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Résumé

L’utilisation de la modulation à phase continue (CPM) est particulièrement intéressante lorsque le

canal de communication comporte une forte non-linéarité et un support spectral limité, en particulier

pour la voie aller, lorsque l’on dispose d’un amplificateur par porteuse à bord du satellite, et pour la

voie retour où le terminal d’émission travaille à saturation. De nombreuses études ont été effectuées

sur le sujet mais les solutions proposées reposent sur la démodulation/décodage itératif des CPM

couplées à un code correcteur d’erreur de type convolutif ou bloc. L’utilisation de codes LDPC n’a

pas été à ce jour abordée de façon précise. En particulier, il n’existe pas à notre connaissance de

travaux sur l’optimisation des codes basés sur des graphes creux adaptés à ce type de schémas. Dans

cette étude, nous proposons d’effectuer l’analyse asymptotique et le design d’un schéma Turbo-CPM

basé sur des graphes creux. Une étude du récepteur associé comportant les fonctions de démodulation

sera également effectuée.
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Abstract

The use of the continuous phase modulation (CPM) is interesting when the channel represents a

strong non-linearity and in the case of limited spectral support; particularly for the uplink, where

the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works

very close to the saturation region. Numerous studies have been conducted on this issue but the

proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or

block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no

works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted

for the context described here. In this study, we propose to perform the asymptotic analysis and the

design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an

analysis on the corresponding receiver will be done.

ix



x



Contents

iii

Remerciements v

Résumé vii

Abstract ix

Introduction (French) 1

Introduction 13

List of publications 23

Chapter 1 Continuous Phase Modulation 25

1.1 Introducion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 CPM signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Trellis representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.1 Original trellis representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.2 Rimoldi’s decomposition [Rim88] . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.3 Laurent’s decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3.4 Other decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.4 Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



1.4.1 MLSD receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4.2 MAP receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.5 CPM receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.5.1 Rimold-based receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.5.2 Laurent-Kaleh’s receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 2 Design of unstructured LDPC codes 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.2 Graphical representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Asymptotic Analysis of unstructured LDPC codes . . . . . . . . . . . . . . . . . . . . 62

2.4.1 EXIT curve of the detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.2 The area theorem and the curve fitting approach . . . . . . . . . . . . . . . . . 65

2.4.3 A combined EXIT approach for CPM and LDPC code . . . . . . . . . . . . . . 69

2.4.4 Combined EXIT recursion and formulation of the optimization problem . . . . 74

2.4.5 Stability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 3 Design of LDPC codes with structure 91

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Generalized Irregular Repeat Accumulate codes . . . . . . . . . . . . . . . . . . . . . . 95

3.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.2 Code design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Protograph-based LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



3.3.1 System description and notations . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.3.2 PEXIT analysis of concatenated protographs with CPM . . . . . . . . . . . . . 111

3.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4 Spatially coupled LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.4.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.4.2 Asymptotic Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.3 Code design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter 4 A fresh look on Laurent-based receiver derivation 133

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Continuous phase modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.1 Rimoldi’s receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2.2 Laurent-based receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Maximum Likelihood receiver for Laurent’s decomposition . . . . . . . . . . . . . . . . 138

4.3.1 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3.2 Kaleh’s ML receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.3 A new derivation for an ML receiver . . . . . . . . . . . . . . . . . . . . . . . . 141

4.3.4 Relation with Rimoldi’s memoryless modulator . . . . . . . . . . . . . . . . . . 146

4.4 Maximum a posteriori symbol receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.4.2 Exact MAP receiver derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.5 Complexity reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.6 Asymptotic analysis for iterative and non-iterative receivers: impact of the new MAP

receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.6.1 General behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.6.2 Scheme 1: GMSK pulse, h = 1/3, L = 3, BT = 0.3 . . . . . . . . . . . . . . . . 155

xiii



4.6.3 Scheme 2: Rectangular pulse, h = 3/4, L = 3 . . . . . . . . . . . . . . . . . . . 155

4.6.4 Code design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.6.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.7 Code design and complexity reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.7.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 5 Application to the aeronautical channel 165

5.1 Main CPM notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2 Performance comparison in the Aeronautical channel . . . . . . . . . . . . . . . . . . . 167

5.2.1 The aeronautical channel model . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2.2 Performance of linear modulations and the CPM . . . . . . . . . . . . . . . . . 171

5.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3 DVB-RCS2 analysis and code design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3.1 DVB-RCS waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3.2 DVB-RCS2 concatenated scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3.3 LDPC coded-RCS2 schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Performance comparison of coding schemes . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4.1 CPM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4.2 Asymptotic analysis of the DVB-RCS2 convolutional code . . . . . . . . . . . . 177

5.4.3 Asymptotic analysis of the LDPC coded DVB-RCS2 . . . . . . . . . . . . . . . 178

5.5 Equalization methods for CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5.2 Making of the CPM signals circular . . . . . . . . . . . . . . . . . . . . . . . . 181

5.5.3 Frequency domain equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Conclusions et perspectives 191

Conclusions and perspectives 197

xiv



Appendices 203

Appendix A A detailed proof of the Laurent’s decomposition . . . . . . . . . . . . . . . . 205

Appendix B Proof of the stability condition . . . . . . . . . . . . . . . . . . . . . . . . . 213

Appendix C Ensemble weight enumerators for protographs: a proof of Abu Surra’s con-

jecture and a continuous relaxation for a faster enumeration . . . . . . . . . . . . . . . 221

Appendix D Protograph-based LDPC convolutional codes for BICM . . . . . . . . . . . 237

Bibliographie 266

xv



xvi



List of Figures

1 Context communication drone-satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Environnement typique d’un drone. La zone rouge correspond à une zone militaire

contrôlée par l’OTAN, la zone grise est civile mais contrôlée par l’ICAO et la zone

verte correspond à un espace civil non contrôlé. . . . . . . . . . . . . . . . . . . . . . . 3

3 Vue d’ensemble du spectre à 5GHz. Cette figure a été prise de [GHGZ12] . . . . . . . 4

4 Typical satellite-UAV context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Typical UAV environment. The red area corresponds to a segregated and NATO

controlled zone, the gray area to an non segregated but ICAO controlled zone and the

green area to an uncontrolled zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Overview of the 5GHz spectrum. This figure was taken from [GHGZ12] . . . . . . . . 16

1.1 The frequency shaping pulse g(t) and the phase shaping pulse q(t) of some CPM schemes 30

1.2 An example of a CPM encoding. Considered CPM scheme is (M = 2, L = 3, h = 2/3,

RC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 CPM signal in a three dimensional polar plan. Considered CPM scheme is (M = 2,

L = 3, h = 2/3, RC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Possible MSK signal waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 The phase tree and the modulo-2π of the MSK. Trellis states are {σ0 = 0, σ1 = π
2 ,

σ2 = π, σ3 = 3π
2 } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6 CPM transition in the CPE trellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7 Rimoldi’s decomposition structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xvii



1.8 CPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.9 The 4 Laurent’s components of the CPM scheme (M = 2, L = 3, h = 1/2,REC) . . . . 40

1.10 CPM signal realization example according to the classical and to the Laurent’s de-

composition. The considered CPM is the (M = 2, L = 3, h = 2/3, RC) . . . . . . . . . 41

1.11 SISO component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.12 Coded interleaved CPM scheme with iterative decoding . . . . . . . . . . . . . . . . . 47

1.13 Rimoldi’s decomposition-based receivers . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.14 Kaleh’s Laurent-based receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1 The Tanner graph of the parity check matrix in Eq. (2.1). The VNs are represented

by circles while the CNs are represented by squares . . . . . . . . . . . . . . . . . . . . 57

2.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Rimoldi’s decomposition-based receivers . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Bloc diagram of the receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 LDPC code ensemble for joint detection and decoding . . . . . . . . . . . . . . . . . . 62

2.6 SISO CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Probability density function of the LLRs at the output of the GSM GMSK decoder in

comparison to a symmetric Gaussian distribution when the a priori mutual informa-

tion is 0.5. m0 (and m1) is the expected value of the LLRs associated with the bits 0

(respectively the bits 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.8 EXIT curves for various CPM systems. For reference the rate-1/2 [5, 7] convolutional

code is also illustrated. The considered SNRs are Ed/N0 = −5, 0 and 5dB . . . . . . . 66

2.9 Maximum achievable rates for the GMSK: (M = 2, L = 3, h = 1/2, BT = 0.3,Gaussian)

as a function of the SNR (Es/N0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.10 EXIT chart of the GMSK: (M = 2, L = 3, h = 1/2, BT = 0.3,Gaussian) at Es/N0 =

−2.75dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.11 Maximum achievable rates different CPM schemes. The RCS2 CPM scheme is defined

in [BCDB+13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.12 LDPC code ensemble for joint detection and decoding with partial interleavers . . . . 69

xviii



2.13 Variable node update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.14 Combined VN+CPM trajectories as a function of the degree. The detector is (M =

2, L = 3, BT = 0.3, h = 1/2) and the SNR is Es/N0 = −1.5. For the dashed line, the

considered profile is (λ1 = 0.42, λ2 = 0.23105, λ3 = 0.00938, λ4 = 0.00104, λ10 = 0.33853) 72

2.15 Check node update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.16 CN EXIT trajectories. The dashed line corresponds to the profile (ρ2 = 0.34, ρ3 = 0.66 74

2.17 The CNs and the combined VNs+CPM EXIT curves of the optimized code in Eq. (2.24) 76

2.18 The CNs and the combined VNs+CPM EXIT curves of the optimized code in Eq. (2.25) 77

2.19 The CNs and the combined VNs+CPM EXIT curves of the optimized code in Eq. (2.28) 81

2.20 Ropt versus R∗ for different CPM schemes as function of Es/N0 . . . . . . . . . . . . . 83

2.21 BER and FER for optimized concatenated LDPC code with 3MSK and 3GMSK . . . 87

3.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 A systematic GIRA encoder seen as a serial concatenation . . . . . . . . . . . . . . . . 95

3.3 Systematic GIRA encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 GIRA Tanner graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5 Systematic GIRA soft decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Systematic GIRA soft decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.7 Accumulator soft decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.8 I`acc,cpm as a function of I`cpm,acc with different a priori I`cn,acc at Es/N0 = 0dB. . . . . 104

3.9 Accumulator and GMSK convergence point (intersection) at Es/N0 = 0dB as function

of Icn,acc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.10 Achievable and optimized rates when VNs degrees are constrained to be ≥ 1 . . . . . 105

3.11 Maximum achievable and optimized rates for some GIRA codes with GMSK . . . . . 106

3.12 Obtained BER of GIRA codes with GMSK . . . . . . . . . . . . . . . . . . . . . . . . 108

3.13 The ’factorized’ protograph code generated by "copy-and-permute" operations. Each

interleaver πij1�i�7 permutes the bundle of replicas of each edge. . . . . . . . . . . . . 109

3.14 Factor graph of the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.15 Factor graph of the CPM and protograph based LDPC code receiver. . . . . . . . . . 111

xix



3.16 Obtained protographs for different CPM systems. . . . . . . . . . . . . . . . . . . . . . 115

3.17 BER and FER of optimized protographs for GMSK. . . . . . . . . . . . . . . . . . . . 116

3.18 (3, 6) regular LDPC convolutional code with ms = 2: firstly, the protograph is repli-

cated, then it is spatially coupled with respect to B0 = B1 = B2 = [1 1] . . . . . . 118

3.19 Factor graph of the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.20 Factor graph of the CPM and protograph based LDPC code receiver. . . . . . . . . . 120

3.21 (3, 6) regular LDPC convolutional code with ms = 2, L = 5 and B0 = B1 = B2 =

[1 1] with normal termination T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.22 (3, 6) regular LDPC convolutional code with ms = 2, L = 16 and B0 = B1 = B2 =

[1 1] with normal termination TB (the figure was taken from [MLCJ14]) . . . . . . . 122

3.24 (3, 6) regular LDPC convolutional code with ms = 2, L = 5 and B0 = B1 = B2 =

[1 1] with normal termination DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.23 Evolution of I`app per variable nodes of the LDPC-C depicted in Fig. 3.18 concatenated

with GMSK, L = 100. threshold of B is 2.22dB . . . . . . . . . . . . . . . . . . . . . . 124

3.25 Thresholds comparison for different codes when GMSK . . . . . . . . . . . . . . . . . 127

3.26 Evolution of I`app per VNs of C
(1)
1,DT and C(1)

2,DT , with L = 50, concatenated with GMSK

at 1.5dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.27 Comparison of the threshold as a function of the number of VNs for different rates . . 130

3.28 Bit error rate for GMSK with different codes . . . . . . . . . . . . . . . . . . . . . . . 131

4.1 Rimoldi’s decomposition-based receivers . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2 Kaleh’s ML receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3 A new ML receiver architecture. The family {ei(t)}i can be any orthonormal basis of

the receiver signal space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4 Rimoldi’s MM and our Laurent’s exact filter bank for the CPM with M = 2, L = 2,

rectangular pulse and h = 2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.5 Rimoldi’s MM and our Laurent’s exact filter bank for the CPM with M = 2, L = 2,

rectangular pulse and h = 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xx



4.6 Normalized power spectrum densities of a white noise samples filtered by Laurent’s

Components of a binary (L = 3, h = 2/3, RC) CPM . . . . . . . . . . . . . . . . . . . 150

4.7 An EXIT curve and comparison of R∗ of the coded GMSK h = 1/3, L = 3, BT = 0.3 . 156

4.8 Comparison of the BER performance of the two receivers for uncoded GMSK with

h = 1/3, L = 3 and BT = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.9 Comparison of the EXIT chart curves of the Rimoldi’s, classical Laurent’s and the

new Laurent’s receivers. The considered CPM scheme is: (M = 2, h = 3/4, L =

3, rectangular pulse) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.10 Comparison of the BER performance of the two receivers for uncoded CPM with

h = 3/4, L = 3 and a rectangular pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.11 Receiver structure for the unstructured LDPC codes . . . . . . . . . . . . . . . . . . . 160

4.12 BER of the two receivers with a rate-1/2 optimized LDPC code . . . . . . . . . . . . . 160

4.13 BER of the two receivers with a rate-1/3 optimized LDPC code . . . . . . . . . . . . . 161

4.14 Laurent’s components, R∗ and EXIT curves for 3GMSK and 3MSK . . . . . . . . . . 162

4.15 BER and FER for optimized concatenated LDPC code with 3MSK and 3GMSK . . . 163

5.1 Aeronautical channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.2 Considered aeronautical channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Comparison of linear modulations and MSK in the AWGN channel . . . . . . . . . . . 173

5.4 Comparison of linear modulations and MSK in the aeronautical channel . . . . . . . . 174

5.5 Phase response function of the DVB-RCS waveform with αRC = 0.75 . . . . . . . . . . 175

5.6 Concatenated scheme of the DVB-RCS2 [V1.13] . . . . . . . . . . . . . . . . . . . . . . 176

5.7 Our LDPC-coded DVB-RCS2 concatenated scheme . . . . . . . . . . . . . . . . . . . . 176

5.8 EXIT chart of for the CPM (M = 4, L = 2, h = 1/3, αRC = 0.75, natural mapping) at

different signal to noise ratios: Es/N0 = −1 . . . 9 dB with steps of 0.2dB . . . . . . . . 177

5.9 EXIT analysis of the the considered CPM concatenated and the (3, [5,7]) convolutional

code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.10 Comparison of the convergence threshold of the DVB-RCS2 CPM coded with an op-

timized LDPC code and with convolutional code . . . . . . . . . . . . . . . . . . . . . 179

xxi



5.11 Comparison of the bit error rate performance of the convolutional and the LDPC code

for size 2048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.12 CP for CPM [Par10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.13 UW for CPM [Par10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.14 CP for the CPM with the size of the different parts . . . . . . . . . . . . . . . . . . . . 184

5.15 Stüber receiver structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.16 BER and FER of the uncoded DVB-RCS2 CPM scheme in the aeronautical channel.

The frames have k=1000 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.17 BER and FER of the coded DVB-RCS2 CPM scheme with CC in the frequency selec-

tive channel. The frames have k=2048 bits . . . . . . . . . . . . . . . . . . . . . . . . 187

5.18 BER and FER of the coded DVB-RCS2 CPM scheme with CC in the aeronautical

and AWGN channel. The frames have k=2048 bits . . . . . . . . . . . . . . . . . . . . 188

5.19 BER and FER of the coded DVB-RCS2 CPM scheme with our LDPC code in the

aeronautical and AWGN channel. The frames have k=2048 bits . . . . . . . . . . . . . 189

5.20 EXIT chart des différents canaux bits pour la CPM (M = 4, L = 2, h = 1/3, mapping

naturel ) à Es/N0 = −0.5dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.21 EXIT chart of different bit channels for the CPM scheme (M = 4, L = 2, h = 1/3,

natural mapping) at Es/N0 = −0.5dB . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.1 The ’vectorized’ protograph ldpc code generated by "copy-and-permute" operations.

Each interleaver πij1�i�5 permutes the bundle of the N replicas of each edge. . . . . . 222

C.2 Main notations considered for VNs and CNs . . . . . . . . . . . . . . . . . . . . . . . . 222

C.3 Asymptotic weight enumerators for different protograph codes . . . . . . . . . . . . . . 234

D.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

D.2 Factor graph of the receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

D.3 VNs’ MI evolution through iterations for convolutional ARJA with Gray at Eb/N0 =

3.1dB and L = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

D.4 VNs’ MI evolution through iterations for DT (3, 6)-regular LDPC code with MSEW

mapping at Eb/N0 = 5.18dB and L = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . 246

xxii



D.5 Modified transmitter when precoding is used . . . . . . . . . . . . . . . . . . . . . . . 246

D.6 MSEW demapper EXIT charts at Es/N0 = 2dB with precoding . . . . . . . . . . . . . 247

D.7 Threshold vs rate of different codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

xxiii



xxiv



List of Tables

1.1 Examples of phase shaping functions of CPM. . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Some CPM famillies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Durations of the Laurent’s components . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Energy distribution in Laurent’s components . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Different optimized LDPC codes for the GMSK: (h = 1/2, L = 3, BT = 0.3, Gaussian

pulse) and their corresponding thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2 Different optimized LDPC codes for the CPM (M = 4, h = 1/3, L = 1, Rectangular

pulse, natural mapping) and their corresponding thresholds. . . . . . . . . . . . . . . . 85

2.3 Different optimized LDPC codes for the CPM (M = 8, h = 1/3, L = 2, RC pulse,

natural mapping) and their corresponding thresholds. . . . . . . . . . . . . . . . . . . 86

2.4 Optimized LDPC codes for design rate R = 0.5 . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Optimized LDPC codes for the CPM schemes (1) and (2) . . . . . . . . . . . . . . . . 89

3.1 Optimized GIRA codes for design rate R ' 0.5. For LDPC code, we obtain λ1 =

0.1125, λ2 = 0.5294, λ5 = 0.0086, λ10 = 0.3495, ρ3 = 0.2, ρ4 = 0.8 with a threshold of

−2.7dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.2 Optimized asymptotic thresholds Es/N0 for protograph and unstructured LDPC codes

with design R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.3 Comparison of the performance of some codes when concatenated with QCPM . . . . . 130

4.1 Durations of the Laurent’s components . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Energy distribution in Laurent’s components . . . . . . . . . . . . . . . . . . . . . . . 153

xxv



4.3 State vector and different availlable pseudo-symbols of our Laurent’s receiver when

different trellis reduction factors are considered . . . . . . . . . . . . . . . . . . . . . . 154

4.4 Different optimized degree profiles for the GMSK with h = 1/3, L = 3 and BT = 0.3

and the corresponding thresholds for the classical and the proposed receivers . . . . . 159

4.5 Optimized LDPC codes for design rate R = 0.5 . . . . . . . . . . . . . . . . . . . . . . 163

xxvi



Introduction (French)

Contexte de la thèse

Les véhicules aériens sans pilote ou drones sont devenus très populaires et représentent aujourd’hui

une solution rentable dans de nombreux nouveaux domaines autres que militaires (la surveillance

des forêts, les situations d’urgence, l’inspection des pipelines, le divertissement, la communication,

l’observation . . . ). En raison de ces applications très hétérogènes, les drones doivent envisager

d’assurer une communication par satellite car ils ne peuvent pas toujours compter sur la présence

d’infrastructures terrestres pour être commandés (régions éloignées, catastrophes naturelles, catastro-

phes industrielles . . . ). En effet, pour des raisons de sécurité dans l’espace aérien civil, il faut s’assurer

que nous pouvons toujours garantir le contrôle de l’UAV. Un scénario typique est représenté dans

Fig. 4.

