
ABSTRACT 

DEVINENI, NARESH. Seasonal Hydroclimatology of the Continental United States: 
Forecasting and its Relevance to Water Management. (Under the direction of Sankar 
Arumugam). 
 

Recent research in seasonal climate prediction has focused on combining multiple 

atmospheric General Circulation Models (GCMs) to develop multimodel ensembles. A new 

approach to combine multiple GCMs is proposed by analyzing the skill of candidate models 

contingent on the relevant predictor(s) state.  To demonstrate this approach, we combine 

historical simulations of winter (December-February, DJF) precipitation and temperature 

from seven GCMs by evaluating their skill – represented by Mean Square Error (MSE) – 

over similar predictor (DJF Nino3.4) conditions. The MSE estimates are converted into 

weights for each GCM for developing multimodel tercile probabilities. A total of six 

multimodel schemes are considered that includes combinations based on pooling of 

ensembles as well as based on the long-term skill of the models. To ensure the improved skill 

exhibited by the multimodel scheme is statistically significant, we perform rigorous 

hypothesis tests comparing the skill of multimodels with individual models’ skill. The 

multimodel combination contingent on Nino3.4 show improved skill particularly for regions 

whose winter precipitation and temperature exhibit significant correlation with Nino3.4.  

Analyses of weights also show that the proposed multimodel combination 

methodology assigns higher weights for GCMs and lesser weights for climatology during El 

Nino and La Nina conditions. On the other hand, due to the limited skill of GCMs during 

neutral conditions over the tropical Pacific, the methodology assigns higher weights for 

climatology resulting in improved skill from the multimodel combinations.  The proposed 

methodology is also evaluated within a forecasting context by combining real-time 



precipitation forecasts from five different coupled GCMs contingent on the forecasted 

Nino3.4. Thus, analyzing GCMs’ skill contingent on the relevant predictor state provide an 

alternate approach for multimodel combination such that years with limited skill could be 

replaced with climatology.  

The utility of the proposed multimodel combination methodology in the context of 

short-term (monthly to seasonal) water management is investigated by utilizing 3-month 

ahead probabilistic multimodel streamflow forecasts developed using climate information – 

sea surface temperature conditions in the tropical Pacific, tropical Atlantic, and over the 

North Carolina coast – to invoke restrictions for Falls Lake Reservoir in the Neuse River 

Basin, NC. Multimodel streamflow forecasts developed from two single models, a parametric 

regression approach and semiparametric resampling approach, are forced with a reservoir 

management model that takes ensembles to estimate the reliability of meeting the water 

quality and supply releases and the end of the season target storage. The study suggests that, 

by constraining the end of the season target storage conditions being met with high 

probability, the climate information based streamflow forecasts could be utilized for invoking 

restrictions during below-normal inflow years. Further, multimodel forecasts perform better 

in detecting the below-normal inflow conditions in comparison to single model forecasts by 

reducing false alarms and missed targets which could improve public confidence in utilizing 

climate forecasts for developing proactive water management strategies. This research also 

presents a systematic analysis for understanding the seasonal hydroclimatology of the 

continental United States. The relationship of seasonality in precipitation and temperature to 

mean monthly runoff are analyzed for 1373 watersheds across the U.S. using a physical 

model with no calibration.   
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1.1 Motivation and Problem Context 

Seasonal to interannual climatic variations resulting from changing Sea Surface 

Temperature (SST) and atmospheric conditions influence the regional to continental scale 

hydroclimatology. For instance, it is well known that quasi-oscillatory modes such as the El 

Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Pacific 

Decadal Oscillation (PDO) influence the seasonal to interannual precipitation variability of 

the continental United States (U.S). These ocean – atmosphere interactions modulate the 

moisture delivery pathway and have significant influence on the rainfall [Trenberth and 

Guillemot 1996; Cayan et al. 1999] and streamflow patterns at regional and global scales 

[Dettinger et al. 2000]. In addition, initial land surface moisture conditions such as snowpack 

and soil moisture storage also play an important role in determining the seasonal streamflow 

potential of a basin. Hence, identification of these dominant climatic modes and estimation of 

land surface states provide vital information for predicting hydrologic fluxes well in advance 

which could be beneficial in developing improved water management strategies. Both 

national and international agencies monitor these climatic variations to issue seasonal to 

interannual climate forecasts. Efforts in the development and application of seasonal to long-

lead climate forecasts have grown tremendously in recent times. 

Seasonal climate forecasts, typically represented as ensembles of precipitation and 

temperature, are obtained by forcing SST forecasts with atmospheric General Circulation 

Models (GCMs). Seasonal climate forecasts could also be obtained from coupled GCMs, 

which obtains SSTs (i.e. boundary conditions) using ocean-atmosphere-land surface 

coupling. Errors resulting from climate forecasts can be classified into two types. The first 
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type of error is the error due to uncertainty in initial and boundary conditions, and the second 

type of error is the model error [Hagedorn et al. 2005]. While the first source of error can be 

resolved by representing the uncertainties in initial and boundary conditions in the form of 

ensembles, the second source of error is inevitable with a particular model, since the model 

error occurs even if the forecasts are obtained from observed initial and boundary conditions 

(perfect forcing). A common approach to reduce model uncertainty is through refinement of 

parameterizations and process representations in the considered GCM. Given that developing 

and running GCMs is time consuming, recent efforts have focused on reducing the model 

error by combining multiple GCMs to issue operational climate forecasts [Rajagopalan et al. 

2002; Robertson et al. 2004; Barnston et al. 2003; Doblas-Reyes et al. 2000; Krishnamurthi 

et al. 1999]. Thus, combining climate forecasts from multiple models seems to be a good 

alternative in improving the overall predictability of seasonal forecasts and reducing the 

overall error in prediction. Application of streamflow forecasts developed from multiple 

models has been shown to be beneficial in invoking restrictions in meeting the summer 

demand and in improving the end of season storage [Golembesky et al. 2009]. 

One of the main objectives of this research is to improve the predictability of winter 

precipitation and temperature over the continental U.S. by optimally combining multiple 

atmospheric GCMs. Since the skill of the GCMs over the U.S. is primarily dependent on the 

state of SST conditions in the tropical Pacific [Quan et al. 2006; Shukla et al. 2000; 

Brankovic and Palmer 2000], we combine multiple GCMs using the algorithm developed by 

Devineni et al. [2008]. The proposed methodology assigns weights for each GCM by 

evaluating their skill over similar predictor conditions. By combining the GCMs with 
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climatological ensembles, we develop different multimodel combination schemes that give 

higher weights for GCMs that performs better during ENSO states.  

Seasonal climate/streamflow forecasts could be utilized effectively for managing the 

water and energy supply systems and to provide useful information to planners and 

operational agencies towards developing contingency measures and improved management 

strategies during extreme hydroclimatic conditions (e.g. floods and droughts). This research 

explores the utility of the above mentioned multimodel combination methodology in the 

context of short-term water management by investigating various drought management 

strategies for Falls Lake Reservoir in Neuse River basin, NC. Under this study, we apply 

climate information based multimodel streamflow forecasts (developed based on the above 

methodology) for invoking restrictions on water supply releases from the Falls Lake 

Reservoir.  

Finally, this dissertation also focuses on understanding the seasonal hydroclimatology 

of the continental U.S. An investigation on the 1373 watersheds across the U.S. showed that 

the observed monthly climatology of streamflows over the eastern U.S. showed significant 

differences from the month of precipitation climatology.  Though the distribution of monthly 

precipitation is uniform throughout the year over the eastern U.S, streamflow exhibit 

pronounced seasonality with peak flow seasons occurring during the winter over the 

Southeast and during the spring over the Mid-Atlantic and Northeast regions. To physically 

explain this discordance in streamflow seasonality, we systematically analyze the basin 

response by forcing the water balance models with synthetically generated inputs – 

precipitation and temperature – and the observed time series.     
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1.2 Outline of the Dissertation 

The dissertation is organized as follows: Chapter 2 presents the detailed analysis of 

the multimodel combinations using precipitation and temperature simulations (i.e. forced 

with observed SSTs) from seven different atmospheric GCMs. Since the simulated variables 

from GCMs overestimate the potential forecasting skill, we investigated the utility of the 

methodology in combining the real-time precipitation forecasts (i.e. forced with forecasted 

SSTs) from five different coupled GCMs. This analysis is presented in Chapter 3. Chapter 4 

focuses on exploring the utility of the multimodel combination methodology for improving 

the drought management of Falls Lake in the Neuse River basin, NC. In this analysis, three- 

month ahead multimodel streamflow forecasts are used with a reservoir simulation model for 

setting up restrictions on water supply releases from the Falls Lake Reservoir. Chapter 5 

presents the analysis on the role of seasonality of precipitation and temperature in explaining 

the climatology of monthly runoff. Finally, in Chapter 6, we present the summary and 

overview of the entire research work. 
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CHAPTER 2 

 

Improving the Prediction of Winter Precipitation and Temperature over the 

continental United States: Role of ENSO State in Developing Multimodel Combinations 
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2.1 Introduction 

 Planning and management of water and energy systems are usually carried out based 

upon the seasonal climate (precipitation and temperature) forecasts over a particular region. 

Several national and international agencies routinely issue climate forecasts using coupled 

General Circulation Models (GCMs) [e.g., Saha et al. 2006] as well as using atmospheric 

GCMs (AGCMs) [e.g., Goddard et al. 2003]. Forecasts from AGCMs are typically developed 

in a two-tiered process with sea surface temperature (SST) being predicted first from an 

ocean-atmosphere model and then the predicted SSTs are forced as boundary conditions into 

the AGCMs. This two-tiered approach primarily emphasizes that much of the predictability 

at seasonal time scales primarily stems from the oceanic conditions with the ensembles 

representing the atmospheric internal variability.  However, the skill of the climate forecasts 

could vary substantially depending on the location, time and the GCMs itself [Doblas-Reyes 

et al. 2000; Robertson et al. 2004]. 

 Reducing model uncertainties through the conventional approach of refinement of 

parameterizations and improved process representation is time consuming which led recent 

efforts to focus on the combination of AGCMs for improving seasonal climatic prediction 

[Krishnamurthi et al. 1999; Doblas-Reyes et al. 2000; Rajagopalan et al. 2002]. Research 

studies from PROVOST (PRediction Of climate Variations On Seasonal to interannual Time-

scales) and from International Research Institute for Climate and Society (IRI) show that 

multimodel combination of AGCMs  provide better calibration (i.e., improved reliability and 

resolution) than individual model predictions [Doblas-Reyes et al. 2000; Barnston et al. 

2003].  
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 Studies from DEMETER (Development of a European Multimodel Ensemble System 

for Seasonal-to-Interannual Prediction) experiments show that multimodel combination of 

CGCMs also improve the reliability and skill in predicting summer precipitation in the 

tropics and winter precipitation in the northern extratropics  [Palmer et al. 2004]. Hagedorn et 

al. [2005] demonstrate that the superiority of multimodels primarily arise from error 

cancellation, not due to increased ensemble members (i.e., pooling of ensemble from single 

models), resulting in improved reliability and consistency. Reviewing the skill of various 

forecast products – medium-range, monthly and seasonal – over the Europe,  Rodwell and 

Dobas-Reyes [2006] show that multimodel ensembles of CGCMs exhibit higher skill in 

predicting precipitation and temperature during both winter and summer seasons. Recently, 

multimodel ensembles developed using 46-year hindcasts from five CGCMs run from the 

European Union’s ENSEMBLES project show better skill in predicting tropical SSTs than 

the multimodel ensembles developed using re-forecasts from the DEMETER project 

[Weisheimer et al. 2009]. 

 The simplest approach to develop multimodel combination is to pool the ensembles 

from all the models by giving equal weights for all the models [Palmer et al. 2000]. A 

different approach to develop multimodel ensembles is to optimally combine multiple GCMs 

so that the resulting multimodel forecast has better skill than individual model forecasts 

[Rajagopalan et al. 2002; Robertson et al. 2004; DelSole, 2007]. Under optimal combination 

approach, weights are obtained for each GCM as a fraction such that the chosen skill metric 

of the multimodel ensembles is maximized [Rajagopalan et al. 2002; Robertson et al. 2004]. 

Doblas-Reyes et al. [2005] compare the performance of two multi-model combination 
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techniques – equal weighting of all models and optimal combination using multiple linear 

regression – and show that, except in tropical regions, it is difficult to improve the 

performance of optimal combination due to small sample size.   Studies have also employed 

simple statistical techniques such as linear regression [Krishnamurthi et al. 1999] to 

advanced statistical techniques such as canonical variate method [Mason and Mimmack, 

2002] and Bayesian techniques [Hoeting et al. 1999; Stephenson et al. 2005; Luo et al. 2007] 

for developing multimodel combinations. DelSole [2007] proposed a Bayesian multimodel 

regression framework that incorporates prior beliefs about the model weights for estimating 

regression parameters. 

 It is well known that anomalous conditions in the tropical Pacific influence the skill 

of GCMs in predicting precipitation and temperature over North America [Shukla et al. 2000; 

Quan et al. 2006]. Upon diagnosing the sources of seasonal prediction skill over the United 

States, Quan et al. [2006] show that the entire skill of the AGCMs could be explained by El-

Nino Southern Oscillation (ENSO) alone. For this analysis, Quan et al. [2006] considered 

multimodel mean obtained by averaging all the ensembles (total of 48 simulations) from four 

AGCMs. Recently, Devineni et al. [2008] proposed a new approach to develop multimodel 

ensembles of streamflow that combines forecasts from individual models by evaluating their 

skill contingent on the predictor state.   

 The main intent of this study is to explore strategies for improving the skill in 

predicting winter precipitation and temperature over the continental United States by 

optimally combining multiple GCMs. Given that predicting winter precipitation and 

temperature over the United States primarily depends on SST conditions over the tropical 
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Pacific [Quan et al. 2006], we combine multiple GCMs by evaluating the skill of seven 

AGCMs conditioned on the ENSO state based on the algorithm outlined in Devineni et al. 

[2008]. The skill of the GCMs contingent on the ENSO state is assessed by averaging the 

Mean Square Error (MSE) in predictions under similar tropical SST conditions. For this 

purpose, we consider simulated precipitation and temperature (i.e., e forced with observed 

SSTs) from seven different AGCMs for developing multimodel combinations. The 

performance of the developed multimodel tercile probabilities of winter precipitation and 

temperature are compared with the performance of individual models’ as well as with two of 

the commonly employed techniques for multimodel combination.  

   For better readability from here on in this dissertation, we often refer to both 

individual and multimodel simulations of precipitation and temperature as 

“predictions/forecasts” with an understanding that simulated GCM variables overestimate the 

potential forecasting skill.  Section 2.2 describes the data and the GCMs used for the study 

along with the description of the multimodel combination methodology. Section 2.3 presents 

the results and analysis by comparing the skill of individual GCMs and multimodels in 

predicting the observed winter precipitation and temperature. Finally, in Section 2.4, we 

summarize the findings and conclusions from the study. 

 

2.2 Multimodel Combination Contingent on Predictor State: Basis and Methodology 

2.2.1 Data 

 Seven AGCMs that are commonly employed by various research institutes and 

agencies are considered for developing multimodel winter (December – January – February, 



 14 

(DJF)) precipitation and temperature forecasts over the continental United States. Table 2.1 

gives the details on each model along with the number of ensembles available in predicting 

precipitation and temperature. Historical monthly simulations of winter precipitation and 

temperature which are developed by forcing the AGCMs with observed SSTs are obtained 

from [http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/] IRI data library. Figure 2.1a shows 

the grid points (a total of 192) that are considered for developing multimodel predictions. 

Observed monthly precipitation and temperature at 0.5°X0.5° available from University of 

East Anglia (UEA), Climate Research Unit (CRU) [New et al. 2000], is used to assess the 

skill of each model. Monthly climate anomalies, relative to the 1961–90 mean [New et al. 

1999], were interpolated from the station data to develop monthly terrestrial surface climate 

grids for the period 1901-1996. Recent studies on multimodel combination have used the 

observed precipitation and temperature for UEA database for showing the improvements 

resulting from multimodel combination [Rajagopalan et al. 2002; Robertson et al. 2004; 

DelSole, 2007]. Grid points (0.5°X0.5°) of monthly precipitation and temperature from UEA 

were spatially averaged to map the grid points of the GCMs. 

We consider Nino3.4, the index commonly used to denote the ENSO state, as the 

primary predictor influencing the winter precipitation and temperature over the United States. 

Nino3.4 denotes the anomalous SST conditions in the tropical Pacific which are obtained by 

averaging the SSTs over 5S-5N and 170W-120W. Average DJF Nino3.4, which is computed 

using Kaplan’s SST database [Kaplan et al. 1998], is obtained from IRI data library for the 

forty six years (DJF 1951 – 1996) 

[http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.Indices/.NINO34/] considered for 

http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/
http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.Indices/.NINO34/
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verification. El Nino (Nino3.4 > 0.5), La Nina (Nino3.4 < - 0.5) and neutral conditions 

((|Nino 3.4| ≤ 0.5) are identified resulting in a total of 14 years of El Nino, 12 years of La 

Nina and 20 years of neutral  conditions from the DJF Nino3.4 time series. 

 

2.2.2 Basis behind Combining Individual GCMs Contingent on the Predictor State  

The multimodel combination methodology proposed in this study is motivated based 

on the premise that model uncertainties could be better reduced by combining the GCMs 

based on their ability to predict under a given predictor state. Recent studies on seasonal to 

interannual climate prediction over North America clearly show that the skill of GCMs is 

enhanced during ENSO years [Brankovic and Palmer, 2000; Shukla et al. 2000; Quan et al. 

2006]. To understand this further, Figure 2.1a shows the correlation between the observed 

precipitation and ensemble mean of the GCM predicted precipitation unconditional of the 

ENSO state (i.e., over the entire period of record), whereas Figures 2.1b, 2.1c and 2.1d show 

the skill (correlation) of two GCMs, ECHAM4.5 and ECPC, in simulating winter 

precipitation under El Nino, La Nina and neutral conditions respectively. The correlations (

1.96 / 3sn −  where ‘ns’ denotes the number of samples under each category) that are 

statistically significant at 95% confidence interval under El Nino (ns = 14), La Nina (ns = 12), 

neutral conditions (ns = 20) and over the entire record (ns = 46) are 0.59, 0.65, 0.48 and 0.30 

respectively.  

Though Figure 2.1a shows significant correlation at many grid points (> 0.30) for 

both models, the performance of the models under those grid points are not consistent under 

three different ENSO conditions. Further, the skill of both GCMs is not-significant/negative 
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(< 0.50) for most grid points under neutral conditions with the skill being mostly significant 

only under El Nino (> 0.59) and La-Nina conditions (> 0.65). We can also infer from Figure 

2.1 that the significant skill exhibited by both GCMs also varies spatially.  Thus, anyone 

combining the GCMs purely based on the overall skill would end up giving higher weights 

for the best performing GCM at that grid point, which would naturally result in poor 

prediction during neutral conditions.   

 We also compare whether the difference in positive correlations exhibited by these 

two models are statistically significant using the Hotelling-Williams test [Bobko, 1995]. 

Details of the Hotelling-Williams test are given in Appendix A. Hotelling-Williams test 

statistic, 23
12 13 2 2

23

( 1)(1 )( )
2( 1) /( 3) (1 )

N rr r
N N R r r

− +
−

− − + −
, follows a ‘t’ distribution with (N-3) 

degrees of freedom where r12 (r13) denoting the correlation between the observed 

precipitation and ensemble mean from ECHAM4.5 (ECPC), r23 denoting the correlation 

between the ensemble means of ECHAM4.5 and  ECPC and ‘N’ denoting the total number of 

years of observation with  2 2 2
12 23 12 13 23 12 13 23 = ) / 2 and  = 2 )r (r r R (1- r r r r r r+ − − + . A plus 

(triangle) sign on the grid points in Figure 2.1b indicates that the difference between r12 (r13) 

and r13 (r12) is greater than zero indicating the better performance of ECHAM4.5 (ECPC). 

We can see from Figure 2.1 that under El Nino conditions, there are 6 (10) grid points with 

r12 (r13) being significant over r13 (r12). This primarily shows that the skills exhibited by these 

models under different ENSO states are statistically significant and also could be completely 

different from the overall skill of the model. Hence, we propose a methodology that evaluates 

the performance of GCMs contingent on the dominant predictor state(s) and assigns higher 
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weights for the best performing model under those predictor conditions. We also consider 

climatology as one of the candidate models for developing multimodel ensembles. By 

including climatology, we believe that if the skill of all models is poor under neutral ENSO 

conditions, the algorithm could give higher weights for climatology in developing 

multimodel combinations. In the next section, we describe the modified version of 

multimodel combination algorithm presented in Devineni et al. [2008]. 

 

2.2.3 Description of the Multimodel Combination Algorithm 

 Figure 2.2 provides the flow chart of the multimodel combination algorithm that 

combines tercile predictions/forecasts from multiple GCMs. Historical simulations of winter 

precipitation and temperature available for each GCM (1951 - 1996) are converted into 

tercile categories, ,
m
i tQ , where m=1,2...,M  (M=8) denotes the model index including 

climatology, with i=1, 2..., N (N=3) representing the categories in year ‘t’ which specifies the 

time index with t=1,2…, T (T= 46 years) (for additional details, see Figure 2.2). Tercile 

categories, ,
m
i tQ , are computed from the ensembles of GCMs after removal of systematic bias 

(i.e., each ensemble is represented as anomaly from the model’s seasonal climatology).  The 

squared error ( m
tSE ) in predicting the observed precipitation/temperature is computed from 

the ensemble mean of the simulated precipitation/temperature for each year at 192 grid points 

over the United States. Based on Quan et al. [2006], we consider ENSO state indicated by 

Nino3.4 as the dominant predictor in influencing the winter precipitation and temperature 

over the United States. 
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 The objective is to combine individual model simulations by evaluating their skill – 

represented by mean squared error (MSE) ( m
t, Kλ in Figure 2.2) – over ‘K’ neighboring 

predictor conditions.  Devineni et al. [2008] considered various skill metrics for evaluating 

the performance of candidate models over similar predictor conditions and find that mean 

squared error and average rank probability score perform well in improving the skill of 

multimodel combination. Further MSE, which is obtained based on the average error in the 

conditional mean of the forecast over similar predictor conditions, is also a proper skill score 

[Brocker and Smith, 2007].  A skill score is proper if it maximizes the expected score for an 

observation drawn from a particular distribution only if the issued probabilistic forecast is of 

the same distribution [Brocker and Smith, 2007]. Given that we have candidate GCMs with 

different ensemble size, we did not consider other strictly proper scores such as RPS since 

their sampling variability heavily depend on the number of ensembles [Weigel et al. 2007]. 

We identify ‘K’ similar ENSO conditions by calculating the euclidean distance between DJF 

Nino3.4 in the conditioning year‘t’ and the rest of DJF Nino3.4 observed during 1951-1996. 

It is important to note that in computing the MSE from ‘K’ similar climatic conditions, we 

leave out the skill of the model ( m
tSE ) in that conditioning year.  

Based on the MSE computed over ‘K’ neighbors, weights ( ,
m
t Kw in Figure 2.2) for each 

model are computed for each year using which the multimodel tercile categories are 

computed. Basically, the weighting scheme should be inversely proportional to a chosen 

increasing function (e.g., linearly or logarithmic) of the prediction error metric. The idea 

behind the proposed approach in Figure 2.2 is that the weights for each model vary according 
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to ENSO conditions. Thus, if a particular GCM performs well during El Nino conditions in a 

given grid point, then higher weights ( ,
m
t Kw in Figure 2.2) will be given to the tercile 

probabilities from that GCM in developing multimodel combinations. Using the algorithm in 

Figure 2.2, we develop six multimodel combinations of winter precipitation (shown in Table 

2.2) and temperature for 192 grid points over the continental United States. We discuss the 

issue of the selection of optimal number of neighbors ‘K’ and various multimodel 

combination schemes (in Table 2.2) in the next Section. 

 

2.2.4  Multimodel Schemes and Performance Analysis 

Table 2.2 provides brief description on the different multimodel schemes considered 

in the study. Four multimodel (MM) schemes, MM-1, MM-2, MM-3, and MM-4, are 

developed using the algorithm in Figure 2.2. MM-1 and MM-2 employ fixed neighbors ‘K’ 

to obtain the MSE. Under MM-1 and MM-2, if the Nino3.4 in the conditioning year is under 

El Nino, La Nina and neutral states, then we estimate the MSE ( m
t, Kλ ) of the GCM during the 

observed El Nino (K =13 years – leaving the conditioning year out), La Nina (K =11 years) 

and neutral (K =19 years) years respectively. Thus, for MM-1 and MM-2, we evaluate the 

skill of the model only under similar ENSO conditions. 

