

• Ease of use: The intended users of this simulation include
researchers and government officials who collect or assess
perceptual data on prosthetic implants. These researchers
are likely to be MDs rather than computer scientists, and
might therefore lack technical backgrounds in computing.
In the future, we plan for pulse2percept to become the
back end of a web application similar to [KDM+ss].

• Modularity: As research continues in this field, it is likely
that the underlying computational models converting elec-
trical stimulation to patient percepts will improve. The
modular design of the current release makes it easy to
update individual components of the model.

• Flexibility: pulse2percept allows for rapid prototyping and
integration with other analysis or visualization libraries
from the Python community. It allows users to play with
parameters, and use the ones that fit their desired device.
Indeed, within most companies the specifications of im-
plants currently in design is closely guarded intellectual
property.

• Extensibility: The software can easily be extended to
include custom implants, stimulation protocols, and retinal
models.
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As a result of these design considerations, pulse2percept has a
number of potential uses.

Device developers can use virtual patients to get an idea of
how their implant will perform even before a physical prototype
has been created. This is reminiscent of the practice of virtual
prototyping in other engineering fields. It becomes possible to
make predictions about the perceptual consequences of individual
design considerations, such as specific electrode geometries and
stimulation protocols. As a result, virtual patients provide a useful
tool for implant development, making it possible to rapidly predict
vision across different implant configurations. We are currently
collaborating with two leading manufacturers to validate the use
of this software for both of these purposes.

Virtual patients can also play an important role in the wider
community. To a naive viewer, simulations of prosthetic vision
currently provided by manufacturers and the press might provide
misleading visual outcomes, because these simulations do not take
account of the substantial distortions in space and time that are
observed by actual patients. On our website we provide example
stimulations of real-world vision based on the pulse2percept
virtual patient.

Prosthetic implants are expensive technology - costing roughly
$100k per patient. Currently, these implants are reimbursed on
a trial-by-trial basis across many countries in Europe, and are
only reimbursed in a subset of states in the USA. Hence our
simulations can help guide government agencies such as the FDA
and Medicare in reimbursement decisions. Most importantly, these
simulations can help patients, their families, and doctors make an
informed choice when deciding at what stage of vision loss a
prosthetic device would be helpful.
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equations

Michael Lange‡∗, Navjot Kukreja‡, Fabio Luporini‡, Mathias Louboutin§, Charles Yount¶, Jan Hückelheim‡, Gerard J.
Gorman‡

F

Abstract—Domain-specific high-productivity environments are playing an in-
creasingly important role in scientific computing due to the levels of abstraction
and automation they provide. In this paper we introduce Devito, an open-
source domain-specific framework for solving partial differential equations from
symbolic problem definitions by the finite difference method. We highlight the
generation and automated execution of highly optimized stencil code from only
a few lines of high-level symbolic Python for a set of scientific equations, before
exploring the use of Devito operators in seismic inversion problems.

Index Terms—Finite difference, domain-specific languages, symbolic Python

Introduction

Domain-specific high-productivity environments are playing an
increasingly important role in scientific computing. The level of
abstraction and automation provided by such frameworks not only
increases productivity and accelerates innovation, but also allows
the combination of expertise from different specialised disciplines.
This synergy is necessary when creating the complex software
stack needed to solve leading edge scientific problems, since
domain specialists as well as high performance computing experts
are required to fully leverage modern computing architectures.
Based on this philosophy we introduce Devito [Lange17], an open-
source domain-specific framework for solving partial differential
equations (PDE) from symbolic problem definitions by the finite
difference method.

Symbolic computation, where optimized numerical code is
automatically derived from a high-level problem definition, is
a powerful technique that allows domain scientists to focus on
algorithmic development rather than implementation details. For
this reason Devito exposes an API based on Python (SymPy)
[Meurer17] that allow users to express equations symbolically,
from which it generates and executes optimized stencil code via
just-in-time (JIT) compilation. Using latest advances in stencil
compiler research, Devito thus provides domain scientists with
the ability to quickly and efficiently generate high-performance
kernels from only a few lines of Python code, making Devito
composable with existing open-source software.
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§ The University of British Columbia
¶ Intel Corporation

Copyright © 2017 Michael Lange et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
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While Devito was originally developed for seismic imaging
workflows, the automated generation and optimization of stencil
codes can be utilised for a much broader set of computational
problems. Matrix-free stencil operators based on explicit finite
difference schemes are widely used in industry and academic
research, although they merely represent one of many approaches
to solving PDEs [Baba16], [Liu09], [Rai91]. In this paper we
therefore limit our discussion of numerical methods and instead
focus on the ease with which these operators can be created
symbolically. We give a brief overview of the design concepts
and key features of Devito and demonstrate its API using a set of
classic examples from computational fluid dynamics (CFD). Then
we will discuss the use of Devito in an example of a complex
seismic inversion algorithm to illustrate its use in practical scien-
tific applications and to showcase the performance achieved by the
auto-generated and optimised code.

Background

The attraction of using domain-specific languages (DSL) to solve
PDEs via a high-level mathematical notation is by no means
new and has led to various purpose-built software packages
and compilers dating back to 1962 [Iverson62], [Cardenas70],
[Umetani85], [Cook88], [VanEngelen96]. Following the emer-
gence of Python as a widely used programming language in
scientific research, embedded DSLs for more specialised domains
came to the fore, most notably the FEniCS [Logg12] and Firedrake
[Rathgeber16] frameworks, which both implement the unified
Form Language (UFL) [Alnaes14] for the symbolic definition of
finite element problems in the weak form. The increased level of
abstraction that such high-level languages provide decouples the
problem definition from its implementation, thus allowing domain
scientists and mathematicians to focus on more advanced methods,
such as the automation of adjoint models as demonstrated by
Dolfin-Adjoint [Farrell13].

The performance optimization of stencil computation on reg-
ular cartesian grids for high-performance computing applications
has also received much attention in computer science research
[Datta08], [Brandvik10], [Zhang12], [Henretty13], [Yount15]. The
primary focus of most stencil compilers or DSLs, however, is
the optimization of synthetic problems which often limits their
applicability for practical scientific applications. The primary
consideration here is that most realistic problems often require
more than just a fast and efficient PDE solver, which entails
that symbolic DSLs embedded in Python can benefit greatly from
native interoperability with the scientific Python ecosystem.
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Design and API

The primary objective of Devito is to enable the quick and effec-
tive creation of highly optimised finite difference operators for use
in a realistic scientific application context. As such, its design is
centred around composability with the existing Python software
stack to provide users with the tools to dynamically generate
optimised stencil computation kernels and to enable access to the
full scientific software ecosystem. In addition, to accommodate
the needs of "real life" scientific applications, a secondary API
is provided that enables users to inject custom expressions, such
as boundary conditions or sparse point interpolation routines, into
the generated kernels.

The use of SymPy as the driver for the symbolic generation
of stencil expressions and the subsequent code-generation are at
the heart of the Devito philosophy. While SymPy is fully capable
of auto-generating low-level C code for pre-compiled execution
from high-level symbolic expressions, Devito is designed to com-
bine these capabilities with automatic performance optimization
based on the latest advances in stencil compiler technology. The
result is a framework that is capable of automatically generating
and optimising complex stencil code from high-level symbolic
definitions.

The Devito API is based around two key concepts that allow
users to express finite difference problems in a concise symbolic
notation:

• Symbolic data objects: Devito’s high-level symbolic ob-
jects behave like sympy.Function objects and provide
a set of shorthand notations for generating derivative
expressions, while also managing user data. The rationale
for this duality is that many stencil optimization algorithms
rely on data layout changes, mandating that Devito needs
to be in control of data allocation and access.

• Operator: An Operator creates, compiles and exe-
cutes a single executable kernel from a set of SymPy
expressions. The code generation and optimization process
involves various stages and accepts a mixture of high-
level and low-level expressions to allow the injection of
customised code.

Fluid Dynamics Examples

In the following section we demonstrate the use of the Devito API
to implement two examples from classical fluid dynamics, before
highlighting the role of Devito operators in a seismic inversion
context. Both CFD examples are based in part on tutorials from
the introductory blog "CFD Python: 12 steps to Navier-Stokes"1

by the Lorena A. Barba group. We have chosen the examples
in this section for their relative simplicity to concisely illustrate
the capabilities and API features of Devito. For a more complete
discussion on numerical methods for fluid flows please refer to
[Peiro05].

Linear Convection

We will demonstrate a basic Devito operator definition based on
a linear two-dimensional convection flow (step 5 in the original
tutorials)2. The governing equation we are implementing here is:

∂u
∂ t

+ c
∂u
∂x

+ c
∂u
∂y

= 0 (1)

1. http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
2. http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/

cfd/test_01_convection_revisited.ipynb

A discretised version of this equation, using a forward difference
scheme in time and a backward difference scheme in space might
be written as

un+1
i, j = un

i, j− c
∆t
∆x

(un
i, j−un

i−1, j)− c
∆t
∆y

(un
i, j−un

i, j−1) (2)

where the subscripts i and j denote indices in the space dimensions
and the superscript n denotes the index in time, while ∆t, ∆x, ∆y
denote the spacing in time and space dimensions respectively.

The first thing we need is a function object with which we can
build a timestepping scheme. For this purpose Devito provides
so-called TimeData objects that encapsulate functions that are
differentiable in space and time. With this we can derive symbolic
expressions for the backward derivatives in space directly via
the u.dxl and u.dyl shorthand expressions (the l indicates
"left" or backward differences) and the shorthand notation u.dt
provided by TimeData objects to derive the forward derivative
in time.
from devito import *

c = 1.
u = TimeData(name='u', shape=(nx, ny))

eq = Eq(u.dt + c * u.dxl + c * u.dyl)

[In] print eq
[Out] Eq(-u(t, x, y)/s + u(t + s, x, y)/s

+ 2.0*u(t, x, y)/h - 1.0*u(t, x, y - h)/h
- 1.0*u(t, x - h, y)/h, 0)

The above expression results in a sympy.Equation object that
contains the fully discretised form of Eq. 1, including placeholder
symbols for grid spacing in space (h, assuming ∆x = ∆y) and
time (s). These spacing symbols will be resolved during the code
generation process, as described in the code generation section. It
is also important to note here that the explicit generation of the
space derivatives u_dx and u_dy is due to the use of a backward
derivative in space to align with the original example. A similar
notation to the forward derivative in time (u.dt) will soon be
provided.

In order to create a functional Operator object, the expres-
sion eq needs to be rearranged so that we may solve for the
unknown un+1

i, j . This is easily achieved by using SymPy’s solve
utility and the Devito shorthand u.forward which denotes the
furthest forward stencil point in a time derivative (un+1

i, j ).

from sympy import solve

stencil = solve(eq, u.forward)[0]

[In] print(stencil)
[Out] (h*u(t, x, y) - 2.0*s*u(t, x, y)

+ s*u(t, x, y - h) + s*u(t, x - h, y))/h

The above variable stencil now represents the RHS of Eq. 2,
allowing us to construct a SymPy expression that updates un+1

i, j and
build a devito.Operator from it. When creating this operator
we also supply concrete values for the spacing terms h and s via
an additional substitution map argument subs.
op = Operator(Eq(u.forward, stencil),

subs={h: dx, s:dt})

# Set initial condition as a smooth function
init_smooth(u.data, dx, dy)

op(u=u, time=100) # Apply for 100 timesteps
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Using this operator we can now create a similar example
to the one presented in the original tutorial by initialising the
data associated with the symbolic function u, u.data with an
initial flow field. However, to avoid numerical errors due to the
discontinuities at the boundary of the original "hat function", we
use the following smooth initial condition provided by [Krakos12],
as depicted in Figure 1.

u0(x,y) = 1+u
(

2
3

x
)
∗u
(

2
3

y
)

The final result after executing the operator for 5s (100 timesteps)
is depicted in Figure 2. The result shows the expected displace-
ment of the initial shape, in accordance with the prescribed
velocity (c = 1.0), closely mirroring the displacement of the
"hat function" in the original tutorial. It should also be noted
that, while the results show good agreement with expectations
by visual inspection, they do not represent an accurate solution
to the linear convection equation. In particular, the low order
spatial discretisation introduces numerical diffusion that causes a
decrease in the peak velocity. This is a well-known issue that could
be addressed with more sophisticated solver schemes as discussed
in [LeVeque92].

Fig. 1: Initial condition of u.data in the 2D convection example.

Fig. 2: State of u.data after 100 timesteps in convection example.

Laplace equation

The above example shows how Devito can be used to create finite
difference stencil operators from only a few lines of high-level
symbolic code. However, the previous example only required a
single variable to be updated, while more complex operators might
need to execute multiple expressions simultaneously, for example
to solve coupled PDEs or apply boundary conditions as part of the
time loop. For this reason devito.Operator objects can be
constructed from multiple update expressions and allow mutiple
expression formats as input.

Nevertheless, boundary conditions are currently not provided
as part of the symbolic high-level API. For exactly this reason,
Devito provides a low-level, or "indexed" API, where custom
SymPy expressions can be created with explicitly resolved grid
accesses to manually inject custom code into the auto-generation
toolchain. This entails that future extensions to capture different
types of boundary conditions can easily be added at a later stage.

To illustrate the use of the low-level API, we will use the
Laplace example from the original CFD tutorials (step 9), which
implements the steady-state heat equation with Dirichlet and
Neuman boundary conditions3. The governing equation for this
problem is

∂ 2 p
∂x2 +

∂ 2 p
∂y2 = 0 (3)

The rearranged discretised form, assuming a central difference
scheme for second derivatives, is

pn
i, j =

∆y2(pn
i+1, j + pn

i−1, j)+∆x2(pn
i, j+1 + pn

i, j−1)

2(∆x2 +∆y2)
(4)

Using a similar approach to the previous example, we can con-
struct the SymPy expression to update the state of a field p. For
demonstration purposes we will use two separate function objects
of type DenseData in this example, since the Laplace equation
does not contain a time-dependence. The shorthand expressions
pn.dx2 and pn.dy2 hereby denote the second derivatives in x
and y.
# Create two separate symbols with space dimensions
p = DenseData(name='p', shape=(nx, ny),

space_order=2)
pn = DenseData(name='pn', shape=(nx, ny),

space_order=2)

# Define equation and solve for center point in `pn`
eq = Eq(a * pn.dx2 + pn.dy2)
stencil = solve(eq, pn)[0]
# The update expression to populate buffer `p`
eq_stencil = Eq(p, stencil)

Just as the original tutorial, our initial condition in this example is
p = 0 and the flow will be driven by the boundary conditions

p = 0 at x = 0

p = y at x = 2
∂ p
∂y

= 0 at y = 0, 1

To implement these BCs we can utilise the .indexed prop-
erty that Devito symbols provide to get a symbol of type
sympy.IndexedBase, which in turn allows us to use matrix
indexing notation (square brackets) to create symbols of type
sympy.Indexed instead of sympy.Function. This notation

3. http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/
cfd/test_05_laplace.ipynb
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allows users to hand-code stencil expressions using explicit rel-
ative grid indices, for example p[x, y] - p[x-1, y] / h
for the discretized backward derivative ∂u

∂x . The symbols x and y
hereby represent the respective problem dimensions and cause the
expression to be executed over the entire data dimension, similar
to Python’s : operator.

The Dirichlet BCs in the Laplace example can thus be im-
plemented by creating a sympy.Eq object that assigns either
fixed values or a prescribed function, such as the utility symbol
bc_right in our example, along the left and right boundary of
the domain. To implement the Neumann BCs we again follow the
original tutorial by assigning the second grid row from the top and
bottom boundaries the value of the outermost row. The resulting
SymPy expressions can then be used alongside the state update
expression to create our Operator object.
# Create an additional symbol for our prescibed BC
bc_right = DenseData(name='bc_right', shape=(nx, ),

dimensions=(x, ))
bc_right.data[:] = np.linspace(0, 1, nx)

# Create explicit boundary condition expressions
bc = [Eq(p.indexed[x, 0], 0.)]
bc += [Eq(p.indexed[x, ny-1], bc_right.indexed[x])]
bc += [Eq(p.indexed[0, y], p.indexed[1, y])]
bc += [Eq(p.indexed[nx-1, y], p.indexed[nx-2, y])]

# Build operator with update and BC expressions
op = Operator(expressions=[eq_stencil] + bc,

subs={h: dx, a: 1.})

After building the operator, we can now use it in a time-
independent convergence loop that minimizes the L1 norm of
p. However, in this example we need to make sure to explicitly
exchange the role of the buffers p and pn. This can be achieved
by supplying symbolic data objects via keyword arguments when
invoking the operator, where the name of the argument is matched
against the name of the original symbol used to create the operator.

The convergence criterion for this example is defined as the
relative error between two iterations and set to ‖p‖1 < 10−4.
The corresponding initial condition and the resulting steady-state
solution, depicted in Figures 3 and 4 respectively, agree with
the original tutorial implementation. It should again be noted
that the chosen numerical scheme might not be optimal to solve
steady-state problems of this type, since implicit methods are often
preferred.
l1norm = 1
counter = 0
while l1norm > 1.e-4:

# Determine buffer order
if counter % 2 == 0:

_p, _pn = p, pn
else:

_p, _pn = pn, p

# Apply operator
op(p=_p, pn=_pn)

# Compute L1 norm
l1norm = (np.sum(np.abs(_p.data[:])

- np.abs(_pn.data[:]))
/ np.sum(np.abs(_pn.data[:])))

counter += 1

Seismic Inversion Example

The primary motivating application behind the design of Devito
is the solution of seismic exploration problems that require highly
optimised wave propagation operators for forward modelling and

Fig. 3: Initial condition of pn.data in the 2D Laplace example.

