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ACYCLIC SUM-LIST-COLOURING OF GRIDS
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Abstract. In this paper we consider list colouring of a graph G in which the sizes of lists
assigned to different vertices can be different. We colour G from the lists in such a way that
each colour class induces an acyclic graph. The aim is to find the smallest possible sum of all
the list sizes, such that, according to the rules, G is colourable for any particular assignment
of the lists of these sizes. This invariant is called the D1-sum-choice-number of G. In the
paper we investigate the D1-sum-choice-number of graphs with small degrees. Especially, we
give the exact value of the D1-sum-choice-number for each grid Pn�Pm, when at least one of
the numbers n, m is less than five, and for each generalized Petersen graph. Moreover, we
present some results that estimate the D1-sum-choice-number of an arbitrary graph in terms
of the decycling number, other graph invariants and special subgraphs.
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1. MOTIVATION AND PRELIMINARIES

In the realities of the world around us we often meet objects that are in some specific
conflict relationships. It could be a computer network or water supply as well as
telecommunication, distribution and social networks. Sometimes, network objects
benefit from access to resources. Moreover, maintaining the availability of the resource
is burdened by a unit cost. In this case, the aim of the study is to determine the
smallest possible total cost of the availability of resources throughout all objects so
that in any unit of time, by any allocation of resources in accordance with the size of
the access, the network works without any conflict. The description of this problem
by the graph theory notions first appeared in 2002 [7] in connection of studies on
sum-list-colouring of graphs. This concept has generalized two previously well-known
concepts of list and sum colourings of graphs [6, 8]. An overview of the recent state of
research in this area is given in the Ph.D. Thesis of Lastrina [9].
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In the standard investigation of this type (sum-list-colouring) a set of objects
(vertices) is not in a conflict when it induces the edgeless graph. We consider the
situation in which a set of objects (vertices) is not in a conflict when it induces
an acyclic graph (acyclic sum-list-colouring).

To give precise definitions of main graph theory objects used in the paper, and to
state the main results we have to recall or introduce some notions and notations.

Throughout this paper we follow the notations and terminology of [3]. Almost the
entire paper we consider finite and undirected graphs G with vertex set V (G) and edge
set E(G) that are loopless and have no multiple edges. Exceptionally, M(n, f) (see
Construction 5.16) is defined as a finite multigraph. Referring to M(n, f) we always
allow the existence of loops or multiply edges.

For any graph G and S ⊆ V (G) we write G[S] to denote the subgraph of G
induced by S. Using the symbol G − S we mean the graph G[V (G) \ S]. The set
S ⊆ V (G) is stable in a graph G if G[S] is an edgeless graph. The degree of a vertex
v in a graph G, degG(v), is the number of edges incident with v in G. By ∆(G) we
denote max{degG(v) : v ∈ V (G)}. A (u − v)-path (u, v ∈ V (G)) is a path in G,
represented by the sequence of its vertices without repetitions, whose ends are u and
v. The length of a path is the number of vertices in the sequence decreased by one. By
c(G) we denote the number of connected components of G.

Let G1, G2 be graphs. The union G1 ∪G2 of two disjoint graphs G1, G2 is defined
as a graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). We adopt
the convention kG = G ∪ · · · ∪G︸ ︷︷ ︸

k

.

The symbol N stands for the set of positive integers. For n ∈ N we denote by Kn

and Pn a complete graph and a path with n vertices, respectively.
By D1 we mean the class of all acyclic graphs. We use this notation following [2].

A list assignment L of a graph G is a collection {L(v)}v∈V (G) of nonempty subsets of N.
The graph G is (L, D1)-colourable if there exists a mapping (colouring) c : V (G)→ N,
such that c(v) ∈ L(v) for each v ∈ V (G) and for each i ∈ N the graph induced in G by
vertices coloured i belongs to D1. Such a mapping c is called (L, D1)-colouring of G.
Next let f : V (G)→ N be a function which assigns list sizes to the vertices of G (in
many cases f will be called a size function for G). The graph G is (f,D1)-choosable
if for every list assignment L whose sizes are specified by f (|L(v)| = f(v) for all
v ∈ V (G)) the graph G is (L, D1)-colourable.

The D1-sum-choice-number χD1
sc (G) of a graph G is the minimum of the sum

of sizes in f taken over all f such that G is (f,D1)-choosable. Thus

χD1
sc (G) = minf





∑

v∈V (G)

f(v) : G is (f,D1)-choosable



 .

The main results of this paper give the exact values of the D1-sum-choice-numbers
for all grids Pn�Pm, when one of the numbers n,m is less than five (Corollary 4.2(ii)
and Theorems 5.10, 5.21) and estimate χD1

sc (Pn�Pm) for remaining grids (Corollary
6.1). Also, we present some upper and lower bounds on theD1-sum-choice-number of an
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arbitrary graph in terms of the decycling number, other graph invariants and special
subgraphs (Theorems 3.1, 3.3 and Corollary 5.9). As a consequence we conclude the
exact values of the D1-sum-choice-numbers of all graphs G for which ∆(G) ≤ 3,
including all generalized Petersen graphs (Corollaries 4.1, 4.2).

2. ESTIMATION OF χD1
sc (G)

In this short section, we present some properties and estimating results connected
with χD1

sc (G) that were obtained in [4].

Remark 2.1 ([4]). If G1, G2 are graphs and G1 is a subgraph of G2, then

(i) χD1
sc (G1) + |V (G2)| − |V (G1)| ≤ χD1

sc (G2), and
(ii) if f : V (G2)→ N and G2 is (f,D1)-choosable, then G1 is (f |V (G1), D1)-choosable.

Theorem 2.2 ([4]). For every graph G it holds

χD1
sc (G) ≤ |E(G)|+ c(G).

Theorem 2.3 ([4]). Let G be a graph and B1, . . . , Bt be disjoint subsets of V (G).
If for each cycle C of G there exists i ∈ {1, . . . , t} such that C has at least two vertices
in Bi, then

χD1
sc (G) ≤

t∑

i=1

(|Bi|+ 1
2

)
+ |V (G)| −

t∑

i=1
|Bi|.

Next bounds on χD1
sc (G) depend on some specific degrees of vertices of G.

Definition 2.4. A β-degree of a vertex v in a graph G, denoted by degβG(v), is the
maximum number of cycles of a graph G, each of which contains the vertex v and
such that v is the unique common vertex for any two of them.

In [4] the following theorem was shown.

Theorem 2.5 ([4]). Let v1, . . . , v|V (G)| be an ordering of vertices of a graph G and let
Gi = G[{v1, . . . , vi}]. If f : V (G)→ N is a mapping such that f(vi) = degβGi

(vi) + 1,
then G is (f,D1)-choosable and consequently

χD1
sc (G) ≤

|V (G)|∑

i=1
degβGi

(vi) + |V (G)|.