With multimodel schemes, MM-3 and MM-4, we obtain the neighbors, Kt, by 

performing two-deep cross-validation [Stone, 1974]. The two-deep cross validation is a 

rigorous model validation technique which is generally employed to choose optimum model 

parameters as well as to reduce over-fitting that typically results in multimodel combination 

[Delsole, 2007]. The two-deep cross validation technique obtains model predictions 



 20 

recursively in two stages. In the outer loop, we leave out the predictor (Nino3.4) and the 

predictand (DJF precipitation/temperature) in year‘t’ and use the remaining ‘T-1’ years 

(T=46) to estimate the optimum ‘Kt’. For the samples (which constitute T-1 years of GCM 

predictions and Nino3.4) in the inner loop, we obtain Kt that minimizes the MSE of 

multimodel predictions over ‘T-1’ years through a leave-one-out cross validation (i.e., model 

fitting is done with ‘T-2’ years and validated for the left out year from the ‘T-1’ sample). We 

employ this ‘Kt’ from the inner loop to develop the multimodel predictions for year‘t’ in the 

outer loop. This procedure is repeated for all possible left out samples in the outer loop to 

obtain multimodel predictions for each year.  Thus, under MM-3 and MM-4, the number of 

neighbors ‘Kt’ varies from year to year.  

We also employ different strategies in combining individual model simulations with 

climatological ensembles. MM-1 and MM-3 utilize seven different GCMs (Table 2.1) along 

with climatological ensembles to develop multimodel ensembles. MM-2 and MM-4 combine 

each model with climatology in the first step and then combine the resulting seven models in 

the second step. Recent studies have shown that a two step procedure of combining each 

individual model forecasts separately with climatology and then combining the resulting ‘M’ 

combinations at the second step improves the skill of multimodel ensembles [Robertson et al. 

2004]. For climatology, we simply consider the 45 years (leaving the conditioning year out) 

of observed precipitation and temperature at each grid point from UEA. To compute the 

squared error for each year at the second step of combination for MM-2 and MM-4, we 

assume the conditional distribution obtained from first step as normal. MM-P is the 

multimodel combination scheme that is obtained by pooling all the ensembles from seven 
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individual models and climatology. The reason we consider climatology under MM-P is to be 

consistent for comparison with other multimodel schemes (MM-1 to MM-4). Hence, in MM-

P scheme, we have an increased number of ensembles (203) since we are now pooling 

ensembles from all the models.  

MM-OS combines individual models based on their overall skill (unconditional of the 

ENSO state), which is specified based on the MSE for the period 1951-1996 in predicting 

winter precipitation/temperature at a given grid point. Thus, under MM-OS, the weight 
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for a given model ‘m’ is obtained based on the inverse of the MSE of model 

‘m’ to the sum of the inverse of MSE of all the models. MM-P and MM-OS provide the 

baseline comparison with some of the commonly employed techniques in developing 

multimodel combinations [Palmer et al. 2000; Rajagopalan et al. 2002; Robertson et al. 

2004]. The performance of multimodel predictions are compared with individual models’ 

skill using standard verification measures such as average Rank Probability Score ( RPS ), 

average Rank Probability Skill Score ( RPSS ), reliability diagrams and average Brier scores. 

Expressions related to these metrics could be found in Wilks [1995]. Details on estimating 

the RPSS  for a given forecast is also given in Appendix B. The next section discusses the 

performance of multimodels in predicting winter precipitation and temperature over the 

continental United States. 
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2.3 Results and Analysis 

Six multimodel predictions (in Table 2.2) of winter precipitation and temperature are 

developed by combing seven AGCMs and climatology based on the algorithm shown in 

Figure 2.2. The developed multimodel predictions are represented as tercile probabilities in 

192 grid points over the continental United States for the period 1951 – 1996. 

 

2.3.1 Baseline Comparison between Multimodels and Individual Models 

 Figure 2.3 shows the box plot of RPSS  for the seven individual models and for six 

multimodels over the entire United States. RPSS  computes the cumulative squared error 

between the categorical forecast probabilities and the observed category in relevance to a 

reference forecast [Wilks, 1995].  The reference forecast is usually climatological ensembles 

that have equal probability of occurrence under each category. A positive score of RPSS  

indicates that the forecast skill exceeds that of the climatological probabilities. Alternately if 

the RPSS  is negative, it indicates that the forecast skill is less than that of climatology. 

RPSS  is a rigorous metric for evaluating categorical forecasts, since it evaluates the 

performance of entire conditional distribution. Using the multimodels’ and individual 

models’ tercile probabilities, we compute the RPSS  for the period 1951-1996. 

Figures 2.3a and 2.3b show the box plots of RPSS  in predicting winter precipitation 

and temperature respectively over the U.S for the period 1951-1996. Figure 2.3 also show the 

number of grid points that have RPSS greater than zero. Similarly, Figures 2.4a and 2.4b also 

show the box plots of mean squared error based skill score (MSSS) in predicting winter 
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precipitation and temperature respectively. For computing MSSS, we assume the conditional 

distribution resulting from the multimodel combination as normal. From both Figures 2.3 and 

2.4, we can infer that the individual models’ RPSS  and MSSS is lesser than zero in most of 

the grid points which implies that the skill of the AGCMs is poorer than climatology. Among 

the individual models, ECHAM4.5 and CCM3v6 perform better than other GCMs in 

predicting winter precipitation and temperature. Further, we can also see that all six 

multimodels (in Table 2.2) perform better than the GCMs with more grid points having 

positive RPSS and MSSS in predicting winter precipitation and temperature.  

Comparing the performance of multimodels in predicting precipitation (Figures 2.3a 

and 2.4a) and temperature (Figures 2.3b and 2.4b), we infer that the two-step multimodel 

combination schemes, MM-2 and MM-4, perform better than the currently employed 

techniques,  MM-P and MM-OS, with more number of grid points having positive RPSS and 

MSSS.  MM-2, which uses fixed neighbors contingent on ENSO conditions in evaluating the 

skill of the models, also perform better than MM-P and MM-OS in predicting winter 

precipitation and temperature. Further, we can notice from both Figures 2.3 and 2.4 that both 

individual models’ and multimodels’ have better skill in predicting winter temperature in 

comparison to the skill in predicting winter precipitation. Among the individual models, we 

see that ECHAM4.5 and CCM3v6 are the best individual models in predicting winter 

precipitation and temperature. So, all further analyses in quantifying the improvements 

resulting from multimodels will focus only on comparing with the performance of 

ECHAM4.5 and CCM3v6. 
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2.3.2 Statistical Significance of Multimodel Predictions – Hypothesis Testing 

 To ensure that the improved RPSS  exhibited by the multimodel schemes, MM-1-

MM-4, is statistically significant over the skill of ECHAM4.5, we perform detailed 

nonparametric hypothesis tests [Hamill, 1999] by testing the null hypothesis that RPS  of a 

multimodel scheme is equal to RPS of ECHAM4.5 in predicting precipitation/ temperature at 

each grid point. With Model A denoting ECHAM4.5 and Model B denoting one of 

multimodel schemes (in Table 2.2), the null hypothesis for testing RPS could be written as:  

0: =−
BA

O RPSRPSH        ... (2.1) 

0: ≠−
BA

A RPSRPSH        ... (2.2) 

 The distribution of null hypothesis, 
1,* 2,*

RPS - RPS , is constructed by resampling 

equally likely each year from the A
tRPS  of Model A (i.e., ECHAM4.5) and B

tRPS of  Model 

B (MM-1 to MM-4, MM-P and MM-OS). In other words, 
1,*

RPS and
2,*

RPS , the average 

rank probability score ( RPS ) estimated from 46 years to construct the null distribution, 

incorporate A
tRPS and B

tRPS equally likely. A total of 10000 estimates of 
1,* 2,*

RPS - RPS are 

obtained to develop the null distribution for each grid point over the United States. The 

percentiles at which the observed test statistic at each grid point,
A B

RPS RPS− , has fallen in 

the constructed null distribution is computed. Results from the hypothesis tests, the 

percentiles of the observed test statistic 
A B

RPS RPS− on the constructed null distribution, are 

plotted on the United States map to identify grid points showing significant improvement 
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from multimodel combination (Figures 2.5 and 2.6). For a significance level of 10%, if the 

percentile of the observed test statistic is between 0.9-1 (0-0.1) at a given grid point, then 

Model B (Model A)’s RPS is statistically lesser than Model A (Model B)’s RPS . For 

additional details on the performed nonparametric hypothesis test, see Hamill [1999]. 

Tables 2.3 (precipitation) and 2.4 (temperature) summarize the results from 

hypothesis tests across the six multimodels. Entries in the upper triangle in Tables 2.3 and 2.4 

provide the number of grid points having the percentiles of observed test statistic between 

0.9-1 on the constructed null distribution which implies that RPS of Model B – represented 

as column – is statistically significant than the RPS  of Model A, which is represented  as 

row entry. For instance, from the upper triangle in Table 2.3 from the hypothesis tests 

between MM-1 (Model A) and MM-P (Model B), we find that MM-P’s RPS  is statistically 

smaller than the RPS  of MM-1 in 24 grid points (with the percentiles of the observed test 

statistic between 0.9-1 in the null distribution). Similarly, results from the same hypothesis 

tests are also summarized in the lower triangle between the two models indicating the 

number of grid points over which  the percentiles of the observed test statistic fell between 0-

0.1 on the constructed null distribution, which implies the MM-1’s (Model A) RPS  is 

statistically smaller than the RPS  of MM-P (Model B) in 20 grid points. For both Tables 2.3 

and 2.4, the best-performing model in terms of increased number of significant grid points is 

underlined by its column entry.  Thus, between MM-1 and MM-P, we infer that MM-P 

(underlined by the column) performs better in more grid points in comparison to MM-1 in 

predicting precipitation.  



 26 

 Figure 2.5 shows the relative performance of six multimodel combination schemes 

over the best individual model, ECHAM4.5, in predicting winter precipitation over the entire 

United States.  From Figure 2.5a and Table 2.3, 39 (5) grid points have the percentiles of the 

test statistic falling between 0.9-1(0- 0.1) which indicate that MM-1(ECHAM4.5) performs 

better than ECHAM4.5 (MM-1) in those grid points by rejecting the null hypothesis that the 

difference in RPS  between the ECHAM4.5 and  MM-1 is zero for a significance level of 

10%.   We can also see that many grid points fell between 0.1 – 0.9 indicating the difference 

in skill in not statistically significant at 10%. However, a plus symbol is shown in Figure 2.5 

to indicate RPS  of the corresponding multimodel at that grid is lesser than RPS  of 

ECHAM4.5.  Even though the difference in RPS   is statistically not significant at 10%, we 

observed that the percentage reduction in  using multimodel combinations is around 5 – 15% 

for grid points with the percentiles of the observed test statistic, 
A B

RPS RPS−  ,from 0.5 – 

0.9. 

Among the multimodels, MM-2 and MM-4 perform better than the rest of the 

multimodels, which is indicated by more number of grid points (Figure 2.3 and Table 2.3) 

having statistically significant RPS  than the RPS  of the rest of the multimodels and 

ECHAM4.5. From Table 2.3, we clearly understand that multimodel scheme proposed in this 

study, MM-2 and MM-4, perform better than the existing techniques on multimodel 

combinations (MM-P and MM-OS). It is important to note that both MM-2 and MM-4 

employ two-step combination to develop multimodel predictions. Comparing between MM-2 

and MM-4, we infer that in 52(25) grid points MM-2’s (MM-4) RPS is statistically 
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significant than the RPS  of MM-4 (MM-2) with the observed test statistic between the two 

models falling between 0.9-1 (0-0.1) on the constructed null distribution. This indicates that 

two-step combination seems to be more effective in reducing the RPS  of multimodels in 

predicting precipitation. Recently, Chowdhury and Sharma [2009] show that combining 

multimodels that have least covariance at the first step seem to be more effective in 

developing better multimodel predictions. Given this, it seems obvious that climatology will 

have the smallest covariance with individual model predictions, thereby two-step 

combination being very effective in reducing the RPS of multimodels.  

Figure 2.6 and Table 2.4, which are similar to Figure 2.5 and Table 2.3, summarize 

the multimodel combination results for temperature. From Figure 2.6, it is very clear that all 

the multimodels perform better than ECHAM4.5 in predicting temperature. Among the 

multimodels, MM-1 proposed in the study, perform better than the rest of the multimodels. 

From Table 2.4, we also infer that the performance of MM-OS is also equally good in 

predicting winter temperature. Comparing the performance of MM-1 and MM-2, we infer 

that in 48 (24) grid points MM-OS (MM-1)’s  RPS is statistically significant than the  RPS  

of MM-1(MM-OS) indicating that combining models purely based on their long-term skill 

seem to be a good strategy in multimodel combination. However, among these grid points, if 

we drop grid points with RPSS  of both models being negative, then we result with 27(19) 

grid points that show the RPS of MM-OS (MM-1) being statistically significant than the  

RPS  of MM-1 (MM-OS). This indicates MM-1’s better performance is more in grid points 

exhibiting positive RPSS  . From Tables 2.3 and 2.4, we also understand that the 
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improvements in predicting winter temperature from multimodel combination is more in 

comparison to the improvements in predicting winter precipitation. In Section 2.3.5, we 

discuss in detail improvements resulting from multimodel combination from a regional 

perspective over the continental United States particularly for grid points that exhibit positive

RPSS . 

It is important to note that Figures 2.5 and 2.6 show spatial correlation in the reported 

percentiles of the test statistic. This is because we resample tRPS  from Model A and B 

available at each grid point to construct the null distribution. Performing hypothesis tests 

with spatially correlated forecast error metric would reduce the effective number of 

independent samples [Wilks, 1997; Hamill, 1999]. One way to overcome the spatially 

correlated prediction error metric is to spatially average the verification measure over a 

region and perform the hypothesis tests over the spatially averaged verification measure. 

However, we felt that such an approach would require first identification of homogenous 

regions for spatial averaging of the error metric, so it is not pursued here. 

 

2.3.3 Comparison of Forecast Reliability between Multimodels and Individual Models 

Rank probability score just quantifies the squared error in forecasted cumulative 

probabilities for categorical forecasts. However, it does not provide information on how the 

forecasted probabilities for a particular category correspond to their observed frequencies. 

For this purpose, this section compares the reliability, resolution of multimodel predictions 

with the reliability and resolution of individual model predictions. Reliability diagrams 

provide information on the correspondence between the forecasted probabilities for a 
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particular category (e.g., above-normal, normal and below-normal categories) and how 

frequently that category is observed under the issued forecasted probability [Wilks, 1995]. 

For instance, if we forecast the probability of below-normal category as 0.9 over ‘n1’ years, 

then we expect the actual outcome to fall under below-normal category for 0.9*n1 times over 

the entire forecast verification period.  

Figures 2.7a and 2.7b compare the reliabilities of three multimodels (MM-2, MM-4, 

MM-OS) with the reliabilities of ECHAM4.5 and CCM3v6 in predicting precipitation for 

below-normal and above-normal categories respectively. Similarly, Figures 2.8a and 2.8b 

compare the reliabilities of MM-1, MM-3 and MM-OS with the reliabilities of ECHAM4.5 

and CCM3v6 in predicting temperature under below normal and above normal categories 

respectively. We did not consider MM-P since it did not reduce the RPS  over many grid 

points in comparison to the rest of the multimodels in predicting precipitation and 

temperature (Tables 2.3 and 2.4).  

For developing reliability plots, the tercile probabilities for 46 years under each 

category are grouped at an interval of 0.1 over all grid points (46* 192 = 8832 forecasts for a 

tercile category for each model). The observed category is also recorded using which the 

observed relative frequency under each forecasted probability is calculated for each tercile 

category. Inset in each reliability plots show the attribute diagram indicating the logarithm of 

the number of forecasts that fell under each forecast probability bin for a given model. 

Figures 2.7 and 2.8 also show the perfect (diagonal) reliability line with one to one 

correspondence between forecasted probability and its observed relative frequency.   
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From Figures 2.7 and 2.8, we observe that the selected multimodels improve the 

reliability of forecasts showing better correspondence between forecasted probabilities and 

their observed relative frequencies. The basic reason multimodel predictions ensure better 

reliability is by reducing the overconfidence of individual model predictions.  This could be 

understood from the attribute diagram which clearly shows reduction in the number of 

predictions with high forecast probabilities (0.8-1) under individual models (ECHAM4.5 and 

CCM3v6). These findings are in line with earlier studies [Weigel et al. 2008]. On the other 

hand, multimodels show increase in the number of predictions under moderate forecast 

probabilities (0.4-0.7), thereby resulting in the reduction of false alarms. Similarly, under low 

forecast probabilities, individual models seem to be less reliable indicating higher frequency 

of occurrence, whereas multimodels have better reliability resulting in a reduction of missed 

targets. To better quantify the information in Figures 2.7 and 2.8, we summarize the ability of 

a model to predict a particular tercile category using average Brier Score ( BS ) [Wilks, 

1995].  

Brier Score, summarizing the squared error in categorical forecast probabilities, can 

be decomposed into reliability, resolution and uncertainty [Wilks, 1995]. For BS to be close 

to zero, it is important that the reliability term should be close to zero and resolution term 

should be large.  Figures 2.9a (2.9c) and 2.9b (2.9d) provide the reliability, resolution and 

BS for ECHAM4.5, CCM3v6 and all the six multimodels in predicting below normal and 

above normal categories of precipitation (temperature). From Figures 2.9a and 2.9b, we infer 

that all multimodels have smaller reliability score in comparison to the reliability scores of 



 31 

individual models under both tercile categories, thereby contributing to the reduction in BS . 

Among the multimodels, MM-2 has the smallest reliability score than the rest of the five 

multimodels in predicting precipitation.  In terms of resolution, ECHAM4.5 has larger 

resolution score than the resolution scores of CCM3v6 and other multimodels in predicting 

precipitation. Among the multimodels, we clearly see that, MM-2 has the largest resolution 

score which leads to MM-2 and MM-4 having the lowest BS in predicting precipitation. 

Similarly, from Figures 2.9c and 2.9d, we infer that MM-1 and MM-OS have the smallest 

BS which results primarily from smaller reliability score and larger resolution score in 

predicting temperature under below-normal and above-normal categories.  

 To summarize the multimodel schemes, MM2 and MM4 (MM1 and MM-OS), 

perform better than individual models as well as over the rest of the multimodels in 

predicting winter precipitation (temperature) over the continental United States (Figures 2.9a 

- 2.9d). The proposed multimodel combination schemes in this study, MM-2 and MM-4, 

have the lowest BS among all the models in predicting precipitation, whereas MM-1 also 

perform equally well (in comparison to the best multimodel MM-OS) in predicting winter 

temperature. To understand why the multimodel combination schemes proposed in Figure 

2.2 result in improved predictions, we plot weights ( m
kw ) obtained for each multimodel 

schemes and analyze how they vary conditioned on ENSO state in the next section.  
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2.3.4 Analysis of Weights  

Figure 2.10 shows box plots of the ratio of weights ,( | )m
t kw MM - 1 for each model 

under MM-1 scheme to the weights ( |mw MM - OS) obtained for each model based on MM-

OS scheme in predicting temperature. The weight ratios plotted in Figure 2.10 are grouped 

under two categories namely grid points exhibiting significant skill under El Nino years 

(Figure 2.10a) and La Nina years (Figure 2.10b) by ECHAM4.5. This resulted in a total of 20 

and 43 grid points exhibiting significant skill (based on the correlation between the observed 

temperature and the ensemble mean) under El Nino and La Nina years respectively. The 

weights ,( | 1, | )m m
t kw MM w MM OS− − are pooled over 46 years and the computed weight 

ratios for these grid points are shown as separate box plots (as columns) conditioned on the 

ENSO state (El Nino, La Nina and Neutral). Weight ratio above 1 indicates that MM-1 

weights for a given model are higher than the weights assigned by the MM-OS scheme.  

From Figure 2.10a, which shows the weight ratios for grid points showing significant 

skill during El Nino years, we can clearly see that weight ratios are  greater than 1 for 

ECHAM4.5 around 25% of the time and lesser than 1 for climatology  around 85% of the 

time  during El Nino conditions (first column in Figure 2.10a). However, the weight ratios 

for GFDL model is higher than 1 (around 75% of the time) indicating GFDL’s better 

performance during El Nino years for grid points considered in Figure 2.10a. This implies 

that if a particular GCM performs well during El Nino years, then higher weights are 

assigned for that GCM during those conditions in comparison to the weights based on long-

term skill of the model (MM-OS). Further, the weights assigned for climatology under MM-1 



 33 

scheme is lesser since all GCMs have good skill in predicting temperature during El Nino 

conditions.  

On the other hand, during neutral conditions (last column in Figure 2.10a), the weight 

ratios are substantially lesser than 1 for both ECHAM4.5 and GFDL, whereas the weight 

ratios are greater than 1 for climatology (around 90% of the time). Under La Nina conditions 

for grid points exhibiting significant skill during El Nino years (Figure 2.10a, middle 

column), we can clearly infer that the weights for ECHAM4.5 from MM-1 schemes are 

higher in comparison to the weights for ECHAM4.5 received from MM-OS scheme during 

La Nina years. This analysis again confirms our argument that if GCM’s skill is poor during 

certain predictor conditions, then it is better to consider climatology as the best information 

available. Our multimodel combination algorithm shown in Figure 2.2 basically implements 

this by evaluating the models’ skill contingent on the dominant predictor state and assigns 

higher weight for the model/climatology that exhibits better skill during those predictor 

conditions.   

Figure 2.10b shows similar results for grid points exhibiting significant skill in 

predicting DJF temperature by ECHAM4.5 during La Nina years. From Figure 2.10b, we can 

clearly see that the weight ratios for ECHAM4.5 are mostly lesser than 1 with ECPC’s ratio 

being higher than 1 during El Nino conditions (Figure 2.10b, leftmost column). On the other 

hand, during La Nina conditions, ECHAM4.5 weight ratios are greater than 1 (around 85% 

of the time) which forces weight ratios for climatology being substantially lesser than 1 

(around 60% of the time) (Figure 2.10b, middle column). Under neutral conditions (Figure 

2.10b, rightmost column) with none of the models exhibiting significant skill, the weights 
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assigned by MM-1 scheme for climatology are higher than the weights assigned by MM-OS 

scheme (around  90% of neutral conditions in those grid points). Similar analysis on weights 

under MM-2 in predicting precipitation showed the same pattern (figure not shown). Thus, 

our study clearly shows that combining multiple climate models by evaluating them 

contingent on the predictor state is a potential strategy in improving the skill of multimodel 

climate forecasts.  

 

2.3.5 Discussion 

 The main advantage of the proposed multimodel combination technique is in its 

ability to evaluate GCMs’ skill contingent on the predictor state and assign higher weights 

for GCMs that perform better during those (predictor) conditions. Similarly, the methodology 

could also assign higher weights to climatology if all the GCMs have limited skill under that 

conditioning state. On the other hand, pursuing multimodel combination purely based on the 

overall skill (MM-OS) could result in higher weights for GCMs under conditions during 

which the model might exhibit poor/ limited skill. Further, the proposed approach combines 

both models’ skill (as quantified by MSE) and optimization (choosing the number of 

neighbors, Kt, in MM-3 and MM-4 under two-deep cross-validation) to estimate weights as 

opposed to obtaining model weights purely based on optimization [e.g., Rajagopalan et 

al.2002], which could end up choosing one or two models alone in multimodel combination.  

To overcome these difficulties, Robertson et al. [2004] proposed two-step combination. 

Analysis of weights (Figure 2.10) shows clearly that model weights are linked to their skill 
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with GCMs weights being higher during ENSO conditions and climatology receiving higher 

weights during neutral conditions. 