Fig. 4: State of p.data after convergence in Laplace example.

adjoint-based inversion. Obviously, the speed and accuracy of the
generated kernels are of vital importance. Moreover, the ability to
efficiently define rigorous forward modelling and adjoint operators
from high-level symbolic definitions also implies that domain
scientists are able to quickly adjust the numerical method and
discretisation to the individual problem and hardware architecture
[Louboutin17a].

In the following example we will show the generation of
forward and adjoint operators for the acoustic wave equation
and verify their correctness using the so-called adjoint test
[Virieux09]4. This test, also known as dot product test, verifies
that the implementation of an adjoint operator indeed computes
the conjugate transpose of the forward operator.

The governing wave equation for the forward operator is
defined as

m
∂ 2u
∂ t2 +η

∂u
∂ t
−∇2u = q

where u denotes the pressure wave field, m is the square slowness,
q is the source term and η denotes the spatially varying dampening
factor used to implement an absorbing boundary condition.

On top of fast stencil operators, seismic inversion ker-
nels also rely on sparse point interpolation to inject the mod-
elled wave as a point source (q) and to record the pres-

4. http://nbviewer.jupyter.org/github/opesci/devito/blob/master/examples/
seismic/tutorials/test_01_modelling.ipynb
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sure at individual point locations. To accommodate this, De-
vito provides another symbolic data type PointData, which
allows the generation of sparse-point interpolation expressions
using the "indexed" low-level API. These symbolic objects pro-
vide utility routines pt.interpolate(expression) and
pt.inject(field, expression) to create symbolic ex-
pressions that perform linear interpolation between the sparse
points and the cartesian grid for insertion into Operator kernels.
A separate set of explicit coordinate values is associated with the
sparse point objects for this purpose in addition to the function
values stored in the data property.

Adjoint Test

The first step for implementing the adjoint test is to build a forward
operator that models the wave propagating through an isotropic
medium, where the square slowness of the wave is denoted as
m. Since m, as well as the boundary dampening function eta,
is re-used between forward and adjoint runs the only symbolic
data object we need to create here is the wavefield u in order
to implement and rearrange our discretised equation eqn to
form the update expression for u. It is worth noting that the
u.laplace shorthand notation used here expands to the set of
second derivatives in all spatial dimensions, thus allowing us to use
the same formulation for two-dimensional and three-dimensional
problems.

In addition to the state update of u, we are also inserting two
additional terms into the forward modelling operator:

• src_term injects a pressure source at a point location
according to a prescribed time series stored in src.data
that is accessible in symbolic form via the symbol src.
The scaling factor in src_term is coded by hand but can
be automatically inferred.

• rec_term adds the expression to interpolate the wave-
field u for a set of "receiver" hydrophones that measure
the propagated wave at varying distances from the source
for every time step. The resulting interpolated point data
will be stored in rec.data and is accessible to the user
as a NumPy array.

def forward(model, m, eta, src, rec, order=2):
# Create the wavefeld function
u = TimeData(name='u', shape=model.shape,

time_order=2, space_order=order)

# Derive stencil from symbolic equation
eqn = m * u.dt2 - u.laplace + eta * u.dt
stencil = solve(eqn, u.forward)[0]
update_u = [Eq(u.forward, stencil)]

# Add source injection and receiver interpolation
src_term = src.inject(field=u,

expr=src * dt**2 / m)
rec_term = rec.interpolate(expr=u)

# Create operator with source and receiver terms
return Operator(update_u + src_term + rec_term,

subs={s: dt, h: model.spacing})

After building a forward operator, we can now implement the
adjoint operator in a similar fashion. Using the provided symbols
m and eta, we can again define the adjoint wavefield v and
implement its update expression from the discretised equation.
However, since the adjoint operator needs to operate backwards in
time there are two notable differences:

• The update expression now updates the backward sten-
cil point in the time derivative vn−1

i, j , denoted as
v.backward. In addition to that, the Operator is
forced to reverse its internal time loop by providing the
argument time_axis=Backward

• Since the acoustic wave equation is self-adjoint without
dampening, the only change required in the governing
equation is to invert the sign of the dampening term eta

* u.dt. The first derivative is an antisymmetric operator
and its adjoint minus itself.

Moreover, the role of the sparse point objects has now
switched: Instead of injecting the source term, we are now in-
jecting the previously recorded receiver values into the adjoint
wavefield, while we are interpolating the resulting wave at the
original source location. As the injection and interpolations are
part of the kernel, we also insure that these two are adjoints of
each other.
def adjoint(model, m, eta, srca, rec, order=2):

# Create the adjoint wavefeld function
v = TimeData(name='v', shape=model.shape,

time_order=2, space_order=order)

# Derive stencil from symbolic equation
# Note the inversion of the dampening term
eqn = m * v.dt2 - v.laplace - eta * v.dt
stencil = solve(eqn, u.forward)[0]
update_v = [Eq(v.backward, stencil)]

# Inject the previous receiver readings
rec_term = rec.inject(field=v,

expr=rec * dt**2 / m)

# Interpolate the adjoint-source
srca_term = srca.interpolate(expr=v)

# Create operator with source and receiver terms
return Operator(update_v + rec_term + srca_term,

subs={s: dt, h: model.spacing},
time_axis=Backward)

Having established how to build the required operators we can
now define the workflow for our adjoint example. For illustration
purposes we are using a utility object Model that provides the
core information for seismic inversion runs, such as the values for
m and the dampening term eta, as well as the coordinates of the
point source and receiver hydrophones. It is worth noting that the
spatial discretisation and thus the stencil size of the operators is
still fully parameterisable.
# Create the seismic model of the domain
model = Model(...)

# Create source with Ricker wavelet
src = PointData(name='src', ntime=ntime,

ndim=2, npoint=1)
src.data[0, :] = ricker_wavelet(ntime)
src.coordinates.data[:] = source_coords

# Create empty set of receivers
rec = PointData(name='rec', ntime=ntime,

ndim=2, npoint=101)
rec.coordinates.data[:] = receiver_coords

# Create empty adjoint source symbol
srca = PointData(name='srca', ntime=ntime,

ndim=2, npoint=1)
srca.coordinates.data[:] = source_coords

# Create symbol for square slowness
m = DenseData(name='m', shape=model.shape,

space_order=order)
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Fig. 5: Shot record of the measured point values in rec.data after
the forward run.

m.data[:] = model # Set m from model data

# Create dampening term from model
eta = DenseData(name='eta', shape=shape,

space_order=order)
eta.data[:] = model.dampening

# Execute foward and adjoint runs
fwd = forward(model, m, eta, src, rec)
fwd(time=ntime)
adj = adjoint(model, m, eta, srca, rec)
adj(time=ntime)

# Test prescribed against adjoint source
adjoint_test(src.data, srca.data)

The adjoint test is the core definition of the adjoint of a linear
operator. The mathematical correctness of the adjoint is required
for mathematical adjoint-based optimizations methods that are
only guarantied to converged with the correct adjoint. The test
can be written as:

< src, ad joint(rec)>=< f orward(src), rec >

The adjoint test can be used to verify the accuracy of the forward
propagation and adjoint operators and has been shown to agree for
2D and 3D implementations [Louboutin17b]. The shot record of
the data measured at the receiver locations after the forward run is
shown in Figure 5.

Automated code generation

The role of the Operator in the previous examples is to generate
semantically equivalent C code to the provided SymPy expres-
sions, complete with loop constructs and annotations for per-
formance optimization, such as OpenMP pragmas. Unlike many
other DSL-based frameworks, Devito employs actual compiler
technology during the code generation and optimization process.
The symbolic specification is progressively lowered to C code
through a series of passes manipulating abstract syntax trees
(AST), rather than working with rigid templates. This software
engineering choice has an invaluable impact on maintainability,
extensibility and composability.

Following the initial resolution of explicit grid indices into the
low-level format, Devito is able to apply several types of auto-
mated performance optimization throughout the code generation
pipeline, which are grouped into two distinct sub-modules:

• DSE - Devito Symbolic Engine: The first set of optimiza-
tion passes consists of manipulating SymPy equations with
the aim to decrease the number of floating-point operations
performed when evaluating a single grid point. This initial
optimization is performed following an initial analysis of
the provided expressions and consists of sub-passes such
as common sub-expressions elimination, detection and
promotion of time-invariants, and factorization of common
finite-difference weights. These transformations not only
optimize the operation count, but they also improve the
symbolic processing and low-level compilation times of
later processing stages.

• DLE - Devito Loop Engine: After the initial symbolic
processing Devito schedules the optimised expressions in
a set of loops by creating an Abstract Syntax Tree (AST).
The loop engine (DLE) is now able to perform typical
loop-level optimizations in mutiple passes by manipulating
this AST, including data alignment through array annota-
tions and padding, SIMD vectorization through OpenMP
pragmas and thread parallelism through OpenMP pragmas.
On top of that, loop blocking is used to fully exploit the
memory bandwidth of a target architecture by increasing
data locality and thus cache utilization. Since the effec-
tiveness of the blocking technique is highly architecture-
dependent, Devito can determine optimal block size
through runtime auto-tuning.

Performance Benchmark

The effectiveness of the automated performance optimization
performed by the Devito backend engines can be demonstrated
using the forward operator constructed in the above example. The
following performance benchmarks were run with for a three-
dimensional grid of size 512× 512× 512 with varying spatial
discretisations resulting in different stencil sizes with increasing
operational intensity (OI). The benchmark runs were performed
on on a Intel(R) Xeon E5-2620 v4 2.1Ghz "Broadwell" CPU with
a single memory socket and 8 cores per socket and the slope of
the roofline models was derived using the Stream Triad benchmark
[McCalpin95].

The first set of benchmark results, shown in Figure 6, high-
lights the performance gains achieved through loop-level opti-
mizations. For these runs the symbolic optimizations were kept at
a "basic" setting, where only common sub-expressions elimination
is performed on the kernel expressions. Of particular interest are
the performance gains achieved by increasing the loop engine
mode from "basic" to "advanced", to insert loop blocking and
explicit vectorization directives into the generated code. Due
to the improved memory bandwidth utilization the performance
increased to between 52% and 74% of the achievable peak. It
is also worth noting that more aggressive optimization in the
"speculative" DLE mode (directives for non-temporal stores and
row-wise data alignment through additional padding) did not yield
any consistent improvements due to the low OI inherent to the
acoustic formulation of the wave equation and the subsequent
memory bandwidth limitations of the kernel.

On top of loop-level performance optimizations, Figure 7
shows the achieved performance with additional symbolic opti-
mizations and flop reductions enabled. While the peak perfor-
mance shows only small effects from this set of optimizations
due to the inherent memory bandwidth limitations of the kernel, it
is interesting to note a reduction in operational intensity between
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Fig. 6: Performance benchmarks for loop-level optimizations with
different spatial orders (SO). The symbolic optimisations (DSE) have
been kept at level ’basic’, while loop optimisation levels (DLE) vary.
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Fig. 7: Performance benchmarks with full symbolic and loop-level
optimizations for different spatial orders (SO).

equivalent stencil sizes in Figures 6 and 7. This entails that, despite
only marginal runtime changes, the generated code is performing
less flops per stencil point, which is of vital importance for
compute-dominated kernels with large OI [Louboutin17a].

Integration with YASK

As mentioned previously, Devito is based upon actual compiler
technology with a highly modular structure. Each backend trans-
formation pass is based on manipulating an input AST and return-
ing a new, different AST. One of the reasons behind this software
engineering strategy, which is clearly more challenging than a
template-based solution, is to ease the integration of external tools,
such as the YASK stencil optimizer [Yount16]. We are currently
in the process of integrating YASK to complement the DLE, so
that YASK may replace some (but not all) DLE passes.

The DLE passes are organized in a hierarchy of classes
where each class represents a specific code transformation pipeline

based on AST manipulations. Integrating YASK becomes then a
conceptually simple task, which boils down to three actions:

1. Adding a new transformation pipeline to the DLE.
2. Adding a new array type, to ease storage layout trans-

formations and data views (YASK employs a data layout
different than the conventional row-major format).

3. Creating the proper Python bindings in YASK so that
Devito can drive the code generation process.

It has been shown that real-world stencil codes optimised
through YASK may achieve an exceptionally high fraction of
the attainable machine peak [Yount15], [Yount16]. Further, ini-
tial prototyping (manual optimization of Devito-generated code
through YASK) revealed that YASK may also outperform the loop
optimization engine currently available in Devito, besides ensuring
seamless performance portability across a range of computer
architectures. On the other hand, YASK is a C++ based framework
that, unlike Devito, does not rely on symbolic mathematics and
processing; in other words, it operates at a much lower level of
abstraction. These observations, as well as the outcome of the
initial prototyping phase, motivate the on-going Devito-YASK
integration effort.

Discussion

In this paper we present the finite difference DSL Devito and
demonstrate its high-level API to generate two fluid dynamics
operators and a full seismic inversion example. We highlight
the relative ease with which to create complex operators from
only a few lines of high-level Python code while utilising highly
optimised auto-generated C kernels via JIT compilation. On top
of purely symbolic top-level API based on SymPy, we show how
to utilise Devito’s secondary API to inject custom expressions
into the code generation toolchain to implement Dirichlet and
Neumann boundary conditions, as well as the sparse-point inter-
polation routines required by seismic inversion operators.

Moreover, we demonstrate that Devito-generated kernels are
capable of exploiting modern high performance computing archi-
tectures by achieving a significant percentage of machine peak.
Devito’s code-generation engines achieve this by automating well-
known performance optimizations, as well as domain-specific
optimizations, such as flop reduction techniques - all while
maintaining full compatibility with the scientific software stack
available through the open-source Python ecosystem.

Limitations and Future Work

The examples used in this paper have been chosen for their
relative simplicity in order to concisely demonstrate the current
features of the Devito API. Different numerical methods may
be used to solve the presented examples with greater accuracy
or achieve more realistic results. Nevertheless, finite difference
methods play an important role and are widely used in academic
and industrial research due to the relative ease of implementation,
verification/validation and high computational efficiency, which is
of particular importance for inversion methods that require fast
and robust high-order PDE solvers.

The interfaces provided by Devito are intended to create high-
performance operators with relative ease and thus increase user
productivity. Several future extensions are planned to enhance the
high-level API to further ease the construction of more complex
operators, including explicit abstractions for symbolic boundary
conditions, perfectly matched layer (PML) methods and staggered
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grids. Devito’s secondary low-level API and use of several inter-
mediate representations are intended to ease the gradual addition
of new high-level features.

Moreover, the addition of YASK as an alternative backend
will not only provide more advanced performance optimisation,
but also an MPI infrastructure to allow Devito to utilise distribute
computing environments. Further plans also exist for integration
with linear and non-linear solver libraries, such as PETSc, to
enable Devito to handle implicit formulations.
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Abstract—In-vivo electrophysiology, the recording of neurons in the brains of
awake, behaving animals, is currently undergoing paradigm shifts. There is a
push towards moving to open-source technologies that can: 1) be adjusted to
specific experiments; 2) be shared with ease; and 3) more affordably record
from larger numbers of electrodes simultaneously. Here we describe our con-
struction of a system that satisfies these three desirable properties using the
scientific Python stack and Linux. Using a Raspberry Pi to control experimental
paradigms, we build a completely open-source, HDF5-based analysis (spike
sorting) toolkit in Python. This toolkit can be easily parallelized and scales to
incorporate increasing electrode counts and longer recordings. Our rig costs
about $5000, an order of magnitude less than many comparable commercially
available electrophysiology systems.

Index Terms—in-vivo electrophysiology, Python, open-source, HDF5, spike
sorting

Introduction

The process of recording neural activity in awake, behaving an-
imals (in-vivo extracellular electrophysiology, hereafter ‘ephys’)
is key in systems neuroscience to understanding how the brain
drives complex behaviors. Typically, this process involves voltage
recordings from bundles of microwire electrodes (10-20 microns
in diameter) surgically implanted into the brain regions of interest.
Across hundreds of papers, ephys has increased our understanding
of brain systems, function and behavior in a wide range of
animal species from invertebrates (locusts and grasshoppers –
[SJL03] [BHS15]) to fishes [CAK+16], birds [LIMP+16], rodents
[JFS+07] and primates [GMHL05]. Ephys in awake, behaving
animals provides an unprecedented view of the complex and
highly variable neural dynamics that underlie accurate behavioral
responses. It provides a unique degree of resolution at both the
spatial and temporal (sub-millisecond) scales, yielding insights
into brain structure and function ranging from the cellular [HB01]
to the systems [HRB14] [GTJ99] levels.
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The world of ephys hardware and software has classically
been dominated by proprietary and closed-source technologies.
These closed-source designs are, by default, not easily modifiable
to suit specific experimental circumstances, and, like any closed-
source technology, go against the philosophy of open science
[SHNV15]. It is also harder for other investigators to replicate
experimental results obtained by the use of such proprietary
software, given that most calculations and operations happen
under-the-hood, with underlying algorithms either being opaque
or not technically accessible to researchers of all skill levels
[IHGC12]. Furthermore, proprietary ephys hardware and software
is prohibitively expensive, and poses a high ‘barrier to entry’ for
neuroscientists starting to set up their laboratories or working
under tight budgetary constraints in smaller schools — particularly
those in nations in which research funding is scarce. Finally, the
use of closed-source technologies has ensured that ephys hardware
and software packages are slow to change. In fact, dominant ephys
technology has been virtually unchanged for the last 20 years
despite the fact that electronics and computing technology have
taken giant strides forward in that time.