Note also the lower bound on the D1-sum-choice number of a graph.

Theorem 2.6 ([4]). If G is a graph and v ∈ V (G), then

degβG(v) + |V (G)| ≤ χD1
sc (G).
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3. EXPRESSION OF χD1
sc (G) BY THE DECYCLING NUMBER OF G

A set S of vertices of a graph G for which G − S contains no cycles is a decycling
set of G. The minimum cardinality of a decycling set of G is called the decycling
number of G (or the feedback of G) and it is denoted by ∇(G).

Theorem 3.1. If S is a decycling set of a graph G of the cardinality ∇(G), then

χD1
sc (G) ≤

∑

v∈S

⌊
degG(v)

2

⌋
+ |V (G)| ≤ 1

2∇(G)∆(G) + |V (G)|.

Proof. Let v1, . . . , v|V (G)| be an ordering of vertices of G, that starts with the vertices
of the set V (G) \ S and next labels other vertices. Let Gi = G[{v1, . . . , vi}]. Observe
that degβGi

(vi) = 0 for i ∈ {1, . . . , |V (G) \ S|}. Moreover, for i ∈ {|V (G) \ S| + 1,
. . . , |V (G)|}

degβGi
(vi) ≤

⌊
degGi

(vi)
2

⌋
≤
⌊
degG(v)

2

⌋
≤ 1

2∆(G).

It implies the assertion by Theorem 2.5.

Lemma 3.2. Let G be a graph and f : V (G) → N. If G is (f,D1)-choosable, then
{v ∈ V (G) : f(v) ≥ 2} is a decycling set of G.

Proof. Let S = {v ∈ V (G) : f(v) ≥ 2}. For a contradiction, suppose that S is not
a decycling set, which means G− S is not an acyclic graph. So, there is at least one
cycle in G−S whose vertices all have list sizes equal to one. Suppose that V1 is a vertex
set of one among such cycles and a is a fixed element in N. Consider a list assignment
L = {L(v)}v∈V (G) such that L(v) = {a} for v ∈ V1 and L(v) = {1, . . . , f(v)} for other
vertices. Observe that G is not (L, D1)-colourable. Hence G is not (f,D1)-choosable,
a contradiction.

Using just shown Lemma 3.2 we obtain the next fact.

Theorem 3.3. For every graph G it holds

∇(G) + |V (G)| ≤ χD1
sc (G).

Proof. Let f : V (G) → N be any mapping such that G is (f,D1)-choosable and∑
v∈V (G) f(v) = χD1

sc (G). Next let S = {v ∈ V (G) : f(v) ≥ 2}. By Lemma 3.2,
we obtain |S| ≥ ∇(G). Since

∑

v∈V (G)

f(v) =
∑

v∈S
f(v) +

∑

v∈V (G)\S
f(v)

and f(v) ≥ 1 for each v ∈ V (G), we have
∑

v∈V (G)

f(v) ≥ ∇(G) + |V (G)|.
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From the definition of the D1-sum-choice-number of a graph we have
χD1
sc (G1 ∪G2) = χD1

sc (G1) + χD1
sc (G2). Using the general lower bound on ∇(G) ([1]) of

any connected graph G with at least three vertices we can note one more observation.

Corollary 3.4. If every connected component of an n-vertex graph G has at last three
vertices, then

|E(G)|+ |V (G)|(∆(G)− 2) + c(G)
∆(G)− 1 ≤ χD1

sc (G).

Proof. From Theorem 3.3, χD1
sc (G) ≥ ∇(G) + |V (G)|. By [1] we know that

∇(H) ≥ |E(H)| − |V (H)|+ 1
∆(H)− 1

for any connected graph H of order at least three. Hence, assuming that G1, . . . , Gs are
connected components ofG, with s = c(G), and taking into account that ∆(G) ≥ ∆(Gi)
for i ∈ {1, . . . , s}, we have

χD1
sc (G) ≥ ∇(G) + n

≥ |E(G1)| − |V (G1)|+ 1
∆(G1)− 1 + . . .+ |E(Gs)| − |V (Gs)|+ 1

∆(Gs)− 1 + |V (G)|

≥ |E(G)|+ |V (G)|(∆(G)− 2) + c(G)
∆(G)− 1 .

4. GRAPHS WITH SMALL DEGREES

A graph G is called subcubic if ∆(G) ≤ 3.

Corollary 4.1. If G is a subcubic graph, then χD1
sc (G) = ∇(G) + |V (G)|.

Proof. By Theorem 3.1, we know that

χD1
sc (G) ≤

∑

v∈S

⌊
degG(v)

2

⌋
+ |V (G)|,

when S is a decycling set of the cardinality ∇(G). The required upper bound on
χD1
sc (G) follows from this inequality and the fact that for each v ∈ V (G) we have
degG(v) ≤ 3. The corresponding lower bound is implied by Theorem 3.3.

A generalized Petersen graph Pn,k is a 3-regular graph on 2n vertices with

V (Pn,k) = {ai, bi : 0 ≤ i ≤ n− 1}

and

E(Pn,k) = {aibi, aiai+1( mod n) : 0 ≤ i ≤ n− 1} ∪ {bibi+k( mod n) : 0 ≤ i ≤ n− 1}.
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Observe that P5,2 is the well-known Petersen graph, which in what follows will be
denoted by P .

Let G1 and G2 be graphs such that V (G1) = {x1, . . . , xn} and V (G2) =
{y1, . . . , ym}. The Cartesian product of G1 and G2 is a graph G1�G2, whose vertex
set is V (G1)× V (G2) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and vertices vi,j and vl,k are
adjacent in G1�G2 if either xi = xl and yjyk ∈ E(G2) or yj = yk and xixl ∈ E(G1).

By Q3 we mean the 3-cube, which is the graph (P2�P2)�P2. It is very easy to see
that ∇(Q3) = 3.

The next result is an immediate consequence of the equality ∇(Pn�P2) = bn2 c
that was shown in [1], the equality

∇(Pn,k) =
{
dn+1

2 e, if n 6= 2k
dk+1

2 e, if n = 2k
,

that was shown in [5] and Corollary 4.1.

Corollary 4.2. If n ∈ N, then

(i) χD1
sc (Q3) = 11, and

(ii) χD1
sc (Pn�P2) = 2n+ bn2 c, and

(iii) χD1
sc (Pn,k) =

{
dn+1

2 e+ 2n, if n 6= 2k
dk+1

2 e+ 2n, if n = 2k
. Especially χD1

sc (P ) = 13.