Aujourd’hui, les drones utilisent principalement la bande Ku du service fixe par satellite (FSS)

pour communiquer avec la station de pilotage à distance (RPS) quand il n’y a pas de trajet di-

rect. Sinon, ils peuvent utiliser une plus grande gamme de solutions (C, Ku, S et UHF bandes).

Dans le cadre de la future augmentation de l’utilisation des communications drones-satellites civiles,

les drones auront besoin d’accéder aux bandes de fréquences des services de l’aviation civile dans

les zones de l’espace aérien non-distincts ou au moins à certaines positions de leur trajectoire de

vol. Afin de parvenir à une intégration complète et sûre dans le système du trafic aérien existant,

un déploiement sur les fréquences du système d’atterrissage micro-ondes de l’aviation civile (MLS)

est prescrit par l’Organisation Internationale de l’Aviation Civile (ICAO) et l’Union Internationale

1
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Figure 1: Context communication drone-satellite

des Télécommunications (ITU). D’autre part, aucun système de communication par satellite n’est

actuellement déployé dans la bande du service aéronautique en-route mobile-satellite (AMS (R) S).

Aujourd’hui, la bande de 5GHz n’est pas utilisé mais elle est allouée pour le système d’atterrissage

(MLS), le système de satellite et le système terrestre [IR10, IR11, CNE12]. Afin de répondre à la

forte augmentation de la demande, la première bande apparaît comme une opportunité unique pour

un déploiement futur. Par ailleurs, en termes de propriétés de transmission, la bande 5GHz est rela-

tivement immunisée contre l’atténuation causée par la pluie ou d’autres conditions météorologiques.

La figure 5 illustre un exemple de liens de communication entre le drone et le RPS. La même bande

est prévue pour le futur standard de normalisation STANAG 4660.

La Conférence mondiale de la radio de l’ITU (WRC) de 2012 a inclus un point à l’ordre du jour

couvrant ce contexte: nous devrons être en mesure, d’ici 2020, de définir un schéma de communication

complet à la fois pour la commande et l’acquisition de données sur la bande de fréquence de 5030-

5091MHz, en particulier pour le service mobile aéronautique en-Route (AM (R) S). Ce nouveau lien

de communication ne doit pas interférer avec l’infrastructure déjà existante. La figure 6 résume les

principales attributions de fréquences dans la bande 5GHz ciblée.
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RPSairport
Civil
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Figure 2: Environnement typique d’un drone. La zone rouge correspond à une zone militaire contrôlée

par l’OTAN, la zone grise est civile mais contrôlée par l’ICAO et la zone verte correspond à un espace

civil non contrôlé.

D’autre part, le signal transmis est soumis à de fortes distorsions en raison du modèle du canal.

Enfin, les satellites visés sont supposés transparents (ils répètent seulement le signal reçu). Par

conséquent, les amplificateurs intégrés induisent une distorsion du signal supplémentaire surtout

quand ils travaillent près du régime de saturation. Dans la littérature, plusieurs techniques ont été

proposées pour palier à cette dégradation:

Prédistortion

Cette technique est effectuée du côté de l’émetteur. Elle consiste à prédistordre le signal transmis de

telle sorte qu’elle compense l’effet des amplificateurs à haute puissance embarqués (HPA). Ceci peut

être effectué en inversant simplement la fonction de transfert de ces distorsions. L’expansion Volterra

[BBD79] est largement utilisé pour décrire ces non-linéarités ainsi que leur inverse. Cette technique,

ainsi que quelques autres connexes plus avancées (prédistorsion de données [SS83]), ont été utilisées

dans le standard de la diffusion de la vidéo numérique de deuxième génération (DVB-S2) [ETS06].
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Figure 3: Vue d’ensemble du spectre à 5GHz. Cette figure a été prise de [GHGZ12]

Égalisation

Dans certaines applications, la complexité de la caractéristique des amplificateurs HPA et la non

invertiblité de la fonction de transfert ne permettent pas une bonne correction des non-linéarités.

Dans ces cas, on peut considérer une prédistorsion à l’émetteur associée à une égalisation à la récep-

tion. Cette égalisation va contrebalancer les résidus des non-linéarités restants ou d’autres termes

d’interférence de canal. Généralement, cette approche est basée sur les symboles pilotes: chaque

message dispose d’un nombre fixe de symboles connus utilisés pour estimer le canal. Comme dans

l’approche précédente, les égaliseurs basés sur la décomposition de Volterra sont largement utilisés

[BB83, BTP+13].

Schémas de modulations avancées

Une autre alternative consiste à utiliser des schémas de modulations avancées relativement immunisés

contre les non-linéarités, comme les modulations à enveloppe constante. Différents schémas ont été

proposés dans la littérature:

• La modulation Interplex [BT72]: une sous-classe des modulations de phase qui multiplexe

plusieurs signaux dans un seul signal modulé en phase.

• La modulation Intersymbol-interference et jitter-free offset quadrature phase shift keying
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(IJF-0QPSK) [LNF81]: cette modulation est obtenue en introduisant une proportion contrôlée

de l’interférence inter-symboles (ISI) dans un signal IJF.

•Modulation à phase continue (CPM): une modulation de phase où les transitions de phase sont

maintenues continues durant la transmission. Cette classe est très intéressante non seulement

d’un point de vue occupation spectrale mais aussi pour sa structure facilement adaptable à des

schémas de concaténation en série.

Modulations à phase continue

Dans ce contexte, les modulations à phase continue (CPM) représente un très bon candidat pour

ces contraintes. Tout d’abord, elles ont une enveloppe constante qui les rend robustes face aux

non-linéarités des amplificateurs intégrés. Du point de vue du satellite, ceci permet de travailler

avec des puissances plus élevées sans aucun back-off, ce qui améliore le budget global de la liaison.

Deuxièmement, les modulations à phase continue ont une meilleure occupation spectrale (des lobes

secondaires bas) en comparaison avec les modulations linéaires classiques (QPSK, PSK, . . . ) pour

des raisons qui vont être exposées plus tard.

Les signaux CPM ont bénéficié d’un grand nombre de recherches depuis leur introduction et leur

performance dans le canal Gaussien a été bien étudiée. Dans des schémas codés concaténés, plusieurs

travaux ont été effectués sur les concaténations en série avec des codes convolutifs binaires/non-

binaires et différents codes en blocs de courte taille: [XA05, GiAND09, MA01] pour ne citer que

quelques-uns. Il a été souvent stipulé que la concaténation série avec des codes Low Density Parity

Check (LDPC) implique un système doublement itérative difficile à analyser et donc à optimiser.

Étonnamment, aucune étude complète n’a été menée sur la conception de bons codes LDPC pour

la CPM. Cette classe de codes correcteurs d’erreur présente de nombreux avantages: elle présente

une performance compétitive par rapport aux turbo-codes, elle peut offrir une certaine flexibilité des

rendement pour différents schémas de modulation et elle présente une complexité de décodage faible.

En outre, si bien optimisés, on a montré que les codes LDPC peuvent opérer à des seuils très proches

de la capacité pour un large éventail d’applications [MN96, tBKA04, YRL04, LSL06, VNND11] . . .
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Dans les quelques contributions traitant des systèmes concaténés faisant intervenir les LDPC et la

CPM, les approches proposées manquent de généralité. Le premier travail est dû à [NAN01] où une

étude basée sur l’évolution de densité du code LDPC concaténé avec une modulation Minimum Shift

Keying (MSK) a été réalisée. Dans [NAN03], les mêmes auteurs ont proposé un code LDPC pour le

MSK récursive, optimisé en utilisant une évolution différentielle avec quelques noeuds de variables

de degrés 1. Dans [Gan03], l’auteur a étudié l’optimisation de modulation CPFSK M-aire selon une

approche de modulation codée à bits entrelacés (BICM) en utilisant des techniques d’évolution de

densité. Non seulement l’auteur n’a pas envisagé l’insertion d’une proportion de noeuds de variables

de degré 1, mais aussi la démarche proposée mène à un problème d’optimisation non-linéaire. L’auteur

a utilisé une évolution différentielle pour optimiser le code, toutefois, cet algorithme repose sur

différentes heuristiques et ne garantit pas l’obtemption d’une solution optimale. Finalement, les

auteurs dans [XA05] ont considéré un Irregular Repeat Accumulate(IRA) comme code externe et

ont remplacé la partie accumulateur de l’IRA par la CPM. Comme ils ont considéré un code IRA

non systématique, les auteurs ont remarqué qu’une introduction (à optimisée) de noeuds de parité

dits de dopage est inévitable. Dans tous les systèmes concaténés introduits ici, on a considéré un

entrelaceur global entre le CPM et le code externe, et on a toujours utilisé la représentation de la

CPM découlant de la décomposition de Rimoldi [Rim88].

Structure du manuscrit et principales contributions

Dans cette thèse, nous visons à étudier et à concevoir des schémas CPM avec des codes basés sur

des graphes creux. L’application principale sera le canal aéronautique pour le futur déploiement

de drones dans le domaine civil. L’organisation de cette thèse et les principales contributions sont

résumées ci-dessous:

Chapitre 1: Ce chapitre présente une introduction de la CPM, définit ses principaux paramètres

et décrit les principales notations. Nous passons en revue les décompositions de la littérature

les plus importantes et leurs récepteurs correspondants (la décomposition d’Anderson et al



7

[AAS86], la décomposition de Rimoldi[Rim88] et la décomposition de Laurent [AAS86]). En-

fin, nous présentons les principaux codes basés sur des graphes creux qui vont être pris en

compte dans cette thèse.

Chapitre 2: Dans ce chapitre, nous dérivons une méthode générique pour optimiser des codes

LDPC non structurés pour la CPM. Notre méthode est basée sur une analyse EXIT Chart

et peut être vu comme une généralisation des résultats dans [tBKA04]. Contrairement aux

méthodes existantes et en tenant en compte les propriétés de la CPM, nous allons introduire

une proportion de noeuds de variables de degré 1 afin d’améliorer le seuil de décodage itératif.

Pour assurer un décodage réussi, cette proportion est soumise à une condition de stabilité qui

est une généralisation de [RU01] dans le sens où elle prend en compte les degrés 1 et 2 et

qu’elle peut être appliquée à tout autre détecteur. Differemment de [RSU01], nous dériverons

cette condition de stabilité généralisée à partir d’une analyse EXIT Chart. Enfin, les résultats

de simulation et les divers codes LDPC optimisés sont fournis. Nous allons voir qu’on est en

mesure de trouver des codes LDPC qui fonctionne à seulement 0.01dB du seuil de décodage

minimal théorique. Dans ce chapitre, nous nous concentrons sur la performance asymptotique

et l’évaluation du rendement maximal atteignable, les résultats de cette famille seront utilisés

le long de la thèse et comparés avec d’autres codes plus pratiques.

Les résultats de ce chapitre ont été présentés dans:

• Papier: "Asymptotic Analysis and Design of LDPC Codes for Laurent-based Optimal and

suboptimal CPM Receivers", T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G.

Lesthievent, IEEE Int. Conf. Acoust., Speech, and Signal Proc. (ICASSP), 2014.

Chapitre 3: Dans ce chapitre, nous menons une analyse asymptotique pour concevoir des

codes LDPC plus pratiques pour le CPM. Tout d’abord, nous étudions les codes IRA en raison

de leur performance et de leur encodage facile. Comparés aux codes LDPC non structurés, ils

ont de bons seuils et sont facilement encodable grâce à leur partie structurée. Par ailleurs, nous

généralisons cette famille aux codes Generalized IRA (GIRA). Contrairement à la méthode de
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design proposée dans [XA05] pour les codes LDGM et afin de s’affranchir de l’optimisation des

noeuds de dopage, nous proposons d’étudier les codes GIRA systématiques. Cette considération

implique un ordonnancement de décodage particulier.

Deuxièmement, nous étudions la performance des codes LDPC basés sur des protographes

[Tho03]. Cette classe bénéficie d’une représentation compacte, d’une analyse des performances

plus simple et d’une implémentation facilement parallélisable. Nous allons montré qu’on

peut optimiser des codes LDPC-protographe qui opèrent à 0.5dB seulement des LDPC non-

structurés. Les résultats de simulation et la comparaison avec les protographes optimisés du

canal Gaussian, ARJA et AR3A [LC07, DDJ06], sont fournis. Les protographes conçus ont

été optimisés pour minimiser le seuil de décodage. Par conséquent, ils ne disposent pas néces-

sairement de bonnes propriétés de distances minimales en raison de l’introduction d’une grande

proportion de noeuds de variables de degré 1 et 2. Toutefois, étant donné le contexte de nos

applications, avec des trames de données longues, notre méthode donne de très bons résultats

à 10−3 en terme de taux d’erreur paquet.

Finalement, afin d’obtenir des protographes avec de bonnes performances à la fois dans la

région waterfall et la région du plancher d’erreur, nous étudions les codes LDPC spatialement

couplés basés sur des protographes [MLCJ14] parce qu’il a été démontré que cette famille de

code atteint universellement de bons seuils sur une large variété de canaux. En plus de tous

les avantages des codes LDPC basés sur des protographes, ces codes présentent un gain de

convolution qui améliore les performances de la famille précédente. Nous allons montrer que

par couplage de protographes simples tel que le (3, 6) régulier, nous atteignons déjà des seuils

satisfaisants et par construction, une bonne distance minimale. En outre, pour remédier à la

perte de rendement inhérente à la terminaison des codes LDPC spatialement couplés, nous

introduisons une nouvelle terminaison qui préserve le rendement du protographe sous-jacent

indépendamment de la longueur de couplage, tout en présentant un gain de convolution. C’est

la première fois à notre connaissance qu’on envisage la possibilité d’utiliser un seul e�et de vague

pour les LDPC spatialement couplés. Cette nouvelle terminaison nous permet de concevoir un

couplage du (3, 6) qui donne le même seuil et le même rendement que le code LDPC optimisé
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au chapitre 3 avec une longueur de couplage égale à 4 seulement.

Enfin, afin de concevoir de très bons codes LDPC spatialement couplés en terme de seuil de

décodage pour le CPM, nous introduisons une technique d’optimisation en deux étapes: après

avoir trouvé un bon protographe, nous optimisons le couplage afin d’obtenir de très bons seuils.

Cette stratégie conduit à des codes très compétitifs qui fonctionnent à des seuils de seulement

0.1− 0.15 dB des codes LDPC non structurés.

Les différent résultats de ce chapitre ont été publiés dans:

• Papier: "Protograph-based LDPC Convolutional Codes for Continuous Phase Modulation",

T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G. Lesthievent IEEE International

Conference on Communications (ICC), 2015.

• Papier: "Design of Unstructured and Protograph-based LDPC Coded Continuous Phase

Modulation", T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G. Lesthievent IEEE

International Symposium on Information Theory (ISIT), 2014.

• Papier: "Design of Systematic GIRA Codes For CPM ", T. Benaddi, C. Poulliat, M.-L.

Boucheret, B. Gadat, G. Lesthievent, IEEE International Symposium on Turbo Codes and

Iterative Information Processing (ISTC), 2014.

Chapitre 4: Dans ce chapitre, nous nous concentrons sur certains aspects des récepteurs CPM

et le design de codes LDPC pour les récepteurs CPM à faible complexité. Une des deux décom-

positions les plus utilisées a été introduite par Pierre-André Laurent [Lau86] en 1986. Cette

décomposition rend les techniques de synchronisation plus efficace et permet la conception de

récepteurs à faible complexité. Le récepteur maximum de vraisemblance basés sur l’algorithme

de Viterbi a été introduit par Kaleh dans [Kal89]. Malheureusement, aucun récepteur maxi-

mum a posteriori (MAP) exacte n’a été proposé dans la littérature: les récepteurs proposés ne

prennent pas en compte "l’interférence inter-symbole" inhérente à la décomposition de Laurent

et souffrent de la non-blancheur des statistiques de bruit après filtrage. Cette approximation

est d’autant plus pénalisante pour le décodage itératif, la détection non-cohérente, l’égalisation
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ou les applications multi-porteuses. Dans ce chapitre, après avoir discuté les récepteurs exis-

tants, nous dérivons un nouveau récepteur MAP qui résout le problème de l’ISI sans introduire

des traitements supplémentaires, de type filtres de blanchiment. D’autre part, sur la base de

l’autre décomposition CPM [Rim88], nous explicitons le lien entre les deux représentations et

nous proposons une méthode analytique pour calculer le nouveau banc de filtre de réception.

En appliquant la méthode d’optimisation du chapitre 2, nous optimisons des codes LDPC pour

les récepteurs à faible complexité basé sur la décomposition de Laurent et montrons que les

codes optimisés restent très efficaces pour le récepteur à faible complexité pour peu qu’on con-

sidère suffisamment de composantes. Enfin, nous comparons la performance du récepteur MAP

proposé avec le récepteur classique en termes d’EXIT Chart et de taux d’erreur pour la CPM

non codée et codée.

Les différents résultats de ce chapitre ont été publiés dans:

• Brevet: "Procédé de génération d'un banc de �ltre pour la réception d'un signal modulé

par une modulation à phase continue et procédé de réception du dit signal".

• Papier: Récepteur Exact pour la Décomposition de Laurent pour les CPM ", T. Benaddi,

C. Poulliat, M.-L. Boucheret, B. Gadat, G. Lesthievent, Colloque GRETSI, 2015.

• Papier: "Asymptotic Analysis and Design of LDPC Codes for Laurent-based Optimal and

suboptimal CPM Receivers", T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G.

Lesthievent, IEEE Int. Conf. Acoust., Speech, and Signal Proc. (ICASSP), 2014.

Chapitre 5: Dans ce chapitre, nous appliquons notre méthode de design dans le contexte

qui est derrière la motivation de cette thèse: communication pour les drones sur des liens

satellites. Ce type de communication est modélisé par le canal satellite aéronautique [B+63,

B+73, SLPF+08, ser09]. En outre, nous évaluons la performance des CPM codées lorsque nous

considérons une égalisation par minimisation de l’erreur quadratique moyenne (MMSE) dans le

cas d’un canal séléctif en fréquence générique. Le but de ce chapitre est de montrer la faisabilité

d’une simple égalisation dans le cadre du canal aéronautique. Les schémas proposés ne sont
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pas la solution ultime, mais une approche directe parmis les techniques d’égalisation. Divers

résultats de simulation sont fournis. Des résultats qui montrent que l’égalisation peut être très

efficace dans ces canaux pour la CPM et que les schémas concaténés LDPC proposés sont très

compétitifs par rapport à certains systèmes proposés, comme celui du DVB-S2 [ETS05].
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Introduction

Context of this thesis

Unmanned aerial vehicles (UAV) become very popular and a cost effective solution in many new

domains outside of the military areas (forest surveillance, emergency situations, pipelines inspection,

entertainment, communication, observation . . . ). Due to these heterogeneous contexts, the UAVs

should consider satellite communications since they cannot always count on the presence of terrestrial

infrastructures and so we have to be able to command the UAV even if there is no line of sight (LOS)

such as in remote areas, natural disasters, industrial disaster . . . Indeed, for security reasons, one

need to ensure that we can always guaranty the control of the UAV if we aim to introduce UAVs in

the civilian area. This would be mandatory. A typical scheme is depicted in Fig. 4.

Today’s UAVs use principally the Ku-band Fixed Satellite Service (FSS) to communicate with

the remote pilot station (RPS) when they are beyond radio line of sight. Otherwise, they can use

a larger range of solutions (C, Ku, S and UHF bands). In the scope of the future increasing use of

the civil UAVs-satellite communications, UAVs will require more access to the frequency bands of

the civil aviation services in non-segregated airspace areas or at least at some positions of the flight

trajectory. In order to achieve a complete and safe integration in the existing air traffic aircraft system,

a deployment on the civil aviation microwave landing system (MLS) frequency range is prescribed

by the International Civil Aviation Organization (ICAO) and the International Telecommunication

Union (ITU). Moreover, no satellite communication system is nowadays deployed in the Aeronautical

Mobile Satellite en-Route Service (AMS(R)S) band. The 5GHz band is not used today but it is

13
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Figure 4: Typical satellite-UAV context

allocated for Microwave Landing Systems (MLS), the satellite system and the terrestrial system

[IR10, IR11, CNE12]. To meet the increasing capacity demand, the first band appears as a unique

opportunity for future development. Besides, in terms of transmission properties, the 5GHz band is

relatively immune to rain attenuation and other weather conditions. Figure 5 illustrates an example

of principle communication links between the UAV and the RPS. The same band is planned for the

future standardization agreement STANAG 4660.