With reproducible and affordable science in mind, some ephys
laboratories have recently started to explore open source ephys
hardware and software [SHNV15]. The possible value of this
move is manifold: new ephys hardware and software, apart from
being open-source, affordable and reproducible, can easily ‘scale’
with growing experiment and data sizes. It is, therefore, much
easier with open-source technology to follow the trend in mod-
ern ephys towards increasing ‘channel counts’ - recording from
hundreds, or even thousands, of electrodes implanted in several
different brain regions to better understand the inter-regional
coordination that underlies brain function and animal behavior.

In this paper, we describe a completely open-source, Python-
based hardware and software setup that we are currently using to
study the role of gustatory (taste) cortex in taste-related learning
and behavior in rats. We use a Raspberry Pi based system to coor-
dinate the various stimulus control needs of our experiments. This
includes the delivery of precise amounts of taste solutions to the
animals [KSN02] and the optogenetic perturbation of the firing of
neurons in the taste cortex with laser sources [LMRK16] [Pas11].
To handle the ephys signals, we use chips from Intan Technologies
and a HDF5 and Python-based software setup for spike sorting
(picking out action potentials from individual neurons) [Lew98]
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and analysis.
Starting with a brief description of the hardware we have

constructed to control experimental paradigms, we will focus
on describing the computations involved at every step of our
spike sorting toolchain, highlighting software principles that make
such an analysis setup: 1) scale with increased channel counts
and longer recordings; and 2) easily parallelized on computing
environments. Traditionally, manual approaches, closed-source
software and heuristics abound in the electrophysiologist’s spike
sorting toolchain - these are time-consuming, error-prone and hard
to replicate in a principled manner [WBVI+04]. We automate
several key steps of the spike sorting pipeline with algorithms that
have been suggested elsewhere [QNBS04] [FMK96] and describe
the accessibility and ease-of-use that the scientific Python stack
offers to electrophysiologists. Finally, we demonstrate the use of
this system to record and analyze ephys data from 64 electrodes
simultaneously in the taste cortex of rodents and point out future
directions of improvement keeping the modern ephys experiment
in mind.

Animal care, handling and surgeries

We use adult, female Long-Evans rats (300-325g) and adult mice
(15-20g) in our experiments. They are prepared with surgically im-
planted bundles of microwire electrodes bilaterally in the gustatory
(taste) cortex and intra-oral cannulae (IOCs) behind the cheek for
delivering taste solutions. All animal care and experiments comply
with the Brandeis University Institutional Animal Care and Use
Committee (IACUC) guidelines. For more details on experimental
protocols, see [SMV+16].

Raspberry Pi based behavior control system

We use a Raspberry Pi running Ubuntu-MATE to weave together
the various behavioral paradigms of our experiments. This in-
cludes 1) delivering precise amounts of taste solutions to the
animals via pressurized solenoid valves, 2) measuring the animals’
licking responses with an analog-to-digital converter (ADC) cir-
cuit and 3) controlling laser sources for optogenetic perturbation.
Most of these steps involve controlling the digital I/O pins (DIO)
of the Pi – the Rpi.GPIO package provides convenient functions:
import RPi.GPIO as GPIO
# The BOARD mode allows referring to the GPIO pins
# by their number on the board
GPIO.setmode(GPIO.BOARD)
# Set port 1 as an output
GPIO.setup(1, GPIO.OUT)
# Send outputs to port 1
GPIO.output(1, 1)
GPIO.output(1, 0)

Electrode bundles and microdrives

We build electrode bundles with 32 nichrome-formvar microwires
(0.0015 inch diameter, from a-msystems), a 200 µ fiber for
optogenetics (optionally), and 3D printed microdrives. Our custom
built drives cost about $50 and their designs are freely available
for use and modification at the Katz lab website.

Electrophysiology hardware

We use an open-source ephys recording system from Intan
Technologies for neural recordings. The RHD2000 series ephys
recording headstages connect to electrode bundles implanted in the

animal’s brain and contain 32-128 amplifiers and ADCs. The Intan
data acquisition system offers an open-source C++ based graphical
interface that can record up to 512 electrodes (4 headstages)
simultaneously at sampling rates of up to 30kHz/channel. This
recording system is relatively robust to AC noise, because the
electrode signals are digitized right on the headstage itself, but we
additionally encase the animal’s behavior and recording chamber
in a Faraday cage constructed with standard aluminum insect
netting.

Electrophysiology in systems neuroscience

In-vivo ephys is unique in systems neuroscience in the temporal
and spatial view it provides into the role of the brain in gener-
ating accurate behavioral responses. Ephys typically involves the
placement of a bundle [SMV+16] or spatially structured array
[WRL+15] of electrodes in a brain region of interest. After the
animal recovers from the surgical implantation of electrodes, its
behavior in tightly controlled experimental paradigms is correlated
with neural activity in the brain region being recorded from. The
study of sensory systems (vision, somatosensation, olfaction, taste,
etc) in the brain, for instance, involves an awake, behaving animal
experiencing different sensory stimuli while ephys recordings are
performed in the corresponding sensory cortex (or other involved
regions). In addition, ephys electrodes are often implanted in
multiple brain regions in the same animal in order to understand
the role of inter-regional coordination in the animal’s behavior.

In our lab, we study taste processing in adult mice and rats -
Figure 1 shows a typical experimental setup. We surgically implant
bundles of 64 microwire electrodes bilaterally (32 wires in each
hemisphere) in the taste cortex (among many other regions). Our
basic experimental paradigm involves the animal tasting solutions
of different kinds (sweet - sucrose, salty - NaCl or bitter - quinine,
for instance) while its behavioral responses to the tastes are being
recorded [LMRK16]. All this while, we record electrical activity
in the taste cortex using the implanted electrodes and eventually
try to understand the animals behavior in the light of the activity
of the neurons being recorded from.

Fig. 1: An example of a sensory systems experimental setup. The
animal (rodent, primate, etc) experiences sensory stimuli (taste, in this
case) while cortical (or other) neurons are being recorded. Eventually,
the activity of the recorded population of neurons (also called units)
is analyzed in the context of the animal’s behavioral responses.

The essential step in the analysis of ephys data, therefore, is
to isolate (and identify) the activity of single neurons from the
raw voltage recordings from the implanted electrodes. As shown
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in Figure 1, this involves high-pass filtering of the raw voltage
signals (see next section for more details) to identify putative
action potentials (or ‘spikes’). These spikes can originate either
from a single neuron or multiple neurons. We thus need to sort
them into groups, based on how they are inferred to originate
(spikes inferred to be from single neurons are called ‘single units’
and those from multiple neurons are called ‘multi units’). This
entire pipeline is, therefore, called ‘spike sorting’. Typically, we
are able to isolate 10-40 neurons from our recordings with 64
electrodes - we then go on to correlate the responses of this
population of recorded units with the animal’s behavior in our
experimental paradigms (see [SMV+16], [LMRK16] as examples,
and Figure 1).

Scientific Python stack for data analysis – spike sorting

The recent push in ephys experiments towards increased channel
counts and longer recordings poses significant data handling and
analysis challenges. Each of the implanted electrodes needs to
be sampled at frequencies in the range of 20-30kHz if it is
to clearly render action potentials (the signature binary voltage
waveforms, about 1ms in duration, that neurons produce when
active – also called ‘spikes’, hence the name ‘spike sorting’). In
our experiments, we sample signals coming from 64 electrodes at
30kHz for up to 2 hours, generating datasets that total 10-30GB
in size. Datasets of such sizes cannot be loaded into memory and
processed in serial – there is evidently a need to convert the data
to a format that allows access to specific parts of the data and can
support a parallel computing framework.

The Hierarchical Data Format (HDF5) is ideal for dealing
with such big numerical datasets. We use the Pytables package
to build, structure and modify HDF5 files at every point in our
spike sorting and analysis toolchain. Pytables allows data to be
stored and extracted from HDF5 files in the convenient form of
numpy arrays. We decided to use individual electrodes as storage
and computation splits, storing the voltage recording from each
electrode as a separate array in the HDF5 file with its analysis
assigned to a separate process.

We adopt a semi-supervised approach to spike sorting, starting
with a (parallelized) set of automated filtering and clustering
steps that can be fine-tuned by the experimenter (who presumably
comes equipped with expert knowledge about action potential
shapes actually observed in the brain). Our setup therefore in-
volves 3 distinct steps (all the code is available on Github):

1. Pre-processing (blech_clust.py) – Constructs a HDF5
file post-experiment with the raw binary data recorded
by the Intan system, acquires the clustering parameters
from the user and creates a shell file that runs the actual
processing step in parallel.

2. Processing (blech_process.py) – Runs filtering and
clustering steps on the voltage data from every electrode
and plots out the results.

3. Post-processing (blech_post_process.py) – Removes
raw recordings from the HDF5 file and compresses it,
and then allows the user to sieve out real spikes from
the putative spikes plotted in step 2.

Pre-processing

The pre-processing starts by building a HDF5 file for the ephys
dataset with separate nodes for raw neural electrodes, digital inputs
and outputs. This structuring of different aspects of the data into

separate nodes is a recurrent feature of our toolchain. The Pytables
library provides a convenient set of functions for this purpose:
# modified from blech_clust.py
import tables
# Create hdf5 file, and make group for raw data
hf5 = tables.open_file(hdf5_name[-1]+'.h5', 'w',

title = hdf5_name[-1])
# Node for raw electrode data
hf5.create_group('/', 'raw')
# Node for digital inputs
hf5.create_group('/', 'digital_in')
#Node for digital outputs
hf5.create_group('/', 'digital_out')
hf5.close()

We have set up Pytables extendable arrays (EArrays) to read
the electrode and digital input data saved by the Intan system.
Extendable arrays are akin to standard Python lists in the sense
that their size can be ‘extended’ as data is appended to them
– unlike lists, however, they are a homogeneous data class and
cannot store different types together. The Intan system saves all
the data as integers in binary files and therefore, EArrays of type
int (defined by IntAtom in Pytables) are perfect for this purpose.
These EArrays can be constructed and filled as follows:
# Modified from create_hdf_arrays() in read_file.py
# Open HDF5 file with read and write permissions - r+
hf5 = tables.open_file(file_name, 'r+')
# 2 ports/headstages each with 32
# electrodes in our experiments
n_electrodes = len(ports)*32
# All the data is stored as integers
atom = tables.IntAtom()
# Create arrays for neural electrodes
for i in range(n_electrodes):

el = hf5.create_earray('/raw',
'electrode%i' % i,
atom, (0,))

hf5.close()

# Modified from read_files() in read_file.py
# Open HDF5 file with read and write permissions - r+
hf5 = tables.open_file(file_name, 'r+')
# Fill data from electrode 1 on port A
# Electrode data are stored in binary files
# as 16 bit signed integers
# Filenames of binary files as defined
# by the Intan system
data = np.fromfile('amp-A-001.dat',

dtype = np.dtype('int16'))
hf5.flush()
hf5.close()

To facilitate the spike sorting process, we use the easygui package
to integrate user inputs through a simple graphical interface. Fi-
nally, we use GNU Parallel [Tan11] to run filtering and clustering
on every electrode in the dataset in a separate process. GNU
Parallel is a great parallelization tool on .nix systems, and allows
us to: 1) assign a minimum amount of RAM to every process and
2) resume failed processes by reading from a log file.

Processing

The voltage data from the electrodes are stored as signed integers
in the HDF5 file in the pre-processing step – they need to be
converted into actual voltage values (in microvolts) as floats. The
datasheet of the Intan RHD2000 system gives the transformation
as:

voltage(µV ) = 0.195∗ voltage(int)

Spikes are high frequency events that typically last for 1-1.5
ms – we therefore remove low frequency transients by bandpass
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filtering the data in 300-3000 Hz using a 2-pole Butterworth filter
as follows:
# Modified from get_filtered_electrode()
# in clustering.py
from scipy.signal import butter
from scipy.signal import filtfilt
m, n = butter(2, [300.0/(sampling_rate/2.0),

3000.0/(sampling_rate/2.0)],
btype = 'bandpass')

filt_el = filtfilt(m, n, el)

Depending on the position of the electrode in relation to neurons
in the brain, action potentials appear as transiently large posi-
tive or negative deflections from the mean voltage detected on
the electrode. Spike sorting toolchains thus typically impose an
amplitude threshold on the voltage data to detect spikes. In our
case (i.e., cortical neurons recorded extracellularly with microwire
electrodes), the wide swath of action potentials appear as negative
voltage deflections from the average – we therefore need to choose
segments of the recording that go below a predefined threshold.
The threshold we define is based on the median of the electrode’s
absolute voltage (for details, see [QNBS04]):
# Modified from extract_waveforms() in clustering.py
m = np.mean(filt_el)
th = 5.0*np.median(np.abs(filt_el)/0.6745)
pos = np.where(filt_el <= m - th)[0]

We treat each of these segments as a ‘putative spike’. We locate
the minimum of each segment and slice out 1.5ms (0.5ms before
the minimum, 1ms after = 45 samples at 30kHz) of data around
it. These segments, having been recorded digitally, are eventually
approximations of the actual analog signal with repeated samples.
Even at the relatively high sampling rates that we use in our
experiments, it is possible that these segments are significantly
‘jittered’ in time and their shapes do not line up exactly at their
minima due to sampling approximation. In addition, due to a
variety of electrical noise that seeps into such a recording, we
pick up a large number of segments that have multiple troughs (or
minima) and are unlikely to be action potentials. To deal with these
issues, we ‘dejitter’ the set of potential spikes by interpolating their
shapes (using scipy.interpolate.interp1d), up-sampling them 10-
fold using the interpolation, and finally picking just the segments
that can be lined up by their unique minimum.

This set of 450-dimensional putative spikes now needs to be
sorted into two main groups: one that consists of actual action
potentials recorded extracellularly and the other that consists of
noise (this is high-frequency noise that slips in despite the filter-
ing and amplitude thresholding steps). In addition, an electrode
can record action potentials from multiple neurons - the group
consisting of real spikes, therefore, needs to be further sorted
into one or more groups depending upon the number of neurons
that were recorded on the electrode. We start this process by
first splitting up the set of putative spikes into several clusters
by fitting a Gaussian Mixture Model (GMM) [Lew98]. GMM is
an unsupervised clustering technique that assumes that the data
originate from several different groups, each defined by a Gaussian
distribution (in our case over the 450 dimensions of the putative
spikes). Classifying the clusters that the GMM picks as noise or
real spikes is eventually a subjective decision (explained in the
post-processing section). The user picks the best solution with
their expert knowledge in the manual part of our semi-automated
spike sorting toolchain (which is potentially time cosuming for
recordings with large numbers of electrodes, see Discussion for
more details).

Each putative spike waveform picked by the procedure above
consists of 450 samples after interpolation – there can be more
than a million such waveforms in a 2 hour recording from each
electrode. Fitting a GMM in such a high dimensional space is
both processor time and memory consuming (and can potentially
run into the curse-of-dimensionality). We therefore reduce the
dimensionality of the dataset by picking the first 3 components
produced through principal component analysis (PCA) [BS14]
using the scikit-learn package [PVG+11]. These principal com-
ponents, however, are known to depend mostly on the amplitude-
induced variance in shapes of recorded action potential waveforms
– to address this possibility, we scale each waveform by its energy
(modified from [FMK96]), defined as follows, before performing
the PCA:

Energy =
1
n

√√√√450

∑
i=1

X2
i

where Xi = ith component of the waveform
Finally, we feed in the energy and maximal amplitude of

each waveform as features into the GMM in addition to the first
3 principal components. Using scikit-learn’s GMM API, we fit
GMMs with cluster numbers varying from 2 to a user-specified
maximum number (usually 7 or 8). Each of these models is fit
to the data several times (usually 10) and the best fit is chosen
according to the Bayesian Information Criterion (BIC) [BK10].

The clustering results need to be plotted for the user to be able
to pick action potentials from the noise in the post-processing
step. The most important in these sets of plots are the actual
waveforms of the spikes clustered together by the GMM and the
distribution of their inter-spike-intervals (ISIs) (more details in
the post-processing step). Plotting the waveforms of the putative
spikes in every cluster produced by the GMM together, however, is
the most memory-expensive step of our toolchain. Each putative
spike is 1.5ms (or 45 samples) long, and there can be tens of
thousands of spikes in every cluster (see Figures 2, 3). For a 2
hour recording with 64 electrodes, the plotting step with matplotlib
[Hun07] can consume up to 6GB of memory although the PNG
files that are saved to disk are only of the order of 100KB. High
memory consumption during plotting also limits the possibility
of applying this spike sorting framework to recordings that are
several hours long – as a potential substitute, we have preliminarily
set up a live plotting toolchain using Bokeh that can be used during
the post-processing step. We are currently trying to work out a
more memory-efficient plotting framework, and any suggestions
to that end are welcome.