Note that the Petersen graph achieves the lower bound on χD1
sc (P ), given in

Corollary 3.4. It is so because

χD1
sc (P ) = |E(P )|+ |V (P )|(∆(P )− 2) + 1

∆(P )− 1 = 15 + 10(3− 2) + 1
2 = 13.

Corollary 4.2 concerns subcubic graphs. Theorems 3.1, 3.3 imply a simple but general
statement on graphs G with ∆(G) ≤ 4.

Corollary 4.3. If G is a graph such that ∆(G) ≤ 4, then

∇(G) + |V (G)| ≤ χD1
sc (G) ≤ 2∇(G) + |V (G)|.

5. GRIDS

Note that Corollary 4.3 estimates χD1
sc (Pn�Pm) with the usage of the decycling number

∇(Pn�Pm). Unfortunately, this parameter is unknown for almost all pairs n,m. On
the other hand, applying Theorem 3.3 and knowing the inequality

∇(Pn�Pm) ≥
⌈
mn−m− n+ 2

3

⌉
,

that for n,m ≥ 2 was proven in [10], we have the following conclusion.
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Corollary 5.1. If n,m ∈ N and n,m ≥ 2, then

mn+
⌈
mn−m− n+ 2

3

⌉
≤ χD1

sc (Pn�Pm).

Since each path is an acyclic graph, we have χD1
sc (Pn�P1) = n. Next χD1

sc (Pn�P2)
is known by Corollary 4.2(ii). Thus the assumption n,m ≥ 3 is natural, and it does
not limit of the generality of considerations. Now we apply Theorem 2.5 to obtain the
upper bound on χD1

sc (Pn�Pm).

Lemma 5.2. If n,m ∈ N, then

χD1
sc (Pn�Pm) ≤ 3

2mn−
m+ n

2 + 1.

Moreover, if at least one of the numbers m,n is odd, then

χD1
sc (Pn�Pm) ≤ 3

2mn−
m+ n

2 + 1
2 .

Proof. The discussion before the lemma confirms the assertion in the case when n ≤ 2
or m ≤ 2. Suppose that n,m ≥ 3. Without loss of generality we can assume that either
n is odd or both n and m are even. Let V (Pn�Pm) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Now we put S′ = {v2l,j : 1 ≤ l ≤ bn−1

2 c, 2 ≤ j ≤ m} and S′′ = {vn,2l : 1 ≤ l ≤ bm2 c}.
Let S = S′ if n is odd and S = S′ ∪ S′′ otherwise (see Figures 1, 2). Observe that S is
a decycling set of Pn�Pm.

Let x1, . . . , xnm be the new ordering of vertices of Pn�Pm starting with the vertices
in V (Pn�Pm) \ S, next labelling the vertices in the set S′: first the vertices in the set
{v2l,2 : 1 ≤ l ≤ bn−1

2 c}, next the vertices in {v2l,3 : 1 ≤ l ≤ bn−1
2 c} and so on, until

{v2l,m : 1 ≤ l ≤ bn−1
2 c}. If n is odd, then, at this moment, all the vertices have labels,

otherwise we label, in the next step, the vertices in the set S′′. Let f be a size function
for Pn�Pm such that f(xi) = degβGi

(xi) + 1, where Gi = Pn�Pm[{x1, . . . , xi}]. By
Theorem 2.5 we know that Pn�Pm is (f,D1)-choosable. Observe that f(vi) = 2 for
vertices in the decycling set S and f(vi) = 1 for other vertices. Hence for n odd we
obtain

nm∑

i=1
f(xi) = mn+ n− 1

2 (m− 1) = 3
2mn−

m+ n

2 + 1
2 .

For n and m even we obtain

nm∑

i=1
f(xi) = mn+ n− 2

2 (m− 1) + m

2 = 3
2mn−

m+ n

2 + 1.
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Fig. 1. The decycling set S = S′ of P7�P6 used in the proof of Lemma 5.2
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Fig. 2. The decycling set S = S′ ∪ S′′ of P6�P6 used in the proof of Lemma 5.2

In the case n,m ≥ 3, Corollary 5.1 and Lemma 5.2 give a relatively narrow interval
of possible values of χD1

sc (Pn�Pm), but still disappointing for large n,m. This fact
provokes the formulation of the following problem.

Problem 5.3. What are the exact values of χD1
sc (Pn�Pm) for all n,m ∈ N?

In the next part of this section we solve this problem when one of the numbers
n,m is less than five.
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As usually, by an identification of two nonadjacent vertices v1 with v2 in a graph G
(into a vertex w) we mean the result of the following operations on G: the removal of
vertices v1, v2, the addition of a new vertex w and the addition of the edges vw for all
v ∈ NG(v1) ∪NG(v2).

Definition 5.4. Let C(1) denote a class of all cycles and let for each s ≥ 2 the symbol
C(s) stand for a class of all graphs that are obtained from two disjoint graphs G1, G2,
such that G1 ∈ C(s− 1) and G2 ∈ C(1), by the identification of an arbitrary vertex of
G1 with an arbitrary vertex of G2 in a graph G1 ∪G2 (see Figure 3).
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Fig. 3. An example of a graph in C(19)

Observe that given a graph G in C(s) and the procedure its recursive construction
we know s disjoint cycles, say C1, . . . , Cs such that G is a result of (s − 1)-times
repeated application of Definition 5.4 in the following way. First we take C1 and, for
j ∈ {2, . . . , s}, in the jth step we identify one of the vertices of a graph G1 ∈ C(j − 1)
constructed from C1, . . . , Cj−1 with a vertex of Cj in a graph G1 ∪Cj . To emphasize
this knowledge, sometimes we write G = G(C1, . . . , Cs). On the other hand if G =
G(C1, . . . , Cs) ∈ C(s) and s ≥ 2, then there is at least one reordering (i1, . . . , is) of
the ordering (1, . . . , s) such that G can be represented as G(Ci1 , . . . , Cis).

If G = G(C1, . . . , Cs), then, for simplicity, we say that v ∈ V (G) is a vertex of the
cycle Ci when actually v is a vertex of Ci or v is a result of the identification of some
vertex of Ci with another vertex.

A cut-vertex of a graph is a vertex whose removal increases the number of connected
components.
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Lemma 5.5. If s ∈ N and G = G(C1, . . . , Cs) is a graph in C(s), then the only cycles
of G are C1, . . . , Cs and

∑

v∈V (G)

degβG(v) = |V (G)|+ s− 1.

Proof. Clearly, each vertex of G that is a result of one among identifications implied
by the recursive usage of Definition 5.4 is a cut-vertex. Hence, the only cycles of G are
C1, . . . , Cs.