 Figure 2.11 shows the skill, expressed as RPSS , in predicting DJF precipitation 

(2.11a) and temperature (2.11b) with each grid point’s  RPSS  being indicated by the best 

performing individual model or the multimodel. Table 2.5 shows the number of grid points 

with each individual model and multimodel having the highest RPSS over 192 grid points 

shown in Figure 2.11. Figure 2.11 and Table 2.5 summarize the performance of models 

(individual model and multimodels) only if the RPSS of at least one model is greater than 

zero at a given grid point. Thus, if RPSS of all individual models and multimodels are lesser 

than zero, then climatology provides the best information for those grid points.  From Figure 

2.11 and Table 2.5, we can clearly see that multimodels proposed in the study (MM-1, MM-

2, MM-3 and MM-4) perform better than the individual models and over the existing 

multimodel combination techniques (MM-P and MM-OS). Among the multimodels, MM-4 

seems to be best performing multimodel in predicting precipitation and temperature, whereas 

COLA and ECHAM4.5 seem to be the best performing individual models in predicting 

precipitation and temperature respectively.  Comparing Figures 2.11a and 2.11b, we infer 

that prediction of temperature seems to benefit more from multimodel combination in 

comparison to the improvements resulting in precipitation.  

 From Figure 2.11a, we understand that the improvements resulting from multimodel 

combination in predicting DJF precipitation predominantly lies over the Southern United 

States as well as over certain grid points in Midwest and Northeast. In the case of 
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temperature (Figure 2.11b), with the exception of Midwest, we infer that RPSS is greater 

than zero for most of the regions indicating better skill (in comparison to climatology) 

demonstrated by both individual models and multimodels. From Figure 2.11, we can 

understand that there is a significant improvement in RPSS  of multimodel proposed in the 

study (shown as open circles) over Southeast, Southwest regions of the United States and 

over Northwest Mexico. Figures 2.5 and 2.6 also show similar spatial structure with the RPS

of multimodels being statistically significant than the RPS of ECHAM4.5. The reason for 

this improved performance over these regions is primarily due to strong correlation between 

ensemble mean of the individual models with the observed precipitation/temperature under 

ENSO conditions. 

 It is important to note that this study has employed historical simulations of 

precipitation and temperature from AGCMs to demonstrate the utility of multimodel 

combination algorithm presented in Figure 2.2. Historical simulations from AGCMs which 

employ observed SSTs as boundary conditions typically overestimate the real predictive skill 

[Goddard and Mason, 2002; Sankarasubramanian et al., 2008]. Further, to apply the proposed 

methodology in a forecasting context, one may have to use the forecasted Nino3.4 from 

multiple CGCMs as the conditioning variable [Tippet and Barnston, 2008]. Given the peak 

ENSO activity typically coincides during DJF season, 3-month ahead multimodel forecasts 

of ENSO indices issued in December exhibit very high skill with correlations ranging above 

0.8 and root mean square error around 0.2-0.4° C [Jin et al. 2008; Weisheimer et al. 2009]. 

Due to this, the identified similar DJF ENSO conditions using forecasted multimodel mean 
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of DJF Nino3.4 could slightly differ from the identified conditions using observed DJF 

Nino3.4. More importantly, employing retrospective forecasts from AGCMs forced with 

forecasted SSTs could result with reduced skill from the proposed multimodel scheme if the 

skills of retrospective forecasts from AGCMs are better than that of climatology under the 

conditioned state. But, if the skills of retrospective forecasts from AGCMs are poorer than 

that of climatology (which is highly likely based on Figures 2.3 and 2.4), then we expect the 

proposed multimodel scheme is likely to be more beneficial in replacing AGCMs forecasts 

with climatology. The study in chapter 3 evaluates the utility of the proposed methodology in 

combining real-time precipitation forecasts from CGCMs contingent on the forecasted DJF 

Nino3.4 state. 

 

 2.4 Summary and Conclusions 

A methodology to combine multiple GCMs is proposed and evaluated for predicting 

winter precipitation and temperature over the United States. The methodology assigns 

weights for each GCM by evaluating their skill, quantified by Mean Square Error, over 

similar predictor conditions.  Considering Nino3.4 as the primary predictor influencing the 

winter precipitation and temperature [Quan et al. 2006], the study combines seven GCMs 

with climatological ensembles to develop multimodel predictions over the continental United 

States. Totally, six different multimodel schemes are considered with their performance 

being compared with individual models based on various verification measures such as rank 

probability skill score, reliability and resolution scores and brier score. The improvements 
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resulting (from reduction in RPS ) from multimodel combination over individual model is 

also tested through a rigorous nonparametric hypothesis testing based on resampling.   

The study clearly shows that the proposed multimodel combination algorithm 

perform better, in terms of improving the RPSS , than individual models and over multimodel 

combinations based on pooling and long-term skill. Further, the proposed multimodel 

combination methodology also improves the reliability and resolution of tercile probabilities 

resulting with reduced Brier scores. The improved reliability of multimodel predictions 

primarily arises from reducing the overconfidence of individual model predictions, which in 

turn results with reduced number of false alarms and missed targets in categorical forecasts. 

Analysis of weights also show that the proposed methodology assigns higher (lower) weights 

for GCMs and lesser (higher) weights for climatology during anomalous (neutral) ENSO 

conditions in grid points.  These analyses show that the combining multimodels contingent 

on the dominant predictor state is an attractive strategy in improving the skill of multimodel 

forecasts. 

 

 



 39 

2.5 References  

 

Anderson J. L., and Coauthors, 2005: The new GFDL global atmospehre and land model 

AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641-4673. 

 

Bacmeister J., P. J. Pegion, S. D. Schubert, and M. J. Suarez, 2000: Atlas of Seasonal Means 

Simulated by the NSIPP 1 Atmospheric GCM. NASA/TM-2000- 104505, 17, 194 pp. 

 

Barnston A. G., S. J. Mason, L. Goddard, D. G. Dewitt, and S. E. Zebiak, 2003: Multimodel 

ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84, 1783–1796.  

 

Bobko P, 1995: Correlation and Regression: Principles and Applications for Industrial/ 

Organizational Psychology and Management. New York: McGraw Hill, Inc. 

 

Branković Č., and T. N. Palmer, 2000: Seasonal skill and predictability of ECMWF 

PROVOST ensembles. Quart. J. Roy. Meteor. Soc., 126, 2035–2067. 

 

Bröcker, J., and L.A. Smith: Scoring Probabilistic Forecasts; On the Importance of Being 

Proper. Weather and Forecasting, 22, (2), 2007. 

 

Chowdhury S., and A. Sharma, 2009: Long-Range Niño-3.4 Predictions Using Pairwise 

Dynamic Combinations of Multiple Models. J. Climate, 22, 793–805. 



 40 

DelSole T., 2007: A Bayesian framework for multimodel regression. J. Climate, 20, 2810–

2826. 

 

Devineni N., A. Sankarasubramanian, and S. Ghosh, 2008: Multimodel ensembles of 

streamflow forecasts: Role of predictor state in developing optimal combinations, Water 

Resour. Res., 44, W09404, doi:10.1029/2006WR005855. 

 

Doblas-Reyes F.J., M.Deque, and J.P.Piedelievre, 2000: Multimodel spread and probabilistic 

seasonal forecasts in PROVOST. Quart. J. Roy. Meteor. Soc., 126(567):2069-2087. 

 

Doblas-Reyes F. J., R. Hagedorn, and R. N. Palmer, 2005: The rationale behind the success 

of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus, 

57A, 234–252. 

 

Goddard L., A. G. Barnston, and S. J. Mason, 2003: Evaluation of the IRI's “net assessment” 

seasonal climate forecasts: 1997– 2001. Bull. Amer. Meteor. Soc., 84, 1761–1781. 

 

Hagedorn R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success 

of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A, 57, 219–233, 

doi:10.1111/j.1600–0870.2005.00103.x. 

 



 41 

Hamill T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. 

Forecasting, 14, 155–167. 

 

Hoeting J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, 1999: Bayesian model 

averaging: A tutorial, Stat. Science, 14, 382-401. 

 

Jin E. K., J. L. Kinter, B. Wang, C. K. Park, I. S. Kang, B. P. Kirtman, J. S. Kug, A. Kumar, 

J. J. Luo, J. Schemm, J. Shukla, and T. Yamagata, 2008: Current status of ENSO prediction 

skill in coupled ocean-atmosphere models, Climate Dyn, 31, 647-664. 

 

Kanamitsu M., and K. C. Mo, 2003: Dynamical effect of land surface processes on summer 

precipitation over the southwestern United States. J. Climate, 16, 496–509. 

 

Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: 

Analyses of global sea surface temperature 1856-1991, Journal of Geophysical Research, 

103, 18,567-18,589. 

 

Kiehl J.T., J.J.Hack, G.B.Bonan, B.A.Boville, D.L.Williamson, and P.J.Rasch, 1998: The 

National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 

11(6):1131-1149. 

 



 42 

Krishnamurti T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. 

Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate 

forecasts from a multi-model superensemble. Science, 286, 1548–1550. 

 

Luo L., E. F. Wood, and M. Pan, 2007: Bayesian Merging of Multiple Climate Model 

Forecast for Seasonal Hydrological Predictions.  J. Geophys. Res., 112, D10102, doi: 

10.1029/2006JD007655. 

 

Mason S.J., and G.M.Mimmack, 2002: Comparison of some statistical methods of 

probabilistic forecasting of ENSO. J. Climate, 15:8-29. 

 

New M., M. Hulme, and P. D. Jones, 1999: Representing twentieth-century space–time 

climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. 

J. Climate, 12, 829–856. 

 

New M., M. Hulme, and P. D. Jones, 2000: Representing twentieth-century space–time 

climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface 

climate. J. Climate, 13, 2217–2238. 

 

Palmer T.N., C.Brankovic, D.S.Richardson, 2000: A probability and decision-model analysis 

of PROVOST seasonal multimodel ensemble integrations. Quart. J. Roy. Meteor. Soc., 

126(567),2013-2033. 



 43 

Palmer, T. N., A. Alessandri, U. Andersen, P. Cantelaube, M. Davey, P. Delecluse, M. 

Deque, E. Diez, F. J. Doblas-Reyes, H. Feddersen, R. Graham, S. Gualdi, J. F. Gueremy, R. 

Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V. Marletto, A. P. 

Morse, B. Orfila, P. Rogel, J. M. Terres, and M. C. Thomson,  2004:  Development of a 

European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER), 

Bulletin of the American Meteorological Society, 85, 853-872. 

 

Quan X., M. Hoerling, J. Whitaker, G. Bates, and T. Xu, 2006: Diagnosing sources of US 

seasonal forecast skill, J. Climate, 19, 3279-3293. 

 

Rajagopalan B., U. Lall, and S. E. Zebiak, 2002: Categorical climate forecasts through 

regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130, 

1792–1811. 

 

Robertson A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of 

multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132, 2732–

2744.  

 

Rodwell, M. J., and F. J. Doblas-Reyes (2006), Medium-range, monthly, and seasonal 

prediction for Europe and the use of forecast information, Journal of Climate, 19, 6025-6046. 

 



 44 

Roeckner E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: 

Model description and simulation of present-day climate. Max-Planck-Institut fur 

Meteorologie Rep. 218, Hamburg, Germany, 90 pp. 

 

Saha S., S. Nadiga, C. Thiaw, and J. Wang, 2006: The NCEP Climate Forecast System. J. 

Climate, 19, 3483-3517. 

 

Schneider E. K., 2002: Understanding differences between the equatorial Pacific as simulated 

by two coupled GCMs. J. Climate, 15, 449-469. 

 

Sankarasubramanian, A., U.Lall, and S.Espuneva, 2008: Role of Retrospective Forecasts of 

GCM Forced with Persisted SST anomalies in Operational Streamflow Forecasts 

Development. Journal of Hydrometeorology, 9(2), 212-227. 

 

 Shukla J., J. Anderson, D. Baumhefner, C. Brankovic, Y. Chang, E. Kalnay, L. Marx, T. 

Palmer, D. Paolino, J. Ploshay, S. Schubert, D. Straus, M. Suarez, and J. Tribbia, 2000: 

Dynamical seasonal prediction.  Bull. Amer. Meteor. Soc., 81, 2593-2606. 

 

Stephenson D. B., C. A. S. Coelho, F. J. Doblas-Reyes, and M. Malmaseda, 2005: Forecast 

assimilation: A unified framework for the combination of multi-model weather and climate 

predictions. Tellus A, 57, 253–264. 

 



 45 

Stone M., 1974: Cross-validatory choice and assessment of statistical predictions (with 

discussion). J. Roy. Stat. Soc., 36, 111–147. 

 

Tippett M. K., and A. G. Barnston , 2008: Skill of Multimodel ENSO Probability Forecasts, 

Mon. Wea. Rev., 136, 3933-3946. 

 

Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007:  The discrete Brier and ranked 

probability skill scores, Monthly Weather Review, 135, 118-124. 

 

Weigel, A. P., M. A. Liniger, and C. Appenzeller , 2008:  Can multi-model combination 

really enhance the prediction skill of probabilistic ensemble forecasts?, Quarterly Journal of 

the Royal Meteorological Society, 134, 241-260. 

 

Weisheimer, A., F. J. Doblas-Reyes, T. N. Palmer, A. Alessandri, A. Arribas, M. Déqué, N. 

Keenlyside, M. MacVean, A. Navarra, and P. Rogel , 2009: ENSEMBLES: A new multi-

model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER 

in forecasting tropical Pacific SSTs. Geophys. Res. Lett, 36, L21711, 

doi:10.1029/2009GL040896. 

 

Wilks D. S., 1995: Statistical Methods in the Atmospheric Science. Academic Press, 467 pp.  

 



 46 

Wilks D.S., 1997:  Resamping hypothesis tests for auto-correlated fields, J. Climate, 10, 66-

82. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 47 

Table 2.1: Details of atmospheric GCMs considered for the study. All models span from 
longitude (123.75W to 66.25W) and latitude (25N to 45N) resulting in a total of 192 grid 
points. Historical simulations of winter (DJF) precipitation and temperature from the seven 
GCMs are considered for multimodel combination. 
 

Historical Simulations 
Model Source  Ensemble Size Reference 

ECHAM4.5 Max-Plank Institute 85 Roeckner et al. 
(1996) 

CCM3v6 National Center for Atmospheric 
Research, NCAR 

24 Kiehl et al. 
(1998) 

COLA  
 

Center for Ocean-Land-
Atmosphere Studies 

10 Schneider 
(2002) 

GFDL, AM2p12b Princeton University 10 Anderson et al. 
(2005) 

ECPC Scripps Institution of 
Oceanography, UC, San Diego 

10 Kanamitsu et al. 
(2003) 

NCEP NOAA 10 Saha et al. 
(2006) 

NSIPP-1 NASA GSFC 9 Bacmeister et 
al. (2000) 
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Table 2.2: List of multimodel combinations considered for the study. 
 
Multimodel  
Indices/Schemes 

Brief Description 

MM-1 Individual Models + Climatology in one step with fixed number of 
neighbors contingent on ENSO state 

MM-2 Individual Model + Climatology combination in the first step and the 
resulting model outputs combined at the second step with fixed number 

of neighbors contingent on ENSO state 
MM-3 Individual Models + Climatology in one step using optimized 

neighbors obtained by two-deep cross-validation 
MM-4 Individual Model + Climatology combination in the first step and the 

resulting model outputs combined at the second step using optimized 
neighbors obtained by two-deep cross-validation 

MM-P Multimodel combination using pooled ensembles 

MM-OS Multimodel combination using weights based on the overall skill in the 
calibration period.  
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Table 2.3: Number of grid points showing significant difference in RPS  in predicting 
precipitation based on the hypothesis testing between ECHAM4.5 and various multimodel 
schemes given in Table 2.2. Entries in the upper (lower) triangle of the table summarize the 
number of grid points having the percentile value of the test statistic 

A B
RPS RPS−  between 

0.9-1 (0-0.1) in the resampled null distribution for hypothesis testing between Model A and 
Model B. For values in the upper (lower) triangle, Model A (Model B) is indicated by its row 
entry and Model B (Model A) is indicated by its column entry.  The best-performing model 
in terms of increased number of significant grid points is underlined by its column entry.    
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Models ECHAM4.5 MM-1 MM-2 MM-3 MM-4 MM-P MM-OS 

ECHAM4.5  39 42 36 41 53 40 

MM-1 5  50 22 51 24 59 

MM-2 5 6  7 25 11 9 

MM-3 10 65 57  64 43 81 

MM-4 5 16 52 6  11 16 

MM-P 6 20 33 19 37  20 

MM-OS 8 17 35 16 43 17  
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Table 2.4: Number of grid points showing significant difference in RPS  in predicting 
temperature based on the hypothesis testing between ECHAM4.5 and various multimodel 
schemes given in Table 2.2. Entries in the upper (lower) triangle of the table summarize the 
number of grid points having the percentile value of the test statistic  

A B
RPS RPS−  between 

0.9-1 (0-0.1) in the resampled null distribution for hypothesis testing between Model A and 
Model B. For values in the upper (lower) triangle, Model A (Model B) is indicated by its row 
entry and Model B (Model A) is indicated by its column entry.  The best-performing model 
in terms of increased number of significant grid points is underlined by its column entry.   
 

Models ECHAM4.5 MM-1 MM-2 MM-3 MM-4 MM-P MM-OS 

ECHAM4.5  70 48 65 59 81 77 

MM-1 5  6 27 17 3 48 

MM-2 6 39  28 33 19 41 

MM-3 7 51 9  23 8 58 

MM-4 9 44 49 36  24 46 

MM-P 5 42 18 34 31  52 

MM-OS 5 24 4 17 9 3  
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Table 2.5: Number of grid points with each individual GCM and multimodels having the 
highest RPSS  in predicting winter precipitation and temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models Precipitation Temperature 
ECHAM4.5 8 32 
CCM3v6 9 6 
COLA 11 8 
ECPC 0 2 
GFDL 1 3 
NCEP 3 3 
NSIPP-1 6 0 
MM-1 4 8 
MM-2 12 20 
MM-3 9 18 
MM-4 27 31 
MM-P 3 10 
MM-OS 4 15 
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Figure 2.1: Skill, expressed as correlation between ensemble mean of the GCM and 
observed precipitation, in simulating  the DJF winter precipitation by two GCMs, ECHAM 
4.5 (left) and ECPC (right), over the entire period of record (Figure 2.1a), under El-Nino 
(Figure 2.1b), La Nina (Figure 2.1c) and Neutral conditions (Figure 2.1d). Figure on the right 
under each category shows plus (triangle) sign which indicates the correlation between DJF 
precipitation and the ensemble mean of ECHAM4.5 (ECPC) is statistically higher than the 
correlation between the DJF precipitation and the ensemble mean of ECPC (ECHAM4.5) for 
that category. 
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Figure 2.2: Flowchart of the multimodel combination algorithm employed in the study 
(modified from Devineni et al. 2008). 
 

Select categorical climate forecasts/predictions, ,
m
i tQ , where m=1,2...,M 

(M=8) denotes the model index including climatology, with i=1, 2..., N (N=3) 
representing the categories in year ‘t’ with t=1,2…, T (T= 46 years). 

Obtain the squared error, SEt
m, between the ensemble mean and the observed 

precipitation/temperature for each year for all GCMs. 

Based on DJF Nino3.4 (X) as the predictor, compute the distance between the current 
Nino3.4, Xt, and the rest of the Nino3.4, Xl, where l=1,2..., T-1 (leaving ‘t’ year out). 

Choose the number of neighbors, K, and compute Mean Square Error (MSE) over ‘K’ 

neighbors using: ( )
1

1 K
m m
t, K j

j
SE

K
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= ∑  

Compute weights ( ,
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Obtain categorical forecasts/predictions of multimodels, ,
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models’ weights ( ,
m
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Figure 2.3: Box plots of RPSS in predicting winter precipitation (2.3a) and temperature 
(2.3b) for individual GCMs and various multimodel schemes given in Table 2.2. Numbers in 
parenthesis above each box plot indicate the number of grid points having RPSS greater than 
zero. 

(a) 

(b) 
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Figure 2.4: Box plots of MSSS in predicting winter precipitation (2.4a) and temperature 
(2.4b) for individual GCMs and various multimodel schemes given in Table 2.2. Numbers in 
parenthesis above each box plot indicate the number of grid points having MSSS greater than 
zero. 

(a) 

(b) 
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Figure 2.5: Performance comparison of multimodels with the best individual model, 
ECHAM4.5, in predicting U.S winter precipitation. The background color indicates the 
percentile of the test statistic (

4.5ECHAM MM
RPS RPS− ) obtained from the resampled null 

distribution that represents
MMECHAM

RPSRPS =
5.4

. A lower (higher) value of the percentiles 
from the test statistic indicates ECHAM4.5 (multimodel) performs better than multimodel 
(ECHAM4.5). A plus (blank) sign indicates that RPS from multimodel (ECHAM4.5) is 
lesser than the RPS of ECHAM4.5 (multimodel). 
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Figure 2.6: Performance comparison of Multimodels with the best individual model, 
ECHAM4.5, in predicting U.S winter temperature. The background color indicates the 
percentile of the test statistic (

MMECHAM
RPSRPS −

5.4
) obtained from the resampled null 

distribution that represents
MMECHAM

RPSRPS =
5.4

. A lower (higher) value of the percentiles 
from the test statistic indicates ECHAM4.5 (multimodel) performs better than multimodel 
(ECHAM4.5). A plus (blank) sign indicates that RPS from multimodel (ECHAM4.5) is 
lesser than the RPS of ECHAM4.5 (multimodel). 
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Figure 2.7: Reliability Diagram for individual models, ECHAM4.5 and CCM3v6, and for 
various multimodel combination schemes in predicting below-normal (Figure 2.7a) and 
above-normal (Figure 2.7b) categories of precipitation.  
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Figure 2.8: Reliability Diagram for individual models, ECHAM4.5 and CCM3v6, and for 
various multimodel combination schemes in predicting below-normal (Figure 2.8a) and 
above-normal (Figure 2.8b) categories of temperature. 
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Figure 2.9: Performance comparison of individual models, ECHAM4.5 and CCM3v6, with 
various multimodels based on Brier Score and its components – reliability and resolution – in 
predicting below normal (Figure 2.9a – precipitation, Figure 2.9c – temperature) and above 
normal (Figure 2.9b – precipitation, Figure 2.9d – temperature) events. 
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Figure 2.10: Box-plots of the ratio of weights ( ,

m
t kw |MM-1) for each model under MM-1 

scheme to the weights for each model ( mw |MM-OS) under MM-OS scheme in predicting 
temperature. Figure 2.10a (Figure 2.10b) shows the weights ratio, pooled – as columns – 
under three ENSO conditions, for grid points having significant correlation with observed 
precipitation and the ensemble mean from ECHAM4.5 during El Nino (La Nina) years. 
Weight ratio above 1, for a given GCM scheme, indicates that the weight under MM-1 is 
higher than the weight assigned based on MM-OS scheme. 
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Figure 2.11: Performance of multimodels and individual models, expressed as RPSS , in 
predicting DJF winter precipitation (Figure 2.11a) and temperature (Figure 2.11b).  Grid 
points with no markers, open circle and triangle indicate the best performing model (having 
the highest RPSS ) at that grid point being individual GCMs (all the seven models in Table 
2.1), multimodels proposed in this study (MM-1, MM-2, MM-3 and MM4) and existing 
multimodel techniques  (MM-P and MM-OS) respectively. 

(a) 

(b) 
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CHAPTER 3 
 
 

Multimodel Combinations of Retrospective Precipitation Forecasts from coupled 

Ocean-Atmosphere Models: Skill Evaluation over the continental United States 
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3.1  Introduction 

  Seasonal to interannual climate forecasts up to several months ahead are issued 

regularly by various national and international agencies based on atmospheric general 

circulation models (AGCMs) [Goddard et al. 2003], or comprehensive coupled ocean-

atmosphere general circulation models (CGCMs) [Saha et al. 2006; Kanamitsu et al. 2002]. 

Recent efforts have focused on combining multiple GCMs to issue real-time multimodel 

climate forecasts. Studies have demonstrated that multimodel forecasts developed using 

approaches such as pooling of the ensembles, optimal weights, or using various statistical  

techniques have improved predictability and reduced overall error compared to individual 

model forecasts [Rajagopalan et al., 2002; Robertson et al., 2004; Barnston et al., 2003; 

Doblas-Reyes et al., 2000; Krishnamurthi et al., 1999]. In Chapter 2, a methodology to 

combine multiple AGCMs is proposed and evaluated for predicting winter precipitation and 

temperature over the United States. The methodology assigned weights for each GCM by 

evaluating their skill over similar predictor conditions using historical simulations of winter 

precipitation and temperature. The proposed multimodel combination algorithm performed 

better than individual models and over multimodel combinations based on pooling and long-

term skill. 