Post-processing

Once the parallelized processing step outlined above is over, we
start the post-processing step by first deleting the raw electrode
recordings (under the ‘raw’ node) and compressing the HDF5 file
using ptrepack as follows:
# Modified from blech_post_process.py
hf5.remove_node('/raw', recursive = True)
# Use ptrepack with compression level = 9 and
# compression library = blosc
os.system("ptrepack --chunkshape=auto --propindexes

--complevel=9 --complib=blosc " + hdf5_name
+ " " + hdf5_name[:-3] + "_repacked.h5")

The logic of the post-processing step revolves around allowing the
user to look at the GMM solutions for the putative spikes from
every electrode, pick the solution that best splits the noise and
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Fig. 2: Two types of single units isolated from taste cortex recordings. Spike waveforms on the left, and responses to the taste stimuli on the
right. Top-left: Spikes waveforms of a regular spiking unit (RSU) - 45 samples (1.5ms) on the time/x axis. Note the 2 inflection points as the
spikes go back to baseline from their minimum - this is characteristic of the shape of RSUs. RSUs represent the activity of excitatory cortical
pyramidal neurons on ephys records - these spikes are slow and take about 1ms (20-30 samples) to go back up to baseline from their minimum
(with 2 inflection points). Bottom-left: Spike waveforms of a fast spiking unit (FS) - 45 samples (1.5ms) on the time/x axis. Compare to the
spike waveforms of the RSU in the top-left figure and note that this unit has narrower/faster spikes that take only 5-10 samples (1/3 ms) to go
back up to baseline from their minimum. FSs represent the activity of (usually inhibitory) cortical interneurons on ephys records. Top-Right:
Peri-stimulus time histogram (PSTH) - Plot of the activity of the RSU around the time of stimulus (taste) delivery (0 on the time/x axis). Note
the dramatic increase in firing rate (spikes/second) that follows taste delivery. Bottom-Right: Peri-stimulus time histogram (PSTH) - Plot of
the activity of the FS around the time of stimulus (taste) delivery (0 on the time/x axis). Note the dramatic increase in firing rate (spikes/second)
that follows taste delivery. Also compare to the PSTH of the RSU in the figure above and note that the FS has a higher firing rate (more spikes)
than the RSU. 0.1M Sodium Chloride (NaCl), 0.15M Sucrose, 1mM Quinine-HCl and a 50:50 mixture of 0.1M NaCl and 0.15M Sucrose were
used as the taste stimuli.

spike clusters, and choose the cluster numbers that corresponds to
spikes. The GMM clustering step, being unsupervised in nature,
can sometimes put spikes from two (or more) separate neurons
(with very similar energy-scaled shapes, but different amplitudes)
in the same cluster or split the spikes from a single neuron across
several clusters. In addition, the actual action potential waveform
observed on an electrode depends on the timing of the activity of
the neurons in its vicinity – co-active neurons near an electrode can
additively produce spike waveforms that have smaller amplitude
and are noisier (called ‘multi’ units) (Figure 3) than single, isolated
neurons (called ‘single’ units, Figure 2). Therefore, we set up
utilities to merge and split clusters in the post-processing step –
users can choose to merge clusters when the spikes from a single
neuron have been distributed across clusters or split (with a GMM

clustering using the same features as in the processing step) a
single cluster if it contains spikes from separate neurons.

HDF5, once again, provides a convenient format to store the
single and multi units that the user picks from the GMM results.
We make a ‘sorted_units’ node in the file to which units are added
in the order that they are picked by the user. In addition, we make
a ‘unit_descriptor’ table that contains metadata about the units
that are picked – these metadata are essential in all downstream
analyses of the activity of the neurons in the dataset. To set up such
a table through Pytables, we first need to create a class describing
the datatypes that the columns of the table will hold and then use
this class as the description while creating the table.
# Modified from blech_post_process.py
# Define a unit_descriptor class to be used
# to add things (anything!) about the sorted
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Fig. 3: A multi unit - 45 samples (1.5ms) on the time/x axis. Compare
to the single units in Figure 2 and note that these spikes have smaller
amplitudes and are noisier. Multi units are produced by the co-activity
of multiple neurons near the electrode.

Fig. 4: A noise cluster - 45 samples (1.5ms) on the time/x axis.
This is high frequency noise that seeps in despite the filtering and
thresholding steps used in the processing step. Compare to the single
units in Figure 2 and multi unit in Figure 3 and note that these
waveforms are much smoother and do not have the characteristics
of a unit.

# units to a pytables table
class UnitDescriptor(tables.IsDescription):

electrode_number = tables.Int32Col()
single_unit = tables.Int32Col()
regular_spiking = tables.Int32Col()
fast_spiking = tables.Int32Col()

# Make a table describing the sorted units.
# If unit_descriptor already exists, just open it up
try:

table = hf5.create_table('/', 'unit_descriptor',
description = UnitDescriptor)

except Exception:
table = hf5.root.unit_descriptor

Cortical neurons (including gustatory cortical neurons that we
record from in our experiments) fall into two major categories
– 1) excitatory pyramidal cells that define cortical layers and have

long range connections across brain regions, and 2) inhibitory
interneurons that have short range connections. In ephys records,
pyramidal cells produce relatively large and slow action potentials
at rates ranging from 5-20 Hz (spikes/s) (Figure 2, top). Interneu-
rons, on the other hand, have much higher spiking rates (usually
from 25-50Hz, and sometimes up to 70 Hz) and much faster (and
hence, narrower) action potentials (Figure 2, bottom). Therefore,
in the unit_descriptor table, we save the type of cortical neuron
that the unit corresponds to in addition to the electrode number
it was located on and whether its a single unit. In keeping with
classical ephys terminology, we refer to putative pyramidal neuron
units as ‘regular spiking units (RSU)’ and interneuron units as ‘fast
spiking units (FS)’ [MCLP85] [HLVH+13]. In addition, anatom-
ically, pyramidal cells are much larger and more abundant than
interneurons in cortical regions [YEH11] [AFY+13] [PTF+17] –
expectedly, in a typical gustatory cortex recording, 60-70% of the
units we isolate are RSUs. This classification of units is in no
way restrictive – new descriptions can simply be added to the
UnitDescriptor class to account for recordings in a sub-cortical
region that contains a different electrophysiological unit.

Apart from the shape of the spikes (look at Figures 2, 3, 4 to
compare spikes and typical noise) in a cluster, the distribution of
their inter-spike-intervals (ISIs) (plotted in the processing step)
is another important factor in differentiating single units from
multi units or noise. Due to electrochemical constraints, after every
action potential, neurons enter a ‘refractory period’ - most neurons
cannot produce another spike for about 2ms. We, therefore, advise
a relatively conservative ISI threshold while classifying single
units – in our recordings, we designate a cluster as a single unit
only if <0.01% (<1 in 10000) spikes fall within 2ms of another
spike.

Finally, we consider the possibility that since the processing
of the voltage data from each electrode happens independently in
a parallelized manner, we might pick up action potentials from the
same neuron on different electrodes (if they are positioned close
to each other). We, therefore, calculate ‘similarity’ between every
pair of units in the dataset – this is the percentage of spikes in a
unit that are within 1ms of spikes in a different unit. This metric
should ideally be very close to 0 for two distinct neurons that are
spiking independently – in our datasets, we consider units that
have similarity greater than 20% as the same neuron and discard
one of them from our downstream analysis. To speed up this
analysis, especially for datasets that have 20-40 neurons each with
>10000 spikes, we use Numba’s just-in-time compilation (JIT)
feature:
# Modified from blech_units_distance.py
from numba import jit
@jit(nogil = True)
def unit_distance(this_unit_times, other_unit_times):

this_unit_counter = 0
other_unit_counter = 0
for i in range(len(this_unit_times)):

for j in range(len(other_unit_times)):
if np.abs(this_unit_times[i]

- other_unit_times[j])
<= 1.0:
this_unit_counter += 1
other_unit_counter += 1

return this_unit_counter, other_unit_counter

Discussion

In-vivo extracellular electrophysiology in awake, behaving ani-
mals provides a unique spatiotemporal glimpse into the activity
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of populations of neurons in the brain that underlie the animals’
behavioral responses to complex stimuli. Recording, detecting, an-
alyzing and isolating action potentials of single neurons in a brain
region in an awake animal poses a variety of technical challenges,
both at the hardware and software levels. Rodent and primate
electrophysiologists have classically used proprietary hardware
and software solutions in their experiments – these closed-source
technologies are expensive, not suited to specific experimental
contexts and hard to adapt to sharing and collaboration. The push
towards open, collaborative and reproducible science has spurred
calls for affordable, scalable open-source experimental setups. In
this paper, we have outlined a Raspberry Pi and scientific Python-
based solution to these technical challenges and described its suc-
cessful use in electrophysiological and optogenetic experiments in
the taste cortex of awake mice and rats. Our setup can scale as data
sizes grow with increasingly longer recordings and larger number
of electrodes, and costs ~$5000 (compared to up to $100k for a
comparable proprietary setup).

Our approach uses the HDF5 data format, which allows us to
organize all of the data (and their associated metadata) under spe-
cific nodes in the same file. This approach has several advantages
over traditional practices of organizing ephys data. Firstly, HDF5
is a widely used cross-platform data format that has convenient
APIs in all major programming languages. Secondly, having all
the data from an experimental session in the same file (that can
be easily compressed – we use ptrepack in the post-processing
step) makes data sharing and collaboration easier. Thirdly, HDF5
files allow quick access to desired parts of the data during analysis
– as a consequence, larger than memory workflows can easily
be supported without worrying about the I/O overhead involved.
Lastly, in our setup, we splice the storage and processing of the
data by individual electrodes – this allows us to run the processing
step in parallel on several electrodes together bringing down
processing time significantly.

The standard approach of picking units in ephys studies in-
volves arbitrary, user-defined amplitude threshold on spike wave-
forms during ephys recordings and manually drawing polygons
around spikes from a putative unit in principal component (PC)
space. This process is very time consuming for the experimenter
and is prone to human errors. Our semi-automated approach to
spike sorting is faster and more principled than the standard
approach - we automate both these steps of the traditional spike
sorting toolchain by using an amplitude threshold that depends
on the median voltage recorded on an electrode and clustering
putative spikes with a Gaussian Mixture Model (GMM). The
user’s expertise only enters the process in the last step of our
workflow — they label the clusters picked out by the GMM as
noise, single unit or multi unit based on the shapes of the spike
waveforms and their ISI distributions. As the number of electrodes
in an electrophysiological recording is already starting to run into
the hundreds and thousands, there is a need to automate this last
manual step as well – this can be achieved by fitting supervised
classifiers to the units (and their types) picked out manually in a
few training datasets. As the waveforms of spikes can depend upon
the brain region being recorded from, such an approach would
likely have to applied to every brain region separately.

During the pre-processing step, we restrict our setup to pick
only negative spikes – those in which the voltage deflection goes
below a certain threshold. While most extracellular spikes will
appear as negative voltage deflections (due to the fact that they
are being mostly recorded from outside the axons of neurons),

sometimes an electrode, depending on the brain region, ends up
being close enough to the cell body of a neuron to record positive
spikes. Our pre-processing step requires only trivial modifications
to include positive deflections ‘above’ a threshold as spikes as
well.

The use of the HDF5 format and the ease of supporting larger-
than-memory workflows allows our toolchain to scale to longer
recordings and increased electrode counts. However, as explained
previously, plotting all the spike waveforms in a cluster together
during the processing step using matplotlib is a major memory
bottleneck in our workflow. We are working on still more efficient
workarounds, and have devised a live plotting setup with Bokeh
(that plots 50 waveforms at a time) that can be used during post
processing instead. In addition, recordings running for several
hours (or days) have to account for the change in spike waveforms
induced by ‘electrode drift’ - the electrode moves around in the
fluid medium of the brain with time. The live plotting module is
potentially useful in such longer recordings as well – it can be used
to look at spikes recorded in small windows of time (30 minutes
say) to see if their shapes change with time.

We are currently attempting to fold our Python based ephys
analysis setup into the format of a Python package that can be
used by electrophysiologists (using the Intan recording system) to
analyze their data with ease on a shared computing resource or on
personal workstations. We think that using the scientific Python
stack will make previously hidden under-the-hood spike sorting
principles clearer to the average electrophysiologist, and will make
implementing downstream analyses on these data easier.
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Abstract—It is well-known that the performance difference between Python and
basic C code can be up 200x, but for numerically intensive code another speed-
up factor of 240x or even greater is possible. The performance comes from
software’s ability to take advantage of CPU’s multiple cores, single instruction
multiple data (SIMD) instructions, and high performance caches. The article
describes optimizations, included in Intel® Distribution for Python*, aimed to
automatically boost performance of numerically intensive code. This paper is
intended for Python programmers who want to get the most out of their hardware
but do not have time or expertise to re-code their applications using techniques
such as native extensions or Cython.

Index Terms—numpy,scipy,scikit-learn,numba,simd,parallel,optimization,performance

Introduction

Scientific software is usually algorthmically rich and compute
intensive. The expressiveness of Python language as well as abun-
dance of quality packages offering implementations of advanced
algorithms allow scientists and engineers alike to code their
software in Python. The ability of this software to solve realistic
problems in a reasonable time is often hampered by inefficient
use of hardware resources. Intel Distribution for Python [IDP]
attempts to enable scientific Python community with optimized
computational packages, such as NumPy*, SciPy*, Scikit-learn*,
Numba* and PyDAAL across a range of Intel® processors, from
Intel® Core™ CPUs to Intel® Xeon® and Intel® Xeon Phi™
processors. This paper offers a detailed report about optimization
that went into the Intel® Distribution for Python*, which might
be interesting for developers of SciPy tools.

Fast Fourier Transforms

Intel® Distribution for Python* offers a thin layered interface
for the Intel® Math Kernel Library (Intel® MKL) that allows
efficient access to native FFT optimizations from a range of
NumPy and SciPy functions. The optimizations are provided for
real and complex data types in both single and double precision.
Update 2 improves performance of both one-dimensional and
multi-dimensional transforms, for in-place and out-of-place modes
of operation. As a result, Python performance may improve up to
60x over Update 1 and is now close to performance of native
C/Intel MKL.

* Corresponding author: Oleksandr.Pavlyk@intel.com
‡ Intel Corporation
† These authors contributed equally.

Copyright © 2017 Oleksandr Pavlyk et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Thanks to Intel® MKL’s flexibility in its supports for arbi-
trarily strided input and output arrays1 both one-dimensional and
multi-dimensional complex Fast Fourier Transforms along distinct
axes can be performed directly, without the need to copy the
input into a contiguous array first (the cost of copying, whose
complexity is O(n), is not negligible compared to the cost of
computing the transform, whose complexity is O (n logn), and
copying, being memory bound, does not scale well with the
number of available cores). Furthermore, input strides can be
arbitrary, including negative or zero, as long strides remain an
integer multiple of array’s item size, otherwise a copy will be
made.

The wrapper supports both in-place and out-of-place
modes, enabling it to efficiently power both numpy.fft and
scipy.fftpack submodules. In-place operations are only per-
formed where possible.

Direct support for multivariate transforms along distinct array
axis. Even when multivariate transform ends up being computed as
iterations of one-dimensional transforms, all subsequent iterations
are performed in place for efficiency.

The update also provides dedicated support for complex FFTs
on real inputs, such as np.fft.fft(real_array), by lever-
aging corresponding functionality in MKL2.

Dedicated support for specialized real FFTs, which only store
independent complex harmonics. Both numpy.fft.rfft and
scipy.fftpack.rfft storage modes are natively supported
via Intel® MKL.

1. https://software.intel.com/en-us/mkl-developer-reference-c-dfti-input-
strides-dfti-output-strides#10859C1F-7C96-4034-8E66-B671CE789AD6

2. https://software.intel.com/en-us/mkl-developer-reference-c-
dfti-complex-storage-dfti-real-storage-dfti-conjugate-even-storage#
CONJUGATE_EVEN_STORAGE
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command fft(arg) fft(arg,
axis=0)

fft2(arg) fftn(arg)

arg.shape (3 ·106,) (1860, 1420) (275, 274, 273) (275, 274, 273)
arg.strides (10 ·16,) C-contiguous F-contiguous (16,274 ·275 ·16,275 ·16)
repetitions 16 16 8 8
IDP 2017.0.3 0.162±0.01 0.113±0.01 8.87±0.08 0.86±0.01
IDP 2017.0.1 0.187±0.06 1.046±0.03 10.3±0.1 12.38±0.03
pip numpy 2.333±0.01 1.769±0.02 29.94±0.03 34.455±0.007

TABLE 1: Table of total times of repeated executions of FFT computations using np.fft functions for arrays of complex doubles in different
Python distributions on Intel (R) Xeon (R) E5-2698 v3 @ 2.30GHz with 64GB of RAM.

command fft(arg) fft(arg) fft2(arg) fft2(arg) fftn(arg) fftn(arg)

overwrite_x False True False True False True
arg.shape (3 ·106,) (3 ·106,) (1860, 1420) (1860, 1420) (273, 274, 275) (273, 274, 275)
IDP
2017.0.3

cd 1.40±0.02 0.885±0.005 0.090±0.001 0.067±0.001 0.868±0.007 0.761±0.001
cs 0.734±0.004 0.450±0.002 0.056±0.001 0.041±0.0002 0.326±0.003 0.285±0.002

IDP
2017.0.1

cd 1.77±0.02 1.760±0.012 2.208±0.004 2.219±0.002 22.77±0.38 22.7±0.5
cs 5.79±0.14 5.75±0.02 1.996±0.1 2.258±0.001 27.12±0.05 26.8±0.25

pip
numpy

cd 26.06±0.01 23.51±0.01 4.786±0.002 3.800±0.003 67.69±0.12 81.46±0.01
cs 28.4±0.1 11.9±0.05 5.010±0.003 3.77±0.02 69.49±0.02 80.54±0.07

TABLE 2: Table of times of repeated execution of scipy.fftpack functions with overwrite_x=True (in-place) and
overwrite_x=False (out-of-place) on a C-contiguous arrays of complex double and complex singles.