The ITU World Radio Conference (WRC) 2012 included an agenda item 1.3 covering this context:

we should be able, by 2020, to define a complete communication scheme for both the command link

and the data retrieving link on the 5030-5091 MHz frequency band especially for the Aeronautical

Mobile en-Route Service (AM(R)S). This new established communication link should not interfere

with the existing infrastructure. Figure 6 summarizes the main frequency allocations within the

targeted 5GHz band.

Moreover, the transmitted signal is subject to strong distortions because of the channel model.

Finally, the so-called satellites are assumed transparent (they only repeat the received signal). Con-

sequently, the embedded amplifiers induce an additional signal distortion when they work in or near
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Figure 5: Typical UAV environment. The red area corresponds to a segregated and NATO con-

trolled zone, the gray area to an non segregated but ICAO controlled zone and the green area to an

uncontrolled zone

the saturation regime. In the literature, several mitigation techniques were proposed to solve this

non-linearity degradation:

Predistortion

This technique is performed on the transmitter side. It consists in predistorting the transmitted

signal in such way that it compensates the High Power Amplifiers (HPA) effets. This can be done

by simply inverting the transfer function of the distortions. For this purpose, Volterra expansion

[BBD79] is widely used to describe the non-linearity as well as its inverse. This technique and some

other advanced related methods (data predistortion [SS83]) have been used in the Digital Video

Broadcasting Second generation (DVB-S2) [ETS06].
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Figure 6: Overview of the 5GHz spectrum. This figure was taken from [GHGZ12]

Equalization

In some applications, the complexity of the HPA characteristic and the non-invertiblity of the transfer

function do not allow a prefect recovery from the non-linearities. For these cases, one can consider

a predistortion at the transmitter coupled with an equalization at the receiver side. The equaliza-

tion will counterbalance the remaining non-linearity residues or other channel interference terms.

Generally, this approach is based on training symbols: each message has a fixed number of known

symbols used to estimate the non-linearity terms of the channel. Like in the previous approach,

Volterra-based equalizers are widely used [BB83, BTP+13].

Advanced modulation schemes

Another alternative of these mitigation techniques is to use some advanced modulation schemes

that are relatively immune to non-linearities, such as having a constant-envelope property. Various

schemes were proposed in the literature:

• The Interplex modulation [BT72], a subclass of phase modulations, that multiplexes multiple

signals into one phase modulated signal.

• Intersymbol-interference and jitter-free offset quadrature phase shift keying modulation (IJF-

0QPSK) [LNF81]: this modulation is obtained by introducing a controlled proportion of
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intersymbol-interference (ISI) signal into a binary IJF signal.

• Continuous phase modulation: a phase modulation where the phase transitions are kept

continuous during the transmission. This class is very interesting not only for its power and

spectral efficiency but also for its structure easily adaptable for serially concatenated schemes.

Continuous phase modulations schemes

In this context, the continuous phase modulations (CPM) represents a very good candidate for these

constraints. Firstly, they have a constant envelope which make them immune to embedded amplifiers

non-linearities happening at the saturation regime. From a satellite point of view, this allows to work

with higher powers without any back-off, a fact that improves the overall link budget. Secondly,

continuous phase modulations have better spectral occupation (lower side lobes) in comparison to

classical linear modulation (QPSK, PSK, . . . ) for reasons that are going to be apparent later. In

particular, it enables to increase the system capacity by avoiding too large frequency band guard

intervals.

CPM signals have benefited from a large amount of research since their introduction, and their

performance in the Gaussian channel has been well studied. When considering concatenated coded

schemes, several works were conducted on serial concatenated schemes with binary/non-binary con-

volutional codes or other short block codes [XA05, GiAND09, MA01] to cite only a few. It has

been often argued that serial concatenation with low density parity check (LDPC) codes implies

a doubly iterative system which is difficult to analyse and thus to optimize. Surprisingly, no real

complete study have been dedicated to designing good LDPC codes for CPM. This class of forward

error correction code has many advantages: they exhibit competitive performance in comparison to

turbo-codes, they can offer some rate flexibility for different modulation schemes and they have low

decoding complexity. Moreover, if properly designed, one can achieve close to capacity performance

for a wide range of applications [MN96, tBKA04, YRL04, LSL06, VNND11] . . .

In most contributions dealing with concatenated schemes with LDPC and CPM, the proposed
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approaches lack generality. The first related work is due to [NAN01] where a study of the concate-

nated LDPC code and the Minimum Shift Keying (MSK) modulation has been performed using

density evolution framework. In [NAN03], the same authors proposed an LDPC code optimized

with differential evolution program for the recursive MSK with some degree-1 variables nodes. In

[Gan03], the author studied the optimization of M-ary Continuous-Phase Frequency-Shift Keying

(CPFSK) schemes from a bit interleaved coded modulation (BICM) approach using density evolu-

tion techniques. Not only the author did not discuss the insertion of degree-1 variable nodes, but

also the proposed scheduling leads to a non-linear optimization problem. They used differential evo-

lution but this algorithm relies on different heuristics and does not guarantee an optimal solution.

Finally, authors in [XA05] have considered an irregular-repeat accumulate (IRA) like concatenated

scheme. They replace the IRA accumulator part by the CPM encoder. Because they considered an

non-systematic IRA code, more caution should be taken in the optimization and the introduction

of doping check nodes turns to be unavoidable. All the introduced concatenated schemes consider

a full interleaving between the CPM and the outer code, and the CPM representation was always

considered within the Rimoldi’s decomposition framework [Rim88].

Dissertation outline and principle contributions

In this thesis, we aim to study and design sparse graph based coded CPM schemes. The main

application will be the aeronautical channel for future UAV’s deployment in the civil area. The

dissertation outline and the principle contributions are summarized bellow:

Chapter 1: This chapter gives an introduction to the CPM, defines its main parameters and

describes the main notations. We review the main decompositions in the literature and their

related receivers (Anderson’s et al decomposition [AAS86], Rimoldi’s decomposition [Rim88]

and Pierre-André Laurent’s decomposition [AAS86]). Finally, we introduce the main sparse

graph based codes that are going to be considered in this thesis.

Chapter 2: In this chapter, we derive an a general framework to design unstructured LDPC
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codes for CPM detectors. Our method is based on an EXIT chart analysis and can be seen

as a generalization of the results in [tBKA04]. Unlike the existing methods and by taking

an advantage of the properties of the CPM, we will allow a proportion of degree-1 variable

nodes in order to improve the iterative decoding threshold. To insure successful decoding, this

proportion is subject to a stability condition which is a generalization of [RU01] in the sense

that it takes into account degree-1 and degree-2 variable nodes and that it can be applied to

any other detector. Unlike [RSU01], we will derive this generalized stability condition from

an EXIT chart analysis. Finally, simulation results and various optimized LDPC codes of

different rates concatenated with several CPM schemes are provided. We were able to design

LDPC codes that operates at only 0.01dB from the capacity. In this chapter, we focus on the

asymptotic performance and the evaluation of the maximum achievable rates, the results of

this family will be used along the thesis to compare with other more practical codes.

The results of this chapter were published in:

• Paper: "Asymptotic Analysis and Design of LDPC Codes for Laurent-based Optimal and

suboptimal CPM Receivers", T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G.

Lesthievent, IEEE Int. Conf. Acoust., Speech, and Signal Proc. (ICASSP), 2014.

Chapter 3: In this chapter, we derive an asymptotic analysis to design more functional LDPC

codes for the CPM. Firstly, we investigate IRA codes because of their performance and imple-

mentation advantages. Compared to the unstructured LDPC codes, they have good thresholds

and are easily encodable thanks to their step-function-like structured part. Moreover, we gener-

alize this family to Generalized IRA (GIRA) codes, this class includes, inter alia, Low Density

Generator Matrix (LDGM) and IRA codes. Unlike the design method proposed in [XA05] for

LDGM codes and in order to avoid the optimization of doping check nodes, we propose to

study systematic GIRA codes. This consideration involves to consider an uncommon iterative

decoding scheduling.

Secondly, we study the performance of protograph-based LDPC codes [Tho03]. This class
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benefits from a compact representation (copy-and-permute generation), an easy performance

analysis (same performance as the underlying small protograph) and an efficient implementa-

tion (the decoding can be easily parallelized). We provide an optimization method to design

protograph-LDPC codes that operate 0.5dB from the unstructured LDPC codes threshold.

Simulation results and comparison with the AWGN optimized protographs, ARJA and AR3A

[LC07, DDJ06], are provided. The designed protographs were optimized with threshold perfor-

mance in mind. Consequently, they do not have necessarily good minimum distance properties

due to the introduction of large proportion of variable node of degree 1 and 2. However, since

the context of our application deals with long data frames, this method gives very good results

down to 10−3 in terms of frame error rates.

Finally, in order to obtain protographs with good performance in both the water fall and the

error floor region, we study protograph-based spatially coupled LDPC codes [MLCJ14] since

this class achieves universally good performance over a wide variety of channels. Besides all the

advantages of the protograph-based LDPC codes, these codes exhibit a convolution gain that

improves greatly the performance of the previous family. We will show that by coupling simple

protographs such as the (3, 6)-regular LDPC code, we already achieve satisfactory thresholds

and by construction, good minimum distance. In addition, to remedy the rate loss inherent

to the termination of the spatially coupled LDPC codes, we introduce a new termination that

preserves the rate the of underlying protograph independently on the coupling length, still shows

a convolution gain and, depending on the coupling, leads to very good thresholds. This is the

first time to our knowledge that the possibility of using only one wave effect is investigated.

This new termination allows us to design a coupling of the (3, 6)-regular spatially coupled

LDPC code which gives the same threshold and rate as the optimized LDPC code in chapter

3 with a coupling length equal to 4 only.

Lastly, toward designing very good spatially coupled LDPC codes for the CPM, we introduce

a two step optimization technique: after finding a good protograph using the method in the

previous chapter, we optimize the coupling to obtain very good thresholds. This strategy leads

to very competitive codes that operate at only 0.1−0.15dB from the unstructured LDPC codes
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thresholds.

The different results of this chapter were published in:

• Paper: "Protograph-based LDPC Convolutional Codes for Continuous Phase Modulation",

T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G. Lesthievent IEEE International

Conference on Communications (ICC), 2015.

• Paper: "Design of Unstructured and Protograph-based LDPC Coded Continuous Phase

Modulation", T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G. Lesthievent IEEE

International Symposium on Information Theory (ISIT), 2014.

• Paper: "Design of Systematic GIRA Codes For CPM ", T. Benaddi, C. Poulliat, M.-L.

Boucheret, B. Gadat, G. Lesthievent, IEEE International Symposium on Turbo Codes

and Iterative Information Processing (ISTC), 2014.

Chapter 4: In this chapter, we focus on some receiver aspects of the CPM and the design

on LDPC codes for low complexity receivers. One of the two most used decompositions was

introduced by Pierre-André Laurent [Lau86] in 1986. This decomposition makes the synchro-

nisation functions more efficient and helps designing low complexity receivers. The maximum

likelihood receivers based on the Viterbi algorithm was introduced by Kaleh in [Kal89]. Un-

fortunately, no exact maximum a posteriori probability (MAP) receivers were proposed in the

literature: the proposed ones do not take into account the "inter-symbol interference" inherent

to Laurent’s decomposition and suffers from the non-whiteness of the filtered noise statistics.

This approximation becomes even more penalizing for turbo decoding, non-coherent detection,

equalization or in multi-carrier applications. In this chapter, after discussing the existing re-

ceivers, we derive a new MAP receiver that solves the problem of the "ISI" without introducing

any additional processing such as a whitening filter. Futhermore, based on the other CPM

decomposition [Rim88], we link both representations to propose an analytic method to derive

the new receiver filter bank. By applying the optimization framework in chapter 2, we opti-

mize LDPC codes for low complexity receivers based on the Laurent’s decomposition and show
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that the performance of the optimized codes remains very good for the low complexity receiver

when enough components are taken into account. Finally, we compare the performance of the

proposed receiver with the classical one in terms of EXIT chart analysis and bit error rate

for the uncoded and the coded CPMs. Finally, the simulated results show that our receiver

outperforms the classical one up to 2dB for both uncoded and LDPC-coded CPM schemes.

The different results of this chapter were published in:

• Patent: "Procédé de génération d'un banc de �ltre pour la réception d'un signal modulé

par une modulation à phase continue et procédé de réception du dit signal".

• Paper: Récepteur Exact pour la Décomposition de Laurent pour les CPM ", T. Benaddi,

C. Poulliat, M.-L. Boucheret, B. Gadat, G. Lesthievent, Colloque GRETSI, 2015.

• Paper: "Asymptotic Analysis and Design of LDPC Codes for Laurent-based Optimal and

suboptimal CPM Receivers", T. Benaddi, C. Poulliat, M.-L. Boucheret, B. Gadat, G.

Lesthievent, IEEE Int. Conf. Acoust., Speech, and Signal Proc. (ICASSP), 2014.

Chapter 5: In this chapter, we apply our optimization code design method to the context

which is behind the motivation of this thesis: unmanned aircraft vehicle (UAV) to satellite

communications. The channel of this kind of communications is modelled by the air-satellite

aeronautical channel [B+63, B+73, SLPF+08, ser09]. Also, we evaluate the performance of the

coded CPM when we consider a simple minimum mean square error (MMSE) equalization in

the general frequency selective and in the aeronautical channels. The goal in this chapter is to

show the feasibility of a simple equalization in the aeronautical channel. The proposed schemes

are not the ultimate solutions but easy approaches among the equalization techniques. Various

simulation results are provided in both the general interference and the aeronautical channel.

Results that show that the equalization can be very efficient in such channels for the continuous

phase modulations and that the LDPC based proposed scheme is very competitive compared

to some proposed schemes such as the one one DVB-S2 [ETS05].
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Résumé

Ce chapitre présente une introduction de la CPM, définit ses principaux paramètres et décrit les

principales notations. Nous passons en revue les décompositions de la littérature les plus importantes

et leurs récepteurs correspondants (la décomposition d’Anderson et al [AAS86], la décomposition de

Rimoldi[Rim88] et la décomposition de Laurent [AAS86]). Enfin, nous présentons les principaux

codes basés sur des graphes creux qui vont être pris en compte dans cette thèse.
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1.1 Introducion

Continuous phase modulation (CPM) is a class of coded nonlinear modulations where the phase

transitions are insured continuous from one symbol period to the other. The information symbols

are filtered by a phase shaping function to form a non-linear constant-envelope signal.

The ancestor of CPM systems was introduced in early 70’s under the name of minimum shift

keying (MSK) or fast frequency shift keying (FFSK) [DB72, ao61]. For the MSK, each input symbol

is convolved with a support-T rectangular waveform (T is the symbol duration) and changes linearly

the state of the phase by ±90�. Later, it was pointed out that the FFSK or the MSK hides actually a

trellis structure. In order to improve the euclidean distance properties, this new representation helps

to generalize FFSK to continuous phase frequency shift keying (CPFSK) [PDL71, OL74, S+76]. This

generalization was made by changing the modulation index of the CPM as we are going to see later.

Finally, in 1979, the PhD student Tor Aulin and his supervisor Carl-Erik Sundberg finalized the

theoretical work by considering different phase shapings and formalizing the underlying trellis. They

introduced the name continuous phase modulation in their two seminal papers [ARS81a, ARS81b].

Digital communications that uses CPM have become popular after their invention because of its

interesting characteristics. Firstly, they are suitable for communications through non-linear channels

where the amplitude is distorted differently during the transmission. Also, since the transmitted

signals have a constant envelope, they are very interesting candidates in satellite applications where

different non-linearities take place (see chapter 5).

Secondly, unlike the linear modulations (quadrature amplitude modulation (QAM) and phase

shift keying (PSK)) where the phase transitions are abrupt, CPM signals benefit from a narrow

spectral main lobe and relatively low side lobes. The discontinuity results in the fact that a large

part of the power takes place outside of the targeted band due to the presence of high frequencies.

Finally, their coded nature makes this class of modulation suitable for serially concatenated

schemes and provides them with an additional robustness against channel noise.
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1.2 CPM signal

Let us consider a sequence of N information symbols α = {αi} ∈ {±1, . . . ,±(M − 1)}N . The

transmitted CPM signal is written :

s(t) =
s

2Es
T

cos (2πf0t+ �(t,α) + �0) = <
[
sb(t)ej2πf0t

]
(1.1)

with:

sb(t) = exp (j�(t,α) + j�0)

�(t,α) = 2πh
N−1∑
i=0

αiq(t− iT ) (1.2)

q(t) =


R t

0 g(τ)dτ, t ≤ LT

1/2, t > LT

where Es is the symbol energy, T the symbol period, f0 the carrier frequency, �0 the initial phase,

�(t,α) the information phase, g(t) the pulse response, h = k/p the modulation index (k and p are

relatively prime), L the CPM memory, <(.) the real part operator and sb(t) the complex baseband

signal.

The various parameters that define a specific CPM scheme can be easily tuned to satisfy different

bandwidth and complexity constraints. These parameters are:

The modulation order M

It represents the cardinality of the information symbols alphabet. Usually, it is taken as a power of

2. If large minimum distance is targeted, one should choose high modulation orders.

The frequency pulse width L

It specifies the support length of g(t). It can also be seen as the CPM memory size: i.e. the number

of past symbols required to determine the signal waveform corresponding to the current information

symbol. When L = 1, we talk about total response CPMs, otherwise, when L > 1, we talk about
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partial response CPMs. Greater L leads to significantly less out-of-band energy (smaller side lobes),

nevertheless, this comes at the cost of a higher encoding and decoding complexity.

The frequency pulse g(t)

It defines the phase trajectory shape. The primitive of this function, denoted:

q(t) =
∫ t

0
g(τ)dτ

is called the phase response and must satisfy q(LT ) = 1/2. The continuity of q(t) is fundamental to

keep the phase of the CPM signal continuous. g(t) can have different shapes: rectangular (REC),

raised cosine (RC), Gaussian, mixture of rectangular and raised cosine . . . The spectral efficiency

(SE) is highly dependent on this parameter. Generally, the rectangular waveform has a narrower

main lobe (a better SE), however, it has higher side lobes (greater out-of-band power).

The modulation index h

Usually, it is a rational number smaller than 1. If its value changes cyclically during the transmission,

the CPM is referred as multi-h CPM [PT87]. In this thesis we focus on constant h schemes. This is

the case of the majority of the practical CPM schemes. CPM with small h has narrower occupied

bandwidth (the occupied bandwidth is defined as the interval that holds 99% of the signal power).

Sometimes, an irrational modulation index is assumed [ZGKK12]. However, as we are going to see

later, these schemes are to be avoided because they induce high complexity receivers.

For more details on the influence of the different parameters on the minimal distance and the

spectral efficiency, the reader is pleased to refer to [AAS86, AS03, CBB+04].

Table 1.1 summarizes some usual CPM schemes according to their frequency pulse, and Table

1.2 shows some of the CPM subclasses. Figure 1.1 depicts the form of some frequency shaping pulses

g(t) and the corresponding phase shaping functions q(t).
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Notation Frequency pulse Support Parameters

LREC g(t) =


1

2LT , if 0 ≤ t ≤ LT

0, otherwise
[0, LT ] L

LRC g(t) =


1

2LT

[
1− cos

(
2πt
LT

)]
, if 0 ≤ t ≤ LT

0, otherwise
[0, LT ] L

TFM
g(t) = 1

8 [g0(t− T ) + 2g0(t) + g0(t+ T )]
g0(t) � 1

πt sin
(
πt
T

) [
1− 2−(2πt/T )cot(πt/T )−(πt/T )2

(t/T )2

] infinite L

LSRC g(t) = 1
LT

sin(2πt/LT )
2πt/LT

cos(2π�t/LT )
1−(4�t/LT )2 infintie

L

0 ≤ β ≤ 1

GMSK
g(t) = 1

LT

�
Q

(
2πB t−T/2√

ln(2)

)
−Q

(
2πB t+T/2√

ln(2)

)�
Q(t) = 1

2π
R+1
t exp

(
− �2

2

)
dτ = 1

2erfc
(

t√
(2

) infinite
L

0 ≤ BT ≤ 1

Table 1.1: Examples of phase shaping functions of CPM.