Now we focus on the equality of the statement. Trivially it holds for s = 1 and
suppose that it also holds for parameters less than s, s ≥ 2. Using Definition 5.4 for
G ∈ C(s) we know graphs G1 ∈ C(s − 1) and G2 ∈ C(1) such that G is obtained
by the identification of one vertex, say v1, of G1 with a vertex of G2, say v2, into
the vertex w.

Thus

degβG(v) =





degβG1
(v), v ∈ V (G1) \ {v1},

degβG1
(v1) + 1, v = w,

1, v ∈ V (G2) \ {v2}.
Hence

∑

v∈V (G)

degβG(v) = degβG1
(v1) + 1 +

∑

v∈V (G1)\{v1}
degβG1

(v) +
∑

v∈V (G2)\{v2}
1

=
∑

v∈V (G1)

degβG1
(v) + |V (G2)|.

By induction hypothesis applied to G1 and since |V (G)| = |V (G1)| + |V (G2)| − 1,
we have

∑

v∈V (G)

degβG(v) = |V (G1)|+ s− 2 + |V (G2)| = |V (G)|+ s− 1.

Lemma 5.6. If s ∈ N and G is a graph in C(s), then |V (G)|+ s ≤ χD1
sc (G).

Proof. We proceed by induction on s. Trivially, the assertion holds for s = 1. Suppose
that the statement is true for all parameters less than s with s ≥ 2, and there is
a graph G ∈ C(s) such that χD1

sc (G) ≤ |V (G)|+ s− 1.
Let f be a size function for G that realizes χD1

sc (G), so G is (f,D1)-choosable and

χD1
sc (G) =

∑

v∈V (G)

f(v) ≤ |V (G)|+ s− 1.

Definition 5.4 implies that there exist two disjoint graphs G1 ∈ C(s−1) and G2 ∈ C(1)
with vertices v1 ∈ V (G1), v2 ∈ V (G2), respectively, such that G can be obtained
from G1, G2 by the identification of v1 with v2 in G1 ∪G2. Thus |V (G)| = |V (G1)|+
|V (G2)| − 1 and next

χD1
sc (G) =

∑

v∈V (G)

f(v) ≤ |V (G1)|+ |V (G2)| − 1 + s− 1.
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Since χD1
sc (G1) ≥ |V (G1)| + s − 1, by the induction hypothesis and because G1 is

(f |V (G1), D1)-choosable by Remark 2.1(ii), it follows
∑

v∈V (G)\V (G1)

f(v) ≤ |V (G2)| − 1.

Next, because |V (G) \ V (G1)| = |V (G2)| − 1 and since f(v) ≥ 1 for each v ∈ V (G)
we have ∑

v∈V (G)\V (G1)

f(v) ≥ |V (G2)| − 1.

It gives that f(v) = 1 for each v ∈ V (G) \ V (G1) and
∑

v∈V (G1)
f(v) = |V (G1)|+ s− 1.

Let w be a common vertex of G1 and G2 in G (obtained by the identification
of v1 with v2). Let f ′ be the size function for G1 defined by f ′(v) = f(v) for each
v ∈ V (G1) \ {v1} and f ′(v1) = f(w)− 1. Because

∑

v∈V (G1)

f ′(v) ≤ |V (G1)|+ s− 2

G1 is not (f ′, D1)-choosable, by the induction hypothesis. Consequently, there exists
a list assignment L′ = {L′(v)}v∈V (G1) that satisfies |L′(v)| = f ′(v) for each v ∈
V (G1) such that G1 is not (L′, D1)-colourable. Let a /∈ L′(v1). Obviously G is not
(L, D1)-colourable for L = {L(v)}v∈V (G) such that L(v) = L′(v) for v ∈ V (G1) \ {v1},
L(v) = {a} for v ∈ V (G) \ ((V (G1) \ {v1}) ∪ {w})) and L(w) = L′(v1) ∪ {a}. Note
that |L(v)| = f(v) for each v ∈ V (G), which implies that, contrary to our assumptions,
G is not (f,D1)-choosable. Hence χD1

sc (G) ≥ |V (G)|+ s.

Lemma 5.7. If s ∈ N and G is a graph in C(s), then χD1
sc (G) ≤ |V (G)|+ s.

Proof. Since G ∈ C(s) we know the disjoint cycles C1, . . . , Cs such that G =
G(C1, . . . , Cs) (see discussion after Definition 5.4). We label vertices of G, say
v1, . . . , v|V (G)|, starting with the vertices of C1 (in an arbitrary order). Next, for
j ∈ {2, . . . , s}, in the jth step we consequently label vertices of Cj (in an arbitrary
order) with the exception of one vertex which was labelled previously.

Let |V (Cj)| = nj . Observe that if Gi = G[{v1, . . . , vi}], then

degβGi
(vi) =

{
1, if i ∈ {n1 + . . .+ nj − j + 1 : 1 ≤ j ≤ s},
0, otherwise.

Since exactly s vertices have the β-degrees equal to one and remaining vertices have
the β-degrees equal to zero, by Theorem 2.5, it holds χD1

sc (G) ≤ |V (G)|+ s.

As a consequence of Lemmas 5.6 and 5.7 we have the next result.

Theorem 5.8. If s ∈ N and G is a graph in C(s), then χD1
sc (G) = |V (G)|+ s.

Remark 2.1(i) and Theorem 5.8 yield the following fact.
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Corollary 5.9. Let s ∈ N. If G is a graph that contains a subgraph in C(s), then

|V (G)|+ s ≤ χD1
sc (G).

Consider a graph G1 ∈ C(s), which is obtained by s− 1 successive identifications
of vertices into one vertex. The existence of such a specific subgraph G1 in a graph G
is equivalent to the existence of a vertex v ∈ V (G) such that degβG(v) ≥ s. It means
that Corollary 5.9 generalizes Theorem 2.6. Another consequence of Corollary 5.9 is
given in the next theorem.
Theorem 5.10. If n ∈ N, then χD1

sc (Pn�P3) = 4n− 1.
Proof. By Lemma 5.2 we know that

χD1
sc (Pn�P3) ≤ 3

23n− n+ 3
2 + 1

2 = 4n− 1.

Thus we focus on the opposite inequality. The discussion after Corollary 5.1 says
that we can assume n ≥ 3. Let V (Pn�P3) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}. Consider
a subgraph G of Pn�P3 obtained by:
– the removal of two vertices v1,3 and either vn,1 (when n is odd) or vn,3 (when n is

even), and next
– if n ≥ 4, then, the removal




for all j ∈ {1, . . . , n−3
2 } all the edges v2j,1v2j+1,1 and v2j+1,3v2j+2,3, if n is odd,

for all j ∈ {1, . . . , n−2
2 } all the edges v2j,1v2j+1,1 and

for all j ∈ {1, . . . , n−4
2 } all the edges v2j+1,3v2j+2,3, if n is even.