Arithmetic and transcendental expressions

One of the great benefits of the Intel® Distribution for Python*
is the performance boost gained from leveraging SIMD and
multithreading in (select) NumPy’s UMath arithmetic and tran-
scendental operations across the range of Intel® CPUs, from
Intel® Core™ to Intel® Xeon™ & Intel® Xeon Phi™. With stock
Python as our baseline, we demonstrate the scalability of Intel®
Distribution for Python* by using functions that are intensively
used in financial math applications and machine learning:

One can see that stock Python (pip-installed NumPy from
PyPI) on Intel® Core™ i5 performs basic operations such as
addition, subtraction, and multiplication just as well as Intel®
Python, but not on Intel® Xeon™ and Intel® Xeon Phi™, where
Intel® Distribution for Python* provides over 10x speedup. This
can be explained by the fact that basic arithmetic operations in
stock NumPy are hard-coded AVX intrinsics (and thus already
leverage SIMD, but do not scale to other instruction set archi-
tectures (ISA), e.g. AVX-512). These operations in stock Python
also do not leverage multiple cores (i.e. no multi-threading of
loops under the hood of NumPy exist with such operations). Intel
Python’s implementation allows for this scalability by utilizing

both respective Intel® MKL VML CPU-dispatched and multi-
threaded primitives under the hood, and Intel® SVML intrinsics -
a compiler-provided short vector math library that vectorizes math
functions for both IA-32 and Intel® 64-bit architectures on sup-
ported operating systems. Depending on the problem size, NumPy
will choose one of the two approaches. On small array sizes,
Intel® SVML outperforms VML due to high library call overhead,
but for larger problem sizes, VML’s ability to both vectorize math
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functions and multi-thread loops offsets the overhead.
Specifically, on Intel® Core™ i5 processor the Intel® Dis-

tribution for Python delivers greater performance in numerical
evaluation of transcendental functions (log, exp, erf, etc.) due to
utilization of both SIMD and multi-threading. We do not see any
visible benefit of multi-threading basic operations (as shown on
the graph) unless NumPy arrays are very large (not shown on
the graph). On Intel® Xeon™ processor, the 10x-1000x boost is
explained by leveraging both (a) AVX2 instructions to evaluate
transcendentals and (b) multiple cores (32 in our setup). Even
greater scalability of Intel® Xeon Phi™ relative to Intel® Xeon™
is explained by larger number of cores (64 in our setup) and wider
vector registers.

The following charts provide another view of Intel® Distri-
bution for Python performance versus stock Python on arithmetic
and transcendental vector operations in NumPy by measuring how
close UMath performance is to the respective native MKL call:

Again on Intel® Core™ i5 the stock Python performs well on
basic operations (due to hard-coded AVX intrinsics and because
multi-threading from Intel® Distribution for Python does not add
much on basic operations) but does not scale on transcendentals
(loops with transcendentals are not vectorized in stock Python).
Intel® Distribution for Python delivers performance close to native
speeds (90% of MKL) on relatively big problem sizes.

To demonstrate the benefits of vectorization and multi-
threading in a real-world application, we chose to use the Black
Scholes model, used to estimate the price of financial derivatives,
specifically European vanilla stock options. A Python implemen-
tation of the Black Scholes formula gives an idea of how NumPy
UMath optimizations can be noticed at the application level:

One can see that on Intel® Core™ i5 the Black Scholes
Formula scales nicely with Intel Python on small problem sizes but
does not perform well on bigger problem sizes, which is explained
by small cache sizes. Stock Python does marginally scale due to
leveraging AVX instructions on basic arithmetic operations, but
it is a whole different story on Intel® Xeon™ and Intel® Xeon

Phi™. Using Intel® Distribution for Python to execute the same
Python code on server processors, much greater scalability on
much greater problem sizes is observed. Intel® Xeon Phi™ scales
better due to bigger number of cores and as expected, while the
stock Python does not scale on server processors due to the lack
of AVX2/AVX-512 support for transcendentals and no utilization
of multiple cores.

Memory management optimizations

Update 2 introduces extensive optimizations in NumPy memory
management operations. As a dynamic language, Python manages
memory for the user. Memory operations, such as allocation, de-
allocation, copy, and move, affect performance of essentially all
Python programs. Specifically, Update 2 ensures NumPy allocates
arrays that are properly aligned in memory (their address is
a multiple of a specific factor, usually 64) on Linux, so that
NumPy and SciPy compute functions can benefit from respective
aligned versions of SIMD memory access instructions. This is
especially relevant for Intel® Xeon Phi™ processors. The most
significant improvements in memory optimizations in Update 2
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comes from replacing original memory copy and move operations
with optimized implementations from Intel® MKL. The result:
improved performance because these Intel® MKL routines are
optimized for both a range of Intel® CPUs and multiple CPU
cores.

Faster Machine Learning with Scikit-learn

Scikit-learn is well-known library that provides a lot of al-
gorithms for many areas of machine learning. Having limited
developer resources this project prefers universal solutions and
proven algorithms. For performance improvement scikit-learn
uses Cython and underlying BLAS/LAPACK libraries through
SciPy and Numpy. OpenBLAS and MKL uses threaded based
parallelism to utilize multicores of modern CPUs. Unfortunately
BLAS/LAPACK’s functions are too low level primitives and their
usage is often not very efficient comparing to possible high-level
parallelism. For high-level parallelism scikit-learn uses multipro-
cessing approach that is not very efficient from technical point
of view. On the other hand Intel provides Intel® Data Analytics
Acceleration Library (Intel® DAAL) that helps speed up big
data analysis by providing highly optimized algorithmic building
blocks for all stages of data analytics (preprocessing, transforma-
tion, analysis, modeling, validation, and decision making) in batch,
online, and distributed processing modes of computation. It is
originally written in C++ and provides Java and Python bindings.
DAAL is heavily optimized for all Intel® Architectures including
Intel® Xeon Phi™, but it is not at all clear how to use DAAL
binding from Python. DAAL bindings for python are generated
automatically and reflects original C++ API very closely. This
makes its usage quite complicated because of its use of non
pythonic idioms and scarce documentation.

In order to combine the power of well optimized native code
with the familiar to machine learning community API the Intel
Distribution for Python includes fruits of efforts of scikit-learn
optimization. Thus beginning with version 2017.0.2 the Intel Dis-
tribution for Python includes scikit-learn with daal4sklearn sub-
module. Specifically, daal4sklearn optimizes Principal Compo-
nent Analysis (PCA), Linear and Ridge Regressions, Correlation
and Cosine Distances, and K-Means in scikit-learn using Intel®
DAAL. Speedups may range from 1.5x to 160x.

There is no direct matching between scikit-learn’s and In-
tel® DAAL’s APIs. Moreover, they aren’t fully compatible for
all inputs, therefore in those cases where daal4sklearn detects
incompatibility it falls back to original sklearn’s implementation.

Scikit-learn uses multiprocessing approach to parallelize com-
putations. The unfortunate consequence of this choice may be
a large memory footprint as each cloned process has access to
its own copy of all input data. This precludes scikit-learn from
effectivly utilizing many-cores architectures as Intel® Xeon Phi™
for big workloads. On the other hand DAAL internally uses
multi-threading approach sharing the same data across all cores.
This allows to DAAL to use less memory and to process bigger
workloads which especially important for ML algorithms.

Daal4sklearn is enabled by default and provides a simple API
to toggle these optimizations:
from sklearn.daal4sklearn import dispatcher
dispatcher.disable()
dispatcher.enable()

Several benchmarks [sklearn_benches] were prepared to demon-
strate performance that can be achieved with Intel® DAAL. A

fragment from the benchmark used to measure performance of
K-means is given below.

problem_sizes = [
(10000, 2), (10000, 25), (10000, 50),
(50000, 2), (50000, 25), (50000, 50),
(100000, 2), (100000, 25), (100000, 50)]

X={}
for rows, cols in problem_sizes:

X[(rows, cols)] = rand(rows, cols)

kmeans = KMeans(n_clusters=10, n_jobs=args.proc)

@st_time
def train(X):

kmeans.fit(X)

for rows, cols in problem_sizes:
print (rows, cols, end=' ')
X_local = X[(rows, cols)]
train(X_local)
print('')

Using all 32 cores of Intel® Xeon® processor E5-2698 v3 IDP’s
K-Means can be more than 50 times faster than the python
included with Ubuntu 14.04. P below means the number of CPU
cores used.

We compared the similar runs for other algorithms and nor-
malized results by results obtained with DAAL in C++ without
python to estimate overhead from python wrapping.

You can find some benchmarks [sklearn_benches]

Numba vectorization

Wikipedia defines SIMD as:

Single instruction, multiple data (SIMD), is a class
of parallel computers in Flynn’s taxonomy. It describes
computers with multiple processing elements that per-
form the same operation on multiple data points si-
multaneously. Thus, such machines exploit data level
parallelism, but not concurrency: there are simultane-
ous (parallel) computations, but only a single process
(instruction) at a given moment. Most modern CPU
designs include SIMD instructions in order to improve
the performance of multimedia use.

To utilize power of CPU’s SIMD instructions compilers need
to implement special optimization passes, so-called code vec-
torization. Modern optimizing compilers implement automatic
vectorization - a special case of automatic parallelization, where
a computer program is converted from a scalar implementation,
which processes a single pair of operands at a time, to a vector
implementation, which processes a single operation on multiple
pairs of operands at once.
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rows cols IDP,s P=1 IDP,s P=32 System,s P=1 System,s P=32 Vs System,P=1 Vs System,P=32

10000 2 0.01 0.01 0.38 0.27 28.55 36.52
10000 25 0.05 0.01 1.46 0.57 27.59 48.22
10000 50 0.09 0.02 2.21 0.87 23.83 40.76
50000 2 0.08 0.01 1.62 0.57 20.57 47.43
50000 25 0.67 0.07 14.43 2.79 21.47 38.69
50000 50 1.05 0.10 24.04 4.00 22.89 38.52
100000 2 0.15 0.02 3.33 0.87 22.30 56.72
100000 25 1.34 0.11 33.27 5.53 24.75 49.07
100000 50 2.21 0.17 63.30 8.36 28.65 47.95

TABLE 3

According Numba’s project page Numba is an Open Source
NumPy-aware optimizing compiler for Python. It uses the remark-
able LLVM compiler infrastructure to compile Python syntax to
machine code. And it is quite expected that Numba tries to use
all these features to improve performance especially for scientific
applications.

LLVM implemented auto-vectorization for simple cases sev-
eral years ago but there remain sigificant problems with vector-
ization of elementary transcendental math functions. To enable
proper vectorization support a special vectorized implementation
of math functions such as sin, cos, exp is needed.

The Intel® C++ Compiler provides short vector math library
(SVML) intrinsics implementing vectorized mathematical func-
tions. These intrinsics are available for IA-32 and Intel® 64
architectures running on supported operating systems.

The SVML intrinsics are vector variants of corresponding
scalar math operations using __m128, __m128d, __m256,
__m256d, and __m256i data types. They take packed vector
arguments, simultaneously perform the operation on each element
of the packed vector argument, and return a packed vector result.
Due to low overhead of the packing for aligned contiguously
laid out data, vector operations may offer speed-ups over scalar
operations which are proportional to the width of the vector
register.

For example, the argument to the _mm_sin_ps intrinsic is
a packed 128-bit vector of four 32-bit precision floating point
numbers. The intrinsic simultaneously computes values of the sine
function for each of these four numbers and returns the four results
in a packed 128-bit vector, all within about the time of scalar
evaluation of only one argument.

Using SVML intrinsics is faster than repeatedly calling the
scalar math functions. However, the intrinsics may differ from the
corresponding scalar functions in accuracy of their results.

Besides intrinsics available with Intel® compiler there is
opportunity to call vectorized implementations directly from svml
library by their names.

Beginning with version 4.0 LLVM features (experimental)
model of autovectorization using SVML library, so a full stack
of technologies is now available to exploit in-core parallelization
of python code. To enable the autovectorization feature in Numba,
included in the Intel® Distribution for Python*, user needs to
set NUMBA_INTEL_SVML environmental variable to a non-zero
value, prompting Numba to load SVML library and to pass an
appropriate option to LLVM.

Let’s see how it works with a small example:

import math
import numpy as np
from numba import njit

def foo(x,y):
for i in range(x.size):

y[i] = math.sin(x[i])
foo_compiled = njit(foo)

Inspite of the fact that numba generates call for usual sin
function, as seen in the following excerpt from the generated
LLVM code:

label 16:
$16.2 = iternext(value=$phi16.1) ['$16.2',

'$phi16.1']
$16.3 = pair_first(value=$16.2) ['$16.2',

'$16.3']
$16.4 = pair_second(value=$16.2) ['$16.2',

'$16.4']
del $16.2 []
$phi19.1 = $16.3 ['$16.3',

'$phi19.1']
del $16.3 []
branch $16.4, 19, 48 ['$16.4']

label 19:
del $16.4 []
i = $phi19.1 ['$phi19.1',

'i']
del $phi19.1 []
$19.2 = global(math: <module 'math'\
from '/path_stripped/lib-dynload/\
math.cpython-35m-x86_64-...,.so'>) ['$ 19.2']
$19.3 = getattr(attr=sin,

value=$19.2) ['$19.2',
'$19.3']

del $19.2 []
$19.6 = getitem(index=i, value=x) ['$19.6',

'i', 'x']
$19.7 = call $19.3($19.6) ['$19.3',

'$19.6',
'$19.7']

del $19.6 []
del $19.3 []
y[i] = $19.7 ['$19.7',

'i', 'y']
del i []
del $19.7 []
jump 16 []

We can see direct use of the SVML-provided vector implementa-
tion of sine function:

leaq 96(%rdx), %r14
leaq 96(%rsi), %r15
movabsq $__svml_sin4_ha, %rbp
movq %rbx, %r13
.p2align 4, 0x90
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.LBB0_13:
vmovups -96(%r14), %ymm0
vmovups -64(%r14), %ymm1
vmovups %ymm1, 32(%rsp)
vmovups -32(%r14), %ymm1
vmovups %ymm1, 64(%rsp)
vmovups (%r14), %ymm1
vmovups %ymm1, 128(%rsp)
callq *%rbp
vmovups %ymm0, 96(%rsp)
vmovups 32(%rsp), %ymm0
callq *%rbp
vmovups %ymm0, 32(%rsp)
vmovups 64(%rsp), %ymm0
callq *%rbp
vmovups %ymm0, 64(%rsp)
vmovupd 128(%rsp), %ymm0
callq *%rbp
vmovups 96(%rsp), %ymm1
vmovups %ymm1, -96(%r15)
vmovups 32(%rsp), %ymm1
vmovups %ymm1, -64(%r15)
vmovups 64(%rsp), %ymm1
vmovups %ymm1, -32(%r15)
vmovupd %ymm0, (%r15)
subq $-128, %r14
subq $-128, %r15
addq $-16, %r13
jne .LBB0_13

Thanks to enabled support of high accuracy SVML functions in
LLVM this jitted code sees more than 4x increase in performance.

svml enabled:

%timeit foo_compiled(x,y)
1000 loops, best of 3: 403 us per loop

svml disabled:

%timeit foo_compiled(x,y)
1000 loops, best of 3: 1.72 ms per loop

Auto-parallelization for Numba

In this section, we introduce a new feature in Numba that automat-
ically parallelizes NumPy programs. Achieving high performance
with Python on modern multi-core CPUs is challenging since
Python implementations are generally interpreted and prohibit
parallelism. To speed up sequential execution, Python functions
can be compiled to native code using Numba, implemented with
the LLVM just-in-time (JIT) compiler. All a programmer has to
do to use Numba is to annotate their functions with Numba’s
@jit decorator. However, the Numba JIT will not parallelize
NumPy functions, even though the majority of them are known
to have parallel semantics, and thus cannot make use of multiple
cores. Furthermore, even if individual NumPy functions were
parallelized, a program containing many such functions would
likely have lackluster performance due to poor cache behavior.
Numba’s existing solution is to allow users to write scalar kernels
in OpenCL style, which can be executed in parallel. However,
this approach requires significant programming effort to rewrite
existing array code into explicit parallelizable scalar kernels and
therefore hurts productivity and may be beyond the capabilities of
some programmers. To achieve both high performance and high
programmer productivity, we have implemented an automatic par-
allelization feature as part of the Numba JIT compiler. With auto-
parallelization turned on, Numba attempts to identify operations
with parallel semantics and to fuse adjacent ones together to form

kernels that are automatically run in parallel, all fully automated
without manual effort from the user.

Our implementation supports the following parallel opera-
tions:

1. Common arithmetic functions between NumPy arrays,
and between arrays and scalars, as well as NumPy
ufuncs. They are often called element-wise or point-
wise array operations:

• unary operators: + - ~
• binary operators: + - * / /? % | >> ^ << & **

//
• comparison operators: == != < <= > >=
• NumPy ufuncs that are supported in Numba’s

nopython mode.
• User defined DUFunc through @vectorize.

2. NumPy reduction functions sum and prod, although
they have to be written as numpy.sum(a) instead of
a.sum().

3. NumPy dot function between a matrix and a vector,
or two vectors. In all other cases, Numba’s default
implementation is used.

4. Multi-dimensional arrays are also supported for the
above operations when operands have matching dimen-
sion and size. The full semantics of NumPy broadcast
between arrays with mixed dimensionality or size is
not supported, nor is the reduction across a selected
dimension.

5. NumPy array created from list comprehension is
turned into direct array allocation and initialization with-
out intermediate list.

6. Explicit parallelization via prange that turns a for-
loop into a parallel loop.

As an example, consider the following Logistic Regression
function:

@jit(parallel=True)
def logistic_regression(Y, X, w, iters):

for i in range(iters):
w += np.dot(

Y / (1.0 + np.exp(Y * np.dot(X, w))),
X )

return w

We will not discuss details of the algorithm, but instead focus on
how this program behaves with auto-parallelization:

1. Input Y is a vector of size N, X is an N x D matrix,
and w is a vector of size D.

2. The function body is an iterative loop that updates
variable w. The loop body consists of a sequence of
vector and matrix operations.

3. The inner dot operation produces a vector of size N,
followed by a sequence of arithmetic operations either
between a scalar and vector of size N, or two vectors
both of size N.