Subclass CPM parameters

MSK

M = 2
L = 1
h = 1

2

g(t) rectagular

GSM GMSK

M = 2
L = 3
h = 1

2

g(t) Gaussian
BT = 0.3

CPFSK
L = 1
h = 1

M

g(t) rectagular

Table 1.2: Some CPM famillies
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(a) g(t)
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(b) q(t)

Figure 1.1: The frequency shaping pulse g(t) and the phase shaping pulse q(t) of some CPM schemes

Figure 1.2 represents the CPM signal corresponding to an example of a binary sequence. Notice

that the signal is continuous and that the transitions are smooth. Observe also that there is no

one-to-one correspondence between the bits and the waveforms.

0 2 4 6 8 10 12 14

0

0 0 0 1 1 1 0 1 0 0 1

Time in multiples of T

A
m
p
li
tu
d
e

Figure 1.2: An example of a CPM encoding. Considered CPM scheme is (M = 2, L = 3, h = 2/3,
RC)

A good way to visualize both the constant envelope property and the phase continuity is to
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draw the complex CPM signal in a three dimensional polar plan (amplitude, phase, time). This

representation allows to see the amplitude and the phase of the signal as a function of time. The

obtained trajectory is a continuous path on the surface of a cylinder whose axis of revolution represents

the time (see Figure 1.3).

0
0

0

10T

20T

30T

40T

50T

t

Figure 1.3: CPM signal in a three dimensional polar plan. Considered CPM scheme is (M = 2,
L = 3, h = 2/3, RC)

Examples of CPM use cases are met in various contexts:

• Satellite communications such as DVB-RCS2 [BCDB+13]

• Deep space communications [Sim05]

• Bluetooth data transmissions [LTHS03]

• Aeronautical telemetry [Geo00]

• Automatic identification system (AIS) in marine traffic [SDPR+10]

• GSM mobile communications [MPFBH92]

• Tactical communications [CFC10, MIL99]
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• Machine to machine communications [DL12]

• Optical communications [Det11]

1.3 Trellis representation

1.3.1 Original trellis representation

Let us consider n = b tT c (b.c is the floor operator). ∀t ∈ [nT, (n + 1)T ], the phase of the baseband

signal in Eq. (1.2) (here α = {α0, . . . , αn}) can be split into three terms as the following:

�(t,α) = 2πh
n∑
i=0

αiq(t− iT )

= 2πhαnq(t− nT ) + 2πh
n−1∑

i=n−L+1
αiq(t− iT ) + 2πh

n−L∑
i=0

αiq(t− iT )

= 2πhαnq(t− nT )| {z }
A

+ 2πh
n−1∑

i=n−L+1
αiq(t− iT )| {z }

�n(t)

+πh
n−L∑
i=0

αi| {z }
�n

(
q(t) = 1

2 ,∀t ≥ LT
)

(1.3)

The term A corresponds to the current symbol contribution, the term �n(t) to the contribution of

the L last symbols and �n to the phase state.

By taking the value of the phase state modulo 2π, one can determine all possible values. We

should distinguish between two cases (recall that h = k/p where k and p are relatively prime):

• if the numerator k of h is even, then �n takes one of the p values:

�n ∈ {0, π
k

p
, π

2k
p
, . . . , π

(p− 1)k
p

}

• if the numerator k of h is odd, then �n takes one of the 2p values:

�n ∈ {0, π
k

p
, π

2k
p
, . . . , π

(2p− 1)k
p

}

The term �n(t) is completely defined by the L− 1 last information symbols {αi−`}1�`�L+1.

Consequently, the encoder state state can be completely characterized by the L-tuple:

σn = [�n, αn−L+1, . . . , αn−1]
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and the transmitted signal in the interval [nT, (n + 1)T ] is completed deduced by Eq. 1.1 and the

tuple [σn, αn]. By recursion, the CPM signal portion corresponding to the symbol αn+1 is simply

given by:

[σn+1, αn+1] where σn+1 = [(�n + πhαn−L+1) modulo 2π, αn−L+1, . . . , αn−1, αn]

This description clearly defines a trellis structure where the states are defines by σn and the

transitions by [σn, αn]. However, the size of this trellis depends on h: when k is even, we obtain

pML−1 states and pML transitions, otherwise, we get 2pML−1 states and 2pML transitions.

Remark: When the modulation index h is an irrational number, for example h =
p

2
3 or h = π

6 ,

it is impossible to exhibit the above mentioned trellis description because the phase has in this case

an infinite number of states.

Example

Let us consider the simple MSK scheme (M = 2, L = 1, h = 1/2 and g(t) rectangular). In this case,

the total phase state can have 4 different states:�
0, π2 , π,

3π
2

�
Since this CPM has memory L = 1, the CPM trellis state is simply given by:

σn = �n = πh
n−1∑
i=0

αi

Every input bit αn can be mapped at most into 2pML = 8 different waveforms. "at most" is used

here because some of these waveforms, even if defined by different tuples [σn, αn], may actually be the

same (depending on the CPM parameters L, M and h). Typically, for the MSK, the two transitions

E1 and E2 defined by:

E1 = [σn = 0, αn = +1] and E2 = [σn = π, αn = −1]

generate the same waveform (refer to Eq. (1.3)).

Figure 1.4 depicts the 4 possible CPM waveforms during one symbol duration T .
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0 T

0

t

A
m
p
li
tu
d
e

Figure 1.4: Possible MSK signal waveforms.

Figure 1.5a represents the phase tree of the MSK. Performing a modulo-2π operation on the

phase tree, it can be reduced to a trellis structure as shown in Fig. 1.5b. This can be interpreted

as wrapping Fig. 1.5a arround ±2π. As we can see, this CPM phase trellis is time varying, in that,

according to the parity of n, only 2 of the 4 possible states are accessible in each symbol period T .

0 T 2T 3T 4T 5T 6T

�2π

�3π{2

�π

�π{2

0

π{2

π

3π{2

2π

t

P
h
as
e

(a) Phase tree of the MSK

0 T 2T 3T 4T 5T 6T
0

π{2

π

3π{2

2π

σ0

σ0

σ0

σ0

σ2 σ2

σ1 σ1 σ1

σ3 σ3 σ3

t

P
h
as
e

(b) Modulo-2π phase tree of the MSK

Figure 1.5: The phase tree and the modulo-2π of the MSK. Trellis states are {σ0 = 0, σ1 = π
2 ,

σ2 = π, σ3 = 3π
2 }
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1.3.2 Rimoldi's decomposition [Rim88]

We have seen that the number of states in the CPM trellis depends on the parity of k the denominator

of h: when it is odd, we obtain 2pML−1 states, however, when it is even, we get only pML−1 states.

Moreover, we showed that the CPM trellis is time variant. In order to simplify this structure, Rimoldi

introduced a new trellis representation resulting in a time-invariant trellis which always has pML−1

states independently of the parity of k [Rim88]. The author showed that a CPM signal can be

written as a serial concatenation of a continuous phase encoder (CPE), described by a size-pML−1

time-invariant trellis, and a memoryless modulator (MM), represented by a bank of pML filters each

of length T and denoted here by si(t), i ∈ {0, 1, . . . , pML − 1}.

To do so, [Rim88] tilted the phase by multiplying the CPM signal by:

exp
(
j
πh(M − 1)t

T

)
This leads to a modified phase tree:

ψ(t,α) = �(t,α) + πh(M − 1)t
T

If the modulation order is even, the symbols αi are taken in the alphabet {±1,±3, . . . ,±(M−1)}.

Otherwise, they are taken in {0,±2,±4, . . . ,±(M−1)}. To avoid this ambiguity, it is more convenient

to consider a new symbol:

Ui = αi + (M − 1)
2

Whatever the parity of M is, we now have Ui ∈ {0, 1, 2, . . . , (M − 1)}. Taking this new symbol into

consideration, the phase of the tilted signal is given by:

ψ(τ + nT,U) =2πh
n−L∑
i=0

Ui + 4πh
L−1∑
i=0

Un−iq(τ + iT )

+ πh(M − 1)τ
T

− 2πh(M − 1)
L−1∑
i=0

q(τ + iT ) + (L− 1)(M − 1)πh| {z }
W (�) : it is data independent term

, 0 ≤ τ < T

Taking the modulo-2π value of ψ gives:

ψ̄(τ + nT,U) = [ψ(τ + nT,U)]2π
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=
[
2πh

n−L∑
i=0

Ui + 4πh
L−1∑
i=0

Un−iq(τ + iT ) +W (τ)
]

2π

=

2πh
[
n−L∑
i=0

Ui

]
p

+ 4πh
L−1∑
i=0

Un−iq(τ + iT ) +W (τ)


2π

Hence, the tilted CPM waveform is completely defined by:

Xn =

Un, . . . , Un−L+1, Vn =
[
n−L∑
i=0

Ui

]
p

 (1.4)

Vn can take p values and the tuple [Un, . . . , Un−L+1] hasML different values. Consequently, Xn takes

pML values.

As depicted in Fig. 1.6, the Rimoldi’s continuous phase encoder can then be described by a trellis

whose state definition is given by:

σn = [Un−1, . . . , Un−L, Vn]

and the next state, following the current input symbol Un, is given by the recursion:

σn+1 =
[
Un, . . . , Un−L+1, [Un−L+1 + Vn]p

]

Figure 1.6: CPM transition in the CPE trellis

The CPE maps Un into Xn which in turn generates the CPM waveform in the interval [nT, (n+

1)T ]. Figure 1.7 illustrates the Rimoldi’s decomposition structure.

N.B.: In order to retrieve the real CPM signal, one should go back from the tilted phase to the

real phase domain. To do so, we multiply Rimoldi’s generated signal as following:

sb(t) = exp
(
jψ̄(t,U)

)
exp

(
−jπh(M − 1) t

T

)
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Figure 1.7: Rimoldi’s decomposition structure

1.3.2.1 Discussion

The main advantage of the Rimoldi’s decomposition is that it separates between the CPE and the

MM which allows, especially in concatenated schemes, to study and optimize the coding part (CPE)

and the modualtion part (MM) independently.

Also, it gives a concise description of the CPM in comparison to the classical CPM trellis repre-

sentation [AS03]. The encoding can be easily performed using the recursive architecture depicted in

Fig. 1.8.

Figure 1.8: CPE

Here, the CPE can be interpreted as a convolutional code over the ring of integers modulo p

[Rim88]. Therefore, one can concatenate a convolutional outer code over the same algebra, in this

case, no mapper is needed and an extra coding gain is observed [XA06].

We have seen that the size of the memoryless filter corresponds to the cardinality of the set of the

values of Xn in Eq. (1.4). At the first sight, one can show that Xn can have pML value. However,

a more details analysis reports that some waveforms of the memoryless filter bank MM are a linear

span of the others, for example, the waveforms corresponding to Xn values that differ only by Vn
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are linearly dependent. [AAS86] discussed that the CPM signal dimension is at most ML (i.e. the

maximum number of linearly independent waveforms).

[Rim88] pointed out also that the CPE trellis has a recursive structure as depicted in Fig. 1.8.

However, when the modulation orderM is a power the denominator h (i.e. ∃` ∈ N : M = p`), one can

use a non-recursive CPE implementation. This case is met with the CPFSK for example, where, by

definition, h = 1
M . The difference between these two implementations is observed in the coded CPM

schemes. It is shown in [NAN03] that, in serially concatenated schemes, an iterative gain is observed

when the CPM implements the recursive form of the CPE, contrary to the non-recursive form where

turbo-iterations are useless. However, both of them lead to the same asymptotic performance.

1.3.3 Laurent's decomposition

1.3.3.1 Derivation

Recall that a binary CPM is given by Eqs. (1.1) and (1.2). Laurent showed that the complex

baseband signal sb(t) can be expressed as the sum of K = 2L−1 pulse amplitude-modulated signals

as the following:

sb(t) =
q

2Es/T
N−1∑
n=0

K−1∑
k=0

ak,nCk(t− nT ) (1.5)

Ck(t) = s0(t)
L−1∏
j=1

sj+L�k,j (t), 0 < k ≤ K − 1

ak,n = ejπhAk,n

Ak,n =
n∑
i=0

αi −
L−1∑
j=1

αn−jβk,j (1.6)

sj(t) = sin(ψ(t+ jT ))
sin(πh)

ψ(t) =


2πhq(t), 0 ≤ t ≤ LT

πh− 2πhq(t− LT ), LT ≤ t ≤ 2LT

0, elsewhere
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where βk,j refer to the jth bit in the binary representation of the summation index k:

k =
L−1∑
j=1

βk,j , k ∈ {0, 1, . . . ,K − 1}

The components {Ck(t}k have different duration lengths [Lau86] as reported by Tab. 1.3.

Component Duration

C0(t) (L+ 1)T
C1(t) (L− 1)T
C2(t), C3(t) (L− 2)T
C4(t), C5(t), C6(t), C7(t) (L− 3)T

...
CK/2(t), . . . , CK−1(t) LT

Table 1.3: Durations of the Laurent’s components

Figure 1.9 plots the {Ck}k components of the CPM scheme (M = 2, L = 3, h = 1/2,REC), also

called the lengthened MSK. The extension of the Laurent’s decomposition to the M-ary case was

proposed by Mengali et al [MM95].

1.3.3.2 Trellis representation

[Kal89] demonstrates that one can form the signal in Eq. (1.5) from a particular trellis. Actually, at

each nT , one can compute all the pseudo-symbols ak,n knowing only the input symbol αn and the

current phase state σLn = [a0,n−L, αn−L+1, . . . , αn−1], according to the following recursion:

Ak,n = A0,n−L + αn +
L−1∑
i=1

αn−i.(1− βk,i) (1.7)

Discussion

Figure 1.10 transposes the generated CPM signal according to the classical representation(section

1.3.1) and to the Laurent’s decomposition of an arbitrary symbols sequence. We notice that the two

signals differ in the interval [0, LT ]. This is explained by the fact that:
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Figure 1.9: The 4 Laurent’s components of the CPM scheme (M = 2, L = 3, h = 1/2,REC)

• the first (L− 1) pseudo-symbols {ak,n}0�n�L−2 are not correctly generated because there is

not enough information symbols αi in the memory to correctly compute the recursion Eq. 1.6.

• even if the pseudo-symbols ak,L−1 are correctly calculated, the corresponding CPM signal is

not correct. Actually, the past erroneous pseudo-symbols continue to affect the CPM signal in

the next periods because they modulate the components {Ck(t)}k whose support are greater

than T (see Tab. 1.3)

To avoid this discrepancy, one can append initialization bits at the beginning of the information

frame.

Thanks to the Laurent’s decomposition, low complexity receivers can be easily and efficiently
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Figure 1.10: CPM signal realization example according to the classical and to the Laurent’s decom-
position. The considered CPM is the (M = 2, L = 3, h = 2/3, RC)

derived by truncating the summation in Eq. (1.5): one can approximate the CPM signal with only

the first K ′ < K components since the first components convey the most significant part of the signal

energy [MM95, Lau86]. Table 1.4 illustrates the energy distribution over the Laurent’s components

for (a) the CPM used in the GSM (L = 3, BT = 0.3, Gaussian pulse) and (b) the MSK of memory

L = 3.

CPM 1st component 2nd component Others

(a) 99.6% 0.37% 2.6 10−4%
(b) 93% 6.25% 0.23%

Table 1.4: Energy distribution in Laurent’s components
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1.3.4 Other decomposition

Other CPM decompositions exist in the literature. In order to exhibit the cyclostationarity property

of CPM signals, Napolitano et al [NS01] described an expansion of the binary CPM signal in terms

of a sum of PAM signals. This decomposition, unlike [Lau86], handles both integer and non-integer

modulation indices. Authors in [PR04] proposed a decomposition that generalizes [MM95] to M -ary

Multi-h CPMs with an exponential increase in the total number of the PAM components. Finally,

[WG06] derived a different approach of [PR04] that can be universally applied to all variants of the

CPM with a reasonable increase in complexity. However, the generated pulses are data dependent.

1.4 Receivers

Because both CPM representations mentioned above (Rimoldi and Laurent decompositions) can be

described by a trellis, we are interested in the two trellis-based decoders: the Viterbi algorithm

[Vit67] and the bit-wise BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm [BCJR74] for their high

performance and their importance in concatenated schemes. The Viterbi algorithm implements the

maximum likelihood sequence decoder (MLSD): it returns the most likely sequence that can be

inferred from the receiver observations. On the other hand, the BCJR is an algorithm for maximum

a posteriori probability (MAP) symbol decoding: it maximizes the probability of each symbol given

the whole observation sequence.

Consider that the signal sb(t,α) is corrupted by an additive white Gaussian noise (AWGN) n(t)

with double-sided power spectral density N0/2:

r(t) = sb(t) + n(t), t > 0 (1.8)

Considering any support-T orthonormal basis {ei(t)}i of the transmitted signal space [PS07], let

us denote r = {ri = [ri(n)]n}i , the projection of the received signal r(t) on ei(t) at t = nT , ∀i, in

other words:

ri(n) = hr(t), ei(t− nT )i

= hs(t), ei(t− nT )i+ hn(t), ei(t− nT )i
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= si(n) + ni(n)

where

hf, gi =
∫
f(t)g∗(t)dt

Similarly to r, s = {si} and n = {ni}.

1.4.1 MLSD receiver

The ML receiver finds the estimated bits sequence α̂:

α̂ = arg max
�α

p(rjᾱ) (1.9)

One can prove that {ni(n)}n and {ri(n)}n, are uncorrelated, consequently, the probability of the

observed data r under the sequence ᾱ can be expressed as [PS07]:

p(rjᾱ) / exp
(
−1
N0

∑
k

∑
i

jri(k)− s̄i(k)j2
)

where s̄i(k) implicitly depends on ᾱ. Then:

p(rjᾱ) / exp
(
−1
N0

∑
k

∑
i

hr(t)− s̄(t), ei(t− kT )i2
)

= exp
(
−1
N0

∑
k

∫ (k+1)T

kT
jr(t)− s̄(t)j2dt

)
(Parseval’s identity)

= exp
(
−1
N0

∫ NT

0
jr(t)− s̄(t)j2dt

)

= exp
(
−1
N0

∫ NT

0
[r(t)r∗(t) + s̄(t)s̄∗(t)− 2<(r(t)s̄∗i(t))] dt

)

= exp
(
−1
N0

∫ NT

0
r(t)r∗(t)dt

)
| {z }

independent of �α

� exp
(−1
N0

∫ +1

0
s̄(t)s̄∗(t)dt

)
| {z }

constant

� exp
(

2
N0

∫ NT

0
<(r(t)s̄∗(t))dt

)

/ exp
(

2
N0
<
(∫ NT

0
r(t)s̄∗(t)dt

))
(1.10)
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1.4.2 MAP receiver

Consider a generic soft input soft output (SISO) component depicted in Fig. 1.11. The considered

SISO component has a trellis structure whose transitions at nT are driven by the current state σn
and the input bit αn. Figure 1.11 summarizes the input and the output of such module.

SISO

Figure 1.11: SISO component

r = {rk}k is the channel observation and π(αn) the a priori probability of αn.

The MAP criterion for the information bit αn is given by:

α̂n = arg max
�n

p(αn/r) = sign (L(αn))

where L(αn) is the a posteriori log-likelihood ratio (LLR) relative to the bit αn and is defined as:

L(αn) = log
(
p(αn = +1jr)
p(αn = −1jr)

)
Using Bayes rule, we can rewrite the expression above as:

L(αn) = ln
(
p(αn = +1jr)
p(αn = −1jr)

)
= ln

(
p(αn = +1, r)
p(αn = −1, r)

)
(Bayes rule)

= ln
(P

(s,s′)∈S+ p(σn−1 = s, σn = s′, r)P
(s,s′)∈S− p(σn−1 = s, σn = s′, r)

)

where S+ and S− are the set of state tuples (s, s′) such that:

S+ = {(s, s′)�(σn−1 = s) 7! σn = s′jαn = +1}

S− = {(s, s′)�(σn−1 = s) 7! σn = s′jαn = −1}

Denoting rlk = [ri(j)]i,k�j�l, p(σn−1 = s, σn = s′, r) can be factorized as:

p(σn−1 = s,σn = s′, r) = p(σn−1 = s, σn = s′, rn−1
0 , rn, r

N
n+1)
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= p(rNn+1jσn−1 = s, σn = s′, rn−1
0 , rn)p(σn−1 = s, σn = s′, rn−1

0 , rn)

= p(rNn+1jσn−1 = s, σn = s′, rn−1
0 , rn)p(σn = s′, rnjσn−1 = s, rn−1

0 )p(σn−1 = s, rn−1
0 )

= p(rNn+1jσn = s′)p(σn = s′, rnjσn−1 = s)p(σn−1 = s, rn−1
0 )

= p(rNn+1jσn = s′)p(σn = s′jσn−1 = s)p(rnjσn−1 = s, σn = s′)p(σn−1 = s, rn−1
0 )

= p(rNn+1jσn = s′)p(αn)p(rnjσn−1 = s, σn = s′)p(σn−1 = s, rn−1
0 )

= p(rNn+1jσn = s′)| {z }
Bn(s′)

p(αn)p(rnjσn−1 = s, σn = s′)| {z }
Gn(s′,s)

p(σn−1 = s, rn−1
0 )| {z }

An(s)

An(s) and Bn(s′) define respectively a forward and a backward recursion expressed by:

An(s) = P
s′ Gn(s′, s)An−1(s′)

Bn−1(s) = P
s Gn(s′, s)Bn(s′)

(1.11)

while the transition probability Gn(s′, s) is equal to:

Gn(s′, s) = p(σn = s, rnjsn−1 = s′)

= p(ynjs′, s)p(s′js) (1.12)

with

p(s′js) =


0, if {s′ ! s} is not valid

π(αn), otherwise

Let us note by jσj the number of the trellis state and by σ0 the zero state of the encoder. The

starting conditions of An(s) can be taken as:

A0(0) =


1, if s = σ0

0, otherwise

If termination bits are appended at the end of the information block, then:

BN (0) =


1, if s = σ0

0, otherwise
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otherwise, BN (s′) = 1/jσj,∀s′.