The main goal of this study is to evaluate the utility of the proposed multimodel 

combination methodology (Chapter 2) in combining real-time precipitation forecasts from 

CGCMs contingent on the forecasted Nino3.4 state. Using the retrospective precipitation 

forecasts (forced with forecasted SSTs) from five CGCMs, we demonstrate the multimodel 

combination methodology based on an adaptive forecasting scheme. The performance of the 
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developed multimodel winter precipitation forecasts are compared with the performance of 

individual models’ as well as with two of the commonly employed techniques for 

multimodel combination. Section 3.2 describes the data and the CGCMs used for the study. 

Section 3.3 presents the different adaptive multimodel combination schemes developed in 

this study. In Section 3.4, we present the results and analysis by comparing the skill of 

individual CGCMs and multimodels in forecasting the observed winter precipitation. 

Section 3.5, we summarize the findings and conclusions from the study.   

 

3.2  Data Description 

 Retrospective forecasts from the European Union’s ENSEMBLES project are used to 

develop the multimodel precipitation forecasts for winter season over the continental U.S. 

We considered the same grid points over the U.S. (from Chapter 2) to develop the forecasts. 

The ENSEMBLES project consists of global coupled ocean atmosphere model forecasts 

from the UK Met Office (UKMO), Meteo France (MF), European Centre for Medium-Range 

Weather Forecasts (ECMWF), the Leibniz Institute of Marine Sciences at Keiel University 

(IFM-GEOMAR), and the European Mediterranean Centre for Climate Change (CMCC – 

INGV). Forecasts from each model are issued on 1st February, 1st May, 1st August and 1st 

November and extend up to seven months lead from their respective start times. All the 

models are represented by nine ensemble members and available for the period of 46 years, 

1960 – 2005. In this study, we considered precipitation forecasts issued on 1st November with 

a lead time of four months. Hence the multimodel precipitation forecasts are developed for 

the winter months of November (N), December (D), January (J) and February (F) using the 
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forecasts issued on 1st November. Table 3.1 has the details on each model. Observed monthly 

precipitation at 0.5°X0.5° available from University of East Anglia (UEA), Climate Research 

Unit (CRU) [New et al. 2000], is used to assess the skill of each model. Grid points 

(0.5°X0.5°) of monthly precipitation from UEA were spatially averaged to map the grid 

points of the CGCMs. In this study, we used the forecasted Nino3.4 (obtained from the ocean 

model of the CGCM) for the four winter months (N, D, J and F) as the conditioning variable 

to assess the skill of the respective models. All the forecasts are obtained from the ECMWF 

Meteorological Archival and Retrieval System.  

 

3.3 Multimodel Combination of Retrospective Precipitation Forecasts: Methodology 

3.3.1 Forecasted Nino3.4 as conditioning variable 

We used the retrospective climate forecasts from five different CGCMs to 

demonstrate the utility of the multimodel combination algorithm in a forecasting context. 

These models obtain the forecasted boundary SST conditions in a coupled mode and have 

different biases in forecasting the SST states since they differ in their parameterization and 

process representation. In this study, we used the forecasted Nino3.4 obtained from the ocean 

models of multiple CGCMs as the conditioning variable [Tippet and Barnston, 2008].  

Figure 3.1 shows the skill of the five models in terms of mean squared error in 

forecasting Nino3.4 for different lead times. We can see that the 4-month ahead forecasts of 

the ENSO conditions (Nino3.4index) issued in November exhibit high skill since the peak 

ENSO activity typically coincides during the DJF season. Figure 3.1 also shows the skill of 

multimodel Nno3.4 forecast obtained by pooling ensembles from all the models. It is evident 
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that the skill of the multimodel forecast is better than all the models. Enhanced skill of 

multimodel is observed mainly due to the cancellation of differing biases [Hagedorn et al. 

2005]. Jin et al. [2008] and Weisheimer et al. [2009] also showed that the 3-month ahead 

multimodel forecasts of ENSO conditions issued in November exhibit very high skill with 

correlations ranging above 0.8. In this study, we employed the multimodel combination 

algorithm on retrospective precipitation forecast using forecasted Nino3.4 from individual 

models and multimodel (obtained from pooling) as the conditioning variable. However, the 

identified similar ENSO conditions using forecasted multimodel mean of Nino3.4 could 

slightly differ from the identified conditions using observed Nino3.4. 

 

3.3.2 Adaptive Forecasting Multimodel Schemes 

The main objective of this study is to demonstrate the utility of the multimodel 

combination methodology in a forecasting context. Using forecasted Nino3.4 as the 

conditioning variable, we develop multimodel precipitation forecasts for Nr, D, J and F 

separately for the period of 1997 – 2005, by training the individual models based on the data 

available from 1960 - 1996.  Table 3.2 provides brief description on the different multimodel 

schemes considered in the study. Four multimodel (M) schemes, M-1, M-2, M-3, and M-4, 

are developed by employing fixed neighbors ‘K’ to obtain the MSE. If the forecasted Nino3.4 

in the conditioning year is under El Nino, La Nina and neutral states, then we estimate the 

MSE ( m
t, Kλ ) of the CGCM during the forecasted El Nino (K = El Nino years in the calibration 

period, 1960 – 1997), La Nina (K = La Nina years) and neutral (K = neutral years) years 

respectively. Thus, we evaluate the skill of the models under similar ENSO conditions in the 
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calibration/training period. For example, we developed the multimodel precipitation forecasts 

for the month of November from 1997 – 2005 by evaluating the skill of the individual 

models in November during the 36 years training period. The conditioning variable is the 

Nino3.4 forecast for November, and similar neighbors are identified from the 36 years of 

forecasts for that month. It is important to note that the number of neighbors will be different 

for different months of N, D, J, and F. The skill of the multimodel forecast in the winter 

season, NDJF is verified using all the forecasts from N, D, J and F. Hence we have a total of 

40 forecasts (10 forecasts from each month).  

Multimodels M-1 and M-2 are developed for each month separately based on the skill 

under ENSO years in the calibration period. However, ENSO conditions are identified based 

on the multimodel Nino3.4 forecasts for M-1 and individual model Nino3.4 forecasts for M-

2. For example, under M-2 scheme, the skill of the precipitation forecasts from UKMO in the 

calibration period is obtained by identifying similar ENSO years from the forecasted Nino3.4 

of the corresponding ocean model of UKMO. This scheme is chosen based on the premise 

that the errors in forecasting SSTs are one source of error in the CGCM forecast. Hence in a 

coupled mode, the skill of a particular CGCM is heavily dependent skill of the forecasted 

SST from its corresponding ocean model. For multimodels M-3 and M-4, the weights are 

developed for the NDJF seasonal average precipitation forecasts and disaggregated for all the 

four months. Hence, under this scheme, the weights for N, D, J and F for each year are equal. 

M-3 uses the multimodel forecasted Nino3.4 for NDJF as the conditioning variable and M-4 

uses the individual forecasted Nino3.4 for NDJF from corresponding ocean models to 

identify similar ENSO conditions. All the multimodel schemes (M-1 – M-4) combine 
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individual model forecasts along with climatological ensembles. For climatology, we simply 

consider the 36 years (training period) of observed precipitation at each grid point from 

UEA. The multimodel schemes developed in study (M-1 – M-4) are different from the 

multimodel schemes (MM-1 – MM-4) shown in the previous chapter 2.  

We developed MM-P and MM-OS, similar to chapter 2 in order to have a baseline 

comparison with some of the commonly employed techniques in developing multimodel 

combinations [Palmer et al. 2000; Rajagopalan et al. 2002; Robertson et al. 2004]. MM-P is 

the multimodel combination scheme that is obtained by pooling all the ensembles from five 

individual models and climatology. Hence, in MM-P scheme, we have an increased number 

of ensembles (81) since we are now pooling ensembles from all the models. MM-OS 

combines individual models based on their overall skill (unconditional of the ENSO state), 

which is specified based on the MSE for the period 1960-1996 in forecasting N, D, J and F  

precipitation at a given grid point. The performance of multimodel forecasts in the validation 

period for the NDJF aggregate season (total of 40 forecasts) are compared with individual 

models’ skill using standard verification measures such as average Rank Probability Score (

RPS ), average Rank Probability Skill Score ( RPSS ),and average Brier scores. The next 

section discusses the performance of multimodels in forecasting winter precipitation over the 

continental U.S. 

 
 
3.4 Results and Analysis 
  

Six multimodel forecasts (in Table 3.2) of winter precipitation are developed by 

combing five CGCMs and climatology based on the methodology described in chapter 2. The 
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developed multimodel forecasts are represented as tercile probabilities in 187 grid points 

over the continental United States for the four months (N, D, J and F) during the period 1997 

– 2005. 

 

3.4.1 Baseline Comparison between Multimodels and Individual Models 

 Figure 3.2 shows the box plot of RPSS  for the five individual models and for six 

multimodels over the entire U.S. Using the multimodels’ and individual models’ tercile 

probabilities, we compute the RPSS  for the NDJF season (using a total of 40 forecasts) 

based on the forecast developed for each month for the period 1997-2005. Figures 3.2a show 

the box plot of RPSS  over the U.S. and figure 3.2b show the box plot of mean squared error 

based skill score (MSSS) in forecasting winter precipitation respectively. We assumed the 

conditional distribution resulting from the multimodel combination as normal for computing 

MSSS. From figure 3.2, we can infer that the individual models’ RPSS  and MSSS is lesser 

than zero in most of the grid points which implies that the skill of the CGCMs is poorer than 

climatology. Among the individual models, ECMWF perform better than other CGCMs in 

forecasting winter precipitation. We can also see that all six multimodels (in Table 3.2) 

perform better than the CGCMs with more grid points having positive RPSS and MSSS in 

forecasting winter precipitation.  Among the six multimodels, we infer that all the 

multimodels schemes perform better than MM-P. Since ECMWF is the model that is 

performing better than other CGCMs, further analyses in quantifying the improvements 

resulting from multimodels will focus only on comparing with the performance of ECMWF. 
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This is similar to the analysis in Chapter 2 where we compared the performance of 

ECHAM4.5 and CCM3v6 with all the multimodels.   

 

3.4.2 Statistical Significance of Multimodel forecasts – Hypothesis Testing 

 To ensure that the improved RPSS  exhibited by the multimodel schemes, M-1-M-4, 

is statistically significant over the skill of ECMWF, we perform detailed nonparametric 

hypothesis tests [Hamill, 1999] by testing the null hypothesis that RPS  of a multimodel 

scheme is equal to RPS of ECMWF in forecasting precipitation at each grid point. Results 

from the hypothesis tests, the percentiles of the observed test statistic 
A B

RPS RPS− on the 

constructed null distribution, are plotted on the United States map as shown in Figure 3.3 to 

identify grid points showing significant improvement from multimodel combination. Further, 

Tables 3.3 summarize the results from hypothesis tests across the six multimodels. Entries in 

the upper triangle in Tables 3.3 provide the number of grid points having the percentiles of 

observed test statistic between 0.9-1 on the constructed null distribution. Similarly, results 

from the same hypothesis tests are also summarized in the lower triangle between the two 

models indicating the number of grid points over which the percentiles of the observed test 

statistic fell between 0-0.1 on the constructed null distribution. The best-performing model in 

terms of increased number of significant grid points is underlined by its column entry.  In 

addition to this, Table 3.4 summarizes the results for the same hypothesis test, after dropping 

grid points with RPSS  of both models being negative.  
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 Figure 3.3 shows the relative performance of six multimodel combination schemes 

over the best individual model, ECMWF, in forecasting winter precipitation over the entire 

United States.  From Figure 3.3a and Table 3.3, 71 (2) grid points have the percentiles of the 

test statistic falling between 0.9-1(0- 0.1) which indicate that M-1(ECMWF) performs better 

than ECMWF (M-1) in those grid points by rejecting the null hypothesis that the difference 

in RPS  between the ECMWF and  M-1 is zero for a significance level of 10%.   A triangle 

symbol is shown in Figure 3.3 to indicate the grid points where the multimodel is performing 

better than climatology. These grid points are obtained after dropping the grid points with 

RPSS  of both models being negative. For example, there are 26 grid points where the 

multimodel M-1 has RPSS  that is greater than ECMWF and is positive, indicating that the 

M-1 is performing better than climatology in those grid points. For the remaining 45 gird 

points though the percentile of the test statistic is between 0.9 – 1, the multimodel is still 

poorer than climatology.  

Among the multimodels, M-3 and M-4 perform better than the rest of the 

multimodels. M-3 and M-4 use same weights (developed using average NDJF precipitation) 

for all the four months. From Table 3.3, we also infer that the performance of MM-OS is 

equally good in predicting winter temperature. Comparing the performance of M-3 and MM-

OS, we infer that in 20 (13) grid points MM-OS (M-3)’s  RPS is statistically significant than 

the  RPS  of M-3(MM-OS) indicating that combining models purely based on their long-

term skill seem to be a good strategy in multimodel combination. Similar observation is 

made from the results in Chapter 2 for predicting winter temperature. However, among these 
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grid points, after dropping grid points with RPSS  of both models being negative, then we 

result with 9(6) grid points that show the RPS of MM-OS (M-3) being statistically 

significant than the  RPS  of M-3 (MM-OS). This indicates M-3’s better performance is 

more in grid points exhibiting positive RPSS . The comparison of all multimodel schemes 

(M-1 – M-4) with MM-OS for grid points where at least one model’s  RPSS  is greater than 

zero is shown in Table 3.4. It is evident that the multimodel schemes proposed in this study 

have better performance in grid points exhibiting positive RPSS .  

 

3.4.3 Comparison of Brier Score between Multimodels and Individual Models 

In this section we compare the average Brier Score of multimodel forecasts with the 

average Brier Score of individual model forecasts. Brier Score summarizes the squared error 

in categorical forecast probabilities. It can be decomposed into three components, reliability, 

resolution and uncertainty [Wilks, 1995]. For BS to be close to zero, it is important that the 

reliability term should be close to zero and resolution term should be large.  Figures 3.4a and 

3.4b provide the reliability, resolution and BS for ECMWF and all the six multimodels in 

forecasting below normal and above normal categories of precipitation. From Figures 3.4, we 

infer that all multimodels have smaller reliability score in comparison to the reliability scores 

of individual model under both tercile categories, thereby contributing to the reduction in BS . 

In terms of resolution, ECMWF has smaller resolution score than the resolution scores of 

other multimodels in forecasting precipitation. Similarly, we infer that M-1 and MM-OS 

have the smallest BS which results primarily from smaller reliability score and larger 
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resolution score under below-normal and above-normal categories. M-1 and MM-OS 

perform better than individual model as well as over the rest of the multimodels in 

forecasting winter precipitation over the continental U.S. In the next section, we discuss in 

detail improvements resulting from multimodel combination from a regional perspective over 

the continental U.S. particularly for grid points that exhibit positive RPSS . 

 

3.4.4 Improvements in multimodel precipitation forecasts: Regional Analysis 

 Figure 3.5 shows the skill, expressed as RPSS , in forecasting NDJF precipitation with 

each grid point’s RPSS  being indicated by the best performing individual model or the 

multimodel. Table 3.5 shows the number of grid points with each individual model and 

multimodel having the highest RPSS over 187 grid points shown in Figure 3.5. Figure 3.5 

and Table 3.5 summarize the performance of models only if the RPSS of at least one model 

is greater than zero at a given grid point. From Figure 3.5 and Table 3.5, we can clearly see 

that multimodels proposed in the study (M-1, M-2, M-3 and M-4) perform better than the 

individual models and over the existing multimodel combination techniques (MM-P and 

MM-OS). Among the multimodels, M-2 seems to be best performing multimodel in 

forecasting precipitation. Under M-2 scheme, the skill of the precipitation forecasts from 

each model in the calibration period is obtained by identifying similar ENSO years from the 

forecasted Nino3.4 of the corresponding ocean model. 

 From Figure 3.5, we understand that the improvements resulting from multimodel 

combination in forecasting NDJF precipitation predominantly lies over the South and Eastern 
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United States and some regions over the Western U.S, particularly over California and 

Arizona. From Figure 3.5, we can understand that there is a significant improvement in 

RPSS  of multimodel proposed in the study (shown as open circles) over Eastern, Southwest 

regions of the United States and over Northwest Mexico. The reason for this improved 

performance over these regions is primarily due to strong correlation between ensemble 

mean of the individual models with the observed precipitation under ENSO conditions. 

  

 3.5 Summary and Findings 

The methodology to combine multiple GCMs that is proposed in Chapter 2 is 

evaluated for retrospective winter precipitation forecasts over the United States. Considering 

forecasted Nino3.4 as the primary predictor influencing the winter precipitation, the study 

combines five CGCMs with climatological ensembles to develop multimodel forecasts over 

the continental United States. Six different multimodel schemes are developed based on an 

adaptive forecasting scheme for the period of 1997 – 2005 by training the retrospective 

forecasts from 1960 – 1996. The skill of the forecast are evaluated by using the forecasts 

from all the winter months (N, D, J and F) and their performance is compared with individual 

models based on various verification measures such as rank probability skill score, reliability 

and resolution scores and brier score. The improvements resulting (from reduction in RPS ) 

from multimodel combination over individual model is also tested through a rigorous 

nonparametric hypothesis testing based on resampling. In this study we developed the 

forecast for each month by identifying similar neighbors from the calibration period of 36 

years. In addition to this, the developed methodologies use fixed number of neighbors to 
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evaluate the skill of the model. The study clearly shows that the proposed multimodel 

combination algorithm perform better than individual models and over multimodel 

combinations based on pooling and long-term skill in the forecasting context.  

The analyses presented in Chapter 2 and Chapter 3 show that the combining 

multimodels contingent on the dominant predictor state is an attractive strategy in improving 

the skill of multimodel forecasts. The improved reliability in multimodel forecasts results in 

reduced number of false alarms and missed targets in the categorical forecasts. Thus, 

applying multimodel forecasts would reduce uncertainty from individual models which could 

lead to better decisions and could also improve public confidence in utilizing seasonal 

forecasts for water management application. Chapter 4 presents the applications of the 

multimodel combination methodology in improving the water management of Falls Lake 

Reservoir in the Neuse River Basin, NC.  
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Table 3.1: Details of coupled GCMs considered in the study. All models span from longitude 
(123.75W to 66.25W) and latitude (25N to 45N) resulting in a total of 187 grid points. 
Retrospective forecasts of precipitation and Nino3.4 from five CGCMs are used for 
multimodel combination. 
 

Retrospective Forecasts 
Ocean Model Atmospheric Model Source Reference 

HOPE IFS CY31R1 ECMWF Balmaseda et al. [2008] 
HadGEM2-O HadGEM2-A UKMO Collins et al. [2008] 

OPA8.2 ARPEGE4.6 
 

MF Daget et al. [2009] 

MPI-OMI ECHAM5 IFM-GEOMAR Keenlyside et al. [2005] 
OPA8.2 ECHAM5 CMCC-INGV Alessandri et al. [2009] 
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Table 3.2: List of multimodel schemes considered for the study. Multimodel schemes shown 
here are different from the multimodel schemes developed in Chapter 2. 
 

Multimodel  
Schemes 

Brief Description 

M-1 Multimodel combination using weights based on the skill under 
ENSO years in the calibration period for each month (N, D, J, and 
F) separately. ENSO conditions identified based on the multimodel 

Nino3.4 forecasts. 
M-2 Multimodel combination using weights based on the skill under 

ENSO years in the calibration period for each month (N, D, J, and 
F) separately. ENSO conditions identified based on the individual 

model Nino3.4 forecasts. 
M-3 Multimodel combination using weights based on the skill under 

ENSO years in the calibration period for the winter season (NDJF). 
ENSO conditions identified based on the multimodel Nino3.4 

forecasts. 
M-4 Multimodel combination using weights based on the skill under 

ENSO years in the calibration period for the winter season (NDJF). 
ENSO conditions identified based on the individual model Nino3.4 

forecasts. 
MM-P Multimodel combination using pooled ensembles. 

MM-OS Multimodel combination using weights based on the overall skill in 
the calibration period.  
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Table 3.3: Number of grid points showing significant difference in RPS  in forecasting 
precipitation based on the hypothesis testing between ECMWF and various multimodel 
schemes given in Table 3.2. Entries in the upper (lower) triangle of the table summarize the 
number of grid points having the percentile value of the test statistic 

A B
RPS RPS−  between 

0.9-1 (0-0.1) in the resampled null distribution for hypothesis testing between Model A and 
Model B. For values in the upper (lower) triangle, Model A (Model B) is indicated by its row 
entry and Model B (Model A) is indicated by its column entry.  The best-performing model 
in terms of increased number of significant grid points is underlined by its column entry.    
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Models ECMWF M-1 M-2 M-3 M-4 MM-P MM-OS 

ECMWF  71 73 74 75 38 78 

M-1 2  17 22 19 0 26 

M-2 3 21  24 22 2 24 

M-3 1 23 21  16 3 20 

M-4 2 29 27 29  5 32 

MM-P 8 97 90 100 95  112 

MM-OS 2 17 15 13 18 2  
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Table 3.4: Number of grid points showing significant difference in RPS  in forecasting 
precipitation based on the hypothesis testing between ECMWF and various multimodel 
schemes given in Table 3.2. Values presented here are based on grid points where the RPSS
of at least one model is greater than zero. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models ECMWF M-1 M-2 M-3 M-4 MM-P MM-OS 

ECMWF  26 25 26 24 5 25 

M-1 1  8 10 7 0 12 

M-2 1 3  8 6 0 7 

M-3 1 9 10  3 0 9 

M-4 1 12 13 14  1 15 

MM-P 5 59 56 58 54  72 

MM-OS 1 5 7 6 7 0  
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Table 3.5: Number of grid points with each individual CGCM and multimodels having the 
highest RPSS  in forecasting winter precipitation. 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Models Precipitation 
UKMO 4 
ECMWF 5 
FRANCE 10 
GEOMAR 6 
CMCC 0 
M-1 8 
M-2 18 
M-3 8 
M-4 10 
MM-P 6 
MM-OS 11 
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Figure 3.1: Skill expressed as mean squared error between the forecasted Nino3.4 from 
various ocean models and observed Nino3.4 for the lead time of four months. Retrospective 
forecasts of Nino3.4 start on 1st November of each year. 
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Figure 3.2: Box plots of RPSS (3.2a) and MSSS (3.2b) in forecasting winter precipitation for 
the CGCMs and various multimodel schemes given in Table 3.2. 
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Figure 3.3: Performance comparison of multimodels with the best individual model, 
ECMWF, in forecasting U.S winter precipitation. The background color indicates the 
percentile of the test statistic (

MMECMWF
RPSRPS − ) obtained from the resampled null 

distribution that represents
MMECHMWF

RPSRPS = . A lower (higher) value of the percentiles 
from the test statistic indicates ECMWF (multimodel) performs better than multimodel 
(ECMWF). A triangle sign indicates that RPSS from multimodel is positive at that grid point.  
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ECMWF Vs MM-P ECMWF Vs MM-OS 

(a) (b) 

(c) (d) 

(e) (f) 



 89 

0.200

0.210

0.220

0.230

0.000

0.005

0.010

0.015

0.020

0.025

ECMWF M-1 M-2 M-3 M-4 MM-P MM-OS

B
ri

er
 S

co
re

R
el

ia
bi

lit
y 

an
d 

R
es

ol
ut

io
n

Models

Reliability

Resolution

Brier Score

0.220

0.225

0.230

0.235

0.240

0.245

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ECMWF M-1 M-2 M-3 M-4 MM-P MM-OS

B
ri

er
 S

co
re

R
el

ia
bi

lit
y 

an
d 

R
es

ol
ut

io
n

Models

Reliability

Resolution

Brier Score

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Performance comparison of individual model, ECMWF with various 
multimodels based on Brier Score and its components – reliability and resolution – in 
predicting below normal precipitation (Figure 3.4a) and above normal precipitation (Figure 
3.4b) events. 
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Figure 3.5: Performance of multimodels and individual models, expressed as RPSS , in 
forecasting NDJF winter precipitation. Grid points with no markers, open circle and triangle 
indicate the best performing model (having the highest RPSS ) at that grid point being 
individual CGCMs (all the five models in Table 3.1), multimodels proposed in this study (M-
1, M-2, M-3 and M-4) and existing multimodel techniques  (MM-P and MM-OS) 
respectively. 
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CHAPTER 4 

 

Improved Drought Management for Falls Lake Reservoir: Role of Multimodel 

Streamflow Forecasts in Setting up Restrictions 
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4.1 Introduction 

The multiyear drought during 1998–2002 caused severe hardship and economic 

losses across most of North Carolina [Weaver 2005]. Several local and statewide water 

supply systems experienced record shortages and many communities operated under 

mandatory water restrictions from 2001 to 2003 [Weaver 2005]. A similar situation existed 

during the 2005 and 2007 droughts throughout the state [http://www.ncdrought.org]. 