4. The outer dot produces a vector of size D, followed
by an inplace array addition on variable w.

5. With auto-parallelization, all operations that produce
array of size N are fused together to become a single
parallel kernel. This includes the inner dot operation
and all point-wise array operations following it.
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6. The outer dot operation produces a result array of
different dimension, and is not fused with the above
kernel.

Here, the only thing required to take advantage of parallel
hardware is to set the parallel=True option for @jit, with
no modifications to the logistic_regression function it-
self. If we were to give an equivalent parallel implementation
using Numba’s @guvectorize decorator, it would require a
pervasive change that rewrites the code to extract kernel com-
putation that can be parallelized, which is both tedious and
challenging.

We measure the performance of automatic parallelization over
three workloads, comparing auto-parallelization with Numba’s
sequential JIT and Python 3.6, normalized to the sequential (1-
thread) speed of Numba.

Auto-parallelization proves to be an effective optimization for
these benchmarks, achieving speedups from 5.9x to 11.8x over
sequential Numba on 12-core Intel® Xeon® X5680 @3.33GHz
with 64GB RAM. The benchmarks are available as part of
Numba’s source distribution [numba].

Our future plan is to support array range selection, enable auto-
parallelization of more NumPy functions, as well as to add new
features such as iterative stencils. We also plan to implement more
optimizations that help make parallel programs run fast, improving
both performance and productivity for Python programmers in the
scientific domain.

Summary

The Intel® Distribution for Python is powered by Anaconda* and
conda build infrastructures that give all Python users the benefit
of interoperability within these two environments and access
to the optimized packages through a simple conda install
command. Intel® Distribution for Python* delivers significant
performance optimizations for many core algorithms and Python
packages, while maintaining the ease of downloading and instal-
lation.
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NEXT: A system to easily connect crowdsourcing and
adaptive data collection
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Abstract—Obtaining useful crowdsourcing results often requires more re-
sponses than can be easily collected. Reducing the number of responses re-
quired can be done by adapting to previous responses with "adaptive" sampling
algorithms, but these algorithms present a fundamental challenge when paired
with crowdsourcing. At UW–Madison, we have built a powerful crowdsourcing
data collection tool called NEXT (http://nextml.org) that can be used with arbi-
trary adaptive algorithms. Each week, our system is used by The New Yorker to
run their Cartoon Caption contest (http://www.newyorker.com/cartoons/vote). In
this paper, we will explain what NEXT is and it’s applications, architecture and
experimentalist use.

Index Terms—crowdsourcing, adaptive sampling, system

Introduction

The ubiquitousness of the Internet has enabled crowdsourcing,
which gives fast access to unprecedented amounts of human judg-
ment data. For example, millions of crowdsourcing participants
have been asked to determine the locations in an image that
contain a certain object (e.g., "select all image locations that
contain buildings") on many different images [DDS+09].

The cost of collecting crowdsourcing responses can be sig-
nificant – especially in problem domains where expert input is
required. Minimizing the number of queries required has large
practical benefits: higher accuracy with fewer responses, and
ultimately a shorter time to the result. To obtain these benefits,
a fundamental change in the method of data collection is required.

At UW–Madison, we have developed a crowdsourcing data
collection tool that efficiently collects crowdsourced data via
"adaptive" sampling algorithms [JJF+15]. In this paper, we will
focus on the use of NEXT rather than the applications of NEXT
and their results. We will mention the fundamental problem NEXT
addresses, its applications, and the interfaces NEXT presents to the
experimentalist and algorithm designer.

Problem statement

Supervised machine learning relies humans to label examples in
order to build a model to predict the response a human would

† These authors contributed equally.
* Corresponding author: stsievert@wisc.edu
‡ University of Wisconsin–Madison
§ University of Michigan, Ann Arbor
¶ University of California, Berkeley
|| The New Yorker

Copyright © 2017 Scott Sievert et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: As problem difficulty increases, fewer samples (e.g., labeled
images) are needed with adaptive sampling to reach a particular
quality (e.g., classification accuracy).

give [KZP07]. One example of this workflow is with the popular
ImageNet dataset [DDS+09]: humans have provided millions of
image labels, and there have been dozens of models to predict
labels for unseen images [SLJ+15], [HZRS15], [SZ14].

The collection of these data is passive and does not adapt
to previous responses: previous responses do not effect which
queries are presented. Adaptive data collection is a process which
selects the most useful data as quickly as possible to help achieve
some goal (e.g., classification accuracy) [Hol92]. Adaptive data
collection is done by an adaptive sampling algorithm that chooses
the next query to be labeled.

Adaptive data collection naturally requires fewer responses to
produce the same model as passive data collection: it’s adapting to
previous responses by choosing which query to present next. This
is most useful when many labels are needed unlabeled examples.
Adaptive algorithms do not require more responses than passive
algorithms [CWN05]. A representative depiction of gains obtained
by adaptive data collection is shown in Figure 1 [DHM08].

Applying adaptive data collection to crowdsourcing has the
potential to reduce the number of samples required. An simple
example that requires many human judgments is sorting n items
with pairwise comparisons (e.g., x < y). In the ideal case, an
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adaptive algorithm requires O(n logn) comparisons on average
while passive algorithms requires O(n2) comparisons [Hoa62].

Adaptively collecting large-scale datasets is challenging and
time-consuming, as mentioned below. As such, the evaluation
of novel adaptive sampling algorithms resort to simulations that
use large passively collected datasets. These simulations do not
address the practical issues faced in crowdsourcing: adaptive
algorithm response time, human fatigue and differing label quality
among humans.

The problem that needs to be solved is to allow arbitrary
adaptive algorithms to collect crowdsourced data in real time
by experimentalists. Arguably, some of the deepest insights and
greatest innovations have come through experimentation. This is
only possible if adaptive data collection is easily accessible by
both

1. Machine learning researchers, to test and deploy adap-
tive algorithms

2. Experimentalists, to use and test adaptive algorithms
in real-world applications

Easy use by both groups will enable feedback between exper-
imentalists and machine learning researchers to improve adaptive
data collection through crowdsourcing.

Challenges

Adaptive data collection is not possible without access to previous
responses, a fundamental change to data collection. This intro-
duces human feedback: the most useful queries are selected using
previously recorded human labels by some adaptive algorithm. If
a particular query has shown to be of little use, it doesn’t make
much sense to label the same query again.

Adaptive algorithms use previous responses to ask questions,
which means that they require

• receiving, storing and accessing responses
• delivering and selecting queries to be labeled
• updating some internal model which selects queries to be

presented.
• scaling to tens or hundreds of simultaneous users in an

online environment when applied to crowdsourcing

General crowdsourcing systems (e.g., Mechanical Turk, Psi-
Turk, Crowd Flower) were not designed with these requirements in
mind. Adaptive data collection requires a fundamentally different
interaction flow as show in Figure 2, which requires the data flow
in Figure 3 when applied to crowdsourcing.

Crowdsourcing adaptive data collection presents a variety of
challenges in mathematics, systems and software development.
These challenges stem from the storage and connection of re-
sponses to the adaptive sampling algorithm. Any such system
needs to process, store and receive crowdsourcing responses and
work crowdsourcing scale, meaning the development and mainte-
nance of such a system is involved. This has served as a barrier
to developing such a system for mathematicians, and lack of
knowledge on adaptive methods have hindered experimentalists.

One other system that addresses this challenge is the Microsoft
Decision Service [ABC+16], which can effectively evaluate the
collection of crowdsourced data with different adaptive algo-
rithms. However, design of this system involved different goals,
including working with exactly one problem formulation and
working well at very large scales.

Fig. 2: The data flows required to collect crowdsourcing data both
passively and adaptively. The primary difference is adaptive data
collection requires using previous responses in some way.

Fig. 3: The system required to use adaptive algorithm with crowd-
sourcing. The results are stored in the model, which may contain
additional information.

Our system

The system we have developed at the UW–Madison is called
NEXT12. It provides adaptive, crowdsourced data collection by
selecting which query to present next. NEXT provides

• easy implementation, selection, and evaluation of different
adaptive algorithms

• a web interface for crowdsourced experiment participation
• an HTTP-based API for experiment access (and for use in

other contexts)
• live experiment monitoring dashboards that update as

responses are received
• easy use and configuration by experimentalists in a wide

variety of fields and disciplines

Our design goals necessitate that NEXT be an end-to-end
system that is easily accessible. It is a web interface that can be
accessed by both experimentalists and crowdsourcing participants,
and a Python interface for the algorithm developer. We explain
use by experimentalists and algorithm developers in the following
sections. A block diagram representation of our system is in Figure
4.

In use of NEXT, mathematicians have implemented new
algorithms [Jun16] and UW–Madison psychologists have inde-
pendently used our system3. NEXT has been used by the New
Yorker and in the insurance industry. In at least one case, two

1. Homepage at http://nextml.org
2. Source available at https://github.com/nextml/NEXT
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Fig. 4: When and how different users interact with NEXT. Arrows
represent some form of communication between different system
components.

adaptive algorithms have been evaluated in the real world and one
required fewer samples as expected4.

In our usage, the system remains responsive to participants
even after receiving millions of responses from thousands of
participants. This is illustrated by the problem below, though it
also illustrates other features.

Applications of NEXT

NEXT applications control the presentation of queries for users to
consider.

There are three "built-in" applications shipped with NEXT,
geared to three different types of judgments a user can make.
These applications are

• Cardinal bandits, which asks participants to rate one object
[GGL12] as shown in Figure 5.

• Dueling bandits, which asks participants to select one of
two objects [YBKJ12] as shown in Figure 6.

• Triplets, which displays three objects and asks for triplet
responses of the form "object i is more similar to object j
than object k." [JJN16], as shown in Figure 7.

We will now describe each application in more detail.

Cardinal bandits

Each week, The New Yorker draws a cartoon and asks readers for
funny captions. They receive about 5,000 captions, of which they
have to find the funniest. NEXT runs this contest each week. The
interface NEXT provides is visible at http://www.newyorker.com/
cartoons/vote and in Figure 5.

The interface is presented every time a query is generated.
One caption is presented below the comic with buttons to rate the
caption as "unfunny", "somewhat funny" or "funny". Every time
one of these buttons is pressed, the adaptive algorithm processes
the response and generates a new query.

3. See http://concepts.psych.wisc.edu/index.php/next-tutorial/
4. With contest 559 of The New Yorker Cartoon Caption contest

Fig. 5: An example query shown in The New Yorker Caption Contest
(cartoon drawn by P. C. Vey)

Each week, we collect and record up to a million ratings from
over 10,000 users. All told, this dataset5 includes over 20 million
ratings on over 363,000 different captions. This dataset has been of
practical use in improving adaptive sampling algorithms [Jun16].

The New Yorker’s goal is to find the funniest caption from this
set of 5,000 captions6. To achieve this, the algorithms of choice
only sample captions that can possibly be the funniest. If a caption
has received only "unfunny" ratings, it is probably not the funniest
caption and should not be further sampled.

This system has enabled evaluation and improvement in al-
gorithm implementation. In initial contests, we verified that one
adaptive algorithm [JMNB14] saw gains over a random algorithm.
Later, we implemented an improved adaptive algorithm (KL-UCB
at [KK13]) and saw adaptive gains as expected.

This was one of the motivations for NEXT: enabling easy
evaluation of adaptive algorithms.

Dueling bandits

We also support asking the crowdsourcing participants to chose
the "best" of two items. We tried this method during the first
several caption contests we launched for The New Yorker. This
interface asks participants to select the funnier of two captions,
and is shown in Figure 6. This problem formulation has theoretic
guarantees on finding the best item in a set [AB10], but can also
be applied to ranking different objects [CBCTH13].

The early evaluation of dueling bandits in the Caption Contest
is again part of why we developed NEXT. After trying dueling
bandits for several contests, we decided using cardinal bandits is
preferable. Cardinal bandits works better at scale, and requires less
work by The New Yorker.

5. https://github.com/nextml/caption-contest-data
6. The top caption for the comic in Figure 5 was "Like you’ve never taken

anything from a hotel room"
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Fig. 6: The dueling bandits interface, where two items are compared
and the "better" item is selected (cartoon drawn for The New Yorker
Caption Contest by Shannon Wheeler)

Fig. 7: An interface that asks the user to select the most similar bottom
object in relation to the top object.

Triplets

Finding a similarity measure between different objects is the goal
of this problem formulation. For example, it may be desired to
find the similarity between different facial expressions. Happy and
excited faces may be similar but are probably different from sad
faces.

Human attention span cannot handle the naive number of
comparisons (which is proportional to n2 with n items). Instead,
we ask the crowdsourcing participant to make a pairwise similarity
judgement, or a triplet response as shown in Figure 7. There are
theoretic guarantees on finding some similarity measure given
these responses [JJN16] and have been used in practice with
NEXT to compare visual representations of different molecules
[RMN16].

NEXT Architecture

The design goals of NEXT are to provide

• convenient default applications (which handle different
problem formulations by serving different types of queries;
e.g., one application involves the rating of exactly one
object)

• straightforward and modular algorithm implementation
• live experiment monitoring tools via a dashboard, which

must update as responses are received and provide some
sort of offline access

• easy experimentalist use, both in system launch and in
experiment launch

These different system components and their data flow is
shown in Figure 4. Complete system documentation is available
and addresses use cases seen by both algorithm developers and
experimentalists7.

Algorithm implementation

Required functions: To implement Figure 4, we must
implement four functions for each algorithm:

1. initExp, which initializes the algorithm when the
experiment is launched

2. getQuery, which generates a query to show one
participant

3. processAnswer, which processes the human’s an-
swer

4. getModel, which gets the results and is shown on
the dashboard

These function handle various objects to displayed in each
query (e.g., the New Yorker displays one text object in every query
for a rating). By default, these objects or target are abstracted to
an integer index (though the other information is still accessible).
This means that a particular target is referred to only by index
(e.g., the user is seeing target i, not foo.png).

All these functions are implemented in Python, and we provide
easy access other tasks needed for adaptive algorithms (database
access, background jobs).

Arguments and returns: We treat each algorithm as a
black box – NEXT only needs each algorithm function to accept
and return specific values. These arguments and return values
for all algorithm functions are specified exactly in a YAML-
based schema. Every algorithm has to create a mapping from the
specified inputs to the specified outputs.

NEXT verifies the inputs and output to/from algorithms and
can also include a description of each parameter. This means that
YAML schema is always up to date and is self-documenting.
Changing this schema means different arguments are passed to
every algorithm, and we offer flexibility by allowing arguments of
any type to be passed.

This schema depends on Algs.yaml (e.g., in
apps/[application]/algs/Algs.yaml) and contains
four root level keys for each of initExp, getQuery,
processAnswer, and getModel. Each one of these sections
describes the input arguments and returns values by args
and rets respectively. These sections are filled with type
specifications that describe the name and type of the various
keyword arguments.

For example, a particular Algs.yaml may include
getQuery:
args:

7. Documentation can be found at https://github.com/nextml/NEXT/wiki
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participant_uid:
type: string
description: ID of the participant answering the query

rets:
description: The index of the target to ask about
type: num

The keyword argument participant_uid is specified in the
args key, and the return value must be a number. The corre-
sponding getQuery implementation would be
def getQuery(butler, participant_uid):

return 0 # for example

More complete documentation on these parameter spec-
ifications, which can be found at the API endpoint
assistant/doc/[application-name]/pretty.

Database access: We provide a simple database wrapper,
as algorithms need to store different values (e.g., the number of
targets, a list of target scores). We provide a variety of atomic
database operations through a thin wrappers to PyMongo8 and
Redis9, though we can support arbitrary databases10. Each "collec-
tion" in this wrapper mirrors a Python dictionary and has several
other atomic database operations. We provide

• get, set and {get, set}_many which provide
atomic operations to store values in the database

• append and pop, which atomically modify list values,
and return the result

• increment, which atomically increments a stored value
by a given amount

All these operations are atomic, and can be accessed
through an interface called butler which contains multi-
ple collections. The primary collection used by algorithms
(butler.algorithms) is specific to each algorithm and al-
lows for independent evaluation of different algorithms (though
other collections are available). The arguments to an algorithm
function are butler followed by the values in the schema.

Example: This example illustrates the interface we have
created for the algorithm developer and provides an example of
algorithm implementation. After implementation, this algorithm
can receive crowdsourcing responses through the web interface.
import numpy as np

def choose_target(butler):
# Adaptive sampling hidden for brevity
n = butler.algorithms.get(key='n')
return np.random.choice(n)

class MyAlg:
def initExp(self, butler, n):

butler.algorithms.set(key='n', value=n)
scores = {'score'+ str(i): 0 for i in range(n)}
pulls = {'pulls' + str(i): 0 for i in range(n)}
butler.algorithms.set_many(

key_value_dict=scores
)
butler.algorithms.set_many(

key_value_dict=pulls
)

def getQuery(self, butler):
return choose_target(butler)

8. http://api.mongodb.com/python/current
9. https://redis.io/
10. Which requires implementation of the Collection API found in

next.apps.Butler

def processAnswer(self, butler,
target_id, reward):

butler.algorithms.increment(
key='score' + str(target_id),
value=reward

)
butler.algorithms.increment(

key='pulls' + str(target_id),
)

def getModel(self, butler):
n = butler.algorithms.get(key='n')
scores = [butler.algorithms.get(

'score' + str(i))
for i in range(n)]

pulls = [butler.algorithms.get(
'pulls' + str(i))

for i in range(n)]
mean_scores = [s/p if p != 0 else float('nan')

for s, p in zip(scores, pulls)]
return mean_scores

The Algs.yaml file for this algorithm would be
initExp:
args:
n:
description: Number of targets
type: num

getQuery:
rets:
type: num
description: The target to show

the user
processAnswer:
args:
target_id:
description: The target_id that was shown

to the user
type: num

reward:
description: The reward the user gave

the target
values: [1, 2, 3]
type: num

getModel:
rets:
type: list
description: The scores for each target ordered

by target_id.
values:
description: The mean score for a particular target
type: num

Experiment dashboards

NEXT can be monitored in real-time via dashboards for each
experiment, which include:

• experiment logs
• basic information (launch date, number of received re-

sponses, etc)
• the results, with current responses received (example in

Figure 8)
• client- and server-side timing information
• download links to the responses and the live results (which

allows processing of these data offline).