Remark: Authors in [MA00] showed that one can terminate the CPM encoding using at most

Ts symbols independently of the CPM parameters:

Ts =
�
p− 1
M − 1

�
+ L

When the transmitted signal is corrupted with an additive white Gaussian noise of a double-sided

power spectral density N0/2, Gn(s′, s) is given by [PS07]:

Gn(s′, s) / exp
(
−
P
m jr

(m)
n −F (m)(s′, s)j2

N0

)
p(s′js) (1.13)

where F (m)(s′, s) is the observation output relative to the mth bit of the output symbol corre-

sponding to the trellis transition {σn+1 = s′, σn = s}.

1.4.2.1 Log domain MAP

The computation of the forward/backward recursions and the iterative decoding may lead to nu-

merical problems: the absolute values of An or Bn rapidly grow to infinity, sometimes even if a

normalization is taken into account. To prevent these memory issues, we run the BCJR algorithm

in the logarithmic domain. The Eq. (1.11) becomes:

~An(s) = max
s′
∗
(

~An(s) + ~Gn(s′, s)
)

~Bn−1(s′) = max
s

∗
(

~Bn(s′) + ~Gn(s′, s)
)

where max ∗ is defined by:

max ∗(x, y) = max(x, y) + log (1 + e−jx−yj)

To reduce the complexity, the max ∗ operator can be simply replaced by the max operator. This

induces an error of at most:

max
x,y

log (1 + e−jx−yj) = log 2 ' 0.6931
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Since we are dealing with very high values, this correction term can be neglected.

Another complexity reduction technique is to use a look-up table to approximate log
(
1 + e−jx−yj

)
instead of computing the exact values.

1.5 CPM receivers

This section summarizes the two main CPM receivers in the literature. For further details on the

derivation of these receivers, especially for Laurent-based receiver, please refer to the chapter 4.

Throughout this dissertation, we denote by A−1 the decoder corresponding to the component A (for

example: MM -MM−1, CPE-CPE−1, CPM -CPM−1, . . . ).

Let us consider a sequence of N information symbols α = {αi} ∈ {±1, . . . ,±(M − 1)}N . The

transmitted CPM signal is given by Eq. (1.1) as:

s(t) =
s

2Es
T

cos (2πf0t+ �(t,α) + �0)

= <
[
sb(t)ej2πf0t

]
(1.14)

Figure 1.12 depicts the considered serially concatenated coded CPM scheme.

outer
code interleaver CPM

CPM
decoder deinterleaver outer

decoder

interleaver

decision

channel

Figure 1.12: Coded interleaved CPM scheme with iterative decoding

In the following, we focus on the SISO CPM module. We suppose that the signal is corrupted by

an additive white Gaussian noise (AWGN) n(t) with double-sided power spectral density N0/2.
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1.5.1 Rimold-based receiver

The receiver architecture corresponding to the Rimoldi’s decomposition is depicted in Fig. 1.13.

Figure 1.13: Rimoldi’s decomposition-based receivers

1.5.1.1 MLSD receiver

Using any orthonormal expansion of the receiver matched filters bank (MM), the branch metric in

Eq. (1.10) can be rewritten as:

p(rjᾱ) / exp
(

2
N0
<
(∫ NT

0
r(t)s̄∗(t)dt

))

log (p(rjᾱ)) / <
(∫ NT

0
r(t)s̄∗(t)dt

)

= <
(∑

k

∫ (k+1)T

kT
r(t)s̄∗(t)dt

)

=
∑
k

<
(∫ (k+1)T

kT
r(t)s̄∗(t)dt

)

Consequently, Eq. (1.9) can be directly implemented using the expression above via the Viterbi algo-

rithm [Vit67] performed over the CPE trellis to compute the cross-correlation between the received

sequence and the possible waveforms that form the receiver signal space.
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1.5.1.2 MAP receiver

The outputs of receiver matched filters bank in Fig. 1.13 are sampled once each nT . We then obtain

the correlator output [PS07]:

rn =
[
ri(n) =

∫ (n+1)T

nT
r(t)s∗i (t)dt

]
1�i�pML

It is shown that {rn}n is a sufficient statistic to estimate symbols [MA01]. Since the length of the

matched filters is equal to T , the samples of the noise filtered by s∗i (−t), denoted {ni}i, are Gaussian

and independent. Using any orthonormal expansion of receiver matched filters bank [MA01], the

joint probability density function of rn in Eq. (1.13) can be reduced as:

p(rnjXn) ∝ exp
(2<(ri(n))

N0

)

1.5.2 Laurent-Kaleh's receiver

1.5.2.1 MLSD receiver

The receiver structure corresponding to the Laurent’s decomposition was presented by [Kal89] and

is depicted in Fig. 1.14.

Figure 1.14: Kaleh’s Laurent-based receiver

Starting from Eq. (1.10) and by substituting Eq. (1.5), the new metric corresponding to the

sequence ᾱ, denoted hereafter �(ᾱ), is written as:

�(ᾱ) = <
[∫ NT

0
r(t)s̄∗i (t)dt

]
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= <
[∫ NT

0
r(t)

N−1∑
n=0

K−1∑
k=0

ā∗k,nC
∗
k(t− nT )dt

]

= <
[∫ NT

0

N−1∑
n=0

K−1∑
k=0

ā∗k,nr(t)C∗k(t− nT )dt
]

= <
[
N−1∑
n=0

K−1∑
k=0

ā∗k,n

∫ NT

0
r(t)C∗k(t− nT )dt

]

=
N−1∑
n=0
<
[
K−1∑
k=0

ā∗k,n

∫ NT

0
r(t)C∗k(t− nT )dt

]

=
N−1∑
n=0
<
[∫ NT

0
r(t)

K−1∑
k=0

ā∗k,nC
∗
k(t− nT )dt

]

since PK−1
k=0 ā∗k,nC

∗
k(t− nT ) has support of maximum the support of C0(t) which is (L+ 1)T , we can

write:

�(ᾱ) =
N−1∑
n=0
<
[∫ (n+L+1)T

nT
r(t)

K−1∑
k=0

ā∗k,nC
∗
k(t− nT )dt

]

=
N−1∑
n=0
<
[
K−1∑
k=0

ā∗k,n

∫ (L+1)T

0
r(t+ nT )Ck(t)dt

]
(1.15)

More details and interpretations concerning this receiver are given in the chapter 4.

1.5.2.2 MAP receiver

In [MFG97, CB05, CR97], authors derived the Maximum a posteriroi (MAP) receivers [BCJR74].

However, in their derivations, they neglect the non-whiteness of the filtered noise by the Laurent’s

components (the matched filters have a support which is longer than the symbol period) in comparison

to the noise of the channel. In order to implement the exact receiver for the MAP detector, one should

introduce a whitening filter. This filter becomes even more important when we consider non-coherent

detections [LTHS03], equalization [TS05] or multicarrier signals [MH]. To our knowledge no exact

bit-wise MAP receiver for Laurent-based receiver exist in the literature. In chapter 4, we discuss the

existing decoders and provide a new and exact symbol-wise MAP receiver.
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Résumé

Dans ce chapitre, nous dérivons une méthode générique pour optimiser des codes LDPC non struc-

turés pour la CPM. Notre méthode est basée sur une analyse EXIT Chart et peut être vu comme

une généralisation des résultats dans [tBKA04]. Contrairement aux méthodes existantes et en tenant

en compte les propriétés de la CPM, nous allons introduire une proportion de noeuds de variables de

degré 1 afin d’améliorer le seuil de décodage itératif. Pour assurer un décodage réussi, cette propor-

tion est soumise à une condition de stabilité qui est une généralisation de [RU01] dans le sens où elle

prend en compte les degrés 1 et 2 et qu’elle peut être appliquée à tout autre détecteur. Differemment

de [RSU01], nous dériverons cette condition de stabilité généralisée à partir d’une analyse EXIT

51
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Chart. Enfin, les résultats de simulation et les divers codes LDPC optimisés sont fournis. Nous

allons voir qu’on est en mesure de trouver des codes LDPC qui fonctionne à seulement 0.01dB du

seuil de décodage minimal théorique. Dans ce chapitre, nous nous concentrons sur la performance

asymptotique et l’évaluation du rendement maximal atteignable, les résultats de cette famille seront

utilisés le long de la thèse et comparés avec d’autres codes plus pratiques.
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2.1 Introduction

After the advant of turbo-codes [BG96], coded CPM systems have greatly benefited from the concept

of iterative decoding. If several papers consider the serial concatenation of CPM with a trellis based

code [MA01, GiAND09, NS99, CBB+04], only few references have studied the concatenation with

LDPC codes. In most of the cases, the proposed approaches are dedicated to a specific subfamily

of CPM modulations and thus lack generality. The first related work is due to [NAN01] where a

study of the concatenated LDPC code and the Minimum Shift Keying (MSK) modulation has been

performed using density evolution framework. It was shown that the optimal design depends on

the implementation of the continuous phase encoder, if implemented as a recursive encoder, there

is a design enabling interleaving gain with an iterative detection and decoding scheme, otherwise a

non-iterative scheme with an optimal code for the designed binary input AWGN case is sufficient. In

[NAN03], the same authors proposed an LDPC code optimized with differential evolution program

for the recursive MSK considering a heuristic approach that enables the introduction of some degree-

1 variables nodes. Based on the EXIT properties, they were the first to conjecture the possible use

of degree-1 nodes, a fact that has a major difference compared to the classical optimization of the

LDPC codes over memoryless channels where this class of nodes are prohibited (if we except the

particular case of LDGM codes). They did not use a stability constraint on the degree-1 or degree-2

variables node proportions but instead a heuristic approach that allows easily encodable codes: the

sum of the fraction of degree-1 and degree-2 variable nodes should not exceed (1−R) where R is the

code rate. In [Gan03], the author studied the optimization of M-ary Continuous-Phase Frequency-

Shift Keying (CPFSK) schemes from a bit interleaved coded modulation (BICM) approach. Only

degree-2 ans higher variable nodes were considered. Finally, [XA05, CVT09, XA07] have considered

an irregular-repeat accumulate (IRA) like concatenated scheme. The proposed structure replaces the

IRA accumulator part by the CPM encoder. This has been motivated by the fact that the CPM can

be seen as a phase accumulator. All the introduced concatenated schemes consider a full interleaving

between the CPM and the outer code and the CPM representation was always considered within the

Rimoldi’s decomposition framework [Rim88].
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In this chapter, we will observe that the extrinsic information transfer (EXIT) curves [tB01d,

Hag04] of the CPM join the point (1, 1), except perhaps in some very particular and rare cases

that are usually avoided. This allows us to introduce a proportion of degree-1 variable nodes which

helps to improve the achievable designed code rates as long as a particular stability condition is

satisfied. We will provide a proof of this stability condition and to its generalization to any detector.

Furthermore, we derive the asymptotic analysis to design unstructured LDPC codes for general CPM

schemes. By considering partial interleavers, we will show that the optimization can be efficiently

performed solving a simple linear optimization programming. We point out that our optimization

framework and its built-in scheduling can be generalized to any other trellis-based coded modulation

or linear modulation. In order to alleviate the threshold computation complexity, one often use a

mono-dimensional evolution analysis based on the study of the evolution of a scalar parameter.

In this chapter, we will consider the Rimoldi’s decomposition for ease of presentations but the

proposed method can be applied to any other SISO detector as it will be shown in chapter 4. The

chapter is organized as follows: first we give the system description and recall the main notations and

properties of the different communication blocks we are considering. Then, we derive our asymptotic

approach to design LDPC codes for CPM. Furthermore, in the context of the EXIT chart analysis, we

will derive the stability condition for the degree-1 and the degree-2 variables nodes. This necessary

condition is to be taken into account when designing the LDPC codes to insure a convergence to a

zero error probability [RSU01, RU01]. Finally, we provide some simulation results and the optimized

profiles for various CPM schemes.

2.2 LDPC codes

2.2.1 Description

Turbo-codes were invented by Berrou et al in 1993 [BG96]. They revolutionize the field or error-

correcting codes by proposing coding schemes that operate very near to the Shannon limit [Sha01]

over different channels. The novelty was about concatenating two convolutional codes separated by

an interleaved and jointly decoded within an iterative procedure. Since their introduction and until
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today, several studies have been conducted to analyze and to design high performance schemes.

Trying to explain why turbo-codes behave so well, Mac Kay et al[MN96] rediscovered a second

major coding schemes called low density parity check (LDPC) codes. They were originally invented

by Gallager in 1962 in his PhD thesis [Gal62]. However, they were soon after ignored due to the high

complexity of the corresponding decoder for the concurrent hardware maturity.

It was shown later that both LDPC codes and turbo codes are sparse graph-based codes [Wib96],

and that the iterative decoding of turbo codes and the belief propagation decoding for LDPC codes

are actually connected [MMC98]. [RU01, RSU01] provided remarkable tools to analysis and to design

LDPC codes that operate very close to the Shannon limit.

An LDPC code is described by a parity check matrix H such that a valid codeword verifies the

property HxT = 0, where:

• .T is the transpose operator

• H is the parity check matrix of size M �N

• When H is full rank, the rate of the code R equals

R = 1− M

N

• The ith parity equation, ∀i = 1 . . .M , is given by:

∑
j:H(i,j)6=0

xj = 0 modulo 2

The matrix H is binary (i.e. the entries are 0’s or 1’s) and sparse (i.e. mostly filled by 0’s). The

number of 1’s in a row (or in a column) is called the degree of that row (respectively of that column).

In terms of degrees, the ensemble to which an LDPC code belongs is characterized by the two degree

polynomials λ(x) and ρ(x) which specify the rows and the columns degree distributions:

λ(x) =
dv,max∑
i=2

λix
i−1 ρ(x) =

dc,max∑
j=2

xj−1

where:
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• λi = total number of 1’s in all degree-i columns
total number of 1’s in H

• ρj = total number of 1’s in all degree-j rows
total number of 1’s in H

• dv,max (dc,max) maximum degree of rows (respectively columns)

The rate of an LDPC is given by:

R ≥ 1−
R 1

0 ρ(x)dxR 1
0 λ(x)dx

= 1−
Pdc,max
j=2 ρj/jPdv,max
i=2 λi/i

with equality when H is full rank.

2.2.2 Graphical representation

Tanner [Tan81] introduced a graphic representation of LDPC codes called Tanner graph. It is under

the form of a bipartite graph with two types of nodes: the columns of H are represented by variable

nodes (VN) while the rows of H are represented by check nodes (CN). An edge connects the VN j

to the CN i if the entry H(i, j) = 1.

As an example, consider the following parity check matrix:

H =

BBBBBBB

0 1 1 0 1 0 0

1 0 1 1 0 0 0

1 1 0 1 1 1 1

0 0 1 0 1 1 1

CCCCCCC
(2.1)

The corresponding Tanner graph is depicted in Fig. 2.1. This matrix is full rank, consequently, the

rate of the corresponding LDPC code is R = 3/7. The profile polynomials are given by:

λ(x) = 5
8x+ 3

8x
2 ρ(x) = 3

8x
2 + 1

4x
3 + 3

8x
5

and an example of a valid codeword can be x = [1 0 0 1 0 1 1]T .

The Tanner graph not only provides a compact representation, but also helps to describe the

decoding algorithm. λi (respectively ρj) represents the proportion of edges on the Tanner graph that

are connected to variable nodes of degree i (respectively to check nodes of degree j).
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Figure 2.1: The Tanner graph of the parity check matrix in Eq. (2.1). The VNs are represented by
circles while the CNs are represented by squares

2.2.3 Decoding

The maximum a posteriori (MAP) decoding is very complex for LDPC codes, alternatively, we use

the sum-product algorithm (SPA), also referred as the belief propagation algorithm (BP) [Gal62].

Gallager proposed this algorithm as a MAP near-optimal LDPC decoding procedure. The algorithm

was independently proposed by J. Pearl et al in 1982 [Pea82, KP83, Pea14] who formulated this

algorithm for artificial intelligence. SPA applies the Bayes’ rule locally and tries to approximate the

a posteriori probabilities (APP) by iterating over the whole graph. It the graph is cycle-free, then

the sum product algorithm is optimal.

Consider the codeword x = [x0, . . . , xN−1] transmitted with binary phase shit keying (BPSK)

modulation. The corresponding received observation y = [y0, . . . , yN−1] over a binary-input additive

white Gaussian noised (BI-AWGN) channel is written as:

yj = xj + nj , ∀j = 0, . . . , N − 1

where xj ∈ {+1,−1} and nj � N (0, σ2).

The APP of the bit xj , given the channel output observation y is given by:

P (xj = 1jy)

The channel LLR of the bit xj is computed as:

Lch(xj) = log
(
P (xj = +1jy)
P (xj = −1jy)

)
= 2yj

σ2
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During the decoding process, The extrinsic LLR messages passing between the VN vj and the

check node ci follows the rules:

Lvj!ci = Lch(xj) +
∑
k

H(k,j)=1
k 6=i

Lck!vj

tanh
(
Lci!vj

2

)
=

∏
k

H(k,j)=1
k 6=j

tanh
(
Lvk!ci

2

)

At the end of the decoding process, the estimated bit x̂j is decoded according to the sign of the

APP:

x̂j = sign

BBLch(xj) +
∑
k

H(k,j)=1

Lck!vj

CC

2.3 System Description

We consider a serially concatenated coded scheme where a binary LDPC encoder is concatenated

with a CPM modulator as depicted in Fig. 2.2.

Figure 2.2: Transmitter

At the transmitter, a binary message vector b ∈ FK2 , is first encoded using an LDPC code of rate

R = K/N to produce a codeword c ∈ FN2 . K is the number of information bits, N the codeword

length and F2 the binary Galois field. An LDPC code is usually defined using its corresponding

binary sparse parity check matrix H of size M �N with M = NK. c is a binary vector that belongs

to the null space of H (HcT = 0 where .T is the transposition operator). Based on the matrix H,

an LDPC code can be represented by its corresponding Tanner graph [Tan81]. This later consists in
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two sets of nodes: the variable nodes (circular vertices) associated with the codeword bits (columns

of H) and the check nodes (square vertices) associated with the parity check constraints (rows of

H). An edge joins a variable node (VN) n to a check node (CN) m if H(m,n) = 1. Irregular LDPC

codes are usually defined with their edge-perspective degree distribution polynomials:

λ(x) =
dv,max∑
i=dv,min

λix
i−1 ρ(x) =

dc,max∑
j=2

ρjx
i−1 (2.2)

where λi (and ρj) is the proportion of edges in the Tanner graph connected to VNs of degree i

(respectively to CNs of degree j), and dv,max (dc,max) is the maximum VN (respectively CN) degree.

dv,min is the minimum VN degree, when degree-1 VNs are taken into account, dv,min = 1, otherwise

dv,min = 2. When H is full rank, These two polynomials are related to the design code rate as:

R = 1−
Pdc,max
j=2 ρj/jPdv,max
i=dv,min λi/i

(2.3)

Each codeword c is then interleaved and mapped into M-ary symbols α = {αi}i and finally

encoded by the CPM modulator as:

s(t,α) =
s

2Es
T

cos (2πf0t+ �(t,α) + �0)

= <[sb(t,α)ej2πf0t] (2.4)

with

�(t,α) = πh
N−1∑
i=0

αiq(t− iT ), q(t) =


R t

0 g(τ)dτ

1
2 , t ≥ L

f0 is the carrier frequency, �0 the initial phase shift, �(t,α) the information carrying phase, g(t) the

frequency pulse, h = k/p the modulation index, L the memory and <(.) the real part. Practically, the

shape of q(t) (rectangular (REC), raised cosine (RC), Gaussian, ...) and L determine the smoothness

of the signal transitions. Concerning the interleavers, we consider here partial interleavers rather than

a global interleaver: it implies a random interleaving of the LDPC codewords bits using a different

interleaving patterns among variable nodes of the same degree. This is in contrast with approaches
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that mainly consider full interleaving between the LDPC code and the CPM as classically done for

serially concatenated schemes. The rationale behind this choice will be made clearer when presenting

the asymptotic analysis.