Economic losses in North Carolina for the year 2002 were estimated to be $398 million for 

agriculture and $15–$20 million for municipalities [Weaver 2005]. Unless closely monitored 

using various sector-specific indicators, the impacts of droughts are progressive, persistent, 

and pervasive over a large area. Thus, updating drought management plans not only requires 

monitoring but also needs to include prognostic information about the streamflow potential in 

the upcoming seasons to develop proactive management measures such as restrictions and 

hedging. This study combines 3-month ahead climate information based multimodel 

streamflow forecasts with a reservoir management model that can take ensembles of 

reservoir inflows to invoke prescribed levels of restriction for water supply.  

Droughts  experienced by regional water supply systems often result from reduced 

streamflow/precipitation potential, which could occur due to varying exogenous climatic 

conditions such as tropical sea surface temperature (SST) [Ropelewski and Halpert 1987; 

Piechota and Dracup 1996; Barlow et al. 2001]. As water supply systems experience 

shortages in supply owing to (inflows) natural variability, resulting deficits are further 

exacerbated by increased demand resulting from urbanization and population growth in the 

region [Lyon et al. 2005; Vorosmarty et al. 2000]. For instance, in the Triangle Area in North 

http://www.ncdrought.org
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Carolina, the demand has grown by about 20–62% from 1995 to 2000 [Weaver 2005] 

resulting in three severe droughts (summers of 2002, 2005, and 2007) in the past 5 years. 

Given that most of the water supply systems are multipurpose, operating these systems to 

meet the increased demand under reduced streamflow availability could be very challenging. 

The main intent of this study is to apply climate information based streamflow forecasts from 

three models— parametric regression, semiparametric resampling, and multimodel (obtained 

by combining the former two models)—for setting up restrictions on water supply releases 

from the Falls Lake Reservoir in North Carolina. By performing retrospective reservoir 

analyses, the study basically compares the forecasted end of the season target storage 

probabilities with the climatological probabilities to set up restrictions on water supply 

releases.  

A brief overview of the importance of climate forecasts in reservoir management is 

discussed in section 4.2. Following that, the reservoir simulation model developed by 

Arumugam et al. [2003] is detailed (section 4.3), which uses seasonal streamflow forecasts in 

the form of ensembles, to quantify the reliability of meeting desired releases and the end of 

the season target storage. Next, the climate information based seasonal streamflow forecasts 

developed by Devineni et al. [2008] are briefly presented in section 4.4 and are utilized to 

perform retrospective reservoir analyses to set up restrictions during drought conditions. The 

following sections 4.5 and 4.6 discuss the potential utility of multimodel forecasts and the 

proposed reservoir simulation framework for other systems. Finally, the findings of the study 

are summarized in section 4.7 along with conclusions. 
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4.2 Background 

The National Weather Service River Forecasting System (NWSRFS) issues 3-month 

lead probabilistic forecasts of streamflow for many river basins in the contiguous United 

States from 12 river forecasting centers. The Ensemble Streamflow Prediction system from 

NWSRFS uses conceptual hydrologic models to issue streamflow forecasts based on the 

current soil moisture, river, and reservoir conditions by assuming that past meteorological 

events will recur in the future with historical probabilities [Schaake and Larsen 1998]. Recent 

investigations focusing on the teleconnection between conditions in SSTs and regional/ 

continental hydroclimatology show that interannual and interdecadal variability in exogenous 

climatic indices modulate the continental scale rainfall patterns [Ropelewski and Halpert 

1987] and streamflow patterns at both global and hemispheric scales [e.g., Dettinger and 

Diaz 2000] as well as at regional scales [e.g., Piechota and Dracup 1996; Guetter and 

Georgakakos 1996].  

Seasonal streamflow forecasts based on exogenous climatic indices can be obtained 

using both dynamic and statistical modeling approaches. The dynamic modeling involves 

coupling a hydrological model with a regional climate model that preserves the boundary 

conditions specified by the general circulation model (GCM) outputs by considering the 

topography of the region [e.g., Leung et al. 1999]. However, uncertainty propagation from 

the coupling of these models [Kyriakidis et al. 2001], representation of physical processes, 

and low predictive skills of GCM outputs at longer lead time (12–18 months) severely limits 

the utility of these forecasts for water management. The alternate approach— developing 

statistical models—focuses on the estimation of conditional distribution of streamflow based 
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on current conditions of snow pack, streamflow volume, and SST anomalies to issue seasonal 

and long-lead streamflow forecasts. Various statistical techniques have been employed for 

this purpose ranging from simple parametric regression models [e.g., Hamlet and 

Lettenmaier 1999], to complex methods such as linear discriminant analysis [Piechota et al. 

2001], spatial pattern analysis [Sicard et al. 2002], and semiparametric resampling strategies 

[Souza and Lall 2003].  

Efforts to develop seasonal streamflow forecasts using tropical/extra-tropical climatic 

conditions and catchment state have resulted in improved management of water supply 

systems [Hamlet and Lettenmaier 1999; Yao and Georgakakos 2001; Hamlet et al. 2002]. 

Using retrospective streamflow forecasts for the Columbia River [Hamlet and Lettenmaier 

1999; Hamlet et al. 2002], studies have shown that long-lead streamflow forecasts can be 

effectively utilized in operating reservoirs to obtain increased annual average hydropower. 

Similarly, coupled hydraulic–hydrologic prediction models with robust forecast-control 

methodologies could also result in increased resiliency of reservoir systems to climate 

variability and change [Georgakakos et al. 1998]. As seasonal streamflow potential changes 

depending on climatic and land surface conditions, policy instruments and operational rule 

curves could also be developed to support adaptive water management [Arumugam et al. 

2003]. 

Though the utility of climate forecasts in improving water management has been 

shown in the literature, it is widely acknowledged that numerous challenges/gaps exist in the 

real-time application of climate forecasts by water managers [Pagano et al. 2001; Hartmann 

et al. 2002; Steinmann 2006]. The primary challenges are: (1) low confidence on the skill of 
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the forecast; (2) communication of probabilistic forecasts; and (3) non availability of decision 

framework and policy instruments for application. Further, even if the skill of the climate 

forecasts is significant in a given region, public perception of forecasts particularly goes 

down due to false alarms (forecast suggests drought, but no drought occurs) and missed 

targets (forecast suggests normal, but drought occurs) [Steinmann 2006]. For a detailed 

discussion on the use of climate forecasts in the context of drought management, see 

Steinman [2006]. It has been widely shown in the literature that multimodel 

climate/streamflow forecasts ensure better correspondence between the forecasted 

probabilities and their observed relative frequencies [Barnston et al. 2003; Doblas-Reyes et 

al. 2000; Devineni et al. 2008] resulting in reduced false alarms and model uncertainty. The 

main goal of this study is to understand whether application of multimodel streamflow 

forecasts results in invoking better management decisions (in comparison to individual model 

forecasts) such as restrictions for improving water allocation during droughts. 

 

4.3 Falls Lake System Details and Management Model Development 

Falls Lake is a man-made reservoir in the upper Neuse River, N.C. (Figure 4.1) 

operated by the U.S. Army Corps of Engineers (USACE) since December 1983 to serve five 

purposes: (1) flood control; (2) water supply; (3) water quality; (4) recreation; and (5) fish 

and wildlife. The lake is long and narrow in shape and extends 28 miles up the Neuse River. 

Three rivers—the Eno, Flat, and Little Rivers—provide the majority of inflows. As a water 

supply reservoir, Falls Lake provides Raleigh, by contract, with up to 100 million gallons of 

water a day. Due to the population growth in the city of Raleigh and in the suburbs served by 
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Falls Lake over the last decade, storage conditions in Falls Lake have been increasingly 

stressed recently resulting in three severe droughts (2002, 2005, and 2007) over the last 5 

years. Current drought management and monitoring activities are coordinated by the North 

Carolina Drought Management Advisory Council (NCDMAC) in coordination with various 

state and federal agencies in North Carolina. 

 

4.3.1 Data and Operational Constraints 

For operational purposes, reservoir storages of Falls Lake are divided into various 

pools: (1) flood control pool (controlled storage, 251.5–264.8 ft and uncontrolled storage, 

264.8–289.2 ft); (2) Conservation pool (251.5–236.5 ft) with two separate storage accounts 

for water quality and water supply; and (3) sediment dead storage (236.5–200 ft). All 

elevations (in feet) are based on the North America Vertical Datum of 1927 (NAVD27). 

Both water supply and water quality releases are met based on the storages in conservation 

pool by devoting 39% of the conservation pool storage volume to water supply and the 

remaining 61% to water quality purposes. 

The USACE uses 251.5 ft (131.395 acre-ft) as the operational rule curve or the target 

pool level, which is obtained based on the average monthly flows recorded at Falls Lake 

[http://epec.saw.usace.army.mil\Falls_WC_Plan.pdf]. Thus, the USACE tries to ensure the 

reservoir level at operational rule curve at the beginning (July 1) and end (September 30) of 

the summer season. During wet summer years (e.g., 1996 and 1999), the above-normal 

inflows force the reservoir level above 251.5 ft posing operational constraints on flood 

control and recreation. Under such situations, the USACE releases additional water to 

http://epec.saw.usace.army.mil
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maintain the operational rule curve to reduce the downstream flood risk. Normal outflows for 

protecting downstream water quality in the Neuse River are 254 cubic feet per second (cfs). 

However, reservoir outflows during below-normal storage conditions could be reduced to 

100 cfs (April to October) and 60 cfs (November to March) after consultation with all 

stakeholders. Additional information such as monthly releases, stage–storage, and stage–

water spread area relationships was obtained from USACE to develop the Falls Lake 

simulation model, which is described in detail in the following section. 

 

4.3.2 Falls Lake Reservoir Model Formulation 

Given seasonal (T-month lead) ensemble inflow forecasts qj
k and  initial reservoir 

storage, S0
*, at the beginning of the allocation period (for these analyses, July 1) with j=1,2, . . 

. ,N denoting the forecast years (N=total number of years of retrospective forecasts), and 

k=1,2,..., K index representing a particular member out of K ensembles the Falls Lake 

simulation model determines the seasonal releases R1 and R2 representing water supply and 

water quality allocations, respectively, with specified reliabilities of (1-pf1) and (1-pf2), where 

pf implies failure probability. In addition, the water allocation model incorporates an end of 

the season target storage, ST*  (T denoting the forecast lead time in months) that is associated 

with a failure probability ps. For instance, in the case of Falls Lake, ST*  corresponds to the 

storage of the reservoir at 251.5 ft operational rule curve. The simulation model could also 

estimate the probabilistic constraints [in Eqs. (4.7) and (4.8)], reliability of supply for each 

use [(1-pf1) and (1-pf1)], and ps given the specified demand R1
* and R2

*, for each use along with 
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ST*  and S0
*. Using the basic continuity equation, the seasonal storage equations for each 

ensemble member k are updated for the forecasting year j 

 

)( ,2,1
*
,0, jj

k
j

k
jj

k
jT RREqSS +−−+=       … (4.1) 

 

where seasonal storage equations are constrained so that the storage is between the minimum 

and maximum possible storage, Smin and Smax, respectively  
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k
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k
T ==      … (4.2) 

 

In the event, the end of season storage falling below the minimum possible storage, 

Smin, we encounter deficits, SDj
k, which needs to be distributed among the users as restrictions  
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The restrictions, wi, for each user could be specified exogenously as a fraction, αi, of 

the target release, Ri. The restriction fraction, αi, could also be allowed to vary depending on 
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the restriction level. Evaporation, k
jE  is computed as a function of average storage during the 

season using the water spread area and storage information of the reservoir  

 

2)2/)(( *
01

δδψ k
Tj

k
j SSE +=         … (4.5)  

 

where ψj = seasonal evaporation rate and δ1 and δ2 = coefficients describing the area–storage 

relationship. Spline interpolation was employed for obtaining the water spread area 

corresponding to the average season storage computed for each ensemble. It is important to 

note that the evaporation is evaluated implicitly for each streamflow member in the 

ensemble. The estimated average lake evaporation rate (ψj) = 0.996 ft/season (after adjusting 

with the pan coefficient of 0.7) for the summer, which is obtained from the monthly pan 

evaporation recorded at Chapel Hill, N.C.  

The objective is to determine Ri, such that the releases for ith use is bound by the 

minimum and maximum demand for the season  

 

max,min, iii RRR ≤≤         … (4.6) 

 

Similarly, the study also enforces the probability of having the end of the season storage, ST, 

less than the target storage, *
TS , to be small represented by its failure probability (Prob), ps, 

using  
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Prob sTT pSS ≤≤ )( *         … (4.7) 

 

To ensure the obtained release, Ri, being met with high reliability, (1-pfi), the model includes 

 

Prob fiii pww ≤≤ )( *         … (4.8) 

 

where *
iw , specified by the user, denotes the maximum restriction that could be enforced for 

each user as part of the restrictions. This constraint basically accounts for the uncertainty in 

releases. Thus, the obtained seasonal release may be between the desired bounds Ri,min and 

Ri,max, but the specified release Ri has a small probability, pfi, of facing restrictions being less 

than *
iw . The restriction wi is calculated for each ensemble member k using the restriction 

fraction, αi, based on Eq. (4.4). For all the analyses, *
iw =0 is assumed.  

Looking across all the traces in the ensemble, the model computes the following 

probabilities to evaluate Eqs. (4.7) and (4.8):  

1. Prob )( *
ii ww ≤ is estimated from the number of traces in which )( *

ii ww ≤  out of total 

number of traces, N. This includes the calculation of the failure to meet the two specified 

demands, water supply and water quality.  

2. Prob )( *
TT SS < is obtained from the number of traces in which )( *

TT SS <  out of total 

number of traces, N.  

N=500 ensembles are considered that represent the average seasonal streamflow during the 

summer [July, August, and September, (JAS)]. In this study, instead of obtaining R1 and R2 
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for the specified constraints, the water supply release (in Figure 4.2), *
,1 jR  , and water quality 

release, *
,2 jR  , (with the average flow being equal to 254 cfs or 100 cfs) are specified to 

estimate the probabilistic constraints in Eqs. (4.7) and (4.8). The above-mentioned 

probabilities are then computed across the ensembles to evaluate the above listed constraints. 

Though the model is presented in a simulation framework, it could be extended into an 

optimization-simulation model by including compensations under restrictions along with a 

detailed contract structure [Arumugam et al. 2003].  

 

4.3.3 Reservoir Model Verification 

Prior to performing the retrospective reservoir analyses using the streamflow 

forecasts, model verification was performed from 1991 to 2005 by comparing the reservoir 

model’s ability to simulate the observed end of September storages. The model simulations 

were performed by forcing the model with the observed flows during JAS and initial storages 

in July to determine the end of the September storages by allocating the reported releases for 

water quality and water supply. Basically, this verification provides a check on the mass 

balance of the reservoir model as well as in its ability to model the conservation storage pool 

into two separate accounts (i.e., water supply and water quality storages). Figure 4.2 shows 

the observed and model predicted stages at the end September—the end of the season stage. 

The observed and modeled storages obtained from the reservoir model were converted into 

stages using the available stage–storage relationship for Falls Lake. Figure 4.2 clearly shows 

that the developed model is quite reasonable in predicting the observed September storages 



 103

upon simulation with observed flows and reported releases. This gives the confidence in 

employing the simulation model presented here for further analyses that utilize the seasonal 

streamflow forecasts from three models for invoking restrictions. 

 

4.4 Seasonal Streamflow Forecasts for Falls Lake 

This section briefly describes the development of streamflow forecasts for Falls Lake 

during the summer season. For additional details on the streamflow forecasting model, 

predictor identification, and the skill of cross-validated forecasts, see the forecasting paper 

[Devineni et al. 2008] and the technical report [Sankarasubramanian et al. 2006] (available 

online: http://www.stat.ncsu.edu/library/papers/mimeo2595.pdf). Seasonal streamflow 

forecasts were developed for the summer season based on April, May, and June (AMJ) 

climatic information, denoted by anomalous SST conditions in the tropical Pacific, tropical 

North Atlantic, and over the North Carolina coast.  

Predictor identification using Spearman rank correlation was performed on the 

International Research Institute for Climate and Society (IRI) data library between the global 

SSTs [http:// iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/ .ssta/] and the 

seasonal streamflows. Grid points of SSTs (black rectangles) in Figure 4.3(a) that have 

significant correlation with the predictand were considered as predictors in developing the 

forecasts. The correlations shown in Figure 4.3(a) are for 78 years of flows. Thus, if the 

absolute value of correlation is greater than 0.22, then one expects the correlation between 

the predictor and predictand to be statistically significant (at 5% confidence level). As the 

SST grid points were spatially correlated, principal component analysis was performed and 

http://www.stat.ncsu.edu/library/papers/mimeo2595.pdf)
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the first two principal components (explained 73% of total variance exhibited in SSTs) were 

retained for model development. Spring season (April–June) streamflow and the previous 

month’s streamflow (June alone) were also considered as surrogate predictors to incorporate 

land surface conditions such as soil moisture. But, the correlations between the previous 

month/seasonal flows and the summer flows are statistically not significant.  

Two nonlinear models, parametric regression (with the predictand being cube-root of 

the flows) and semiparametric resampling models [Souza and Lall 2003], were considered in 

developing multimodel forecasts. With regard to individual model selection, one can even 

consider the land surface model in developing streamflow forecasts. As the skewness of the 

recorded summer flows is 1.9, cube-root transformation was applied for developing the 

parametric regression model. With regard to individual model selection, one can even 

consider the land surface model in developing streamflow forecasts. Studies have considered 

objective criterion along with stepwise regression to select the best combination of nonlinear 

models in developing multimodel forecasts [Regonda et al. 2006]. In this study, the resulting 

seasonal streamflow forecasts from parametric regression and semiparametric resampling 

models were combined using a multimodel combination algorithm to develop improved 

seasonal streamflow forecasts [Devineni et al. 2008, Sankarasubramanian et al. 2006].  

This study employed seasonal streamflow forecasts from three models—regression, 

resampling, and multimodel—for improving the drought management of Falls Lake. The 

adaptive forecasts for the period 1976–2005 were developed by training the model using the 

observed flows and predictors available from 1928 to 1975. The correlations between the 

observed flows and the ensemble mean of the seasonal streamflow forecasts are 0.44, 0.49, 
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and 0.51 for resampling, regression, and multimodel, respectively, which are statistically 

significant for the 30 years of validation. Figure 4.3(b) shows the adaptive forecasts from the 

three models for the period 1991–2005. The forecasts (in Figure 4.3(b)) are shown as 

conditional mean, which is obtained from the 500 ensembles of the conditional distribution 

of streamflows developed for each year. Representing the conditional distribution with large 

ensembles will only lead to better estimates of probability constraints [Eqs. (4.7) and (4.8)] 

without improving the skill of the probabilistic forecasts. For instance, with regard to the 

parametric regression model, the actual information content in the forecasts is purely 

determined by its conditional mean and conditional variance. The null forecast, the 

climatological ensembles, whose ensembles was also considered were developed by simple 

bootstrapping of JAS flows. This approach is reasonable, as there is no year-to-year 

correlation between summer flows at Falls Lake. These streamflow forecasts and the initial 

storages observed on July 1 were provided as inputs to the reservoir management model to 

estimate the reliability of meeting the water supply releases (in Figure 4.2) and minimum 

water quality releases as well as to estimate the probability of end of September storage 

being below the target storage (corresponding to target stage 251.5 ft) [Prob )( *
TT SS < ].  

 

4.5 Results and Analyses 

The following analyses show the utility of streamflow forecasts in predicting the 

below-normal storage conditions that could result by releasing the required water supply and 

water quality releases. This is different from identifying the streamflow forecasts as below 

normal, as future reservoir storages need to account for the initial conditions in July as well 
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as lake evaporation, which in turn depend on unknown future storages. Thus, the analyses 

presented here utilized the streamflow forecasts from three models [Figure 4.3(b)] to obtain: 

(1) the reliability of supplying the seasonal demand for water quality and water supply uses 

and (2) probability of having end of September storage less than the target storage [Prob

)( *
TT SS < ]. Based on the obtained target releases from each model, the performance of 

streamflow forecasts from each model is validated in predicting future storage conditions by 

combining reservoir releases with the observed flows. The study also identified possibilities 

for imposing restrictions based on the end of the season target storage probabilities estimated 

by each forecasting model. Predicting below-normal storage conditions well in advance 

would help in imposing restrictions before the summer season, which could improve the 

resilience of the system during prolonged droughts. 

 

4.5.1 Reliability of Meeting the Target Releases 

The proposed simulation model [Eqs. (4.1) – (4.8)] could be employed in one of the 

following two ways for a given use: (1) obtain the release for the specified reliability; or (2) 

obtain the reliability for the specified target release. The first approach is more useful when 

the seasonal demand is more than the initial storage and the forecasted inflows, whereas the 

latter is more useful when the initial storage and the forecasted inflows are more than the net 

seasonal demand. On the other hand, if the initial storage itself could meet the net seasonal 

demand including lake evaporation, then the reliability of meeting target releases is 100%. 

Under those situations, there is limited/no use of forecasts, as the available storage itself 

ensures the total seasonal demand. The required seasonal release for water quality use is 
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43560 acre-ft (254 cfs). Under severe droughts, this could be reduced to 18,248 acre-ft (100 

cfs) with the approval of NCDMAC.  

Without constraining the end of the season target storage [Eq. (4.7)], the initial 

storage itself was able to supply the required water quality release of 254 cfs and the required 

water supply releases for all 15 years considered for analyses. Figure 4.4 shows the modeled 

storages and stages for the two scenarios of water quality releases. The modeled storages and 

stages were obtained by combining the observed streamflows during JAS with the specified 

water quality and water supply releases. As seen in Figure 4.4, the modeled end of September 

storages were greater than 23,073 acre-ft (236.5 ft) — the storage at the bottom of 

conservation pool. Thus, the initial storage itself was able to supply the entire water quality 

and water supply releases each year.  

All the streamflow forecasting models guaranteed the target release with 100% 

reliability, thereby limiting the use of forecasts when the end of the season target storage is 

not constrained. In other words, it is important that the total water demand (water supply and 

water quality releases along with evaporation losses) over the forecast lead time needs to be 

constrained by the available storage. Under those conditions, the forecasts are useful in 

assigning the reliability for various uses. If the initial storages do not constrain the net 

demand, then there is limited/no use of forecasts in quantifying the future storage scenarios. 

Thus, results shown in Figure 4.4 correspond to 100% reliability of supplying the target 

releases with all the streamflow forecasting models suggesting the same release scenarios 

which leaves the forecasts redundant. On the other hand, by enforcing the end of the season 

target storage constraint with ps=0.5, water quality and water supply releases are reduced 
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considerably for a specified reliability of 90%. This shows that the end of the season target 

storage is the binding constraint, which could be effectively used to invoke restrictions even 

though the initial storage may ensure 100% reliability of supplying the total seasonal 

demand. The following analyses shows in detail on how restrictions could be employed 

based on the estimates of Prob )( *
TT SS < obtained from the reservoir simulation model. 

 

4.5.2 End of the Season Target Storage Probabilities 

Given the streamflow forecast ensembles and the initial storage conditions in July, 

one can estimate the Prob )( *
TT SS <  [Eq. (4.7)] that would result upon releasing any of the 

two water quality release scenarios and the corresponding required water supply releases 

shown in Figure 4.2. Figure 4.5 shows the estimates of Prob )( *
TT SS <  where *

TS =131,395 

acre-ft for releasing the water supply demand (in Figure 4.2) and for two water quality 

release scenarios. Thus, the probability estimates shown were obtained from each streamflow 

forecasting model and from climatological ensembles, which were constructed by simply 

bootstrapping JAS stream-flows. Figure 4.5 also shows the observed streamflows in each 

year suggesting their tercile category (Qt < 0.33 percentile — below normal; Qt < 0.66 

percentile — above normal; otherwise — normal). Both Figure 4.5(a) (normal water quality 

releases=254 cfs) and Figure 4.5(b) (drought conditions water quality releases =100 cfs) 

demonstrate that the estimates of Prob )( *
TT SS <  vary depending on the forecasted 

streamflow potential by each model. In comparison, estimates of Prob )( *
TT SS <  from 

climatological ensembles do not vary much, with the values hovering between 0.6 and 0.7 for 
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the normal water quality releases and from 0.5 to 0.6 for the drought conditions water quality 

release. The small variations that are seen under climatological ensembles are primarily due 

to differences in initial storage conditions. Similarly, for the year 1995, the estimates of Prob

)( *
TT SS <  are very low due to increased initial storage with the reservoir’s initial stage at 

255.98 ft, which is almost 4.5 ft above the operational rule curve of 251.5 ft. It is important 

to note that Figure 4.5 does not use the observed streamflows to estimate Prob )( *
TT SS < , as 

the forecasts were developed based on the climatic information available during April–May–

June.  