The dashboards include histograms for both human response
time and network delay (time taken for NEXT to respond to re-
quest), a measure of system responsiveness. An example is shown
in Figure 9. These dashboards also include timing information
for algorithm functions, a useful debugging tool for the algorithm
developer.
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Fig. 8: The dashboard display of results from different algorithms for
the example in Figure 6.

Fig. 9: Timing histograms measured client-side in seconds for cartoon
caption contest 573. Network delay represents the total time NEXT
took to respond and response time measures human resposne time.

From the dashboard, we support the download of both experi-
ment results and participant response information.

Experimentalist use

Below, we will refer to different NEXT features which are
available through different API endpoints. After NEXT has
launched, these are available via HTTP on port 8000 on the
hosting machine. In practice, this means the API endpoint
/home (for example) is available at [next-url]:8000/home
when [next-url] is one of ec2-...-amazonaws.com or
localhost.

Launching NEXT: The easiest way to launch NEXT is
through Amazon EC2 (which can provide the interface required
for crowdsourcing) and their AMI service. After launch, the main
NEXT interface is available at the API endpoint /home which
provides links to the list of dashboards, an experiment launching
interface and the associated documentation.

Launching can be done by selecting the "Launch instance"
button on Amazon EC2 and choosing the AMI "NEXT_AMI",
ami-36a00c56 which is available in the Oregon region. We rec-
ommend that production experiments be run on the EC2 instance-
type c4.8xlarge, a server large enough to provide the neces-
sary memory and compute power. A complete guide can be found
in the documentation at https://github.com/nextml/NEXT/wiki.

Experiment launch: Experiments are launched by pro-
viding two files to NEXT, either via a web interface or an
API endpoint. An experiment description file is required. The

other (optional) file enumerate the objects under consideration
("target"). These two files can be uploaded through the interface
available at /assistant/init.

The experiment description contains the information required
to launch and configure the experiment. The following experiment
description was used to generate the image in Figure 6:
app_id: CardinalBanditsPureExploration
args:
alg_list:
- {alg_id: KLUCB, alg_label: KLUCB}
algorithm_management_settings:
mode: fixed_proportions
params:
- {alg_label: KLUCB, proportion: 1.0}

context: # image URL, trimmed for brevity
context_type: image
failure_probability: 0.05
participant_to_algorithm_management: one_to_many
rating_scale:
labels:
- {label: unfunny, reward: 1}
- {label: somewhat funny, reward: 2}
- {label: funny, reward: 3}

These parameters are defined in schemes,
and are documented at the API endpoint
/assistant/doc/[application-id]/pretty in
the "initExp" section.

The other file necessary for experiment launch is a ZIP file
of targets (e.g., the images involved in each query). We support
several different formats for this ZIP file so images, text and
arbitrary URLs can be supported. If images are included in this
ZIP file, we upload all images to Amazon S3.

Experimentalist use with crowdsourcing: After experiment
launch, a link to the experiment dashboard and query page is
presented. We recommend distributing this query page link to
crowdsourcing participants, which typically happens via Mechan-
ical Turk or email.

Experiment persistence: We support saving
and restoring experiments on the experiment list at
/dashboard/experiment_list. This allows experiment
persistence even when Amazon EC2 machines are terminated.

Conclusion

At UW–Madison, we have created a system that is connecting
useful adaptive algorithms with crowdsourced data collection.
This system has been successfully used by experimentalists in a
wide variety of disciplines from the social sciences to engineering
to efficiently collect crowdsourced data; in effect, accelerating
research by decreasing the time to obtain results.

The development of this system is modular: sampling algo-
rithms are treated as black boxes, and this system is accessible
with other interfaces. NEXT provides useful experiment monitor-
ing tools that update as responses are received. This system has
shown to be cost effective in bringing decision making tools to
new applications in both the private and public sectors.

REFERENCES

[AB10] Jean-Yves Audibert and Sébastien Bubeck. Best arm identifi-
cation in multi-armed bandits. In COLT-23th Conference on
Learning Theory-2010, pages 13–p, 2010.

[ABC+16] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang,
John Langford, Stephen Lee, Jiaji Li, Dan Melamed, Gal Oshri,
Oswaldo Ribas, et al. A multiworld testing decision service.
arXiv preprint arXiv:1606.03966, 2016.



Con
fer

en
ce

Rea
dy

118 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2017)

[CBCTH13] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric
Horvitz. Pairwise ranking aggregation in a crowdsourced setting.
In Proceedings of the sixth ACM international conference on Web
search and data mining, pages 193–202. ACM, 2013.

[CWN05] Rui Castro, Rebecca Willett, and Robert Nowak. Faster rates
in regression via active learning. In NIPS, volume 18, pages
179–186, 2005.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[DHM08] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A
general agnostic active learning algorithm. In Advances in neural
information processing systems, pages 353–360, 2008.

[GGL12] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro
Lazaric. Best arm identification: A unified approach to fixed
budget and fixed confidence. In Advances in Neural Information
Processing Systems, pages 3212–3220, 2012.

[Hoa62] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–
16, 1962.

[Hol92] John H Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1992.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[JJF+15] Kevin G Jamieson, Lalit Jain, Chris Fernandez, Nicholas J
Glattard, and Rob Nowak. Next: A system for real-world
development, evaluation, and application of active learning.
In Advances in Neural Information Processing Systems, pages
2656–2664, 2015.

[JJN16] Lalit Jain, Kevin G Jamieson, and Rob Nowak. Finite sample
prediction and recovery bounds for ordinal embedding. In Ad-
vances in Neural Information Processing Systems, pages 2711–
2719, 2016.

[JMNB14] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien
Bubeck. lil’ucb: An optimal exploration algorithm for multi-
armed bandits. In Conference on Learning Theory, pages 423–
439, 2014.

[Jun16] Kwang-Sung Jun. Anytime exploration for multi-armed bandits
using confidence information. In Proceedings of The 33rd
International Conference on Machine Learning, pages 974–982,
2016.

[KK13] Emilie Kaufmann and Shivaram Kalyanakrishnan. Information
complexity in bandit subset selection. In COLT, pages 228–251,
2013.

[KZP07] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised
machine learning: A review of classification techniques, 2007.

[RMN16] Martina A Rau, Blake Mason, and Robert Nowak. How to
model implicit knowledge? similarity learning methods to assess
perceptions of visual representations. In Proceedings of the 9th
International Conference on Educational Data Mining, 2016.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[YBKJ12] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten
Joachims. The k-armed dueling bandits problem. Journal of
Computer and System Sciences, 78(5):1538–1556, 2012.



Con
fer

en
ce

Rea
dy

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2017) 119

ChiantiPy: a Python package for Astrophysical
Spectroscopy
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F

Abstract—ChiantiPy is an interface to the CHIANTI atomic database for as-
trophysical spectroscopy. The highly-cited CHIANTI project, now in its 20th
year, is an invaluable resource to the solar physics community. The ChiantiPy
project brings the power of the scientific Python stack to the CHIANTI database,
allowing solar physicists and astronomers to easily make use of this atomic
data and calculate commonly used quantities from it such as radiative loss
rates and emissivities for particular atomic transitions. This paper will discuss
the capabilities of the CHIANTI database and the ChiantiPy project as well as
the current state of the project and its place in the solar physics community.
We will demonstrate how the core modules in ChiantiPy can be used to study
emission from optically thin transitions and the continuum in the x-ray and EUV
wavelengths. Additionally, we will discuss some of the infrastructure around the
ChiantiPy project and some of the goals for the near future.

Index Terms—solar physics, atomic physics, astrophysics, spectroscopy

Introduction

Nearly all astrophysical observations are done through remote
sensing. Light at various wavelengths is collected by instruments,
either ground- or space-based, in an attempt to understand physical
processes happening in distant astrophysical objects. However,
in order to translate these detector measurements to meaningful
physical insight, it is necessary to understand what physical
conditions give rise to different spectral lines and continuum
emission. Started in 1996 by researchers at the Naval Research
Laboratory, the University of Cambridge, and Arcetri Astrophys-
ical Observatory in Florence for the purpose of analyzing solar
spectra, the CHIANTI atomic database provides a set of up-to-
date atomic data for thirty different elements as well as a suite of
tools, written in the proprietary Interactive Data Language (IDL),
for analyzing this data. Described in a series of 15 papers from
1997 to 2016 that have been cited collectively over 3000 times
(see Table 1), the CHIANTI database is an invaluable resource to
the solar physics community.

The CHIANTI project is comprised of two main parts: the
database containing the actual atomic data and the IDL software
libraries for accessing the data and calculating useful quantities
from them. The database provides atomic data for optically-thin
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‡ Department of Physics and Astronomy, Rice University, Houston, TX, USA
§ Department of Physics and Astronomy, George Mason University, Fairfax,
VA, USA
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Paper Version Citations

[DLM+97] 1 1167
[YLT98] 1 105
[LLD+99] 2 94
[DLYDZ01] 3 156
[LFD02] 3 86
[YDZL+03] 4 250
[LDZY+06] 5 373
[LP06] 5 25
[DLY+09] 6 301
[LY09] 6 25
[YL09] 6 22
[LDZY+12] 7 174
[LYD+13] 7.1 227
[DZDY+15] 8 60
[YDL+16] 8 1

Total
3066

TABLE 1: All publications describing the data and capabilities of the
CHIANTI atomic database, the associated version of the database,
and the number of citations as reported by the NASA Astrophysics
Data System at the time of writing.

transitions, primarily in the x-ray and extreme ultraviolet (EUV)
wavelengths, for ions of 30 different elements, H (Z = 1) through
Zn (Z = 30). The CHIANTI project stemmed largely from the need
for a consolidated database of spectral lines for interpreting data
from spectroscopic and narrow-band solar observing instruments.

While IDL has been the lingua franca of solar physics for over
twenty years, Python is gaining momentum in the community and
is the language of choice for many younger researchers. This is
largely due to the success of Python in general astronomy (e.g.
Astropy), the advent of SunPy, a stable and well-supported Python
package for solar data analysis [SMC+15], and the adoption of
Python as the language of choice by the Daniel K. Inouye Solar
Telescope (DKIST), an instrument expected to be the world’s
largest solar telescope with an estimated data output of 11 TB
per day [WBH+16].

Given the growing popularity of Python in the solar com-
munity and the importance of CHIANTI to solar observers and
modelers alike, a well-supported Python interface to this database
is critical. The ChiantiPy project, started in 2003 by Ken Dere,
provides a Python package for interacting with the CHIANTI
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Filetype Description

ELVLC Index and energy for each level
WGFA Wavelength, radiative decay rates, and oscillator strengths for

each transiton
SCUPS Scaled effective collision strengths for each transition
FBLVL Energy levels for free-bound continuum calculation

TABLE 2: Some of the filetypes available for each ion in the CHIANTI
database. Adapted from Table 1 of [YDL+16].

database and an alternative to the IDL tools. ChiantiPy is not a
direct translation of its IDL counterpart, but instead provides an
intuitive object oriented interface to the database (compared to the
more functional approach in IDL). ChiantiPy provides an easy to
use API to the raw atomic data in the CHIANTI database as well
as Python versions of all the primary calculations performed by
the original IDL software, including the level balance equation
and the ionization equilibrium calculation. This paper will give
a brief overview of the CHIANTI database and demonstrate the
core capabilities of the ChiantiPy package. These include the line
emission for transitions and continuum emission of particular ions
as well as spectra and radiative loss rates summed over many ions.
We will also discuss the infrastructure of the package and plans
for the future of the package.

Database

The CHIANTI database is organized as a collection of directories
and ASCII files that can be downloaded as a tarball from the
CHIANTI database website or as part of the SolarSoftware (or
SolarSoft) IDL package [FH98]. The solar physics community has
typically relied on the latter as SolarSoft has served as the main
hub for solar data analysis software for the last several decades.
SolarSoft provides routines for updating software packages auto-
matically and so traditionally CHIANTI users have updated their
distributions, including both the software and the database, in this
manner1.

The structure of the CHIANTI database is such that
each top level directory represents an element and each
subdirectory is an ion of that element. Files in each of
the subdirectories contain pieces of information attached
to each ion. The database generally follows the structure
{el}/{el}_{ion}/{el}_{ion}.{filetype}, where el
is the element, ion is the ion number, and filetype is the file
extension. For example, the energy level information for Fe V
is in the file fe/fe_5/fe_5.elvlc. A few of these filetypes
are summarized in Table 2. For a complete description of all of
the different filetypes available, see Table 1 of [YDL+16] and the
CHIANTI user guide. Fig. 1 shows all of the available ions in the
CHIANTI database as well as the number of levels available for
each ion.

ChiantiPy provides several low-level functions for reading raw
data directly from the CHIANTI database. For example, to find
the energy of the emitted photon for each transition for Fe V (i.e.
the fifth ionization state of iron), you would first read in level
information for each transition for a given ion,
import ChiantiPy.tools.util as ch_util
fe5_wgfa = ch_util.wgfaRead('fe_5')
ilvl1 = np.array(fe5_wgfa['lvl1']) - 1
ilvl2 = np.array(fe5_wgfa['lvl2']) - 1

and then use the indices of the level to find the associated level
energies in the ELVLC data,
fe5_elvlc = ch_util.elvlcRead('fe_5')
delta_energy = (np.array(fe5_elvlc['ecm'])[ilvl2]

- np.array(fe5_elvlc['ecm'])[ilvl1])

where the associated energy levels are given in cm−1. In general,
these functions are only used internally by the core ChiantiPy
objects. However, users who need access to the raw data may find
them useful.

In addition to each of the files associated with each ion,
CHIANTI also provides abundance and ionization equilibrium
data for each element in the database. The elemental abundance,
N(X)/N(H) (i.e. the number of atoms of element X relative to
the number of hydrogen atoms), in the corona and photosphere
has been measured by many workers and these various measure-
ments have been collected in the CHIANTI atomic database. For
example, to read the abundance of Fe as measured by [FMS+92],
import ChiantiPy.tools.io as ch_io
ab = ch_io.abundanceRead('sun_coronal_1992_feldman')
fe_ab = abundance['abundance'][ch_util.el2z('Fe')-1]

As with the other CHIANTI data files, the abundance values are
typically read internally and then exposed to the user through more
abstract objects like the ion class so reading them in this way is
not necessary. Similarly, the ionization equilibrium of each ion of
each element is available as a function of temperature and various
sets of ionization equilibria data can be used. More details about
the ionization equilibrium can be found in later sections.

Default values for the abundance and ionization equilibrium
files as well as the units for wavelength (nm, Å, or eV) and
energy (ergs or photons) can be set in the users chiantirc file,
located in ~/.chianti/chiantirc. These settings are stored
in ChiantiPy.tools.data.Defaults and can be changed
at anytime.

Unless otherwise noted, all quantities are expressed in the
cgs unit system, with the exception of wavelengths which are
recorded in angstroms (Å). As discussed above, some energies
in the CHIANTI atomic database, particularly those pertaining
to levels in an atom, are stored in cm−1 for convenience (i.e.
with h = c = 1, a common convention in atomic physics). Results
of any calculation in ChiantiPy will always be returned in cgs
units (unless explicitly stated in the chiantirc file, e.g. photons
instead of ergs).

Common Calculations and API

The majority of the ChiantiPy codebase is divided into two
modules: tools and core. The former contains utility and
helper functions that are mostly for internal use. The latter contains
the primary objects for interacting with the data in the CHIANTI
atomic database and performing many common calculations with
these data. A summary of the objects in core can be found in
Table 3. These objects can be roughly divided into two categories:
those that deal with information and calculations about individual
ions and those that aggregate information over a range of ions
in order to perform some calculation. The ion and Continuum

1. The easiest way to acquire the CHIANTI database is to download and
unpack the tarball at http://www.chiantidatabase.org/chianti_download.html.
In order for ChiantiPy to find the database, it is necessary to point the
XUVTOP environment variable to the top of the CHIANTI directory tree.
For example, if the database is downloaded to $HOME/chianti, export
XUVTOP=$HOME/chianti/dbase should be placed in the Bash shell
configuration file.
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I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII XXIII XXIV XXV XXVI XXVII XXVIII XXIX XXX

Stage

Zn
Ni
Co
Fe

Mn
Cr
Ti
Ca
K

Ar
Cl
S
P
Si
Al

Mg
Na
Ne
O
N
C

He
H

E
le

m
en

t

161 209 10 72 20 10 243 49 64
17 599 31 48 143 483 40 159 161 209 195 58 15 20 204 92 243 49 25

161 209 3 10 15 20 204 10 204
142 322 37 34 96 9 536 915 552 996 912 749 739 283 161 267 337 636 375 620 548 196 243 49 25

13 31 48 161 209 3 10 15 20 204 10 204
13 31 48 16 161 209 3 10 15 20 204 10 243 49

16 161 209 3 10 72 20 15 10 20
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Fig. 1: All ions available in the latest version (v8.0.6) of the CHIANTI atomic database. The color and number in each square indicate the
number of available levels in the database. Adapted from Fig. 1 of [YDL+16].