At the receiver side, the decoder is formed by the soft input soft output (SISO) CPM detector

followed by a SISO LDPC decoder separated by the partial interleavers. Without lack of generality,

the SISO CPM is based on the Rimoldi’s decomposition [Rim88] which splits the CPM modulator

into a serial concatenation of the continuous phase encoder (CPE), represented by a trellis, and the

memoryless modulator (MM), seen as a filter bank, as depicted in Fig. 2.2. Using the Rimoldi’s

decomposition, the CPM signal can then be described as:

sb(t,α) =
s

2Es
T

cos (ψ(t,α) + ψ0) (2.5)

where the information symbols α are taken in {±1, . . . ,±(M − 1)} whatever the parity of M is and

figure in the Rimoldi’s tilted phase as:

ψ(τ + nT,α) =
[
2πh

n−L∑
i=0

Ui + 4πh
L−1∑
i=0

Un−iq(τ + iT ) +W (τ)
]

modulo 2π, 0 ≤ τ < T

where Ui = (αi + (M − 1))/2 and W (τ) is a data independent term (see [Rim88] and chapter 1).

Figure 2.3: Rimoldi’s decomposition-based receivers

This decomposition provides a trellis of pML−1 state defined by the tuple σn = [Un−1, . . . , Un−L+1, Vn]

where Ui is an M-ary modified data digit and Vn = Pn−L
i=0 Ui [Rim88].

The transmitted signal s(t,α) is corrupted with an additive white Gaussian noise (AWGN), having

a double-sided power spectral density N0/2. From Eq. (2.5), the complex baseband representation

of the noisy signal becomes:

y(t) =
s

2Es
T

exp{jψ(t,α}+ n(t), t > 0 (2.6)



2.3 - System Description 61

The bloc diagram of the receiver is depicted in Fig. 2.4. The outputs of the receiver matched

filters bank {s∗i (t− T )}i are sampled at the symbol period T to obtain the correlator metric [PS07]:

yn =
[
yni =

∫ (n+1)T

nT
y(l)s∗i (l)dl

]
1�i�pML

Figure 2.4: Bloc diagram of the receiver

It can be shown that {yn}n is a sufficient statistics to estimate the symbols [MA01]. Furthermore,

considering any orthonormal expansion of the receiver matched filters, the joint probability p(yn/Xn)

can be simplified to [MA01]:

p(yn/Xn) / exp
( 2
N0
<(yni )

)
where Xn is the output of the CPE at nT (see chapter 1 for more details). This measure can be

used to compute the branch metrics of the CPE trellis, exploiting the BCJR algorithm [BCJR74].

The outer LDPC decoder is implemented with an instance of the belief propagation (BP) algorithm

[RU01].

In this chapter, we assume the following scheduling: a global iteration ` is composed of one BCJR

forward-backward recursion for the CPM detector followed by one BP iteration (one data-pass + one

check-pass update) for the LDPC code. Recall that we assume partial interleavers: each one is

associated with the VNs of the same degrees. It is implicitly assumed that BCJR recursions are run

independently between different trellis section groups delimited by each partial interleaver. This is

not the case in practice but this assumption allows us to neglect transition effects when running the

decoding. The factor graph corresponding to our receiver is depicted in Fig. 2.5.
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Figure 2.5: LDPC code ensemble for joint detection and decoding

2.4 Asymptotic Analysis of unstructured LDPC codes

One of the most relevant parameters for serially concatenated schemes optimization is the conver-

gence threshold, i.e. the lowest channel parameter (here the signal to noise ratio (SNR)) at which

the decoding is possible given long codeword size and a large number of iterations [tB01c]. For

large block size, one can use density evolution techniques to estimate the threshold of an iterative

system by simulation [RU01] [DDP01]. It consists of tracking the probability density function (PDF)

of the exchanged log likelihood ratio (LLR) messages through iterations. For general channels and

concatenated schemes, this technique can be computationally challenging. In particular, for sym-

metric channels, we have to resort to a coset based approach [HSMP03, KMM03]. Therefore, we

mainly consider an extrinsic information transfer (EXIT) chart analysis. This tool uses the mutual

information (MI) between the transmitted bits and the extrinsic LLRs to estimate the convergence

threshold, which implicitly resort to a coset approach.

First introduced in [tB01c, tB01d], EXIT chart is a common asymptotic tool that is used to

analyse the convergence of iterative systems. It aims to compute the input-output transfer function

of a general SISO block (for instance, the SISO block of the CPM is given in Fig. 2.6). At the input,

a general SISO block can have LLRs from the channel observations and some a priori LLRs. For a

given signal to noise ratio (SNR), extrinsic information is computed at the output. Based on these
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inputs and outputs, the EXIT transfer function, denoted here by f , computes the mutual information

Ie between the sent bits and the extrinsic LLRs versus the mutual information Ie between the a priori

LLRs and the corresponding bits such that: Ia = f(Ie). This mutual information quantities can be

directly related to the LLRs distributions. For very large data blocks, these LLRs can be assumed

independent and identically distributed random variables [RSU01]. The mutual information between

a binary random variable X ∈ {±1} and the corresponding LLRs is given by:

I(X,LLR) = 1
2
∑
x∈�1

∫
p(llrjx) log2

( 2p(llrjx)
p(llrjx = 1) + p(llrjx = −1)

)
dllr (2.7)

When using EXIT charts and in order to mitigate the computations, it is also commonly assumed

that the random variable corresponding to the exchanged extrinsic LLRs is [Hag04]:

• symmetric, i.e. p(LLRjX = 1) = p(−LLRjX = −1)

• consistent, i.e. p(−LLRjX = 1) = exp(LLR)p(LLRjx = 1)

However, this assumption is not always true for general SISO blocks, consequently we have to

resort to Eq. (2.7). In this case, the computation of p(llrjx) is not straightforward and is usually

estimated by means of histograms. For the noisy binary input Gaussian channel, i.e. when the

X ∈ {±1} is corrupted with a Gaussian noise, this leads to a Gaussian distributed LLRs [Hag04],

we can evaluate the MI of the LLR messages by only tracking their variance σ2
LLR or their mean

mLLR = σ2
LLR/2. When all these assumptions are gathered, Eq. (2.7) simplifies to:

I(X,LLR) = 1−
∫ +1

−1
p(llrjx = 1) log(1 + e−llr)dllr

= 1− 1q
2πσ2

LLR

∫ +1

−1
exp

(
−(llr− σ2

LLR/2)2

2σ2
LLR

)
log(1 + e−llr)dllr

= 1− ELLR(log2(1 + e−LLR)), LLR � N (σ
2
LLR

2 , σ2
LLR) (2.8)

A closed form of the mono-dimensional function I(X,LLR) is not easy. Alternatively, [tB01d]

gives a polynomial approximation of I(X,LLR) and of its inverse, denoted by J(σLLR) and J−1(σLLR)
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respectively:

J(σ) =


−0.0421061.σ3 + 0.209252.σ2 − 0.00640081.σ, 0 ≤ σ < 1.6363

1− exp
(
0.00181491.σ3 − 0.142675.σ2 − 0.0822054.σ + 0.0549608

)
, σ ≥ 1.6363

J−1(I) =


1.09542.I2 + 0.214217.I + 2.33727.

√
I, 0 ≤ I < 0.3646

−0.706692 log [0.386013(1− I)] + 1.75017.I, I ≥ 0.3646

When computing the EXIT charts for ga eneral SISO block,Ie is measured at the output of the

block based on Eq. (2.7). To be independent of the other block in a given iterative scheme, the

a priori information is usually considered as Gaussian following a Gaussian consistent distribution

as given in Eq. (2.8) ans such that σ2
LLR = J i1(Ia). For LDPC codes, we will see that the EXIT

approach gives an approximation analytic description of the information transfer at both the check

nodes and the variable node.

2.4.1 EXIT curve of the detector

Consider the SISO CPM block in Fig. 2.6, where y(t) is the channel observation, LLRa the a priori

LLR vector of the bits and LLRe the extrinsic LLR vector. The extrinsic LLRs are computed using

the BCJR algorithm relative to the Rimoldi’s decomposition detailed in chapter 1. In the considered

LDPC-coded CPM, LLRa is computed using the Gaussian approximation and corresponds actually

to the LLRs values of the coded bits and Ia is measured using Eq. (2.7).

Figure 2.6: SISO CPM

Let T (.) denotes the input-output EXIT transfer characteristic (also referred to as the EXIT

curve) of the SISO CPM demodulator implicitly depending on the signal to noise ratio Es/N0:

I`cpm,vn = T (I`−1
vn,cpm) (2.9)
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When inserting the this SISO block in an iterative system, we assume that the messages are

Gaussian distributed. As discussed, the Gaussian approximation is commonly assumed over the

literature: for the CPM, This assumption remains accurate as depicted by the histograms in Fig.

2.7.

−15 15
0

5 · 10−2

0.1

0.15

Bits 0

N(m0, 2m0)
Bits 1

N(m1, 2m1)

Figure 2.7: Probability density function of the LLRs at the output of the GSM GMSK decoder in
comparison to a symmetric Gaussian distribution when the a priori mutual information is 0.5. m0

(and m1) is the expected value of the LLRs associated with the bits 0 (respectively the bits 1)

The analytic expressions of T (.) are not available, but they can be estimated by Monte Carlo

simulations. In practice, T (.) is approximated by a polynomial curve fitting. Figure 2.8 presents the

results at different SNRs for various CPMs. For a better representation, the SNR here is characterized

by Ed/N0 where Ed = Es − 10 log(log2(M)).

2.4.2 The area theorem and the curve �tting approach

In [AKtB04], authors show that the area under the EXIT curve of an iterative component is related

to its rate over the binary erasure channel. It is usually assumed that it is also a good approximation

of other channels and that it can be extended to soft detectors [Hag04, LSL06, SB13, BTP+13].

Based on the commonly observed generalization of the area theorem, we can extend this property to

serial concatenation with CPM to characterize a lower bound of the maximum achievable rates for

the inner code given an Es/N0. In our framework, this lower bound is given by the area under the
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Figure 2.8: EXIT curves for various CPM systems. For reference the rate-1/2 [5, 7] convolutional
code is also illustrated. The considered SNRs are Ed/N0 = −5, 0 and 5dB

EXIT curve of the CPM:

R ≤ R∗ =
∫ 1

0
T (�)d� (2.10)

Graphically (see Fig. 2.8), as long as the EXIT curve of the inner code (which is independent of

the channel parameter) is below the CPM EXIT curve, the decoder performance is improved with

iterations. Since we are conducting an asymptotic analysis, we say that the decoding was successful

if the error probability vanishes with a large enough number of iterations. Consequently, finding the

decoding threshold can be graphically interpreted as finding the lowest SNR such that the former

EXIT curve lies below the latter everywhere in [0, 1].

Our goal in this case will be to design LDPC codes whose rates Ropt are as close as possible to

R∗ and that have thresholds (Es/N0)opt as close as possible to (Es/N0)∗. By varying the SNR and

computing the corresponding maximal achievable rate in Eq. (2.10), we can define the curve in Fig.

2.9. The blue area corresponds to the achievable code rates region. The blue line can be seen as a

lower bound of the Shannon limit for CPMs, since computing capacities and rates with the Gaussian

approximation gives generally optimistic results. For a particular rate, the goal of our optimization

will be to find an LDPC code whose threshold is as close as possible to the blue curve for a targeted
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Figure 2.9: Maximum achievable rates for the GMSK: (M = 2, L = 3, h = 1/2, BT = 0.3,Gaussian)
as a function of the SNR (Es/N0)

design rate R∗.

Example

Consider the CPM scheme defined by (M = 2, L = 3, h = 1/2, BT = 0.3,Gaussian). Figure 2.10

depicts the corresponding EXIT chart at Es/N0 = −2.75dB. For this CPM scheme, we can conjecture

from this graph that there exist an outer code of maximum rate R∗ = 1/2 that allow successful de-

coding at (Es/N0)∗ = −2.75dB. Figure 2.11 summarizes the maximum achievable rates as a function

of Es/N0 for some CPM schemes.
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Figure 2.10: EXIT chart of the GMSK: (M = 2, L = 3, h = 1/2, BT = 0.3,Gaussian) at Es/N0 =
−2.75dB
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Figure 2.11: Maximum achievable rates different CPM schemes. The RCS2 CPM scheme is defined
in [BCDB+13].
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2.4.3 A combined EXIT approach for CPM and LDPC code

2.4.3.1 Model

If we consider a global interleaver between the CPM and the LDPC code, the LDPC component

EXIT function is clearly a two dimensional function: the LLRs sent from the VNs to the CPMs

iteration depends on the received LLR message from the CN and on received LLR message from

the SISO CPM. Under these conditions, the convergence analysis of the system requires the study

of multidimensional EXIT functions which is not simple. Moreover, this analysis provides equations

which are not linear in {λi}i. For these reasons, we consider instead partial interleavers and the

integration of the detector in the variable node. This approach can be seen as a generalization of

[tB01c]. Fig. 2.12 depicts the Tanner graph corresponding to receiver and introduces the main

notations of the MI that are going to be used in this section.

Figure 2.12: LDPC code ensemble for joint detection and decoding with partial interleavers
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2.4.3.2 Combined EXIT curve of the variable nodes and the detector

A variable node of degree i has i incoming messages, {LLRivn,in(j)}j∈{1,2...,i}, from the check nodes

and one message from the CPM detector as depicted in Fig. 2.13.

Figure 2.13: Variable node update

The extrinsic message LLRivn,out(k) computed at this variable node under the sum product algo-

rithm [MN96] on the kth edge (∀k ∈ {1, 2 . . . , i}), is given by:

LLRivn,out(k) = LLRicpm,vn +
i∑

j=1
j 6=k

LLRivn,in(j)

where LLRicpm,vn is the extrinsic LLR value at the output of the detector relative to the bit corre-

sponding to a degree-i variable node.

Under the Gaussian approximation, the average combined EXIT function I`vn,cn of the VN and

the SISO CPM module for a variable node of degree i at the `th iteration is then given by [CFJRU01]:

I`vn,cn =
dv,max∑
i=1

λiI
`
vn,cn(i) (2.11)

with:

I`vn,cn(i) = J

(√
(i− 1)

[
J−1

(
I`−1
cn,vn

)]2
+
[
J−1

(
I`cpm,vn(i)

)]2)
(2.12)

I`cpm,vn(i) = T
(
I`−1
vn,cpm(i)

)
(2.13)
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I`vn,cpm(i) = J
(√

iJ−1
(
I`−1
cn,vn

))
(2.14)

where:

• I`vn,cn(i) is the average MI associated with LLR messages passed from a VN of degree i to CNs

• I`−1
cn,vn is the average MI associated with LLR messages passed from CNs to VNs

• I`cpm,vn(i) is the MI for degree-i VN associated with LLR messages passed from the CPM

decoder to the LDPC decoder. Recall that without the partial interleavers, we are not allowed

to write Eq. (2.13)

Figure 2.14 plots different VN trajectories as a function of the degree. The dashed line corresponds

to an arbitrary VN profile chosen here for illustration purposes only. Notice that the VNs EXITs

do not start from the origin (0, 0). High degree VNs clearly converge more quickly in comparison to

lower degree VNs. However, as stated in [RU08], since the introduction of degree-2 edges improves

the performance, it is natural to conjecture that introducing lower degree edges can bring further

benefits. For structured protograph based LDPC codes [Tho03], it was shown that codes with some

degree-1 VNs (also called precoding VNs) can have excellent thresholds and very low error floors

[LC07, DDJA09]. In unstructured LDPC codes, and in the classical setting where the detector EXIT

curve do not converge to (1, 1) [tBKA04], it is not possible to introduce degree-1 variable nodes

because they will not converge.

The degree-1 VN EXIT corresponds actually to the EXIT transfer function of the SISO CPM

decoder because we have no a priori information from adjacent CNs: replace i by 1 in Eq. (2.12)

and get I`vn,cn(1) = T
(
I`−1
cn,vn

)
. Because the CPM EXITs join the point (1, 1) (see Fig. 2.8), the MI

I`vn,cn(i) (and thus the mixture I`vn,cn) will also converge to (1, 1) even if we allow some degree-1 VNs

(unlike in [tBKA04]).

Taking into account the partial interleavers, the VNs to the SISO CPM update for a degree-i VN

can be written as:

I`vn,cpm(i) = J
(√

iJ−1
(
I`−1
cn,vn

))
(2.15)
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Figure 2.14: Combined VN+CPM trajectories as a function of the degree. The detector is (M =
2, L = 3, BT = 0.3, h = 1/2) and the SNR is Es/N0 = −1.5. For the dashed line, the considered
profile is (λ1 = 0.42, λ2 = 0.23105, λ3 = 0.00938, λ4 = 0.00104, λ10 = 0.33853)

Note: If we were not using the partial interleavers but a total interleaver, we will not be allowed

to write Eq. (2.15), but instead an averaging has to be made with respect to the node-perspective

variable nodes proportions:

I`vn,cpm =
dv,max∑
i=1

~λiJ
(√

iJ−1
(
I`cn,vn

))
(2.16)

where ~λi is the proportion of variable nodes of degree i,. This quantity is related to λi by the non

linear relation:

~λi = λi/iP
k λk/k

Furthermore, we would not have been allowed neither to write Eq. (2.13) because the CPM SISO

module will not have access to I`−1
vn,cpm(i) but instead to an averaged MI corresponding to the LLR

messages sent from the VNs to the CPM SISO module. In this case, Eq. (2.13) becomes:

I`cpm,vn = T (I`−1
vn,cpm) (2.17)
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It is clear that combining Eqs. (2.17) and (2.16) will lead to a nonlinear equation in {λi}i.

2.4.3.3 EXIT chart of check nodes

A check node of degree j has j incoming messages {LLRjcn,in(i)}i∈{1,2,...,j} from the variables nodes

as depicted in Fig. 2.15.

Figure 2.15: Check node update

The extrinsic message LLRjcn,out(k) computed at this check node on the kth edge (∀k ∈ {1, 2, . . . , j}

is given by the following product [Gal62]:

tanh
(
LLRjcn,out(k)

2

)
=

j∏
i=1
i6=k

tanh

LLRjcn,in(i)
2


where tanh(.) is the hyperbolic tangent function.

For the binary erasure channel, a closed form of the EXIT curve can be derived for CNs [AKtB04].

However, for other channels, one can use the duality property approximation or the reciprocal channel

approximation [Chu00, AKtB04] (which is exact in the case of the binary erasure channel). It states

that the EXIT function Icn of a CN given an a priori knowledge Ia and the EXIT curve of an

arbitrary VN of the same degree are related as:

Icn(Ia) = 1− Ivn(1− Ia)
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Consequently, for a CN with degree j, the MI I`−1
cn,vn associated with the extrinsic LLR messages

passed from the CNs to VNs and the relative coded bits at the iteration ` − 1 is given, under the

reciprocal channel approximation, as:

I`−1
cn,vn =

dc,max∑
j=2

ρjI
`−1
cn,vn(j) (2.18)

I`−1
cn,vn(j) = 1− J

(p
j − 1J−1(1− I`−1

vn,cn)
)

(2.19)

Figure 2.16 plots the `inverted’ EXIT curve of a CN as a function of its a priori MI. Observe that

the EXIT curve of a degree-2 CN is nothing but the first bisector of the plan: replace j by 2 in Eq.