Figures 4.5(a and b) also show clearly that the estimates of Prob )( *
TT SS <  from 

streamflow forecasts are above the estimates of Prob )( *
TT SS <  from climatological 

ensembles during below normal inflow conditions and vice-versa during above normal 

inflow years indicating the variability in predicted summer flows. This is perfectly in line 

with the expectation that the probability of attaining the target storage will be low (high) 

during below-normal (above-normal) inflow conditions. Thus, the initial storage may ensure 

100% reliable supply during the season, but the estimates of Prob )( *
TT SS <  could be utilized 

to invoke restrictions for improving the end of September storage conditions during below-

normal years. For instance in 2002, estimates of Prob )( *
TT SS <  are between 0.7 and 0.85 

from the three forecasting models with drought condition water quality releases, which 

suggests the need for invoking restrictions even before the beginning of summer season.  

For further analysis on invoking restriction levels, only water quality releases of 100 

cfs, were considered, as that corresponds to minimum acceptable release under drought 
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conditions for meeting the downstream flow requirements. Even with drought condition 

water quality releases, the streamflow forecasts suggest significant risk of falling below the 

target storage in comparison to the climatology, which suggest the need for restrictions on 

water supply releases during below-normal inflow years. Naturally, the amount of restriction 

on water supply could be determined based on the estimates of Prob )( *
TT SS <  suggested by 

each model, whose performance (in terms of reduced releases) could be validated by 

simulation with the observed flows. Issues related to identifying appropriate restriction levels 

and varying restrictions based on the estimates of Prob )( *
TT SS <  are discussed in the 

following sections. 

 

4.5.3 Comparison between Multimodel Forecasts and Individual Model Forecasts 

The estimates of Prob )( *
TT SS <  in Figures 4.5(a and b) differ for each streamflow 

forecast, as the conditional distribution in the form of ensembles exhibit different skill. The 

multimodel forecasts were obtained by combining forecasts from regression, semiparametric 

resampling models along with climatological ensembles by evaluating each forecasting 

model’s skill from the predictor state. The main argument behind multimodel combinations 

based on predictor state space is that if the prediction from a particular model (including 

climatological ensembles) is poor during particular conditions, then it chooses the best 

performing model under those conditions. For additional details, see Sankarasubramanian et 

al. [2006] and Devineni et al. [2008].  
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From Figures 4.5(a and b), it is clearly seen that the estimates of Prob )( *
TT SS <  of 

multimodel forecasts are much closer to the estimates of Prob )( *
TT SS <  from climatology, 

which indicates reduced risk of falling below the target storage. But, the utility of multimodel 

forecasts is more apparent in years 2004 and 2005 with the observed streamflows being 

above normal and below normal, respectively. The estimates of Prob )( *
TT SS <  from the 

regression model for both years suggest a higher risk of not meeting the target storage in 

comparison to the climatological probabilities. On the other hand, the estimates of Prob

)( *
TT SS <  from the resampling model suggest a lower risk of not meeting the target storage 

in comparison to the climatological estimate of Prob )( *
TT SS <  during both years. From 

Figure 4.4, it is clear that the modeled storages in 2004 and 2005 are above and below the 

target storage (131,395 acre-ft), respectively. Thus, if one invoked restriction measures based 

on regression forecasts in 2004 (false alarm) and ended up not invoking any restriction based 

on resampling forecasts in 2005 (missed target), then the individual model forecasts would 

have consequently advocated incorrect management measures. However, in both Figures 

4.5(a and b) multimodel forecasts seem to predict the outcome correctly suggesting that the 

Prob )( *
TT SS <  is lower than the climatology in 2004 and the probability of )( *

TT SS <  is 

higher than the climatological risk in 2005. This suggests that the improved predictability of 

multimodel streamflow forecasts results in improved analyses of future reservoir storage 

conditions.  
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4.5.4 Enforcing Restriction Based on the Estimates of Prob )( *
TT SS <  

The restriction analyses presented in this section are primarily focused on below-

normal years (1991, 1992, 1993, 1994, 1997, 1998, 2002, and 2005) shown in Figure 4.5. 

From reservoir management perspective, as the observed flows are not realized in July, one 

could use the estimates of Prob )( *
TT SS <  to forecast the end of September storage 

conditions. For instance, if Prob )( *
TT SS <  estimated from forecasts is greater than the Prob

)( *
TT SS <  estimated from climatology, then restrictions on water supply flows might be 

required to increase the probability of achieving the target storage. Two different approaches 

are suggested to invoke restrictions to improve the end of the season target storage 

conditions: (1) specify the restriction percent to quantify the reduced risk of not meeting the 

target storage (Figure 4.6) or (2) specify the desired reduction in the risk of not meeting the 

target storage to obtain the corresponding restriction percent (Figure 4.7). 

The analyses presented here consider restrictions that could be invoked on water 

supply releases with the water quality flows corresponding to drought-condition release (100 

cfs). Restrictions on water supply releases could be specified if forecast-based estimates of 

Prob )( *
TT SS <  are greater than that of climatological estimates of Prob )( *

TT SS < . Thus, if 

Prob )( *
TT SS <  from a given streamflow forecasting model (Figure 4.5(b)) is between 0.5 

and 0.6, 0.6 and 0.7, and 0.7 and 0.8, then a restriction fraction of 10, 20, and 30% was 

applied on the quantified water supply release in Figure 4.2. Figure 4.6(a) shows the 

reduction in the estimates of Prob )( *
TT SS <  after applying restrictions based on the estimates 

of Prob )( *
TT SS <  in Figure 4.5(b) (no restrictions). Based on the restricted water supply 
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target, the difference in September storage are obtained (Figure 4.6(b)) by simulating the 

restricted water supply releases and water quality releases with the observed flows.  

From Figure 4.6(a), it can clearly be seen that resampled flows being bootstrapped 

from observed flows do not show any appreciable decrease in the estimates of Prob

)( *
TT SS < . It is important to note that, for year 2005, the estimate of Prob )( *

TT SS <  from the 

resampling model is less than that of climatology and hence the model suggests no 

restriction. This is indicated by the limited difference in the end of September storage, as 

restriction could not be applied based on the estimated Prob )( *
TT SS < , which indicates a 

missed target by the resampling model. As expected, differences in the end of September 

reservoir storage with and without restricted water supply releases clearly show that more 

water is stored by invoking restrictions, which should in turn improve the resilience of the 

system during the fall season. For instance, the improved storage in September 2002 due to 

restrictions is sufficient enough to supply water for an additional 45 days in the fall season. 

Comparing the performance of different streamflow forecasts in improving the end of 

September storage conditions, multimodel forecasts seem to perform consistently better 

because of its ability to predict the below-normal storage conditions better. From Figure 

4.6(b), regression suggests invoking restrictions in 2005, which is in line with the flows 

being below normal, but regression model suggests invoking restriction in year 2004 (see 

Figure 4.5(b)), which is incorrect as the observed flows belong to above-normal category. 

Thus, we would have invoked restrictions in year 2004, resulting in end of September storage 

over the 251.5 ft rule curve target level. Based on the difference in estimates of Prob
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)( *
TT SS <  and the end of September storage conditions obtained by invoking different 

restriction levels, multimodel streamflow forecasts appear to reduce false alarms by 

suggesting restrictions only during below-normal inflow years.  

A different approach to invoke restrictions is by specifying the desired reduction in 

the estimate of Prob )( *
TT SS < . Figure 4.7 provides the suggested restriction percentage from 

each model (Figure 4.7(a)) for 5% reduction in the estimate of Prob )( *
TT SS < . Figure 4.7(b) 

shows the difference in the end of September storages between restricted and unrestricted 

water supply releases for each forecasting model upon simulating with the observed flows. 

The advantage of this approach is that the restriction percentages are actually specified by the 

model based on the desired level of reduction in the risk of not meeting the target storage. 

From Figure 4.7(a), we can clearly see that the multimodel streamflow forecasts seem to 

advocate restrictions that are in between the restriction percentages suggested by resampling 

and regression models (except 1994 and 2002). For instance, in year 2004, though the flow is 

below normal, it is very close to the 0.33 percentile (147 cfs), thus the suggested restriction 

percentage is less than the restriction suggested by regression and resampling models. Figure 

4.7(b) illustrates that the difference in end of September storage from the multimodel varies 

consistently to the change in streamflow potential. For example, in year 2003, the average 

streamflow is only 1.7 cfs, and the restriction suggested by the multimodel is much closer to 

the resampling model. Of course, the initial storage available in July also plays an important 

role in estimating the Prob )( *
TT SS < , but multimodel forecasts, obtained by combining 

forecasts from resampling and regression models reduce the model uncertainty and improve 
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the confidence on streamflow forecasts based water allocation by reducing the number of 

false alarms and missed targets.  

 

4.6 Discussion 

In developing seasonal water allocation policies, initial storages may ensure 100% 

reliability of supplying target releases for the intended uses, thereby limiting the utility of 

climate forecasts. But, ensuring the end of the season target storage (or the operational rule 

curve) will be met with high probability could offer additional insights for invoking the 

appropriate level of restrictions during below-normal inflow years. Further, as the water 

demand increases over the service area (due to urbanization and population growth), the 

initial storage may no longer ensure 100% reliability, which will necessitate the application 

of climate forecasts for invoking restrictions. During above-normal inflow years, as the 

forecasts based Prob )( *
TT SS <  will be lower than its climatological probability, forecasts 

based allocation would avoid unnecessary restrictions if the initial storage is lower than the 

operational rule curve. On the other hand, if the initial storage is higher than the operational 

rule curve, then additional release could be considered to reduce the downstream flood risk 

such that the forecasts based estimates of Prob )( *
TT SS <  are equal to its climatological 

probability. 

The retrospective analysis presented in this study could also be utilized to determine 

the appropriate beginning of the season storage under future increased demand scenarios. 

Using climatological ensembles, one can estimate the increased beginning of the season 
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storage, S0, which needs to ensure the current climatological Prob )( *
TT SS <  will remain 

unchanged even under future release scenarios. Similarly, the proposed formulation also 

could be utilized to develop rule curves that change according to the inflow potential. For 

instance, in Figure 4.6 it is shown that by restricting reservoir releases during below-normal 

years, the Prob )( *
TT SS <  could be increased. To develop rule curves for this scenario, one 

can specify *
TT SS =  and obtain previous month target storages that will ensure the restricted 

releases during the season. It is also important that these rule curves need to be updated 

regularly based on the updated climate information, which is important towards better 

prediction of intraseasonal variability in streamflows [Sankarasubramanian et al. 2008]. 

The main advantage in utilizing multimodel forecasts is in reducing model 

uncertainty by constituting ensembles from multiple models. In the multimodel combination 

scheme of Devineni et al. [2008], higher weight is given to the individual model that 

performs well under similar predictor conditions. For instance, if an individual model 

performs better during El Nino conditions, then higher number of ensembles is drawn from 

that particular model under similar predictor conditions. By combining individual models 

with climatology, one can reduce the overconfidence in individual model forecasts to 

develop multimodel forecasts that have reduced false alarms and missed targets [Devineni et 

al. 2008]. This study clearly shows that employing such multimodel forecasts for season-

ahead water allocation provides a more reliable way to develop appropriate management 

strategies such as invoking (or not invoking) restrictions during below-normal (above-

normal) years. Future studies on climate forecasts application will focus on better 
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management of water supply systems under increased demand potential without resorting to 

capacity expansion and investments on new systems by considering alternate water uses 

(e.g., reclaimed water) and trading. 

 

4.7 Summary and Conclusions 

A reservoir simulation model that uses ensembles of streamflow forecasts is 

presented and applied for allocating water during the summer season (JAS) from the Falls 

Lake Reservoir in the Neuse River Basin, N.C. Given the initial storage at the beginning of 

the season and ensembles of seasonal streamflow forecasts, the simulation model can 

estimate the reliability of the specified target releases and the end of the season target storage 

probability.  

The customized simulation model for Falls Lake was analyzed using JAS seasonal 

streamflow forecasts from three models: parametric regression, semiparametric resampling, 

and multimodel forecasts (obtained from the former two models). The performance of these 

three models in estimating Prob )( *
TT SS <  was evaluated by comparing with the estimates of 

Prob )( *
TT SS <  from climatological ensembles to predict below-normal storage conditions, 

which could help in invoking restrictions for improving storage conditions at the end of the 

summer season.  

Analyses of Falls Lake using the simulation model without constraining the end of 

season target storage showed 100% reliability of meeting target releases, implying that the 

entire seasonal demand could be met purely based on initial storage. This invalidated the 

utility of streamflow forecasts available for the summer season. However, by constraining the 
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system to meet the end of the season target storage, it is clearly shown that the estimates of 

Prob )( *
TT SS <  from forecasts are higher than the climatology estimates during below-

normal summer inflow years and vice versa during above-normal inflow years, thereby 

indicating the utility of forecasts in invoking restrictions. By invoking restrictions during JAS 

based on the predicted estimates of Prob )( *
TT SS < , the study shows that, upon validating 

with JAS observed flows, increased storage conditions result in September. Among the three 

streamflow forecasting models, multimodel streamflow forecasts seem to better predict the 

change in streamflow potential, thus resulting in reduced false alarms and missed targets in 

predicting below-normal storage conditions at the end of September. Thus, applying 

multimodel forecasts would reduce uncertainty from individual models which could lead to 

better decisions and also could improve public confidence in utilizing seasonal streamflow 

forecasts for water management application. 
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Figure 4.1: Location of Neuse River basin and Falls Lake Reservoir in the upper Neuse river 
basin. 
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Figure 4.2: Comparison of modeled stages with the observed stages in September for the 
period 1991-2005. Figure also shows the reported water supply releases during JAS from 
Falls Lake. Modeled stages are obtained upon simulating the model with observed flows, 
releases and by forcing the model with the initial storage recorded each year on July 1.  
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Figure 4.3: Leave-one out Cross-validated seasonal (JAS) streamflow forecasts for the Falls 
Lake from three forecasting models (Figure 4.3b -Regression, Resampling and Multimodel) 
along with the with the employed predictors (Figure 4.3a). Principal components of the three 
SST regions (shown as rectangles in Figure 4.3a) were performed and the dominant two 
components were employed for developing the streamflow forecasts represented in the form 
of ensembles. 
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Figure 4.4: Modeled storages for two water quality release scenarios: Normal (254 cfs) and 
Drought (100 cfs) conditions along with the observed streamflows and the target storage 
(solid horizontal line). The storages shown are obtained by combining the observed 
streamflows with the chosen water quality release and the corresponding year’s summer 
water supply release in Figure 4.2. 
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Figure 4.5:  Role of Streamflow Forecasts in predicting the end of the season target storage 
that corresponds to the stage of 251.5 feet, m.s.l. (a) Normal water quality release of 254 cfs 
(b) Restricted Water quality release of 100 cfs.  Note that the multimodel forecasts suggest 
clearly increased risk of not meeting the target storage in comparison to the risks suggested 
by the climatology during below-normal years. 
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Figure 4.6: Performance of streamflow forecasts in reducing the risk of not attaining end of 
the season target storage (Figure 4.6a) under different restriction levels and in improving the 
end of the season target stage (upon validating with observed flows) (Figure 4.6b). 
September storage difference is obtained from the simulated additional September storage 
that would have occurred under restricted water supply flows by simulating with the 
observed flows. Restrictions are obtained based on the estimates of Prob(ST ≤ ST

*) with 10% 
, 20% and 30% restriction if the estimates of Prob(ST ≤ ST

*) are between 0.5-0.6, 0.6-0.7 and 
0.7-0.8 respectively.  All the years shown here are below-normal years. 
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Figure 4.7: Performance of streamflow forecasts in suggesting restriction for the prescribed 
level of reduction in the risk (5%) of not attaining end of the season target storage (Figure 
4.7a) and in improving the end of the season target stage (Figure 4.7b) (upon validating with 
observed flows) for the obtained restriction in Figure 4.7a. 
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CHAPTER 5 

 

Climatology of Monthly Runoff: Causality and Relations to Seasonality in Precipitation 

and Temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 132

5.1 Introduction 

The partitioning of precipitation into evaporation and streamflow is a key aspect for 

understanding the hydroclimatology of the region. For instance, partitioning of precipitation 

into runoff and evaporation based on the climatic index of the basin is critical in 

understanding the role of annual moisture and energy balance over the basin. Shifts in the 

seasonality of precipitation and temperature can also lead to significant changes in the time 

of occurrence of peak streamflow in the basin. Another attribute related to the regional 

hydroclimatology, interannual variability in precipitation and runoff, determine the type of 

reservoir systems in the region. For instance, most of the reservoirs in the eastern U.S. are 

within-year reservoir systems, since the interannual variability in precipitation and runoff is 

smaller. On the other hand, the reservoir systems in the western U.S are over-year systems 

(i.e., carry deficit/excess supply from one year to another) due to large interannual 

variability.Therefore, understanding the controls of mean monthly/annual runoff rate plays a 

significant role in water resources planning and management.  

Numerous studies have focused on developing physical relationship to explain the 

annual hydroclimatology of a region [Budyko, 1974; Milly, 1994a, 1994b; Zang et al. 2001; 

Schreiber, 1904; Ol’ dekop, 1911; Wolock and McCabe, 1999]. Milly [1994a] incorporated 

the seasonality in precipitation and potential evapotranspiration on the annual water balance. 

Woods [2003] has developed analytical models for seasonality and annual water balance of a 

catchment.  Potter et al. [2005] and Hickel and Zang [2006] have also analyzed the impact of 

rainfall seasonality on mean annual water balance. However, limited effort was made in 

understanding the effect of seasonality of climate on mean monthly runoff. Farmer et al. 
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[2003] explored the role of climate and landscape interactions in explaining the annual, 

monthly and daily water balance of several arid basins. Yokoo et al. [2008] explored the 

effects of seasonal variability of climate on mean annual and monthly water balances based 

on a physically based hill-slope model. 

This study is primarily focused on understanding the influence of seasonality of 

precipitation and temperature in explaining the monthly runoff which is heavily dependent on 

the interplay between the climatic inputs and the storage characteristics of the basin. A 

simple water balance model is used for this purpose without adopting any automatic 

calibration methods. Results from the model analysis are used to explain the seasonality of 

observed streamflow over 1373 watersheds in the continental United States (U.S.). Section 

5.2 describes the hydroclimatic database employed in the study and the motivation behind the 

work. The methodology and preliminary results are presented in sections 5.3 and section 5.4 

respectively. Finally, the summary and findings from the study are presented in section 5.5. 

 

5.2 Data Description and Motivation 

5.2.1 Streamflow Database 

The hydro-climatologic data network (HCDN) developed by Slack et al. [1993], 

available from the U.S. Geological Survey is used for this study. This data set contains 

records of average daily streamflow from 1659 locations in the United States and its 

territories. The streamflow records range from 1874 to 1988, with an average record length 

of 44 years. Streamflow from the HCDN database are least affected by anthropogenic 

influences such as land use changes and ground water retrieval and the accuracy ratings were 
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at least “good” for all the records. In this study, we used 1373 basins in the 48 contiguous 

states from the continental U.S. Figure 5.1 shows the aridity index R, which is defined as the 

ratio of mean annual potential evapotranspiration to precipitation PPET  for the HCDN 

basins. Five broad regions are identified based on their moisture (precipitation) and energy 

(temperature) availability (Moisture and Energy Availability Scenarios, MEAS). Details of 

the scenarios and the analyses are presented in section 5.4. 

 

5.2.2 Precipitation and Potential Evapotranspiration Database 

Sankarasubramanian and Vogel [2005] developed a precipitation and temperature 

database for the HCDN sites. The precipitation-elevation regressions on independent slopes 

model (PRISM) climate analysis system described by Daly et al. [1994] was used to obtain 

37-year time series of monthly precipitation and average minimum and average maximum 

daily temperature using 0.5° time series grids.  Sankarasubramanian and Vogel [2005] also 

obtained the monthly potential evapotranspiration using the monthly temperature and 

extraterrestrial solar radiation based on Hargreaves method [Hargreaves and Samani, 1982]. 

 

5.2.3 Seasonality in Observed Precipitation and Streamflow – Motivation 

 Seasonality Index (SI), a measure used to quantify the seasonality in a chosen 

attribute, is used to investigate the relationship between the seasonality in precipitation and 

the seasonality in observed streamflow. SI quantifies the average time of occurrence as well 

as the degree to which the event tends to be concentrated in a given month [Markham, 1970]. 

SI of 0 indicates that there is no seasonal characteristic for that attribute with its occurrence 
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being uniform throughout the year. Alternately, if the SI is close to 1, it indicates that the 

attribute is highly seasonal and its occurrence is concentrated in a particular month of the 

year. Details on estimating the SI for a hydroclimatic variable is given in the Appendix C. 

From figure 5.2a, we can observe that the basins in the western U.S. have high SI for 

both precipitation and streamflow indicating that both these attributes are highly seasonal. 

While the average time of occurrence for precipitation (Figure 5.2b) in these basins is during 

January, streamflow has an average time of occurrence during February and March, which 

indicates the seasonality in streamflow being influenced by the seasonality in winter 

precipitation. However, this phenomenon is not observed in the basins over the eastern U.S. 

The SI of precipitation across the eastern U.S is small (0 – 0.2) indicating that the 

precipitation is uniformly distributed across all the months. Observed streamflow has a SI of 

0.2 – 0.4 indicating that streamflow in these regions is exhibiting a seasonal behavior with a 

peak around February - April for most of the stations. It is important to note that temperature 

always has strong seasonality. High temperature during the summer not only shows increased 

evaporation, but also indicates that the evaporation is lesser during other months. Other 

factors such as the basin storage capacity and form of precipitation could also contribute to 

the amount and the timing of streamflow. 

 

5.3 Methodology 

  The main objective of this paper is to explain the role of seasonality in precipitation 

and temperature in influencing the seasonality in streamflows. For this purpose, we employed 

Thornthwaite monthly water balance model [Thornthwaite and Mather, 1955] and forced it 
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with climatic inputs, precipitation and potential evapotranspiration, which are obtained from 

a parametric form to give us the flexibility to observe the basin responses under various 

scenarios of seasonal climatic variations.  

 

5.3.1 Climate Seasonality 

Seasonally varying climatic inputs are synthetically generated by assuming that both 

P and PET are periodic. In other words, the temporal variations in the moisture and energy 

supplies are assumed to be sinusoidal with certain random variability in the components. 

They are represented by the following equations. 

 

tppp tPtP εαωδ +++= ))sin(1()(                                                         … (5.1) 

 

tpetpetpet tPETtPET εαωδ +++= ))sin(1()(              … (5.2) 

 

Where P  = average precipitation (mm/month), PET        = average PET (mm/month)  

R = Aridity Index, δp=Amplitude of P, δpet=Amplitude of PET  

with 0 ≤ δp ≤ 1; 0 ≤ δpet ≤ 1; 

ωp=ωpet= 2π
T  , for T = 12 months, is the angular frequency 

αp and αpet  phase angle used to determining the extreme month in P and PET 

εt~ N(0, 0.25P ) follow normal distribution. 
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In addition to this, we define Δα = αp - αpet as the phase difference between P and 

PET. If Δα = 0, P and PET are in phase.  Alternately, if Δα = π, P and PET are out of phase. 

Table 5.1 shows the assumed values of mean annual precipitation and standard deviation of 

annual precipitation for various types of basins depending on the aridity index. The annual 

potential evapotranspiration for a basin is obtained by multiplying the annual precipitation 

with its aridity index. To remove the effect of arbitrary initial conditions, we generated 50 

years of monthly P and PET data for a given basin using equations (5.1) and (5.2). 