Object Name Description

ion Holds ion properties and calculates level populations and
emissivity

Continuum Free-free and free-bound continuum for individual ions
ioneq Ionization equilibrium for individual elements
spectrum Calculate synthetic spectra for a range of ions
radLoss Total radiative losses from multiple ions, including con-

tinuum

TABLE 3: The primary objects in the public API of ChiantiPy.

objects calculate emissivity information related to specific ions
while ioneq, spectrum, and radLoss require information
from multiple ions and/or elements.

Line Emission

The most essential and actively developed portion of the ChiantiPy
package is the ion object which provides an interface to the data
and associated calculations for each ion in the database. The ion
object is initialized with an ion name, a temperature range, and a
density2,

import ChiantiPy.core as ch
import numpy as np
temperature = np.logspace(4,6,100)
density = 1e9
fe_5 = ch.ion('fe_5',temperature,density)

In this example, we’ve initialized an ion object for Fe V over
a temperature range of T = 104− 106 K at a constant electron
density of ne = 109 cm−3. All of the data discussed in the previous
section are available as attributes of the ion object (e.g. .Elvlc
and .Wgfa are dictionaries holding the various fields available in
the corresponding filetypes listed in Table 3). In general, ChiantiPy
objects follow the convention that methods are lowercase and
return their value(s) to attributes with corresponding uppercase
names3. For example, the abundance value of Fe is stored in
fe_5.Abundance and the ionization equilibrium is calculated
using the method fe_5.ioneqOne() with the value being

returned to the attribute fe_5.IoneqOne.
One of the most often used calculations in CHIANTI and Chi-

antiPy is the energy level populations as a function of temperature.
When calculating the energy level populations in a low density,
high temperature, optically-thin plasma, collisional excitation and
subsequent decay often occur much more quickly than ionization
and recombination, allowing these two processes to be decoupled.
Furthermore, it is assumed that all transitions occur between the
excited state and the ground state. These two assumptions make
up what is commonly known as the coronal model approximation.
Thus, the level balance equation can be written as,

∑
k> j

NkAk j +ne ∑
i= j

N jCi j−
(

∑
i< j

N jA ji+ne ∑
k= j

N jC jk

)
= 0,

where Ak j is the radiative decay rate, C jk is the collisional excita-
tion coefficient, and N j is the number of electrons in excited state
j [YDL+16]. Since A and C are given by the CHIANTI database,
this expression can be solved iteratively to find n j = N j/∑ j N j,
the fraction of electrons in excited state j or the level population
fraction. Proton excitation rates, primarily between fine structure
levels, can also be included in the calculation of n j. See Eq. 4 of
[YDZL+03].

The method fe_5.populate() can then be used to cal-
culate the level populations for Fe V. This method populates
the fe_5.Population attribute and a 100× 34 array (i.e.
number of temperatures by number of energy levels) is stored in
fe_5.Population['population']. ChiantiPy also pro-
vides the convenience method fe_5.popPlot() which pro-
vides a quick visualization of level population as a function of
temperature for several of the most populated levels. Note that this
calculation can be quite expensive for large temperature/density
arrays and for ions with many transitions. The left panel of Fig.
2 shows the level population as a function of temperature, n j(T ),
for all of the energy levels of Fe V in the CHIANTI database.

2. A single temperature and an array of densities is also valid. The only
requirement is that if one or the other is not of length 1, both arrays must have
the same length. The ion object can also be initialized without any temperature
or density information if only the ion data is needed.

3. This convention is likely to change in the near future as the ChiantiPy
codebase is brought into compliance with the PEP 8 Style Guide for Python
code.
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Fig. 2: Level populations, n j, as a function of temperature (left) and intensity as a function of wavelength (right) for Fe V. The various curves
in the left panel represent the multiple energy levels of the Fe V ion. The right panel shows the intensity at the discrete wavelength values
(black) as well as the spectra folded through a Gaussian filter with σ = 5 Å (blue) and a Lorentzian filter with γ = 5 Å (green).

When dealing with spectral line emission, we are often most
interested in the line intensity, that is, the power per unit volume as
a function of temperature (and density). For a particular transition
λi j, the line intensity can be written as,

Ii j =
1

4π
hc
λ

Ab(X)XkAi jn jn−1
e , [ergcm3s−1sr−1]

where Ab(X) is the abundance and Xk is the ionization equilib-
rium. To calculate the intensity for each transition in CHIANTI
for Fe V, we can use the method fe_5.intensity() which
returns a 100× 219 array (i.e. dimension of temperature by
the number of available transitions). The convenience methods
fe_5.intensityPlot() and fe_5.intensityList()
can also be used to quickly visualize and enumerate the most
intense lines produced by the ion, respectively.

Finally, the intensity can be convolved with a filter to calculate
the intensity as a continuous function of wavelength to simulate
an observed spectrum. For a single ion this is done using the
fe_5.spectrum() method (see later sections for creating
multi-ion spectra). To create a spectrum for Fe V between 2600 Å
and 2900 Å,

wavelength = np.arange(2.6e3,2.9e3,0.1)
fe_5.spectrum(wavelength)

This method also accepts an optional keyword argument for speci-
fying a filter with which to convolve the intensity. The default filter
is a Gaussian though ChiantiPy.tools.filters includes
several different filters including Lorentzian and Boxcar filters.
The right panel of Fig. 2 shows the Fe V intensity (black) and
spectrum folded through a Gaussian (blue) and Lorentzian (green)
filter at the temperature at which the ionization fraction is maxi-
mized, T ≈ 8.5×104 K. Similar to the fe_5.populate() and
fe_5.intensity(), ChiantiPy also provides the convenience
method fe_5.spectrumPlot() for quickly visualizing a
spectrum.

Continuum Emission

In addition to calculating emissivities for individual spectral lines,
ChiantiPy also calculates the free-free, free-bound, and two-
photon continuua as a function of wavelength and temperature for
each ion. In particular, the Continuum object is used to calculate
the free-free and free-bound emissivities. Free-free emission (or

bremsstrahlung) is produced by collisions between free electrons
and positively charged ions. The free-free emissivity is given by,

dW
dtdV dλ

=
c

3me

(
αh
π

)3( 2π
3mekB

)1/2 Z2

λ 2T 1/2 ḡ f f

× exp
(
− hc

λkBT

)
, [ergcm3 s−1 Å−1 sr−1]

where α is the fine structure constant, Z is the nuclear charge,
T is the electron temperature, and ḡ f f is the velocity-averaged
Gaunt factor [RL79]. ḡ f f is calculated using the methods
of [ISK+00] (Continuum.itoh_gaunt_factor()) and
[Sut98] (Continuum.sutherland_gaunt_factor()),
depending on the temperature range.

Similarly, free-bound emission is produced when a free elec-
tron collides with a positively-charged ion and the previously-
free electron is captured into an excited state of the ion. Because
this process (unlike free-free emission) involves the details of the
energy level structure of the ion, its formulation is necessarily
quantum mechanical though a semi-classical treatment is possible
(see Section 4.7.2 of [PFL08] and Section 10.5 of [RL79]). From
[YDZL+03], the free-bound emission can be calculated as,

dW
dtdV dλ

=
1

4π
2

hkBc3me
√

2πkBme

E5

T 3/2 ∑
i

ωi

ω0
σb f

i

× exp
(
−E− Ii

kBT

)
, [ergcm3 s−1 Å−1 sr−1]

where E = hc/λ is the photon energy, ωi and ω0 are the
statistical weights of the ith level of the recombined ion
and the ground level of the recombining ion, respectively,
σb f

i is the photoionization cross-section, and Ii is the ion-
ization potential of level i. The cross-sections are calculated
using the methods of [VY95] (for the ground state, i.e.
i = 0) and [KL61] (for i 6= 0). An optional use_verner
keyword argument (True by default) is included in the
Continuum.calclulate_free_bound_emission() so
that users can choose to only use the method of [KL61] in the
photoionization cross-section calculation.

To calculate the free-free and free-bound emission with Chi-
antiPy,
temperature = np.logspace(6,8.5,100)
cont_fe18 = ch.Continuum('fe_18',temperature)
wavelength = np.logspace(0,3,100)
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Fig. 3: Continuum emission for Fe XVIII. The left (middle) panel shows the free-free, free-bound, and total emission as a function of temperature
(wavelength) for λ ≈ 7.5Å (T ≈ 107 K). The contours in the rightmost panel show the total emissivity as a function of both temperature and
wavelength on a log scale. The dashed lines indicate the cuts shown in the left and middle panels.

cont_fe18.calculate_free_free_emission(wavelength)
cont_fe18.calculate_free_bound_emission(wavelength)

The Continuum.calculate_free_free_emission()
(Continuum.calculate_free_bound_emission())
method stores the NT by Nλ array (e.g. in the above example,
100 × 100) in the Continuum.free_free_emission
(Continuum.free_bound_emission) attribute. The left
and middle panels of Fig. 3 show the free-free, free-bound,
and total continuum emission as a function of temperature and
wavelength, respectively, and the rightmost panel shows the
total continuum emission as a function of both temperature and
wavelength for the Fe XVIII ion.

The Continuum object also provides methods for calculating
the free-free and free-bound radiative losses (i.e. the wavelength-
integrated emission). These methods are primarily used by the
radiativeLoss module. The Continuum module has re-
cently been completely refactored and validated against the corre-
sponding IDL results.

A contribution from the two-photon continuum can also be
calculated with ChiantiPy though this is included in the ion
object through the method ion.twoPhoton(). The two-photon
continuum calculation is included in the ion object and not
the Continuum object because the level populations are re-
quired when calculating the two-photon emissivity. See Eq. 11
of [YDZL+03].

Ionization Equilibrium

The ionization equilibrium of a particular ion describes what
fraction of the ions of an element are in a particular ionization state
at a given temperature. Specifically, the ionization equilibrium is
determined by the balance of ionization and recombination rates.
For an element X and an ionization state i, assuming ionization
equilibrium, the ionization state Xi = N(X+i)/N(X) is given by,

Ii−1Xi−1 +RiXi+1 = IiXi +Ri−1Xi

where Ii and Ri are the total ionization and recombination rates
for ionization state i, respectively. In CHIANTI, these rates are
assumed to be density-independent and only a function of temper-
ature.

In ChiantiPy, the ionization equilibrium for a particular ele-
ment can be calculated using the ioneq module,
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Fig. 4: Population fractions as a function of temperature for (clock-
wise from upper left) H, Na, Fe, and S calculated using ionization
and recombination data from CHIANTI and assuming ionization
equilibrium.

fe_ioneq = ch.ioneq('Fe')
temperature = np.logspace(3.5,9.5,500)
fe_ioneq.calculate(temperature)

The ioneq.calculate() method sets the Ioneq attribute, an
array with Z +1 columns and NT rows, where NT is the length of
the temperature array. In the example above, fe_ioneq.Ioneq
has 27 rows (i.e. Z = 26 for Fe) and 500 columns. Fig. 4 shows the
ion population fractions for four different elements as a function
of temperature, assuming ionization equilibrium.

The ioneq module also allows the user to load a predefined
set of ionization equilibria via the ioneq.load() method.
Though CHIANTI includes several ionization equilibrium datasets
from other workers, it is recommended to use the most up to date
version supplied by CHIANTI (see [DLY+09] for more details).
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To load the ionization equilibrium data for Fe,
fe_ioneq = ch.ioneq('Fe')
fe_ioneq.load()

This will populate the fe_ioneq.Temperature and
fe_ioneq.Ioneq attributes with data from the appropri-
ate ionization equilibrium file. By default, this will be
ioneq/chianti.ioneq unless otherwise specified in the
chiantirc file or the ioneqName keyword argument.

Spectra

In addition to being able to calculate spectra for single ions,
ChiantiPy also provides a wrapper for calculating composite
spectra for a range of ions, including continuum contributions.
This is handled through the spectrum object. To calculate a
composite spectrum in ChiantiPy,
temperature = np.array([1e+6,4e+6,1e+7])
density = 1e9
wavelength = np.linspace(10,100,1000)
min_abund = 1e-4
spec = ch.spectrum(temperature, density,

wavelength, minAbund=min_abund)

The spectrum as a continuous function of wavelength can then be
accessed in the spec.Spectrum['intensity'] attribute as
a NT ×Nλ array (i.e. 3×1000 in the above example. Most of the
keywords that can be passed to ion.spectrum() can also be
passed to ChiantiPy.spectrum() and the attributes that are
available following the calculation are largely the same. Fig. 5
shows the integrated spectrum as calculated above with several of
the included transitions labeled.

Because of the need to perform calculations and aggregate data
over a large range of ions, running ChiantiPy.spectrum()
can be very time consuming, particularly for large temper-
ature/density ranges. The above code snippet takes approx-
imately five minutes to execute on a modern desktop ma-
chine. To help mitigate this difficulty, ChiantiPy provides a
parallelized version of the ChiantiPy.spectrum module
called ChiantiPy.mspectrum4 which takes advantage of the
multiprocessing package and can help to speed up the cal-
culation, particularly on machines with many cores. The interface
to the parallelized code is largely the same as the serial version.

Radiative Losses

The radiative loss rate is an important quantity for calculating
the energy loss in coronal plasmas, particularly in hydrodynamic
simulations of coronal loops. The total radiative loss rate is given
by,

Λ = Λcontinuum +Λline, [ergcm3 s−1]

where

Λline =∑
X

ΛX = ∑
X ,k

ΛXk = ∑
X ,k,λi j

ΛXk,λi j

= ∑
X ,k,λi j

Ab(X)Xk
hc
λ

Ai jn jn−1
e ,

is the contribution to the radiative losses summed over every
element (X), ion (Xk) and transition (λi j), and Λcontinuum includes
the free-free, free-bound, and two-photon continuum contributions
to the radiative loss.

4. ChiantiPy provides an additional module
ChiantiPy.ipymspectrum to support parallelized spectrum calculations
inside the Jupyter notebook and qtconsole.

In ChiantiPy, the radiative loss rate can be calculated using
the radLoss module for a particular temperature and density
range. To calculate the total radiative loss rate for all ions with an
abundance greater than 10−4,

temperature = np.logspace(4,8,100)
rl = ch.radLoss(temperature, 1e9, minAbund=1e-4)

Instantiating the radLoss object automatically calculates
the radiative loss rate and stores the total loss rate in
rl.RadLoss['rate'], in this case an array of length 100.
If the continuum contributions are included (doContinuum
is True by default), the free-free, free-bound, and two-
photon components are stored in rl.FreeFreeLoss,
rl.FreeBoundLoss, and rl.TwoPhotonLoss, respec-
tively. Ions with low abundances can be excluded with the
minAbund keyword argument which can speed up the calcu-
lation. A custom abundance dataset can also be set with the
abundance keyword. Note that the above calculation takes
approximately 11 minutes on modern hardware. Fig. 6 shows the
total radiative losses using the coronal abundances of [FMS+92]
(solid) and the photospheric abundances of [AGSS09] (dashed).
The coronal abundance case is also broken down into the line
emission, free-free, free-bound, and two-photon continuum com-
ponents.

Documentation, Testing, and Infrastructure

The ChiantiPy project has made an effort to embrace modern
development practices when it comes to developing, documenting
and releasing the ChiantiPy codebase. Like many open source
projects started in the late 2000s, ChiantiPy was originally hosted
on SourceForge, but has now moved its development entirely
to GitHub. The SVN commit history is in the process of being
migrated to GitHub as well. The move to GitHub has provided
increased development transparency, ease of contribution, and
better integration with third-party services.

An integral part of producing quality scientific code, particu-
larly that meant for a large user base, is continually testing said
code as improvements are made and features are added. For each
merge into master as well as each pull request, a series of tests
is run on Travis CI, a continuous integration service that provides
free and automated builds configured through GitHub webhooks.
This allows each contribution to the codebase to be tested to ensure
that these changes do not break the codebase in unexpected ways.
Currently, ChiantiPy is tested on Python 2.7, 3.4, and 3.5, with
full 3.6 support expected soon. Currently, the ChiantiPy package
is installed in each of these environments and minimal set of tests
of each core module is run. The actual module tests are currently
quite sparse though one of the more pressing goals of the project
is to increase test coverage of the core modules.

One of the most important parts of any codebase is the doc-
umentation. The ChiantiPy documentation is built using Sphinx
and is hosted on Read the Docs. At each merge into the master
branch, a new Read the Docs build is kicked off, ensuring that the
ChiantiPy API documentation is never out of date with the most
recent check in. In addition to the standard API documentation, the
ChiantiPy Read the Docs page also provides a tutorial for using
the various modules in ChiantiPy as well as a guide for those
switching from the IDL version.

ChiantiPy has benefited greatly from the astropy-helpers pack-
age template provided by the Astropy collaboration [ART+13].
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Fig. 5: Total spectrum for all ions with an abundance greater than 10−4, including the continuum, integrated over three temperatures,
T = 106,4× 106,107 K and at a constant density of n = 109 cm−3. A few of the transitions included in the spectrum are denoted by their
respective spectroscopic labels and wavelengths.
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case, the minimum abundance for elements to be included in the
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asropy-helpers provides boilerplate code for setting up documen-
tation and testing frameworks which has allowed the package
to adopt modern testing and documentation practices with little
effort.

Conclusion

In this paper, we have described the main capabilities of ChiantiPy,
a package for astrophysical spectroscopy and an interface to the
widely used and highly cited CHIANTI atomic database. Chi-
antiPy provides basic functions for reading the raw data as well as
higher-level abstractions (e.g. the ion class) for exploring the data
and performing common calculations with them. ChiantiPy also

provides modules for calculating continuum emission, synthesiz-
ing spectra, and calculating radiative loss curves. The project has
recently made significant infrastructure improvements by moving
development to GitHub, adding automatic documentation builds,
and implementing a minimal test suite. Future improvements
include the addition of unitful quantities throughout the codebase
(e.g. the Astropy unit system) and increased test coverage.
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