(2.19) and get I`−1
cn,vn(j) = I`−1

vn,cn.
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Figure 2.16: CN EXIT trajectories. The dashed line corresponds to the profile (ρ2 = 0.34, ρ3 = 0.66

2.4.4 Combined EXIT recursion and formulation of the optimization problem

Combining Eqs. (2.11) and (2.18) will finally give the recursion 	:

I`vn,cn = 	
(
λ(.), ρ(.), T (.), I`−1

vn,cn

)
(2.20)
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Thanks to the partial interleavers and the considered scheduling, the obtained recursion is a linear

function with respect to the parameters {λi}i; for a given ρ(x) and a given signal to noise ratio. With

concentrated check node profiles [CFJRU01], i.e. of the form: ρ(x) = (1 − ρ)xj−1 + ρxj , the rate

maximization design is equivalent to the maximizing linear problem:

arg max
�(x)

∑
i

λi
i

(2.21)

subject to:

[C0] Mixture :
∑
i

λi = 1 (2.22)

[C1] Convergence : 	 (λ(x), ρ(x), T (.), y) > y (2.23)

This system is efficiently solved by classical linear programming using discretization of the conver-

gence constraint for y ∈ [0, 1]. This problem statement will be latter completed by adding a constraint

on the degree-1 VN proportion. To summarize, our code design strategy can be outlined in Algorithm

2.1.

Algorithm 2.1 Code design strategy
Fix an SNR value Es/N0

Fix the maximum and the minimum VNs and CNs degree
Initialize the designed code rate Ropt = 0
Compute the CPM EXIT curve T (.) at Es/N0

Generate a set C of concentrated CN degree profiles [CFJRU01]
for each ρ(x) in C do

Solve the linear problem in Eq. (2.21) and obtain λ(x)
Compute the new designed code rate R
if R > Ropt then

Ropt = R

λopt(x) = λ(x) and ρopt(x) = ρ(x)
end if

end for
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2.4.4.1 Example

Let us suppose that we want to design a code for the (M = 2, L = 3, h = 2/3,Raised cosine pulse)

CPM at Es/N0 = −3.375dB. In this example, we take dv,min = 2. Solving Eq. (2.21) gives:

(λ2 = 0.654, λ20 = 0.346) and (ρ4 = 0.4, ρ5 = 0.6) (2.24)

Fig. 2.17 depicts the CNs and the combined VNs+CPM EXIT curves of the optimized code.

Note that all the area between the two EXIT curves (the shadowed area) translates into a rate loss.
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Figure 2.17: The CNs and the combined VNs+CPM EXIT curves of the optimized code in Eq. (2.24)

This area can be minimized by introduce some degree-1 VNs. This is suggested by the fact that the

degree-1 VN EXIT curve is very low (see Fig. 2.15). Figure 2.18 plots the CNs and the combined

VN+CPM EXIT curves of the following optimized code:

(λ1 = 0.191, λ2 = 0.493, λ6 = 0.0154, λ7 = 0.0676, λ20 = 0.233) and (ρ4 = 0.7, ρ5 = 0.3) (2.25)

It is clear that, thanks to the introduction of the degree-1 variable nodes, we have much less rate

loss.
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Figure 2.18: The CNs and the combined VNs+CPM EXIT curves of the optimized code in Eq. (2.25)

2.4.5 Stability condition

Authors in [RSU01] states that the density evolution iterations converge to a fixed point. In [RU01,

Theorem 5], they corroborate the importance of the study of the stability of this convergence in the

analysis of the density evolution algorithm behavior around this fixed point. More specifically, the

analysis of the stability condition allows to define a necessary condition on the code parameters in

order to insure the convergence to a zero error probability. Let us denote:

S =
∫
f0(x)e−x2/2dx λ′(x) =

dv,max∑
i=2

(i− 1)λixi−2 ρ′(x) =
dc,max∑
j=2

(j − 1)ρjxj−2

where f0(x) is the density of the initial LLR messages, and λ′(x) (respectively ρ′(x)) is the first

derivative of the polynomial profile λ(x) (respectively ρ(x)). Authors show that if the LDPC code

profile verifies:

λ′(0)ρ′(1) < 1
S
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then, the error probability will vanish to zero, otherwise, it can be lower bounded by a value greater

than zero. For the binary input AWGN channel, the equation above simplifies to [RSU01, Example

12]:

λ′(0)ρ′(1) < e
1

2�2

where σ2 is the variance of the channel noise. In this channel, σ2 si related to the channel output

LLRs variance σ2
LLR by:

σ2
LLR = 4

σ2

The stability condition then becomes:

λ′(0)ρ′(1) < e
�2
LLR

8

Since this stability condition involves λ′(0) = λ2, it gives an upper bound on the proportion λ2.

Degree-1 variable nodes were not considered in the study, because they were prohibited in the study

of unstructured LDPC codes over binary memoryless channels.

In the context of EXIT chart analysis and under the Gaussian approximation, it is also possible

to derive this stability condition. As for the density evolution, this constraint controls the behavior

of the evolution of the mutual information when the error probability is near to zero (or equivalently,

when the average VN mutual information I`vn,cn is near to one).

It the case of the AWGN channel with variance σ2, where the EXIT curve of the detector does

not reach the point (1, 1) (i.e. T (1) < 1) and where degree-1 VNs are not considered, the stability

condition for the EXIT chart analysis is conjectured in the literature [LSL06, SB13] as:

λ′(0)ρ′(1) < exp
(
J−1 (T (1))2

8

)

In the following, we provide a proof of the following generalized stability condition for any detector

and for dv,min ≥ 1:
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Theorem 1. Under EXIT evolution, the stability condition can be written as:

λ1T
′
�(1) + λ2�(T (1)) < 1P

j ρj(j − 1) (2.26)

where:

�(x) =


0, if x = 1

exp
(
− [J−1(x)]2

8

)
, otherwise

Sketch of proof(The detailed proof is provided in Annex B)

For ease of notations, 	 (λ(.), ρ(.), T (.), x) in Eq. (2.20) is simply denoted by 	 (x), and the standard

deviation-based function J(.) is replaced by the mean-based function ~J(.) defined as:

~J(x) = J(
√

2x)

By abuse of notation in this section only, ~J(.) is simply denoted J(.).

Recall that the EXIT chart recursion is given by Eq. (2.20) as:

x` = 	
(
x`−1

)
=

dv,max∑
i=1

λiJ
[
(i− 1) J−1 � f

(
x`−1

)
+ J−1 � T� � J

(
iJ−1 � f

(
x`−1

))]
where � denotes the standard composition operator of two functions.

Deriving 	 gives:

d	
dx

(x) = λ1T
′(J(�(x)))

∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

+
∑
i�2

(i− 1)λi
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x)) �
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

+
∑
i�2

iλiT
′(J(i�(x)))� J ′(i�(x))

J ′(�(i�(x))) �
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x))

�
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

where:

� = J−1 � f and � = J−1 � T � J
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The Taylor expansion of J(.) can be obtained from the asymptotic expansion given in [RU08] as:

• For small x:

J(x) = x

4 −
x2

16 + x3

48 +O(x4)

• For large x:

J(x) = 1−
√
π

ln(2)e
−x4

(
x
−1
2 − 8 + π2

4 x
−3
2 +O(x

−5
2 )
)

By deriving this Taylor expansion, using the Sandwich theorem [Wei05] and considering the

following results:

J(0) = 0 , J−1(0) = 0

lim
x!+1

J(x) = 1, lim
x!1−

J−1(x) = +1

lim
x!1−

�(x) = lim
x!1−

J−1

1−
dc,max∑
j=2

ρjJ
(
(j − 1) J−1 (1− x)

) = +1

one can compute the limits of the different terms in d	
dx (x) when x tends to 1.

x = 1 is an attractive point of the recursion function 	(.) if d	
dx (1) < 1. Expanding this inequality

concludes the proof.

�

In the context of the CPM, this stability constraint simplifies to:

[C2] Stability : λ1 <
1

T ′(1)Pj ρj(j − 1) (2.27)

One can see that in our context, variable nodes of degree-2 are not constrained anymore.

2.4.5.1 Example

Taking the same context of the example in the Section 2.4.4.1, Fig. 2.19 depicts the CNs and the

combined VNs+CPM EXIT curves of the optimized code adding the stability condition Eq. (2.27).

It is to be compared with Fig. 2.17. The profile of the optimized code is:

(λ1 = 0.1793, λ2 = 0.5395, λ7 = 0.1168, λ20 = 0.1644) (2.28)
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(ρ4 = 0.85, ρ5 = 0.15)
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Figure 2.19: The CNs and the combined VNs+CPM EXIT curves of the optimized code in Eq. (2.28)

Besides the constraints [C0], [C1] and [C2] in Eqs. (2.22), (2.23) and(2.27), our design frame work

allows to add different constraints for elaborate structure and efficient encoding, for instance:

• Sometimes, especially for high rates, the optimization provides a designed code with a high

fraction of degree-2 variable nodes in order to achieve better thresholds. In such cases, one

should avoid having cycles containing only degree-2 VNs because it induces high error floors.

A practical workaround is to use the irregular repeat accumulate (IRA) code’s double diagonal

structure to prevents such cycles [YRL04]. The corresponding constraint can be written as:

λ2 ≤ 2
∑ ρj

j

• When the sum of the degree-1 and degree-2 VNs equals (1 − R), a construction that allows

easily encodable codes is possible as proposed in [NAN03]. To this end, we can append the
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constraint:

λ1 + 1
2λ2 <

∑ ρj
j

2.4.6 Simulation results

Figure 2.20 plots the optimized rate Ropt versus the maximum achievable rate R∗ at different SNRs

for the considered binary, quaternary and octal CPM schemes. When the degree-1 VN are allowed,

the stability condition was taken into account. We observe that by allowing degree-1 VNs and

when dv,max = 50, we almost achieve the maximum achievable rate for the three CPM schemes.

By considering degree-1 and taking dv,max = 4 only, we do better than all schemes with dv,min = 2.

Tables 2.1, 2.2 and 2.3 summarize some optimized LDPC codes for different CPM schemes at different

code rates.
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Figure 2.20: Ropt versus R∗ for different CPM schemes as function of Es/N0
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Figure 2.21 depicts the 3MSK and the 3GMSK bit error rate (BER) and frame error rate (FER)
results. The optimized LDPC codes have rate 1/2. Simulations were performed using 16000 infor-
mation bits and a maximum of 250 turbo iterations. Table 2.4 summarizes the optimized degree
distribution profiles of the LDPC codes. As expected, the simulated thresholds agree with the theo-
retical ones and no error floors are observed before 10−3.

MSK 3MSK 3GMSK
(Es/N0)∗ -2.5 -2.4 -2.5

(Es/N0)opt -2.4 -2.3 -2.5

λ1 0.1294 0.1475 0.1273
λ2 0.5148 0.545 0.5201
λ5 0.0679 0.0223 0.0577
λ10 0.2879 0.2852 0.2949

ρ4 0.25 0.5 0.3
ρ5 0.75 0.5 0.7

Table 2.4: Optimized LDPC codes for design rate R = 0.5
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Figure 2.21: BER and FER for optimized concatenated LDPC code with 3MSK and 3GMSK
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Authors in [GiAND09] proposed to design serially concatenated CPM with an extended Bose-
Chaudhuri-Hocquenghem (eBCH) code [BRC60, BE97]. They conducted both threshold and error
floor optimization to achieve low error floors and good thresholds. Here, we compare our results with
their obtained thresholds.

The channel capacity was estimated using the lower bound given by symmetric information rate
(SIR) method for CPM in [KC04]: the SIR is defined as the mutual information rate between
the channel input and the channel output for independent and identically distributed inputs with
an uniform distribution. Their optimization approach is different from the one conducted in this
chapter: they fix an outer code and a spectral efficiency, and try to optimize the CPM and the outer
code rate with respect to spectral efficiency and to have low thresholds. On the contrary, in our
approach, after choosing a targeted CPM scheme and fix the LDPC code rate, we design the best
LDPC profile with the lowest threshold.

In [GiAND09], two CPM schemes with spectral efficiency of 0.9bits/s/Hz were optimized for the
concatenation with a (64, 51, 6) eBCH. The Table 2.5 compares the provided results in [GiAND09]
and our optimization results for the two schemes:

(1) M = 4, L = 2, h = 2/5, Raised cosine pulse and Gray mapping concatenated with an eBCH
outer code rate of 0.8

(2) M = 4, L = 3, h = 2/7, Raised cosine pulse and Gray mapping concatenated with an eBCH
outer code rate of 0.5

The two methods of bounding the capacity gives relatively close results. A fact that corroborates
our conjectured generalization of the area theorem for CPM. Our optimized LDPC code for the CPM
in (2) is only at 0.08dB far from (Es/N0)∗. However, authors in [GiAND09] observed that the CPM
in (1) improves significantly the threshold in comparison to (2). For this scheme, our optimized
LDPC codes allows to operate at 0.65dB from the obtained threshold in [GiAND09].

The threshold gain of our optimized LDPC codes should come at the cost of higher error floors,
however, by taking relatively large codewords, for example 16000 information bits, errors floors can
be made lower (below 10−4) in terms of FER as observed in Fig. 2.21.
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(1) (2)
our (Es/N0)∗ 3.1 0.62

(Es/N0)∗ of [GiAND09] 2.97 0.55

our (Es/N0)opt 3.1 0.7
(Es/N0)opt of [GiAND09] 3.75 2.91

λ1 0.3764 0.2505
λ2 0.4012 0.432
λ5 0.1711
λ6 0.0179
λ7 0.2045
λ20 0.1464

ρ2 0.1
ρ3 0.9
ρ7 0.75
ρ8 0.25

Table 2.5: Optimized LDPC codes for the CPM schemes (1) and (2)

2.5 Conclusion

In this chapter, we proposed a framework to design unstructured LDPC codes for the CPM. The
proposed method can be applied to any detector. Using the properties of the CPM, we showed that
on can improve the convergence threshold by introducing a controlled proportion of degree-1 VNs
subject to a particular stability condition. We also provide a proof of this stability condition in the
general case in the context of EXIT chart analysis. We focused on the asymptotic performance and
the evaluation of the maximum achievable rates of unstructured LDPC codes. The results of this
class will be used along the thesis to compare with other more practical codes that benefit from
better encoding and implementation advantages.
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Résumé

Dans ce chapitre, nous menons une analyse asymptotique pour concevoir des codes LDPC plus pra-
tiques pour le CPM. Tout d’abord, nous étudions les codes IRA en raison de leur performance et
de leur encodage facile. Comparés aux codes LDPC non structurés, ils ont de bons seuils et sont
facilement encodable grâce à leur partie structurée. Par ailleurs, nous généralisons cette famille aux
codes Generalized IRA (GIRA). Contrairement à la méthode de design proposée dans [XA05] pour les
codes LDGM et afin de s’affranchir de l’optimisation des noeuds de dopage, nous proposons d’étudier
les codes GIRA systématiques. Cette considération implique un ordonnancement de décodage parti-
culier.
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Deuxièmement, nous étudions la performance des codes LDPC basés sur des protographes [Tho03].
Cette classe bénéficie d’une représentation compacte, d’une analyse des performances plus simple
et d’une implémentation facilement parallélisable. Nous allons montré qu’on peut optimiser des
codes LDPC-protographe qui opèrent à 0.5dB seulement des LDPC non-structurés. Les résultats de
simulation et la comparaison avec les protographes optimisés du canal Gaussian, ARJA et AR3A
[LC07, DDJ06], sont fournis. Les protographes conçus ont été optimisés pour minimiser le seuil de
décodage. Par conséquent, ils ne disposent pas nécessairement de bonnes propriétés de distances
minimales en raison de l’introduction d’une grande proportion de noeuds de variables de degré 1 et
2. Toutefois, étant donné le contexte de nos applications, avec des trames de données longues, notre
méthode donne de très bons résultats à 10−3 en terme de taux d’erreur paquet.

Finalement, afin d’obtenir des protographes avec de bonnes performances à la fois dans la ré-
gion waterfall et la région du plancher d’erreur, nous étudions les codes LDPC spatialement couplés
basés sur des protographes [MLCJ14] parce qu’il a été démontré que cette famille de code atteint
universellement de bons seuils sur une large variété de canaux. En plus de tous les avantages des
codes LDPC basés sur des protographes, ces codes présentent un gain de convolution qui améliore
les performances de la famille précédente. Nous allons montrer que par couplage de protographes
simples tel que le (3, 6) régulier, nous atteignons déjà des seuils satisfaisants et par construction, une
bonne distance minimale. En outre, pour remédier à la perte de rendement inhérente à la terminaison
des codes LDPC spatialement couplés, nous introduisons une nouvelle terminaison qui préserve le
rendement du protographe sous-jacent indépendamment de la longueur de couplage, tout en présen-
tant un gain de convolution. C’est la première fois à notre connaissance qu’on envisage la possibilité
d’utiliser un seul e�et de vague pour les LDPC spatialement couplés. Cette nouvelle terminaison
nous permet de concevoir un couplage du (3, 6) qui donne le même seuil et le même rendement que
le code LDPC optimisé au chapitre 3 avec une longueur de couplage égale à 4 seulement.

Enfin, afin de concevoir de très bons codes LDPC spatialement couplés en terme de seuil de
décodage pour le CPM, nous introduisons une technique d’optimisation en deux étapes: après avoir
trouvé un bon protographe, nous optimisons le couplage afin d’obtenir de très bons seuils. Cette
stratégie conduit à des codes très compétitifs qui fonctionnent à des seuils de seulement 0.1 − 0.15
dB des codes LDPC non structurés.
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3.1 Introduction

We have seen in the chapter 2 a general framework to design unstructured LDPC codes. In this
chapter, we focus on the families of LDPC codes that have more structure, either partial structure
such as as irregular repeat accumulate codes or protograph-based LDPC codes. Many studies have
been conducted trying to jointly optimize iterative schemes with different CPM configurations and
convolutional outer codes [MA01, NS99, BFC09]. Later on, several structured sparse graph based
codes families emerged such as irregular repeat accumuluate (IRA) codes [Jin01]. The main advantage
of IRA codes is their low encoding and decoding complexity (linear in code length) while showing
similar performance close to low density parity check (LDPC) codes. Only few papers studied the
convergence behaviour and the asymptotic design of these codes for general CPM schemes without
relying on properties of some particular CPM families. [XA05, CVT09, XA07] have considered a non
systematic IRA-like coded CPM. The proposed structure replaces the IRA accumulator with a CPM
modulator. This was motivated by the fact that CPM acts as a phase accumulator.

The main contribution of this chapter is that we first propose an asymptotic analysis for the
design of serially concatenated turbo schemes that works for both systematic generalized irregular
repeat accumulate (GIRA) and low density generator matrix (LDGM) codes concatenated with a
continuous phase modulation (CPM). The proposed design is based on an EXIT chart method.
By considering a particular scheduling, inserting partial interleavers between GIRA accumulator and
CPM and allowing degree-1 variable nodes, we show that one can achieve very good thresholds for this
subensemble. In GIRA codes, the accumulator 1/(1 + D) is replaced by a generalized accumulator
with a polynomial transfer function 1/G(D). Not only this class offers more flexibility, but also
embraces all previously discussed codes by choosing the right accumulator function. Furthermore,
we point out that for systematic GIRA codes, the optimization is not as straightforward as the
non systematic case [XA05, StBLL12] but requires a well-thought scheduling. Also, since all bits are
transmitted, we do not have to consider, at the difference of [tBK03, XA05], a careful design of doping
check nodes [tB01b]. As mentioned in chapter 2, we can remark that the extrinsic information transfer
function (EXIT) [AKtB04] of CPM detectors, at the difference of the MIMO detector in [tBK03],
joins the point (1, 1). Consequently, we can introduce a controlled proportion of degree-1 variable
nodes in order to improve the performance in terms of itarative decoding threshold.

The second contribution is an asymptotic analysis and design of protograph-based LDPC codes for
CPMs. This code family has been studied extensively in the recent years. First introduced in [Tho03],
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protograph codes show very good thresholds and low encoder/decoder complexity implementation.
These codes are described by a small Tanner graph that is used as a layout to construct the final LDPC
code by following a copy-and-permute procedure: after duplication the protograph N times, the end
points of the replicas of each edge are permuted so that all the protograph copies are interconnected
with respect to the local constraints. Unlike unstructured LDPC codes, parallel edges are allowed in
the protograph (but not in the generated code) as well as degree-1 variable nodes. This idea not only
provides a concise way to define the code, but also implies that the performance of the protograph-
based LDPC code can be predicted from its underlying protograph. Many protograph-based LDPC
codes have been proposed [RL09] (accumulate repeat accumulate codes, quasi-cyclique codes, ...). In
the context of CPM, no study has been made to evaluate the performance and to design protograph-
based LDPC codes. We show that optimized protographs for the additive white Gaussian noise
(AWGN) channel [LC07] do not exhibit necessarily good performance when concatenated with the
CPM and propose some protographs with very good performance.