 

5.3.2 Moisture and Energy Availability Scenarios (MEAS) Considered 

Based on the seasonality of observed P and PET, we developed five different 

scenarios (MEAS 1 – MEAS 5) that encompass the behaviors of most of the basins from the 

HCDN database (Figure 5.1). Table 5.2 has the list of these scenarios and the regions they 

represent. MEAS 1 (MEAS 2) corresponds to humid (arid) basins where precipitation 

exhibits strong seasonality and is out of phase with temperature. In other words, for these 

basins one can expect wet and cold winters followed by dry and hot summers. MEAS 3 

(MEAS 4) corresponds to humid (arid) basins where precipitation is uniformly distributed 

throughout the year. MEAS 5 corresponds to arid basins where P and PET are in phase with a 

strong seasonality in P. Dry winters are followed by hot and wet summers in these regions.  

Seasonality in the simulated precipitation and temperature can be described by their 

respective amplitudes (δp and δpet). For example, high seasonality in precipitation can be 

achieved by assuming δp equal to 1. Alternately, one can assume δp equal to 0 to simulate a 

case where the precipitation has no seasonality. Timing, or the month of occurrence for the 
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climatic inputs are achieved through the phase angles αp and αpet. The underlying assumption 

in our simulations is that PET will exhibit strong seasonality with a peak during the month of 

July. For MEAS 1 and MEAS 2 the time of occurrence of peak precipitation is chosen in a 

way that it reflects the time of occurrence of observed precipitation of the basins in that 

region (January in this case). The simulated P and PET are forced with the water balance 

model to estimate the monthly streamflow, evaporation and basin storage. The next section 

discusses the interactions of P, PET and basin storage in explaining the seasonality of 

monthly streamflow based on the outcomes of the simulations. 

 

5.4 Results and Analysis 

Scenarios of climatic inputs are simulated and forced with the Thornthwaite monthly 

water balance model. This section presents the results from the model simulations in order to 

illustrate the effects of underlying climate interactions and catchment storage relationships 

with monthly streamflow. 

 

5.4.1 MEAS 1 and MEAS 2: P and PET are out of phase with strong seasonality in P 

Figure 5.3 shows the SI of estimated streamflow and catchment storage for scenarios 

MEAS 1 and MEAS 2. While R < 1 represents the outcomes for humid and semi-humid 

basins, R > 1 shows the results for temperate basins. Climate inputs are simulated such that P 

and PET are out of phase, and that P exhibits a strong seasonality (achieved by assuming the 

value of δp as 1) with the peak occurring in January. We assume that small (large) amplitude 

in the sinusoidal function can simulate cases where the variability in monthly precipitation is 
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low (high). Since SI is related to the intra-annual variability of a hydrologic quantity, δp close 

to zero (one) indicates low (high) seasonality. For example, the SI of simulated P with a δp of 

1 is around 0.5 and the SI with a δp of 0.1 is around 0.09, indicating a very high and low 

seasonality respectively.  

From Figure 5.3, we can see that for humid basins (R ≤ 0.25), when P and PET are 

out of phase, the seasonality in storage is not significant. This behavior can be attributes to 

the soil moisture holding capacity of the basin. Since the annual precipitation is significantly 

greater than the annual potential evapotranspiration of the basin, the soil will be saturated or 

full to capacity throughout the year. Hence the basin does not experience any significant 

variability in storage, leading to a low value of SI. We can see that the seasonality of storage 

increases as the aridity index of the basin increases. In other words, there is a pronounced 

seasonality in storage for semi humid to arid basins. As the aridity index increases, the 

energy supply for the basin increases causing an increase in the evaporation. Since the PET 

has strong seasonality, summer evaporation will be high. Further, high seasonality in 

precipitation causes winter dominant rainfall and dry summers. The combined effect of no 

rainfall and maximum evaporation during summer leads to depletion of soil storage, thereby 

introducing a seasonal variability in storage. 

We can also see that there is a strong seasonality in the streamflow from the basins. 

Streamflow occurs when the basin is full to capacity, or when it can no longer hold water. 

Seasonality in streamflow can be explained by understanding the interplay between winter 

precipitation and summer evaporation. Seasonality in P causes maximum rainfall during 

winter and less rainfall during summer. Further, a strong seasonality in PET causes more 
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evaporation from the basin in summer compared to winter. This phenomenon introduces a 

variability or large difference in streamflows of the two seasons, causing a high SI in 

streamflow. As the basin gets less humid, the seasonality of streamflow becomes 

pronounced. We can also understand that peak streamflow occurs during the winter season, 

as the summers experience very little flows. Hence we can say that the seasonality of PET or 

the amount of evaporation during summer plays a vital role in governing the streamflow of 

the basin.  

 

5.4.2 MEAS 3 and MEAS 4: P has no seasonality  

Figure 5.4 shows the SI of estimated streamflow and storage for scenarios MEAS 3 

and MEAS 4. Climate inputs are simulated such that P has no seasonality or is uniform 

throughout the year (achieved by assuming the value of δp as 0). We can see that the 

seasonality of streamflow is not significant when the P has no seasonality for very humid 

basins. When rainfall occurs uniformly throughout the year in basins with soil moisture full 

to capacity most of the times, the basin yields excess runoff during the rainfall events. Hence 

there is no significant difference between winter and summer streamflows, causing the 

seasonality of streamflow for very humid basins to be negligible. However as the aridity 

index of the basin increases, we observe that the streamflow and storage exhibits a strong 

seasonality. The energy supply for the basin increases with increasing aridity index, causing 

an increase in the evaporation during summer. This will cause all the precipitation in summer 

to leave the basin as evaporation. Hence the basin experiences high amount of runoff during 

the winter season and less runoff and a depletion of soil store during the summer season, 
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leading to a high variability in the runoff. Therefore, we can see that the SI of streamflow is 

high (with a peak occurring during the winter season), though the SI of P is low.  

Based on the analysis presented above, we try to understand the behavior of the 1373 

HCDN basins in the continental U.S. We categorized basins with aridity index less than 1 as 

humid basins. These can be further divided as humid basin (R ≤ 0.5) and semi-humid basins 

(0.5 ≤ R ≤ 1). Basins over the north western U.S. particularly in the states of Washington and 

Oregon are humid basins (Figure 5.1). Similarly, the basins over North Eastern U.S., i.e. the 

states of Vermont, Maine, New York and some basin over the west of Rocky Mountains, 

northern California and over the Appalachians are examples of semi-humid basins. Basins 

with aridity index greater than 1 are considered arid basins or dry basins. Potential 

evapotranspiration exceeds the precipitation in such basins and actual evaporation 

approaches precipitation. Most of the basins over Mid-Atlantic, South Atlantic, Great Lakes, 

Ohio, Tennessee, Upper and Lower Mississippi are arid basins.  

From, figure 5.2, we can see that precipitation has no pronounced seasonality (SI 

between 0 – 0.2) for most of the New England region. We can identify this to be a case with 

no seasonality in P in semi humid basins (0.5 < R < 1), MEAS 3. Similarly, basins over the 

Mid-Atlantic, Ohio, and Tennessee are arid basins with no seasonality in precipitation 

(MEAS 4). From figure 5.4 we can understand that the streamflow will exhibit a strong 

seasonality with dominance around winter. Figure 5.2b shows us the seasonality and time of 

occurrence for observed streamflow for these regions. We can see that there is a strong 

seasonality in streamflow with the peak streamflows occurring in winter. There are few 

basins over the North East and over the Appalachian where the streamflow peak occurs 
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around April. The delay in the occurrence of streamflow in these basins can be attributed to 

melt season, since most of these basins are driven by snowpack. Similarly basins over the 

Pacific Northwest, particularly the states of Washington, Oregon are very humid basins (R < 

0.5) with strong seasonality in winter precipitation. Hence these basins can be categorized as 

scenario MEAS1. From figure 5.3, we can say that the streamflow will exhibit a strong 

seasonality with a peak around winter.  

Similar analyses are currently being conducted on MEAS 5, i.e. the peninsular 

Florida and some very arid basins over the Mid-continent, i.e. the Texas Gulf and Arizona. 

When P and PET are in phase, the basin typically experiences dominant rainfall during 

summer and less rainfall during winter. Strong seasonality in P indicates that all the rainfall is 

occurring during summer months with only a small amount of rainfall during the winter 

months. Hence, the basin would experience runoff only during the summer months, causing a 

high seasonality in streamflow. Further, with a strong seasonality in P, we can expect the 

time of occurrence of streamflow to be shifted towards summer seasons. Such model based 

analyses will provide insights into understanding and reliably predicting the runoff from 

basins without any calibration. Hence, it is important to understand the role of climate and 

catchment characteristics in governing the basin responses. 

 

5.5 Summary and Findings 

The current study investigates the role of seasonality of precipitation and temperature 

in explaining the climatology of monthly streamflow. This is achieved by forcing simulated 

climate inputs with a simple water balance model that requires no calibration. Observed 
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differences in monthly climatology of precipitation and streamflow for the humid and arid 

basins can be attributed to variability in precipitation, evaporation and basin storage.  

When precipitation and temperature are out of phase, we understand that the runoff 

primarily dependents on the seasonality of precipitation. There is a strong seasonality in 

streamflow with dominance during winter. In other words, there will be a distinct wet and 

dry season. As the aridity index of the basin increases, the winters are dominated by 

accumulation of soil moisture storage and significant winter runoff. Summers are very dry 

leading to no flows and emptying of basin. When precipitation has no seasonality, the runoff 

will be dependent on the aridity index of the basin. Very humid basins will experience runoff 

in all the seasons. Hence, the SI of the streamflow is not significant. As the dryness increases, 

the evaporation will increase during summer leading to a winter dominant runoff with strong 

seasonality in streamflow for semi humid, temperate and arid basins. Based on these 

findings, our future work will explore developing relationships to estimate mean monthly 

runoff purely based on the monthly climatology of precipitation, potential evapotranspiration 

and storage capacity of the basin. 
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Table 5.1: Mean and standard deviation for different types of basins in the study. 

Aridity Index Type Mean (mm/year) Standard deviation 
(mm/year) 

0 ≤ R ≤ 0.5 Humid 1200 150 
0.5 ≤ R ≤ 1 Semi-Humid 1000 200 
1 ≤ R ≤ 2 Temperate 800 100 

R ≥ 2 Arid 500 100 
 

 

 

Table 5.2: Moisture and Energy Availability Scenarios considered for the study. 

Scenario Aridity 
Index Regions Seasonality in 

P Δα 

MEAS 1 0 ≤ R ≤ 1 
Pacific Northwest 

(Washington, Western 
Oregon, Northern Idaho) 

Strong 
π (Out 

of 
Phase) 

MEAS 2 1 ≤ R ≤ 2 California Strong 
π (Out 

of 
Phase) 

MEAS 3 0 ≤ R ≤ 1 New England No seasonality 0 (No 
Phase) 

MEAS 4 1 ≤ R ≤ 2 

Mid-Atlantic, South 
Atlantic, Great Lakes, Ohio, 

Tennessee, Upper and 
Lower Mississippi 

No seasonality 0 (No 
Phase) 

MEAS 5 1 ≤ R ≤ 2 Florida Strong 0 (In 
Phase) 
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0.0 - 0.5

0.5 - 1.0

1.0 - 2.0

2.0 - 3.0

3.0 - 6.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Aridity index for all the 1373 HCDN basins.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                   MEAS 3 
                         
    MEAS 1                                    
 
 
 
 
 
MEAS 2                                       
                                                                      MEAS 4 
 
 
       
               

MEAS 5 
 
 
 



 150

 

 
Figure 5.2: Seasonality of observed precipitation and streamflow for the 1373 HCDN basins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

!

!!!
!!

!

!
!
!!

!

!!
!

!
!!!

!
!!!

!!

!

!
!!!
!
!

!
!
!!!!

!!!

!!

!!!

!
!!!!!

!!!
!
!

!

!!

!

!

! !!
! !!!!!!
!!!

!

!!
!!

!
!!

!!
!!

!
!!!

!!
!!!
!!!!!!
!

!!!!!!!
! !!!

!

!!!

!!

!!

!!
!!!

!
!!

!!

!

!!!
!!
!!

!!

!!
!

!!
!!!

!
!
!!
!!!
!!!
!!

!
!
!!
!
!!
!
!!!

!!!!
!!!

!!

!!
!
!
!!
!

!
!!!
!!

!!!
!

!

!!!!
!

! !!!!!
!!!

!!! !
!!
!
!

!

!
!
!
!!

!

!
!!!

!!

!!
!
!

!
!!

!

!
!

!
!

!!
!

!
!!
!

!!!
!!

!!!

!!
!
!!

!
!!!
!

!!

!

!
!

!
!!

!

!
!
!

!
!!

!

!
!!

!

!

!
!!!

!
!

!

!

!

!

!!!!
!!

!!
!

!!!
!
!
!

!
!!
!
!!!
!

!
!
!!

!

!!!
!

!
!
!
!

!!!! !!!!
!

!

!
!!!!!!!
!!!
!

!!
!

!!

!!

!

!!
!

!

!

!
!
!

!

!

! ! !
!

!
!!

!!

!
!

!

!
!!!

!

!

!

!!
!

!

!

!

!
!

!

!

!
!! !
!

!!
!!
!

!!
!

!!

! !

!

!
!
!
!

!

!
!
!!

!!!!
!! !!

!!
!
!

!

!
!

!!!
!

!
!!
!

!!
!!

!!
!
!!!!
!!
!

!
!

!
!!!!!!
!
!!!

!
!!

!
!

!
!!
!

!
!!

!
!

!!
!

!
!

!!

!!!!
!
!!! !

!
!
!!!!
!

!

!!!
!!

!!

!

!!!
!
!!

! !!!
!

!
!

! !!!
!
!!
!

!

!
!

! !

!!

!
!!

!
!!

!!!
!
!!

!!

!!! !!!

!
!! !

!

!
!

!

!!
!!

!!
!

!!
!!

!!

!
!
!!!

!!
!

!!

!

!!
!!!
!

!

!
!
!!!
!!!

!
!
!

!!
!!

!
!!

!

!
!

!

!
!
!

!!!!
!
!!

!!
!!
!

!!
!

!

!!!!!
!!
!!

!

!!

!
!

!

!
!!!!

!
! !

!!
!!

!

!
!!

!

!!
!!
!!!!
!

!

!
!

!

!
!!!!
!!!

!

!!

!

!!!!!!!

!!!!

!
!
!

!
!

!

!

!
!
!

!
!
!

!!
!

!

!!!
!
!!

!

!

!

! !

!
! !

!

!

!
!!!
!

!!

!

!
!
!
!
!

! !!
!!

!
!!!!
!

!
!

!

!

!
!!!! !
!
! !

!!

!
!

!

!
!! ! !

! !
!

!

! !

! !

!

!

!

!
!
!

!

!
!
!
!!

!!

!!

!

!

!

!
!

!!

!

!
!

!
!
!!
!
!!
!

!
!

!

! !! !

!
!!!

!!!
!
!
! !

!

!!
!

!

!
!

!
!!!

!! !
!

!
!

!

!

!

!!!
!
!
!
!
!

!

!

! !
!!

!
!
!

!!
!

!

!

!

!

! !
!!!!
!
!

!!
!!!!

!!!
! !

!

!!

!! !
!

!
!!

!

!
!

!
!
!

! !
!

!

!!!
!
!

!!!

!!!

!
!

!

!
!
!

!

!

!

!!
!

! ! !

!!

! !

!
!!

!
!!

!
!

! !!!
!

!
!

!!
!

!!
!

!
!!!
!

!
!

!!!!!
! !

!
!
!
!

!!!!!!
!!
!
!
!

!

!
!

!!
!

!
!

!!!!!!

! !!

!!!!!!!
!

!

!

!!!

!

!!

!

!

!!

!!
!

!!
!

!

!

!
!

!

!!

!
!!!

!
!!

!
!

!!!!!
!

!

!

!

!!!
!
!
!

! !

!!

!!

!
!!

!

!

!

!

!

!!

!

!

!

!!

!!

!
!!
!

!

!

!

!

!!

!

!

!

!

!!
!

!
!

!

!!
!!

!

!
!

!

!!
!!

!

!

!!
!

!!!
!!!

!!
!!

!!
!
!

!
!!
!!!

!!
!

!!
!
!!

!!!
!
!

!
!!!
!!

!!
!
!!

!

!!!!
! !!

!
!!!

!!!
!
!
!

!!

!
!

!
!!!

!
!!
!!

!!
!!!

!
!
!!!!

!
!
!

!!

!
!
!

!!

!
!
!!

!! !

!
!!!

!
!

!!
!

!!
!!

!

!
!!!

!
!!

!
!

!
!!

!!
!

!
!
!!

!
!!
! !

!!!
!!
!!!!!
!!

!

!

!

!!!!
!

!!!!

!
!

!!!!
!!!!
!
!!!!

!!
!!!!

!

!
!

!
!!!
!
!
!!!
!!
!

!
!

!
!
!
!

!

!

Seasonality of Precipitation

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

!
!!!
!!

!

!
!
!!

!

!!
!

!
!!!

!
!
!!
!!

!
!!!!
!
!

!
!
!!!!

!!!

!!

!!!
!
!!!!!
!!!
!!

!

!!

!

!

! !!
! !!!!!!
!!!

!

!!
!!

!
!!

!!
!!

!
!!!

!!!!!
!!!!!!
!

!!!!!!!
!!!!
!

!!!

!!

!!

!!
!!!

!
!!
!!

!
!!!
!!
!!

!!
!!
!
!!

!!!

!
!
!!
!!!
!!!
!!

!
!
!!
!
!!
!
!!!

!!!!
!!!

!!

!!
!
!
!!
!
!
!!!
!!

!!!
!

!

!!!!
!

! !!!!!
!!!

!!! !
!!
!
!

!

!
!
!
!!

!

!
!!!!!

!!
!
!
!
!!

!

!
!
!
!

!!
!
!!!

!

!!!
!!

!!!

!! !
!
!
!

!!!
!
!!

!

!
!

!
!!
!

!
!
!

!
!!

!

!
!!

!

!

!
!!!

!
!

!

!
!

!

!!!!
!!

!!
!

!!!
!
!
!

!
!!
!
!!!
!

!
!
!
!

!

!!!
!
!

!
!
!

!!!! !
!!!

!

!

!
!!!!!!!
!!!
!

!!
!

!!

!!

!

!!
!

!

!

!
!
!

!

!

!! !
!

!
!!

!!
!

!

!

!
!!!

!

!

!

!!
!

!

!

!

!
!

!

!
!
!! !
!
!!

!!
!

!!
!

!!

! !

!

!
!
!
!

!

!
!
!!

!!!!
!!!!

!!
!
!

!

!
!

!!!
!

!
!!
!

!!
!!

!!
!
!!!!
!!
!

!
!

!
!!!!!!
!
!!!

!
!!

!
!

!
!!
!

!
!!

!
!

!!
!

!
!

!!

!!!!
!
!!!!

!
!
!!!!
!

!

!!!
!!

!!

!

!!!
!
!!! !!!

!

!
!

! !!!
!
!!
!

!

!
!

! !

!!

!
!!

!
!!
!!!

!
!!

!!

!!! !!
!

!
!! !

!

!!
!

!!
!!

!!
!

!!
!!

!!

!
!
!!!

!!
!
!!

!

!!
!!!
!

!

!
!
!!!
!!
!

!
!
!

!!
!!

!
!!

!

!
!

!

!
!
!

!!!!
!
!!

!!
!!
!

!!
!

!

!!!!!
!!
!
!!

!!

!
!

!

!
!!!!

!! !
!!!!

!

!
!!

!

!!
!!
!!!
!

!
!

!
!

!

!
!!!!
!!

!

!

!!

!

!!!!!!!

!!!!

!
!
!

!
!

!

!

!
!
!

!
!
!

!!
!

!

!!!
!
!!

!
!

!

! !

!
! !

!

!

!
!!!
!

!!

!

!
!
!
!
!

! !!
!!

!
!
!!!
!

!
!

!

!

!
!!!! !
!
! !

!!

!
!

!

!
!! ! !

! !
!

!

! !

! !

!

!

!

!
!
!

!

!
!
!
!!

!!

!!
!

!

!

!
!

!!

!

!
!

!
!
!!
!
!!
!

!
!

!

!!
! !

!
!!!

!!!
!
!
!!

!

!!
!

!

!
!

!
!!!

!! !
!

!
!

!

!

!

!
!!
!
!
!
!
!

!

!

! !
!!

!
!
!

!!
!

!

!

!

!

! !
!!!!
!
!

!!
!!!!
!!!
! !

!

!!

!! !
!

!
!!

!

!
!

!
!
!

! !
!

!
!!!
!
!

!!!

!!!

!
!
!

!
!
!

!

!

!

!!
!

! !!

!!

! !

!
!!

!
!!

!
!

! !!!
!

!
!

!!
!

!!
!

!!!!
!

!
!

!!!
!!
! !

!
!
!
!

!!!!!!
!!
!
!
!

!

!
!

!!
!

!
!

!!!!!!

!!!

!!!!!!!
!

!

!

!!!

!

!!

!

!

!!

!!
!

!!
!

!

!

!
!

!
!!

!
!!!

!
!!

!
!

!!!!!
!

!

!

!

!
!!

!
!
!

!!

!!

!!

!
!!

!

!

!

!
!

!!

!

!

!
!!

!!
!

!!
!

!

!

!

!

!!

!
!

!

!

!!
!

!
!

!

!!
!!

!

!
!

!

!!
!!

!

!

!!
!

!!!
!!!
!!

!
!

!!
!
!

!
!!
!!!

!!
!

!!
!
!!

!!!
!
!

!
!!!
!!

!!
!
!!

!

!!
!!

! !!

!
!!!

!!!
!
!
!

!!

!
!

!
!

!
!

!
!!
!!
!!
!!!

!
!
!!!!

!!
!!!

!
!
!

!!

!
!
!!

!! !

!
!!!

!
!

!!
!

!!
!!

!
!

!!!
!

!!

!
!

!
!!

!!
!

!
!
!!

!
!!
!!

!!!
!
!
!!!!!
!!

!

!

!

!!!!
!

!!!!

!
!

!!!!
!!!!
!
!!!!
!!
!!

!
!

!

!
!

!
!!!
!
!!
!!
!!
!

!
!

!
!
!
!

!

!

Seasonality of Streamflow

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

 

!
!!!
!!

!

!
!
!!

!

!!
!

!
!!!

!
!!!

!!

!
!!!!
!
!

!
!
!!!!!!!

!!

!!!
!
!!!!!

!!!
!!

!

!!

!

!

! !!! !!!!!!
!!!

!

!!
!!

!
!!
!!
!!
!
!!!

!!!!!
!!!!!!
!

!!!!!!!
!!!!
!

!!!

!!

!!

!!
!!!

!
!!
!!

!
!!!
!!
!!

!!
!!
!
!!

!!!

!!
!!!!!
!!!
!!

!
!
!!
!
!!
!
!!!

!!!!
!!!

!!

!!
!
!
!!
! !

!!!
!!

!!!
!

!

!!!!
!

! !!!!!!
!!

!!! !!!
!
!

!

!
!
!
!!

!

!
!!!!!

!!
!
!
!
!!

!

!
!
!
!

!!
!
!!!

!

!!!
!!

!!!

!! !
!!

!
!!!
!
!!

!

!
!

!
!!!

!
!
!

!
!!

!

!
!!

!

!

!
!!!

!!
!

!
!

!

!!!!
!!

!!
!

!!!
!
!
!

!
!!
!!!!
!

!
!
!!

!

!!!
!

!
!
!
!

!!!! !!!!
!

!

!
!!!!!!!!!!
!

!!
!

!!

!!

!

!!!

!

!

!
!
!

!

!
!! !!

!
!!

!!
!!

!
!!!! !

!
!

!!
!

!

!

!

!
!

!

!
!
!! !
! !!

!!
!

!!
!

!!

! !

!

!
!
!
!

!

!!!!!!!!!!!!

!!!
!

!

!
!
!!!

!
!!!
!

!!!!

!!
!
!!!!
!!!

!
!

!
!!!!!!!!!!!

!!!
!

!
!!
!

!
!!

!
!

!!
!

!
!

!!
!!!!!
!!!!

!!!!!!
!

!

!!!
!!

!!

!

!!!
!
!!! !!!

!
!
!

! !!!
!!!
!

!

!
!

!!
!!
!!!
!!!
!!!!
!!!!

!!! !!!
!!
! !

!
!!!

!!
!!

!!
!

!!
!!

!!

!
!
!!!

!!
!
!!

!

!!
!!!!

!

!
!
!!!
!!!

!
!
!

!!
!!

!
!!

!

!
!

!

!
!
!

!!!!!
!!

!!
!!
!
!!

!

!

!!!!!
!!
!!!

!!

!
!

!

!
!!!!

!! !!!
!!