It is easy to see that G ∈ C(n − 1) (see Figure 4). Thus by Corollary 5.9 we have
χD1
sc (Pn�P3) ≥ 3n+ n− 1 = 4n− 1.
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Fig. 4. The subgraph of V (P8�P3) that is in C(7)

Assuming that s ∈ N and G ∈ C(s), by Theorem 5.8, we know that the graph G is
not (f,D1)-choosable for each size function f : V (G)→ N, such that

∑

v∈V (G)

f(v) ≤ |V (G)|+ s− 1.

In the next theorem we construct a specific list assignment L = {L(v)}v∈V (G) satisfying
that G is not (L, D1)-colourable and

∑
v∈V (G) |L(v)| = |V (G)|+ s− 1. The knowledge

on this L shall help us in the solution of other problems.
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Theorem 5.11. Let s ∈ N, and G = G(C1, . . . , Cs) be a graph in C(s). Next let
g : {C1, . . . , Cs} → N be a mapping such that g(Ci) 6= g(Cj) when Ci, Cj have
common vertex in G. If L = {L(v)}v∈V (G) is a list assignment for G such that

L(v) = {g(Ci) : v is a vertex of the cycle Ci},
then G is not (L, D1)-colourable. Moreover,

∑
v∈V (G) |L(v)| = |V (G)|+ s− 1.

Proof. We start with proving the last assertion of the theorem. By Lemma 5.5, the
only cycles of G are C1, . . . , Cs. The assumptions on g imply that for each vertex
v ∈ V (G), it holds |L(v)| = degβG(v). Using Lemma 5.5 once again we have

∑

v∈V (G)

|L(v)| =
∑

v∈V (G)

degβG(v) = |V (G)|+ s− 1.

Now we focus on proving the (L, D1)-non-colourability of G. To do it we proceed
by induction on s. Let s = 1. It means G = C1 and L(v) = {g(C1)} for each vertex
v ∈ V (G). Consequently, G is not (L, D1)-colourable and the assertion holds. Thus
s ≥ 2. Let {Ci1 , . . . , Cir} be a subset of {C1, . . . , Cs} consisting of all the cycles whose
all, except one, vertices have β-degrees in G equal to one. Next for each j ∈ {1, . . . , r}
let vij be this exceptional vertex of Cij . Observe that s ≥ 2 guarantees r > 0. Realize
that vip can be the same as viq for p 6= q. Now, let V1 be the set of all vertices of
the cycles Ci1 , . . . , Cir , except vertices vi1 , . . . , vir (because of possible repetitions,
|{vi1 , . . . , vir}| ≤ r). Consider a graph H = G− V1. If r = s, then H = K1 and G is
a graph obtained from s disjoint cycles C1, . . . , Cs by s− 1 successive identifications
of vertices vi1 , . . . , vis into one vertex. If r < s, then H ∈ C(s− r) and moreover, H
can be recursively constructed from the cycles in the set {C1, . . . , Cs}\{Ci1 , . . . , Cir}.
Observe that H and g′ = g|{C1,...,Cs}\{Ci1 ,...,Cir} and L′ = {L′(v)}v∈V (H) such that

L′(v) = {g′(Ci) : v is a vertex of a cycle Ci}
satisfy the assumptions of the theorem, but H ∈ C(r − s). Hence H is not
(L′, D1)-colourable by the induction hypothesis.

Now suppose, for a contradiction, that G is (L, D1)-colourable and c : V (G)→ N
is an (L, D1)-colouring of G. For each v ∈ V1 we have L(v) = {g(Cij )}, where
v is a vertex of Cij . Thus c(vij ) must be different from g(Cij ). Suppose r = s.
Hence vi1 = · · · = vir = x and L(x) = {g(C1), . . . , g(Cr)}, which means c(x) ∈
{g(C1), . . . , g(Cr)} contrary to c(vij ) 6= g(Cij ) for each j ∈ {1, . . . , r}. Thus r < s. In
this case c|V (H) has to be an (L′, D1)-colouring of H. From the earlier consideration,
H is not (L′, D1)-colourable, which implies that the required c|V (H) does not exist.
It completes the proof.

Now we have to define some objects that will help us in proving the main result
of the paper.
Definition 5.12. Let n ≥ 3 and V (Pn�P4) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}. By A(n)
we mean a family of cycles in Pn�P4, each of which has length four, such that

A(n) = {C1,1, . . . , C1,bn
2 c, C2,1, . . . , C2,bn−1

2 c, C3,1, . . . , C3,bn
2 c},
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where for all permissible k we put C1,k = (v2k−1,2, v2k,2, v2k,1, v2k−1,1), C3,k =
(v2k−1,4, v2k,4, v2k,3, v2k−1,3), and C2,k = (v2k,3, v2k+1,3, v2k+1,2, v2k,2).

Definition 5.13. Let n ≥ 3 and V (Pn�P4) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}. By H(n)
we denote a graph whose vertex set is A(n) (see Definition 5.12), in which two vertices
(cycles) C ′, C ′′ ∈ A(n) are adjacent when they have common vertex in Pn�P4.

It is worth noting here that H(n) has |A(n)| vertices, which is equal to 3n−3
2 when

n is odd and 3n−2
2 when n is even. The forms of both A(n) and H(n) are illustrated

in Figure 5.
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Fig. 5. The illustration of the family A(8) in P8�P4 and the graph H(8)

Lemma 5.14. Let n ≥ 3 and let T be a subgraph of the graph H(n) (see Defini-
tion 5.13) that is a tree. Next let T ∗ be a graph induced in H(n) by V (T ). There is
g : V (T ∗)→ N such that g(C ′) 6= g(C ′′) when C ′C ′′ ∈ E(T ) and g(C ′) = g(C ′′) when
C ′C ′′ ∈ E(T ∗) \ E(T ).

Proof. For simplicity, H = H(n) and E1 = E(T ) and E2 = E(T ∗) \ E(T ). Now we
define the relation ρ on V (T ∗) (recall that V (T ∗) = V (T )) in the following way:
(x, y) ∈ ρ if there exists an (x− y)-path in T ∗ whose all the edges are in E2.

Observe that ρ is the equivalence relation on V (T ∗). We know that each equivalence
relation provides a partition of a set on which it is described into equivalence classes.
Thus we have the corresponding partition of V (T ∗), say V1, . . . , Vk.