!

!
!!

!

!!
!!
!!!
!

!
!
!
!

!

!
!!!!
!!!

!

!!

!

!!!!!!!

!!!!

!
!
!

!
!

!

!
!
!
!

!
!
!

!!
!

!

!!!
!
!!

!
!

!

! !

!
! !

!

!

!
!!!
!

!!

!

!!!!
!

! !!!!

!
!!!!
!

!
!

!
!

!!!!! !
!!!!!
!
!

!
! !! ! !

! !
!

!
! !

!!

!

!
!
!
!
!

!
!!
!!!

!!

!!
!

!

!

!!

!!
!
!! !!

!!!!!
!
!!

!

!!!!

!
!!!
!!!
!
!!!

!
!!
!
!

!! !!!!!! !!

!! !

!

!

!!!
!
!
!
!
!

!

!

! ! !!!!
!

!!!!
!

!
!

! !
!!!!
!
!

!!
!!!!
!!!! !

!
!!

!! !
!

!
!!

!

!
!

!
!
!

! !
!

!
!!!
!
!

!!!

!!!

!
!
!

!
!
!

!

!

!

!!
!

! ! !

!!

! !

!
!!

!!!
!!

!!!!!

!
!!!
! !!

!

!!!!
!
!

!

!!!!!! !

!
!
!
!

!!!!!!
!!
!
!
!

!

!
!

!!!

!
!

!!!!!!
!!!

!!!!!!!!!

!

!!!

!

!!

!

!

!!

!!
!

!!
!

!
!

!!

!
!!

!
!!!

!
!!

!
!

!!!!!
!

!

!

!

!!!
!
!
!

! !
!!

!!

!
!!

!

!

!

!

!

!!

!

!

!
!!

!!
!!!
!

!

!

!

!

!!
!
!

!

!

!!!
!!

!
!!!!

!

!!

!

!!
!!!

!

!!
!

!!!!!!
!!!!

!!
!!!!!!!! !!

!

!!
!
!!

!!!
!
!

!
!!!!!

!!
!!
!!
!!!!

! !!
!!!!

!!!!
!
!

!!

!
!

!
!!!

!
!!!!!
!
!!!
!
!
!!!!

!!!!!

!!
!

!!
!!!

!!!!
!
!!!!!

!!!

!!!!
!
! !!!!!!

!!
!!!

!!!

!!!!
!!
!!!

!!!!!
!!!!!
!!

!
!

!

!!!!!
!!!!

!!
!!!!

!!!!!!!!!
!!
!!!!!

!
!
!!!!
!!
!!!
!!!

!!
!!!!!

!

Seasonality Index of Precipitation !
!!!!!

!

!!!!
!

!!!

!
!!!

!
!!!
!!

!
!!!!!!

!!!!!!!!!

!!
!!!
!!!!!!!!!

!!
!
!!

!

!

! !!! !!!!!!
!!!
!
!!
!!

!
!!
!!!!

!
!!!

!!!!!!!!!!!!
!!!!!!!
!!!!
!

!!!
!!

!!
!!

!!!!!!
!!

!
!!!
!!
!!

!!
!!!
!!

!!!

!!
!!!!!!
!!!!
!

!
!!
!!!!!!!

!!!!!!! !!

!!
!
!!!
!!!!!!!

!!!!
!

!!!!!! !!!!!!!!
!!! !!!

!!
!
!!!

!!

!

!
!!!!!

!!
!
!
!
!!
!

! !!
!

!!
!
!!!!

!!!!!

!!!

!!!!!!
!!!!
!!

!
!!

!!!!

!!!
!!!

!

!
!!

!

!

!!!!
!!

!

!
!
!
!!!!

!!

!!!

!!!
!
!!
!!!
!!!!!
!
!
!!

!

!!!!
!!

!
!

!!!! !!!!
!

!

!!!!!!!!!!!!
!!!

!!

!!

!

!!!

!
!

!!!

!
!
!! !!

!
!!

!!
!!

!

!!!! !
!
!

!! !
!

!

!

!
!

!

!
!
!!!!
!!
!!!

!!!
!!
! !

!
!
!
!
!

!

!!!!!!!!!!!!

!!!!

!

!
!

!!!
!
!!!

!

!!!!

!!
!
!!!!

!!!
!

!

!
!!!!!!
!!!!!

!!!
!

!
!!
!

!
!!

!
!

!!
!

!
!

!!
!!!!!!!!!

!!!!!!
! !

!!!!!
!!

!

!!!!!!! !!!!
!
!
!!!!

!!!
!

!

!!
!!
!!
!!!
!!!
!!!!
!!!!

!!! !!!
!!
! !!

!!!

!!!!
!!
!
!!
!!

!!
!
!!!!

!!
!
!!

!

!!!!!!
!

!
!!!
!!!!

!
!
!
!!!!

!!!

!
!
!
!
!!!

!!!!!!!

!!
!!
!
!!!!

!!!!!!!
!!!

!!

!!

!

!!!!!
!!!!!!!

!
!!

!!
!!!!!!!!
!
!
!
!
!

!
!!!!!
!!

!
!!

!
!!!!!!!

!!!!

!!!!!

!

!
!!
!

!!
!

!! !
!

!!!
!!!

!
!

!

!!
!

! !

!

!

!!!
!
!
!!
!

!!!!!
!!!!!

!
!!!!!

!!

!
!

!!!!! !!!!!!!
!

!
! !!! !
! !

!

!
! !

!!

!

!
!
!!!

!
!!!!!

!!
!!

!

!
!

!!

!!

!
!
!

!!!!!!!
!
!!

!

!!!!

!
!!!
!!!!!!!

!
!!
!
!

!! !!!!!! !!

!!!
!
!

!!!
!
!
!!!

!

!
! ! !!

! !
!

!! !!

!

!
!

! !
!!!!
!
!

!!!!!!!!!
! !

!
!!
!!!! !
!!

!

!
!

!
!
!

! ! !
!
!!!
!!

!!!
!!!
!
!
!
!
!
!

!
!
!

!!!

!!!

!!

! !
!!!

!!!
!!

!!!!!

!!!!
!!!

!

!!!!!!
!

!!!!!!!
!
!
!
!

!!!!!!!!!
!
!

!

!
!

!!!

!!

!!!!!!
!!!

!!!!!!!!!

!

!!!

!

!!

!

!

!!

!!
!

!!!

!

!

!!

!
!!

!!!!!!!
!!

!!!!!!!
!
!

!!!!!
!!!
!!

!!

!!!!
!

!
!

!

!!
!

!

!
!!

!!
!!!
!

!

!

!

!

!!
!
!
!
!

!!!
!
!

!

!!!!
!

!!

!

!!
!!!

!
!!!

!!!!!!
!!
!!

!!!!!!!!!!!!
!

!!!!!!!!
!!

!!!!!!

!!
!!!!
!!!!

! !!
!!!! !!!!

!!!!
!
!
!!!!
!
!!!!!!
!!!!
!!!!!

!!!!!
!!

!

!!
!!!!

!!!

!
!!!!!

!!!
!!!!
!
! !!!!!!

!!
!!!

!!!

!
!!!
!!!
!!

!!!!
!!!!!!
!!!
!

!
!!!!!
!!!!

!
!

!!!!!!!!!!!!!!!!!!!!
!!
!!!!
!!!
!!
!!!

!!
!!!!!

!

Seasonality Index of Streamflow

! 0.0 - 0.2

! 0.2 - 0.4

! 0.4 - 0.6

! 0.6 - 0.8

! 0.8 - 1.0

! 0.0 - 0.2

! 0.2 - 0.4

! 0.4 - 0.6

! 0.6 - 0.8

! 0.8 - 1.0

(a) 

(b) Time of occurrence of Precipitation Time of occurrence of Streamflow 



 151

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

SI
 o

f  
Q

 a
nd

 S
to

ra
ge

Aridity Index

SI of Streamflow
SI of Storage

MEAS 1 MEAS 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3: SI of estimated streamflow and basin storage for scenarios MEAS 1 and MEAS 2 
for different basins. P has a strong seasonality and is out of phase with PET. 
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Figure 5.4: SI of estimated streamflow and basin storage for scenarios MEAS 3 and MEAS 4 
for different basins. 
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CHAPTER 6 

Summary, Conclusions and Scope for Future Work 
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6.1 Improvising the Multimodel Combination schemes for Seasonal Climate 

Forecasting 

The research presented in this dissertation is motivated by the fact that the skill of the 

GCMs primarily depend on the predictor conditions and hence the model uncertainties could 

be better reduced by combining the GCMs based on their ability to predict under a given 

predictor state. Recent studies focusing on the skill of GCMs show that the overall 

predictability of GCMs is enhanced during ENSO years over North America [Brankovic and 

Palmer, 2000; Shukla et al. 2000; Quan et al. 2006]. On the basis of this, we proposed a 

methodology to combine multiple GCMs that evaluates the performance of the GCMs 

contingent on the dominant predictor state. The methodology assigns weights for each GCM 

by evaluating their skill, quantified by Mean Square Error, over similar predictor conditions.  

We consider Nino3.4 as the primary predictor influencing the winter precipitation and 

temperature [Quan et al. 2006] over the United States.  

The study presented in Chapter 2 combines seven atmospheric GCMs with 

climatological ensembles to develop multimodel predictions of precipitation and temperature 

for the continental United States. The performance of the developed multimodel schemes are 

compared with individual models based on various verification measures such as rank 

probability skill score, reliability and resolution scores and brier score. The improvements 

resulting from multimodel combination over individual models and over the current state of 

the art multimodel schemes are verified through a rigorous nonparametric hypothesis testing.  

The study also showed that the proposed multimodel combination methodology improves the 

reliability and resolution of tercile probabilities resulting with reduced Brier scores. The 
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improved reliability results with reduced number of false alarms and missed targets in 

categorical forecasts. Analysis of weights also showed that the proposed methodology 

assigns higher (lower) weights for GCMs and lesser (higher) weights for climatology during 

anomalous (neutral) ENSO conditions in grid points.   

The study presented in Chapter 3 evaluates the proposed multimodel combination 

methodology in a forecasting context. This study considered forecasted Nino3.4 as the 

primary predictor and combined five coupled GCMs with climatological ensembles to 

develop real-time multimodel precipitation forecasts over the continental United States. Six 

different multimodel schemes are developed based on an adaptive forecasting scheme and the 

skill measures show that the developed multimodel forecasts perform better than individual 

model forecasts and over multimodel forecasts based on pooling and long-term skill. The 

study clearly showed that the proposed multimodel combination algorithm is beneficial in 

developing real-time multimodel climate forecasts.  

 

6.2 Role of Multimodel Forecasts in improving Water Management 

In Chapter 4, we explored the utility of the multimodel forecasts in developing 

various drought management strategies for the Falls Lake Reservoir in the Neuse River 

Basin, NC. In this study, we applied the climate information based multimodel streamflow 

forecasts for invoking restrictions on the water supply releases and for improving storage 

conditions at the end of the season for the Falls Lake Reservoir. The performance of summer 

(JAS) forecasts from three models (parametric regression, semiparametric resampling, and 

the multimodel forecasts obtained from the two single models) in estimating Prob )( *
TT SS <  
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was evaluated by comparing with the estimates of Prob )( *
TT SS <  from climatological 

ensembles to predict below-normal storage conditions. Invoking restrictions during the 

summer based on the predicted estimates of Prob )( *
TT SS < , lead to increased storage 

conditions in September. In addition to this, the study also shows that among the three 

streamflow forecasting models, multimodel streamflow forecasts seem to better predict the 

change in streamflow potential, thus resulting in reduced false alarms and missed targets in 

predicting below-normal storage conditions at the end of September. Hence, these analyses 

show that the combining multimodels contingent on the dominant predictor state is an 

attractive strategy in improving the skill of multimodel forecasts. Further, applying 

multimodel forecasts would reduce uncertainty from individual models which could lead to 

better decisions and also improve public confidence in utilizing seasonal forecasts for water 

management application. 

 

6.3 Seasonal Hydroclimatology of the Continental U.S. 

Moisture and energy availability and their temporal distribution could significantly 

influence the seasonality of land surface response. Under Chapter 5, in order to understand 

the role of precipitation and temperature seasonality in influencing the streamflow 

seasonality, we presented a systematic analysis using simple water balance model that 

require no calibration and showed that the observed differences in monthly climatology of 

precipitation and streamflow for the humid and semi arid basins can be attributed to 

variability in precipitation, evaporation and basin storage.  
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In conclusion, a new methodology for developing optimal multimodel schemes is 

presented and demonstrated by developing improved multimodel climate forecasts over the 

continental United States. The application of the proposed methodology in short-term water 

management is demonstrated by utilizing the multimodel streamflow forecasts with a 

reservoir model to invoke restrictions for the Falls Lake Reservoir, NC. The role of 

seasonality of precipitation and temperature in explaining the climatology of monthly runoff 

is investigated using a physical model with no calibration.    

 

6.4 Scope for future work 

The proposed multimodel schemes are developed by exchanging the climate forecasts 

in the temporal domain (i.e. by identifying neighbors in the predictor state space). This work 

could be extended with a Bayesian hierarchical model. Given that Bayesian hierarchical 

modeling facilitates multi-level modeling, we could extend the proposed multimodel 

combination scheme to take into account variability in forecasting skill that occur primarily 

due to variability in location, time and state of the predictor. By looking at the spatial and 

temporal organized modes exhibited by climate forecasts one can employ a Bayesian 

hierarchical framework to develop multimodel climate forecasts.  

We can also explore the benefits of multimodel climate forecasts in developing 

streamflow forecasts. Given that the climate forecasts for GCMs are available at large spatial 

resolutions, one can apply various downscaling techniques like coupling GCMs with 

Regional Climate Model and using the outputs with large scale watershed model, statistical 

downscaling or Model Output Statistics etc. However, most of these techniques develop a 
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statistical relationship between ensemble mean of the climate forecasts and the observed 

streamflows at the site with the assumption that most of the information carried in the 

forecasts in represented by the mean. Given that the multimodel forecasts improved the 

reliability of the forecasts (better correspondence between forecast probability and its 

observed relative frequency), we could investigate various techniques that can map the 

conditional distribution of the multimodel climate forecasts to the conditional distribution of 

the streamflow forecasts. Utilizing the multimodel climate forecasts will lead to better 

representation of the conditional distribution of the statistically downscaled streamflow 

forecasts, thereby improving the reliability of meeting the seasonal demands.   
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Appendix A: The Hotelling – Williams Correlation Hypothesis Test 

 Two correlations can have dependence if they are computed across the same 

individuals. Hence, we have to test whether these two correlations are equal. For example, let 

the correlation between ECHAM4.5 predicted precipitation and observed precipitation be ρ12 

and the correlation between CCM3v6 predicted precipitation and observed precipitation be 

ρ13. ρ12 can be equal to ρ13 implying that the correlations are equal or ρ12 can be greater or 

lesser than ρ13 implying that one correlation can be significant over the other correlation. 

Hence, we can assume the following null hypothesis to test for the equality of two 

correlations.  

H0: ρ12 = ρ13         … (A-1)      

Hotelling and William suggested that the test statistic has a Student’s t-distribution with (n-3) 

degrees of freedom and can be calculated as follows. 

t(n-3) ~  ρ12-ρ13    n-1 (1+ρ23)
2 n-1 (n-3) |R|+ r ̅2(1-ρ23)

3      … (A-2) 

Where,   r ̅= ρ12+ρ13
2

        … (A-3) 

and  |R| = 1-ρ12
2 -ρ13

2 -ρ23
2 +2ρ12ρ13ρ23     … (A-4) 

 

We can find the critical value for t with (n-3) degrees of freedom and either accept or reject 

the null hypothesis. For instance, if the percentile of test statistic is greater than or equal to 

0.9 at 10% significance level, the null hypothesis that the correlations are equal can be 
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rejected. ECHAM4.5 predicted precipitation will be more significantly correlated with 

observed precipitation than CCM3v6 predicted precipitation.  
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Appendix B: Rank Probability Score and Rank Probability Skill Score 

 Given that seasonal forecasts are represented probabilistically using ensembles, 

expressing the skill of the forecasts using correlation requires summarizing the forecasts 

using some measures of central tendency such as mean or median of the conditional 

distribution, which does not give any credit to the probabilistic information in the forecast. 

Rank Probabilistic Skill Score (RPSS) computes the cumulative squared error between the 

categorical forecast probabilities and the observed category in relevance to a reference 

forecast [Wilks, 1995]. Here category represents dividing the climatological/observed 

precipitation/temperature, Q, into d=1, 2... D divisions and expressing the marginal 

probabilities as Pd(Q). Typically, the divisions are made equal probabilistically with O=3 

categories known as terciles with each category having 1/3 probability of occurrence. These 

three categories are known as below normal, normal and above-normal whose end points 

provide precipitation/temperature values corresponding to the particular category. Thus, for a 

total of D categories, the end points based on climatological observations for dth category 

could be written as Qd, Qd+1 (For d=1, Q1= 0; d=D; QD+1 = Qmax). Given 

precipitation/temperature forecasts at time‘t’ from mth model with i=1, 2... N ensembles, m
tiQ , , 

then the forecast probabilities for the dth category could be expressed as NnQFP m
td

m
td /)( ,, =  

by computing the number of ensembles between Qd ≤ m
tiQ , ≤ Qd+1.To compute RPSS, the first 

step is to compute Rank Probability Score (RPS). Given D categories and )(, QFP m
td for a 

forecast, we can express the RPS for a particular year‘t’ from mth model as 
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[ ]∑
=

−=
D

d
d

m
td

m
t COCFRPS

1

2
,       ... (B-1) 

where ∑
=

=
d

q

m
td

m
td FPCF

1
,,  is the cumulative probabilities of forecasts up to category d and COd 

is the cumulative probability of the observed event up to category d. Thus if Qt, the observed 

precipitation/temperature falls in the dth category, COq = 0 for 1 ≤ q ≤ d-1 and COq = 1 for d ≤ 

q ≤ D.  Given RPS, we can compute RPSS in relation to a reference forecast, which is 

usually climatological forecasts having equal probability of occurrence under each category 

DQFP c
td /1)(lim

, = . 

lim1 c
t

m
tm

t RPS
RPS

RPSS −=       ... (B-2) 

Low RPS indicates high skill and vice versa. Similarly the range of RPSS varies from 

minus infinity to 1. RPSS of 0 indicates that there is no skill in the model when compared to 

the reference forecast. If RPSS is positive, then the forecast skill exceeds that of the 

climatological probabilities. RPSS of 1 indicates perfect forecast.  RPSS could give an overly 

pessimistic view of the performance of the forecasts and it is a tough metric for evaluating 

probabilistic forecasts [Goddard et al., 2003].  One can use RPSS to produce maps showing 

the spatial characteristics of the forecast skill [Goddard et al., 2003]. One can also compare 

RPSS analogously to correlation. RPSS of 0.1 approximately corresponds to a correlation of 

0.5 [Goddard et al., 2003; Barnston et al., 2003]. A detailed example on how to compute RPS 

and RPSS for given forecast, is given below [Goddard et al., 2003]. 
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Illustration of RPS and RPSS for evaluation of probability forecasts 

Let us consider a forecast precipitation for the upcoming season ‘t’ have probabilities 

of 50%, 30% and 20% under below normal, normal and above normal categories respectively 

from a given model. For this forecast, we evaluate how RPS and RPSS will change if the 

observation falls in each of the categories. Probabilities of climatological ensembles naturally 

take 33%, 33% and 33%. From the given forecasts, cumulative forecasts, m
tdCF ,   under each 

category could be calculated as follows. ∑
=

=
d

q

m
td

m
td FPCF

1
,,  

Thus, 5.01
,1 =tCF , 8.01

,2 =tCF , 0.11
,3 =tCF  for the given model m = 1. Similarly, we 

can also compute the cumulative probabilities under climatology with 33.01
,1 =tCF  

66.01
,2 =tCF  0.11

,3 =tCF . 

Observed Category: Below normal 

 

Figure B-1: Observed Category falling in Below Normal 
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Suppose if the observation falls under below-normal category as shown in figure A-1, then 

CO1 = 1, CO2 = 1 and CO3 = 1 indicating the cumulative probabilities of observed event for 

each category‘d’.  

Hence   RPSforecast = (0.5-1)2 + (0.8-1)2 + (1-1)2 = 0.25 + 0.04 + 0 = 0.29 

Similarly  RPSclimatology = (0.33-1)2 + (0.67-1)2 + (1-1)2 = 0.4489 + 0.1089 + 0 = 0.5578 

  RPSSforecast = 1- RPSforecast/RPSclimatology 

    1-(0.29/0.5578) = 0.48 

Thus RPS of the forecast is smaller than the RPS of climatology with smaller error in 

probabilities of forecasts. This leads to a positive RPSS which compares the performance of 

candidate forecasts with climatology. 

Observed Category: Normal 

   

Figure B-2: Observed Category falling in Normal  
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Similarly  RPSclimatology = (0.33-0)2 + (0.67-1)2 + (1-1)2 = 0.1089 + 0.1089 + 0 = 0.22 

Hence   RPSSforecast = 1- RPSforecast/RPSclimatology 

    1-(0.29/0.22) = -0.32 

This shows clearly that if the observation falls in a category which is different from the 

category in which forecast has higher probabilities, then RPS of the forecast increases 

leading to reduced RPSS. 

Observed Category: Above normal 

   

Figure B-3: Observed Category falling in the Above Normal 
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Thus in this case, the forecast is completely wrong with the prediction exactly 

opposite of the forecasts. This leads to RPS of the forecast being higher than that of RPS of 

climatology. Thus RPS is nothing but denoting the error in cumulative probabilities. If both 

observations falls under a category in which forecast has higher density, then RPS is less.  

Hence, if one can predict when such situation can occur, it may be advisable to use 

climatology than using forecasts.  
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APPENDIX C: Seasonality of Hydrologic Variables 

Seasonality of a hydrologic variable can be measured using circular or directional 

statistics [Markham 1970]. Circular statistics is useful for quantifying the time of occurrence 

of an event when time is measured on a circle. Seasonality can be quantified by calculating 

two components, the average time of occurrence, and the degree to which the event tend to 

be concentrated in time, called the seasonality index. Under this method, the time through the 

year is represented on a circle and each month is assigned an angle, measured from 1st 

January as shown in Table C1. The hydrologic variable of interest is assumed to be a vector 

quantity with magnitude and direction. The 12 months vectors can be added vectorially to get 

a resultant vector with a direction ϕR and magnitude PR.  

ϕ'R= tan-1  S

C
          …(C-1) 

PR= S2+C2 1
2         …(C-2) 

S=∑ Pm
12
m=1 sinϕm        …(C-3) 

C=∑ Pm
12
m=1 cosϕm        …(C-4) 

 

Pm are the 12 monthly magnitudes and ϕm are the 12 monthly time angles (Table C1). 

The average time of occurrence, ϕR, is given by the value of ϕ'R and the signs of S and C. 

This decides the quadrant of the circle the resultant vector falls under.   =  ′      > 0      > 0;      …(C-5)   =  ′ + 180       < 0;                 … (C-6)   =  ′ + 360     < 0      > 0;    … (C-7) 
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ϕR can be converted to the month of the year in which it occurs using Table C1. The 

seasonality index is the ratio of the resultant vector PR to the total magnitude and the ratio 

ranges from 0 to 1. For example, the seasonality index of precipitation is 0 if the magnitude 

of precipitation is equal in all the months, and is equal to 1 if all the precipitation occurs in a 

single month.   

 

 

 

Table C1: Angles for computing seasonality index and average time of occurrence for 
monthly data. 
 

Mid-Month  First of Month 
Month Day of 

Year 
Angle 

(degrees) 
Sine Cosine Day of 

year 
Angle(degrees) 

Jan 16 15.8 0.272 0.962 1 1.0 
Feb 45.5 44.9 0.705 0.709 32 31.6 
Mar 75 74 0.961 0.276 60 59.2 
Apr 105.5 104.1 0.970 -0.243 91 89.8 
May 136 134.1 0.718 -0.696 121 119.3 
Jun 166.5 164.2 0.272 -0.962 152 149.9 
Jul 197 194.3 -0.246 -0.969 182 179.5 

Aug 228 224.9 -0.705 -0.709 213 210.1 
Sep 258.5 255 -0.966 -0.26 244 240.7 
Oct 289 285 -0.966 0.259 274 270.2 
Nov 319.5 315.1 -0.706 0.708 305 300.8 
Dec 350 345.2 -0.256 0.967 335 330.4 
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