Claim 5.15. For each i ∈ {1, . . . , k}, the set Vi is stable in T .

Proof. Suppose, without restriction of generality and for a contradiction, that
V1 includes two vertices C ′, C ′′ that are adjacent in T . It follows that there is
a (C ′ − C ′′)-path P ∗ in T ∗ whose all the edges are in E2. Since T ∗ is a bipartite
graph (as an induced subgraph of a bipartite graph H) the length of P ∗ is odd. First
assume that the length of P ∗ is at least three and without loss of generality its form
is (C ′, w1, . . . , wp, C

′′). It means that at least two vertices w1, w2 are different and
different from both C ′, C ′′. It follows that for i ∈ {1, 2} the vertex wi has at least two
neighbours in T ∗ joined with wi by edges from E2. Moreover, wi, as a vertex of T , has
at least one neighbour in T . Hence the degree of wi in T ∗, and consequently in H, is at
least three. Note that w1, w2 are consecutive vertices of the path in T ∗, which implies
that w1, w2 are neighbours in T ∗ and consequently they are neighbours in H. Thus
w1, w2 are adjacent vertices of H, both with degree at least three, a contradiction
with the construction of H (see Figure 5). It follows that the length of P ∗ is one. In
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this case C ′, C ′′ are joined by two edges, one from E1 and the second one from E2,
a contradiction with the construction of T ∗, which is not a multigraph.

By Claim 5.15 we found a partition of V (T ) into sets V1, . . . , Vk (the equivalence
classes of ρ) so that for each i ∈ {1, . . . , k} the set Vi is stable in T .

For C ∈ V (T ), let g(C) = i, where i is the unique index such that C ∈ Vi.
Claim 5.15 implies that g(C ′) 6= g(C ′′) for any two adjacent vertices C ′, C ′′ of T and
moreover, by the definition of ρ, it holds g(C ′) = g(C ′′) for any two vertices C ′, C ′′
satisfying C ′C ′′ ∈ E(T ∗) \ E(T ).

Construction 5.16. Let n ≥ 3 and V (Pn�P4) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}. Next
let A(n) be the family of cycles in Pn�P4 given by Definition 5.12.

Let V ′ be the set of vertices of a graph G induced by all the edges of all the cycles
in A(n) and let f : V ′ → N.

By M(n, f) we mean a multigraph with vertex set A(n) whose edges are implied
by values of f(v) taken over all v ∈ V ′. Precisely, if v is a vertex of exactly one among
the cycles in A(n), say C, then it implies the creation of f(v) − 1 loops in M(n, f)
containing the vertex C. If v is a common vertex of two among the cycles in A(n),
say C ′, C ′′, then it implies the creation of f(v)− 1 edges joining C ′, C ′′ in M(n, f).
The set of edges E(M(n, f)) is the union of pairwise disjoint sets of edges implied by
all v ∈ V ′ (see Figure 6).
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Fig. 6. The graph P7�P4 with the values of f(v) given for all v ∈ V ′ and represented right
at the vertices, and the multigraph M(7, f)

It is worth noting some properties of the graph H(n) and the multigraph M(n, f).

Remark 5.17. Let n ≥ 3 and V (Pn�P4) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}. Next let
f : V ′ → N, where V ′ is the set defined in Construction 5.16.

(i) V ′ = V (Pn�P4) \ {vn,1, vn,4} when n is odd and V ′ = V (G) when n is even.
(ii) Each vertex v ∈ V ′ is included either in exactly one or in exactly two of the cycles

in A(n) (there is no common vertex of more than two cycles).
(iii) The loops consisting of the vertex C ∈ A(n) in M(n, f) can be implied by one,

two or even three vertices in V ′. All the edges joining two different vertices (cycles)
C ′, C ′′ ∈ A(n) in M(n, f) are implied by only one vertex in V ′.
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(iv) The number of edges in M(n, f) (including loops) is equal to
∑
v∈V ′(f(v)− 1).

(v) If a component of the multigraph M(n, f) is a graph, then it is a subgraph
of H(n).

The statement v) of Remark 5.17 is only one, which should be explained. Indeed
V (M(n, f)) = V (H(n)). If G∗ is a subgraph ofM(n, f) and e = C ′C ′′ is an edge of G∗,
then there exists a common vertex v of C ′, C ′′ in Pn�P4, which was the reason of the
creation of e in M(n, f), so v implies the existence of an edge in H(n). It confirms
that G∗ is a subgraph of H(n).

Lemma 5.18. Let G be a graph and L′ = {L′(v)}v∈V (G) be a list assignment
for G. Next, let a ∈ N and v1, v2 be two nonadjacent vertices of G for which
L′(v1) = L′(v2) = {a}. Let H be a graph obtained from G by the identification of
v1 with v2 into w and L = {L(v)}v∈V (H) be the list assignment for H defined by
L(v) = L′(v) for v ∈ V (H) \ {w} and L(w) = {a}. If H is (L, D1)-colourable, then
G is (L′, D1)-colourable or equivalently if G is not (L′, D1)-colourable, then H is not
(L, D1)-colourable.

Proof. We give the proof of the first among two equivalent statements. Let
c : V (H)→ N be an (L, D1)-colouring of H. Define c′ : V (G) → N in the following
way: c′(v) = c(v) for v ∈ V (G) \ {v1, v2} and c′(v1) = c′(v2) = a. To finish the proof
we shall show that c′ is an (L′, D1)-colouring of G. Suppose, for a contradiction, that it
does not occur. Obviously, for each v ∈ V (G) we have c′(v) ∈ L′(v). It means there is
a cycle in G, say (x1, x2, . . . , xp) and b ∈ N, such that c′(xi) = b for each i ∈ {1, . . . , p}.
If |{v1, v2} ∩ {x1, . . . , xp}| = 0, then (x1, x2, . . . , xp) is a monochromatic cycle of H
in c, a contradiction. If |{v1, v2} ∩ {x1, . . . , xp}| = 1, then, without loss of generality
xp = v1 and (x1, x2, . . . , xp−1, w) is a monochromatic cycle of H in c, a contradiction.
If |{v1, v2} ∩ {x1, . . . , xp}| = 2, then without loss of generality, assume that x1 = v1
and xs = v2 (s ≤ p), and consequently (x1 = w, x2, . . . , xs = w) is a monochromatic
cycle of H in c. It also gives a contradiction in this case.

The presentation of the proof of the next crucial lemma seems to be very difficult.
Therefore, for the convenience of readers, Figures 7, 8, 9 illustrate the consecutive
steps of the proof.

Lemma 5.19. Let n ≥ 3. If f : V (Pn�P4)→ N is a mapping such that M(n, f) has
a connected component that is a tree, then Pn�P4 is not (f,D1)-choosable.

Proof. Let T be a fixed connected component of M(n, f) that is a tree (see Figure 7).
If |V (T )| = 1, then, by the definition of M(n, f), there is a cycle (v1, v2, v3, v4) in
A(n) such that f(v1) = · · · = f(v4) = 1. Clearly, Pn�P4 is not (L, D1)-colourable,
when L = {L(v)}v∈V (Pn�P4) and L(v1) = · · · = L(v4) = {a} for some a ∈ N. Thus
Pn�P4 is not (f,D1)-choosable in this case. Next let V (T ) = {C1, . . . , Cp}, where
p ≥ 2 and the labels in V (T ) are given in such a way that for i ∈ {2, . . . , p}, the
graph induced by C1, . . . , Ci is a tree and the cycle Ci is a leaf of this induced
subtree of T (it is very easy to see that for each tree at least one such an ordering
always exists, see Figure 8a)). Now, for simplicity, let G = Pn�P4 and let G′ be the
graph induced by all the edges of all the cycles in V (T ). By V ′ we denote V (G′).
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Fig. 7. The graph P11�P4 and the mapping f : V (P11�P4)→ N for which the multigraph
M(11, f) contains a connected component that is a tree
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mapping g that was constructed in Lemma 5.14
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First we shall show that G′ is not (f |V ′ , D1)-choosable. It will imply, by Remark 2.1(ii),
the statement of the theorem.

Because T is a tree, which is a connected component of M(n, f), for each vertex
v ∈ V ′ we have f(v) ≤ 2. We divide the set V ′ into W1,W2,W3 such that:

W1 = {v ∈ V ′ : v is a vertex of exactly two among cycles in V (T ) and f(v) = 2},
W2 = {v ∈ V ′ : v is a vertex of exactly two among cycles in V (T ) and f(v) = 1},
W3 = V1 \ (W1 ∪W2).

The fact that there is no loops in T implies that

W3 = {v ∈ V ′ : v is a vertex of exactly one among cycles in V (T ) and f(v) = 1}.

Since in each tree the number of edges is one less than the number of vertices
and because each edge of T corresponds to some vertex in W1 we have |W1| = p− 1.
Next, for i ∈ {2, . . . , p}, by xi we denote the vertex in W1 that corresponds to the
edge, which joins in T the vertex Ci with one of the vertices C1, . . . , Ci−1 (recall
that Ci is a leaf of the subtree of T induced by C1, . . . , Ci, which means that xi is
precisely given). Thus W1 = {x2, . . . , xp} (see Figure 8b)). Now we use Remark 5.17
(v) to see that T is a subgraph of H(n). According to Lemma 5.14 we find a mapping
g : V (T ∗)→ N such that g(C ′) 6= g(C ′′) when C ′C ′′ ∈ E(T ) and g(C ′) = g(C ′′) when
C ′C ′′ ∈ E(T ∗) \ E(T ), where, as before (in Lemma 5.14), T ∗ is a graph induced by
V (T ) in H(n) (see Figure 8c)).

We define the list assignment L = {L(v)}v∈V ′ in the following way:

L(v) = {g(Ci) : v is a vertex of Ci} (see Figure 8d)).

Our next aim is to observe that |L(v)| = f(v) for each v ∈ V ′. Indeed, if v ∈W1 ∪W2,
then v is a vertex of exactly two cycles in V (T ), say C ′, C ′′. So, L(v) = {g(C ′), g(C ′′)}.
Thus, in this case, |L(v)| = 2 when g(C ′) 6= g(C ′′) and |L(v)| = 1 when g(C ′) = g(C ′′).
Actually, because v is a vertex of both C ′, C ′′, there is f(v)− 1 edges that joins C ′,
C ′′ in M(n, f) and next in T . Consequently, f(v) = 2 guarantees that C ′C ′′ is an edge
in T (g(C ′) 6= g(C ′′)) and f(v) = 1 guarantees that C ′C ′′ is an edge in E(T ∗) \ E(T )
(g(C ′) = g(C ′′)). Thus |L(v)| = f(v) for each v ∈W1 ∪W2. Finally, if v ∈W3, then v
is a vertex of exactly one among cycles in V (T ), which implies |L(v)| = 1 = f(v) in
this case.

To finish the proof we shall show that G′ is not (L, D1)-colourable, which will
imply (f |V ′ , D1)-non-choosability of G′, as we required.

Duplicate each vertex v ∈ W1 ∪W2 to v′ and v′′. Next, each vertex v of a fixed
cycle Ci that is from the set W1 ∪W2 substitute by the vertex v′, when v is the
vertex of another Cj with i < j and by v′′, otherwise. The set of disjoint cycles
obtained by application of these rules is {C1∗, . . . , Cp∗}, when Ci∗ corresponds to
Ci (see Figure 9a)). We construct a graph G∗ = G∗(C1∗, . . . , Cp∗) ∈ C(p) in p − 1
steps according to Definition 5.4. First we take a graph C1∗. For j ∈ {2, . . . , p}, in
the jth step we identify the pair of nonadjacent vertices x′j , x′′j into xj . Note that the
ordering (1, . . . , p), which is in the connection with the form of T guarantees that



Acyclic sum-list-colouring of grids and other classes of graphs 553

G∗ = G∗(C1∗, . . . , Cp∗) is well defined. Indeed Cj is a leaf of the subtree of T induced
by C1, . . . , Cj−1 (see Figure 9b)).

Put g(Ci∗) = g(Ci) for i ∈ {1, . . . , p}. Consider a list assignment L∗ =
{L∗(v)}v∈V ∗ , where V ∗ is the set obtained from V ′ by the duplication of each vertex
v ∈ W2 to corresponding v′, v′′ (these vertices are not identified) or equivalently
V ∗ = V (G∗).

L∗(v) = {g(Ci∗) : v is a vertex of Ci∗} (see Figure 9c)).

It should be observed that g(Ci∗) 6= g(Cj∗), when Ci∗, Cj∗ have common vertex
in G∗. Hence, Theorem 5.11 shows that G∗ is not (L∗, D1)-colourable.

Also note that, for each v ∈W2 the pair of vertices v′, v′′ obtained by the duplication
of v satisfies L∗(v′) = L∗(v′′) and |L∗(v′)| = |L∗(v′′)| = 1.
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Fig. 9. (a) The cycles C1∗, . . . , Cp∗. (b) The graph G∗(C1∗, . . . , Cp∗) and its duplicated
vertices from the set W2. (c) The list assignment L∗ for G∗(C1∗, . . . , Cp∗)

Now we start with the graph G∗ = G0 and the list assignment L∗ =
{L∗(v)}v∈V (G∗) = LG0 . If W2 = ∅, then obviously G∗ = G′ and L∗ = L. If
W2 6= ∅, then additionally assume that W2 = {y1, . . . , yq} (see Figure 8c)). For
each j ∈ {1, . . . , q}, in the jth step we apply Lemma 5.18 to the graph Gj−1 (it plays
the role of G in the lemma), the list assignment LGj−1 and the graph Gj (it plays
the role of H in the lemma), obtained by the identification of two nonadjacent
vertices y′j , y′′j into yj and the list assignment LGj given in accordance with the
assumptions of Lemma 5.18. It is possible because for each j ∈ {1, . . . , q} it holds
L∗(y′j) = L∗(y′′j ) = {a} for some a ∈ N and moreover, the vertices y′1, y′′1 , . . . y′q, y′′q are
pairwise different. Thus after q-time application of Lemma 5.18 we have a graph Gq
which is not (LGq , D1)-colourable. The current observation is that Gq is a subgraph
of G′ (actually Gq = G′, but this stronger fact is redundant) and LGq = L. The
equality LGq

= L follows immediately by the constructions of L∗ = LG0 and all LGj
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for j ∈ {1, . . . , q}. The constructive argument also simply gives V (Gq) = V ′ (first we
duplicated some of the vertices in V ′, next each of the duplicated pairs was identified
to the source vertex). Hence, to observe that Gq is a subgraph of G′ it is enough to see
that each edge of Gq is present in G′. Note that Gq is a graph obtained from disjoint
cycles {C1∗, . . . , Cp∗} by identification of some pairs of their vertices. It means that
Gq can have only edges of the cycles {C1, . . . , Cp}. All of them are in G′. Hence Gq is
a subgraph of G′ and moreover, V (Gq) = V (G′) = V ′. It follows, by Remark 2.1(ii)
that G′ is not (L, D1)-colourable, which means G′ is not (f |V ′ , D1)-choosable. We use
Remark 2.1(ii) once again to observe (f,D1)-non-choosability of G, which completes
the proof.

Lemma 5.20. If n ∈ N, then

11n− 3
2 ≤ χD1

sc (Pn�P4).

Proof. Let G = Pn�P4. Suppose, for a contradiction, that there is a mapping
f : V (G)→ N such that G is (f,D1)-choosable and

∑
v∈V (G) f(v) < 11n−3

2 . Precisely,∑
v∈V (G) f(v) ≤ 11n−5

2 for odd n and
∑
v∈V (G) f(v) ≤ 11n−4

2 for even n. Consider
a multigraph M(n, f) defined in Construction 5.16. Recall that

|V (M(n, f))| =
{

3n−3
2 , if n is odd,

3n−2
2 , if n is even.

By Remark 5.17(iv), the number of edges of M(n, f) is equal to
∑
v∈V ′(f(v) − 1),

where V ′ is the set precisely described in Remark 5.17(i). Since f(v)− 1 ≥ 0 for each
v ∈ V (G) we have for odd n

|E(M(n, f))| ≤
∑

v∈V (G)

(f(v)− 1) ≤ 11n− 5
2 − 4n = 3n− 5

2 ,

and for even n

|E(M(n, f))| =
∑

v∈V (G)

(f(v)− 1) ≤ 11n− 4
2 − 4n = 3n− 4

2 .

It yields |E(M(n, f))| ≤ |V (M(n, f))| − 1. Hence, there is at least one connected
component of M(n, f) that is a tree. It follows from Lemma 5.19 that G is not
(f,D1)-choosable, a contradiction.

Theorem 5.21. If n ∈ N, then

χD1
sc (Pn�P4) =

⌈11n− 3
2

⌉
.

Proof. Lemmas 5.2 and 5.20 lead to the statement equality.
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6. CONCLUDING REMARKS

Several supporting results presented in the paper can be used as tools for other research
in this field. Some of them could help us to establish the exact values of χD1

sc (Pn�Pm),
when both n,m ≥ 5. We are able to calculate some special numbers of this type but,
in general, Problem 5.3 is still open. The method that is used in this work when
min{n,m} ≤ 4 fails in the possible analogue of Lemma 5.14.

On the other hand, Theorem 5.21 implies the improvement of Corollary 5.1.
Actually, graphs Pn�Pm with n ≥ 1, m ≥ 4 contain subgraphs Gn,m of the forms

Gn,m =





bm4 c(Pn�P4), if n ≡ 0 (mod 4),
bm4 c(Pn�P4) ∪ (Pn�P1), if n ≡ 1 (mod 4),
bm4 c(Pn�P4) ∪ (Pn�P2), if n ≡ 2 (mod 4),
bm4 c(Pn�P4) ∪ (Pn�P3) if n ≡ 3 (mod 4).

As we mentioned previously, χD1
sc (G1 ∪G2) = χD1

sc (G1) + χD1
sc (G2), which gives

χD1
sc (Gn,m) =





bm4 cd 11n−3
2 e, if n ≡ 0 (mod 4),

bm4 cd 11n−3
2 e+ n, if n ≡ 1 (mod 4),

bm4 cd 11n−3
2 e+ (2n+ bn2 c), if n ≡ 2 (mod 4),

bm4 cd 11n−3
2 e+ (4n− 1), if n ≡ 3 (mod 4).

Careful calculation of these numbers yields

χD1
sc (Gn,m) = nm+

⌈ (n− 1)(m− 1)
2

⌉
−
⌊m

5

⌋⌈ (n− 1)
2

⌉
, for n ≥ 1,m ≥ 4.

Observe that V (Gn,m) = V (Pn�Pm). Thus Remark 2.1(i) implies

χD1
sc (Gn,m) ≤ χD1

sc (Pn�Pm) for n ≥ 1,m ≥ 4.

Note that χD1
sc (Gn,m) is an asymptotically better lower bound on χD1

sc (Pn�Pm)
than that one which was obtained in Corollary 5.1.

We turn out Lemma 5.2 to write its two alternative statements by one inequality.

χD1
sc (Pn�Pm) ≤ nm+

⌈ (n− 1)(m− 1)
2

⌉
for m,n ∈ N.

Now we combine all the above observations and known values of χD1
sc (Pn�Pm)

that were discussed in the previous section in the following result.

Corollary 6.1. If n,m ∈ N, then

nm+
⌈ (n− 1)(m− 1)

2

⌉
−
⌊m

5

⌋⌈ (n− 1)
2

⌉
≤ χD1

sc (Pn�Pm) ≤ nm+
⌈ (n− 1)(m− 1)

2

⌉
.
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