Finally, we study the protograph-based LDPC convolutional codes (LDPC-C) [MLCJ14]. They
are obtained by spatial coupling protograph codes. This coupling is an efficient technique that leads
to susbtentially better theresholds even with relatively simple protographs under belief propagation
decoding. Since their introduction, numerous papers were written on the reasons why they perform
so good in comparison to classical LDPC codes (see [KRU11, MLC11, KRU12] and references therein
for more details). To our knowledge, no work has been done to design and analyse the performance
of LDPC-C codes concatenated with CPM. In [SB13], the authors compared the performance of
some LDPC-C codes over the Gaussian channel, proposed a 3/4 − rate universally good (with any
mapping/MIMO detector) LDPC-C code candidate and illustrated it with the 16 − QAM receiver
with different mappings. [NYPN11] showed that LDPC-C codes achieve the symmetric achievable
rate for intersymbol-interference channels. For bit-interleaved coded modulations, [HAB+13] studied
the performance of the LDPC-C codes and the mapping optimization where each bit channel is
modelled by an independent binary erasure channel. We will see that, due to the inner structure of
CPM, good codes for the Gaussian channel do not exhibit necessarily good performance with CPM.
We investigate the performance of the concatenated scheme formed by the serial concatenation of a
LDPC-C code and a general CPM modulation scheme. We focus on finding LDPC-C codes that are
good for a particular CPM modulator. We also see that coupling optimized protographs for the CPM
improves their threshold. Finally, we will show that we can adapt an unusual LDPC-C termination
without rate loss but still having a very good threshold.
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3.2 Generalized Irregular Repeat Accumulate codes

3.2.1 System Description

Figure 3.1: Transmitter

A systematic GIRA code serially concatenated with a CPM modulator is depicted in Fig. 3.1
and in the Tanner graph in Fig. 3.3. The GIRA encoder can be seen as a serial concatenation of
repetition codes with a convolutional code named accumulator. In non systematic GIRA codes, the
information bits are not transmitted. At the beginning of the coding process, each bit of a binary
message u ∈ {0, 1}K is irregularly repeated with a factor corresponding to the degree of its associated
variable node. After interleaving by a random interleaver πGIRA, the repeated bits are first combined
(using the so-called combiner [JW05]) and then are fed to the "generalized" accumulator (a classical
rate-1 recursive convolutional code), with polynomial transfer function 1/G(D). Figure 3.2 depicts
the systematic GIRA codes seen as serially concatenated scheme.

repetition
code interleaver combiner accumulator

1/G(D)
b

c

systematic bits

parity
bits

Figure 3.2: A systematic GIRA encoder seen as a serial concatenation

The parity check matrix of a systematic GIRA code is of the form:

H = [Hu Hp]

where Hu refers to the connections between the systematic bits variable nodes and the check nodes
while the squared matrix Hp describes the connections between the check nodes and the parity bit
variable nodes.

GIRA codes generalize IRA codes in that the accumulator 1/1+D is replaced by any convolutional
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code with transfer function 1/G(D) where:

G(D) = 1 +
i=r∑
i=1

giD
i where gi ∈ {0, 1}

. The number of ’1’s diagonals in Hp corresponds to the number of non-null coefficient of G(D). To
name only a few, when:

• G(D) = 1, we obtain a LDGM code

• G(D) = 1 +D we have an IRA code

As for irregular LDPC codes, the sub-matrix Hu of GIRA codes ensemble can be represented
with its edge-perspective degree distribution polynomials 1:

λ(x) =
dv,max∑
i=1

λix
i−1 , ρ(x) =

dc,max∑
j=1

ρjx
j−1

where λi (resp. ρj) is the proportion of edges in the Tanner graph connected to variable nodes (VN)
of degree i (resp. to check nodes (CN) of degree j) and dv,max (reps. dc,max) is the maximum VN
(resp. CN) degree.

Observe that the check node edge degree starts with j = 1, this is due to the fact that these
polynomial profiles concern only the systematic partHu and hence do not reflect the total connectivity
(the connections in both Hu and Hp).

When the GIRA code is systematic and check-regular, the design code rate is given by:

R = dc,max
P
λi/i

1 + dc,max
P
λi/i

(3.1)

Unlike [XA05], authors considered an non systematic IRA, consequently, more caution should be
taken when optimizing the code: the check nodes in Hu of degrees higher than 1 cannot decode at
the first iterations, consequently, a controlled proportion of degree-1 check nodes should be added:
this is called doping [tBK03].

Each code word c is then interleaved, mapped into M-ary symbols α = {αi}i and finally encoded
by the CPM as:

s(t,α) =
s

2Es
T
cos (2πf0t+ �(t,α) + �0) (3.2)

1note that this representation slightly differs from the classical LDPC case in the previous chapter
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Figure 3.3: Systematic GIRA encoder

�(t,α) = πh
N−1∑
i=0

αiq(t− iT ) (3.3)

q(t) =


R t

0 g(τ)dτ

1/2, t > L

Recall that f0 is the carrier frequency, �0 the initial phase shift, �(t,α) the information carrying
phase, g(t) the frequency pulse, h = k/p the modulation index, L the memory and < the real part.

At the receiver side, a soft-input soft-output (SISO) CPM decoder is used, based on the Rimoldi’s
decomposition [Rim88] (without any loss of generality). The transmitted signal s(t,α) is corrupted
with an additive white Gaussian noise (AWGN) having a double-sided power spectral density N0/2.
As seen in chapter 2, let us denote:

yn =
[
yni =

∫ (n+1)T

nT
y(l)s∗i (l)dl

]
1�i�pML

where {si(t)}i form the Rimoldi’s memomryless modulator. {yn}n is a sufficient statistic to estimate
the information symbols [MA01].

For the outer decoder, we can use either LDPC-like decoding exploiting the belief-propagation
(BP) algorithm [RU01] on the Tanner graph associated to GIRA code (see Fig. 3.4) or a turbo-like
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Figure 3.4: GIRA Tanner graph

Figure 3.5: Systematic GIRA soft decoder

decoding interpreting the GIRA code as the serial concatenation of an LDGM and an accumulator
[StBLL12, JW05] (see Fig. 3.2). These two methods are equivalent when the GIRA parity check
matrix H is cycle free. Fig. 3.5 depicts the GIRA soft decoder architecture.

3.2.2 Code design

As seen earlier in chapter 2, the density evolution algorithms to study the asymptotic convergence
behavior of concatenated system can be cumbersome, instead, EXIT charts [tB01c] are exploited.
Partially inspired from [XA05], our optimization method returns the best degree profiles using EXIT
curve-fitting. In our case, since we have an accumulator and a systematic encoder, we need to define a
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particular scheduling to obtain linear equations with respect to {λi}: the CPM decoder communicates
its extrinsic log likelihood ratios (LLR values) to all variable nodes. Systematic variable nodes perform
a data-pass operation to the check nodes that, in their turn, forward their LLR messages to the
accumulator. At this stage, we consider a subsystem formed by serially concatenated convolutional
codes: the accumulator and the CPE. After a certain number of turbo-iterations, which will be
characterized later, the accumulator propagates its extrinsic information all the way back to the
systematic variable nodes. This defines one global iteration `.

In our analysis, we will consider tail-bited GIRA codes. When tail-biting is used for the accumu-
lator, Hp is given by:

Hp =

BBBBBBBBBBBBBBBBBBBB

1 gr � � � g1

g1 1 . . . ...
... g1

. . . gr

gr
... . . . . . .

gr
. . . . . . . . .
. . . . . . . . . . . .

. . . . . . . . . . . .
gr gr−1 � � � 1

CCCCCCCCCCCCCCCCCCCC
where each column has the same weight and depends only on G(D). It allows neglecting the "edge"
effects when considering the non regular graph associated with the non tail-biting version.

When choosing the accumulator, one should avoid girth-4 Hp matrices, for instance, taking
G(D) = 1 + D + D2 is not allowed. Furthermore, we will consider systematic GIRA codes so
that there is no need to consider introducing doping check nodes as it is done in [tB01b][XA05].

Designing a GIRA code consists in finding out the variable nodes profile λ(x) and the check
nodes profile ρ(x) that maximize the design rate for a given signal to noise ratio (SNR) Es/N0 with
respect to the convergence of the decoder. Fig. 3.6 introduces the main notations of different mutual
information associated with LLR messages and the corresponding involved bits:

• I`vn,cn(i) is the average MI associated with LLR messages passed from a VN of degree i to CNs

• I`vn,cn is the average MI associated with LLR messages passed from a VNs to CNs

• I`cn,vn(j) is the average MI associated with LLR messages passed from a CN of degree j to VNs



100 Chapter 3 - Design of LDPC codes with structure

Figure 3.6: Systematic GIRA soft decoder

• I`cn,vn is the average MI associated with LLR messages passed from CNs to VNs

• I`cpm,vn(i) is the MI for degree-i VN associated with LLR messages passed from the CPM
decoder to the LDPC decoder.

Remember that the set of edges connecting check nodes to parity variable nodes in Fig. 3.4
is not included neither in λ(x) nor in ρ(x). These connections, directly linked to the type of the
accumulator, are taken into account in the EXIT transfer function as it is going to be explained later
on. Besides, following the same argument in the chapter 2, partial interleavers one per each VN
degree are considered between CPM and the systematic part of IRA.

3.2.2.1 CPM transfer function

Assume I.,cpm and Icpm,. denote respectively the a priori and extrinsic mutual information of the
CPM soft decoder. Analytical study of the input-output EXIT transfer function of SISO CPM
module is not straightforward. Alternatively, we compute the CPM transfer chart T (., Es/N0) using
Monte Carlo simulation and polynomial approximation. Thus, we have:

Icpm,. = T (I.,cpm, Es/N0) (3.4)
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As we will consider a curve fitting approach and based on the commonly observed generalization of
the results of [AKtB04] for the binary erasure channel, an upper bound on the achievable rate for
the outer code given an SNR Es/N0 can be approximately using the area under the CPM detector
EXIT curve (see chapter 2), i.e.:

R ≤ R∗ =
∫ 1

0
T (Ivn,cpm, Es/N0)dIvn−cpm

Unlike the MIMO receiver in [tBK03], CPM detector EXIT curves join the point (1, 1): it allows
us to introduce degree-1 VNs. Here also, it is implicitly assumed that BCJR recursions are run
independently between different trellis section groups delimited by each partial interleaver. This is
not the case in practice but this assumption allows us to neglect transition effects when running the
decoding. Marker-free line in Fig. 3.8 presents EXIT chart of GSM GMSK with L = 3, h = 1/2 and
BT = 0.3 at Es/N0 = 0dB.

3.2.2.2 IRA EXIT transfer functions

a. EXIT Transfer Function of VNs and CNs

Let I`vn,cn denotes the averaged mixture of extrinsic MI output passed from the variable nodes to
check nodes at the `th iteration. This mixture is equal to:

I`vn,cn =
dv,max∑
i=1

λiI
`
vn,cn(i) (3.5)

where I`vn−cn(i) is the average mutual information associated with LLRs passed from a VN of degree
i to CNs and is given by:

I`vn,cn(i) = J

(q
(i− 1)[J−1(I`−1

cn,vn(i))]2 + [J−1(I`cpm,vn(i))]2
)

(3.6)

Likewise, VN to CPM update function is given by:

I`−1
vn,cpm(i) = J(

√
iJ−1(I`−1

cn,vn)) (3.7)

Since the VN profile is not regular, assuming Eq. (3.7) is equivalent to considering partial
interleavers per VN degree between the CPM and the systematic part of GIRA.

On the other hand, the information passed from CN of degree j to the parity bits nodes and to
the systematic variable nodes are respectively:

I`−1
cn,acc(j) = 1− J(

p
jJ−1(1− I`−1

vn,cn)
)

(3.8)
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Figure 3.7: Accumulator soft decoder

I`−1
cn,vn(j) = 1− J

(q
(j − 1)J−1(1− I`−1

vn,cn) + J−1(1− I`−1
acc,cn)

)
(3.9)

Without loss of generality, we can suppose check-regular GIRA code with uniform check degree
dc,max.

b. EXIT Transfer Function of the Accumulator

Figure 3.7 summarizes the accumulator SISO decoder. [tBK03] approximates the mutual information
I`acc,cn between the LLR messages sent from the accumulator to the CNs and the corresponding bits,
by the equation:

I`acc,cn =
� 1− q

1− qI`cn,acc

�2
with q = 1− I`cpm,acc

where I`cpm,acc corresponds to the MI value at the convergence between the CPM seen as inner code
and the accumulator seen as outer code. However, this expression was inspired from the binary
erasure channel and holds correct only for G(D) = 1 +D and dc,max = 1 [Jin01].

In the general case, this expression is not accurate anymore. Instead, we shall precompute the
different EXIT charts of the accumulator (I`acc,cn and I`acc,cpm) using Monte Carlo simulations:

I`acc,cn = Tacc,cn(I`cpm,acc, I`cn,acc) (3.10)

I`acc,cpm = Tacc,cpm(I`acc,cn, I`cpm,acc) (3.11)

The former is the MI over uncoded bits whereas the latter is the MI over encoded bits.
Figures 3.8a and 3.8b illustrate the location of the convergence (intersection points) of the con-

catenated subsystem CPM+ACC. The unmarked curves correspond to the EXIT chart of the CPM
(here a GMSK). The marked curves represent the EXIT transfer functions of different accumulators
as function of different a priori values. Figure 3.9 shows how I`cpm,acc (the intersection point) varies
as a function of the a priori mutual information Icn,acc.
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I`cpm,acc for a particular SNR can be easily provided by a polynomial approximation of the curves
depicted in Fig. 3.9. Even if GIRA codes present a small degradation of the decoding threshold in
comparison to IRA codes [JW08], observe that the MI curve in Fig. 3.9 of the former is better than
the latter. Finally, we point out that for the special case of a LDGM code, there is no accumulator,
i.e. G(D) = 1, therefore, I`acc,cn and I`acc,cpm are equal to I`cpm,acc and I`cn,acc respectively.

From Eqs. (3.7),(3.8),(3.9),(3.10) and (3.11) we can compute the transfer function of joint CN
and ACC+CPM. When combined with Eqs. (3.5), (3.4) and (3.6), this leads to a linear program-
ming problem that maximizes the design rate R in Eq. (3.1) under the convergence constraints:

[C1] Convergence : Φ(λ(x), I(l)
vn,cn,

Es
N0

) = I(l+1)
vn,cn > I(l)

vn,cn,∀I(l)
vn,cn ∈ [0, 1]

[C1] mixture constraint :
∑
i

λi = 1

By convention, I(0)
vn,cpm(i) = 0, ∀i = 1, ..., dv,max and I(0)

cn,vn = 0.
Concerning the stability condition of the degree-1 variable nodes, we use the same one as in the

chapter 2, since IRA codes can be seen as a sub-ensemble of unstructured LDPC codes. Note that
more caution should be taken when adding the constraint relative to the stability condition since it
requires the polynomial profile of the whole IRA code not only of Hu. This can be easily achieved
by considering the new regular variable nodes in Hp.

3.2.3 Simulation Results

In this section, we present some simulation results obtained from our optimization for four different
GIRA codes: LDGM, IRA, G1(D) = 1 + D + D3 and G2(D) = 1 + D + D4. Figure 3.10 depicts
obtained thresholds and it compares them to the maximum achievable rate R∗ for GSM GMSK. We
observe that we operate very close to R∗. These results can be improved by allowing higher dv,max
(here dv,max = 10). Table 3.1 presents some optimized profiles and their corresponding asymptotic
thresholds.

Note that the profile coefficients λi and dc,max refer to Hu only and do not include the proportions
in Hp. If one needs to obtain the total LDPC-like profiles, one can apply the transformation:

λ(x) =
dv,max∑
i=1

λi
dc,max

dc,max + a
xi−1 + dc,max

a+ dc,max
xa−1

ρdc,max+a = 1
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Figure 3.8: I`acc,cpm as a function of I`cpm,acc with different a priori I`cn,acc at Es/N0 = 0dB.
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Figure 3.10: Achievable and optimized rates when VNs degrees are constrained to be ≥ 1

where a corresponds to the column weight of Hp.

For comparison, taking the case of the memory-1 Minimum Shift Keying (MSK) CPM, the
threshold for the designed nonsystematic rate-1/2 LDGM in [XA05] is Es/N0 = −2.61dB, while
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Figure 3.11: Maximum achievable and optimized rates for some GIRA codes with GMSK

our optimization gives a systematic rate-1/2 LDGM code with threshold −2.7dB (values are to be
compared with the MSK theoretical threshold (Es/N0)∗ = −2.8dB).
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GMSK: Threshold -2.73dB

LDGM IRA
Threshold −2.7dB Threshold −2.22dB

λ1 = 0.051 dc,max = 3 λ1 = 0.185 dc,max = 2
λ2 = 0.357 λ2 = 0.551
λ5 = 0.023 λ8 = 0.086
λ6 = 0.568 λ9 = 0.176

G(D)=1 +D +D3 G(D)=1 +D +D4

Threshold −2.22dB Threshold −2.22dB
λ1 = 0.411 dc,max = 2 λ1 = 0.424 dc,max = 2
λ7 = 0.103 λ2 = 0.04
λ8 = 0.485 λ10 = 0.536

Unstructured LDPC
Threshold −2.7dB

λ1 = 0.1125 ρ3 = 0.2
λ2 = 0.5294 ρ4 = 0.8
λ5 = 0.0086
λ10 = 0.3495

Table 3.1: Optimized GIRA codes for design rate R ' 0.5. For LDPC code, we obtain λ1 =
0.1125, λ2 = 0.5294, λ5 = 0.0086, λ10 = 0.3495, ρ3 = 0.2, ρ4 = 0.8 with a threshold of −2.7dB

Figure 3.11 illustrates how the designed rates depend on the minimum degree of VNs dv,min.
While introducing degree-1 VNs leads to a slight improvement in the case of LDGM, in the case of
IRA, GIRA G1(D) and GIRA G2(D), it outperforms clearly dv,min = 2 schemes by a gain of 0.4
dB, 0.9 dB and 0.92 dB respectively at rate of 1/2. Finally, Fig. 3.12 plots bit error rate (BER) as
function of Es/N0 for different optimized GIRA profiles in Tab. 3.1. We used 16000 information bits
with 200 CPM-GIRA turbo iterations. The liftng of H is done randomly. As expected, the IRA code
presents a small gain in the threshold region in comparison to the GIRA code corresponding to the
generator polynomial G2(D). For the LDGM code only, we constrain dv,min ≥ 2 (This constraint has
only a minor impact on the theoretical threshold, as depicted in Fig. 3.11a). The used profile, always
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for the Hu part, is given by λ2 = 0.367, λ10 = 0.633, dc,max = 4. No floors have been observed in the
simulations in Fig. 3.12. Recall that the EXIT curves of the CPM reach the point (1, 1) and that the
introduced proportion of degree-1 variable nodes was subject to the stability condition developed in
chapter 2.
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Figure 3.12: Obtained BER of GIRA codes with GMSK
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3.3 Protograph-based LDPC codes

In this section, we propose a method to design protograph-based LDPC coded CPMs. This class
benefits from a compact representation (copy-and-permute generation), an easy performance analysis
(same performance as the underlying small protograph) and an efficient implementation (the decoding
can be easily parallalized). The presented design approach can be directly extended to any CPM
class, or generally to any trellis coded modulation. As it well be seen, the optimized protographs for
the AWGN channel [LC07, DJDT05] do not exhibit necessarily good performance when concatenated
with the CPM.

3.3.1 System description and notations

Consider a protograph based LDPC codes [Tho03]. A Protograph is a small Tanner graph described
by a base matrix H where the element H(q, r) is the number of edges between the VN r and the
CN q. The corresponding LDPC code can be obtained by the so-called "Copy-and-permutation"
operation. It consists of making a certain number of copies of the protograph and connecting them
by permuting between the endpoints of the edge copies. Figure 3.13 depicts the protograph (left)
and the protograph LDPC code (right) associated with the following base matrix:

H =

2 1 1
1 1 1

 (3.12)

VN1 VN2 VN3

CN1 CN2

copy &

permute
π1

π2

π3

π4
π5

π6

π7

VN1
copies

VN2
copies

VN3
copies

CN1
copies

CN2
copies

Figure 3.13: The ’factorized’ protograph code generated by "copy-and-permute" operations. Each
interleaver πij1�i�7 permutes the bundle of replicas of each edge.

The receiver factor graph of the CPM+protograph base LDPC code is depicted in Fig. 3.14.
Unlike LDPC codes, parallel edges are allowed. For this class of codes, EXIT charts cannot

predict accurately the threshold. Instead, we use the protograph or multidimensional EXIT chart
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Figure 3.14: Factor graph of the receiver.

approach (denoted PEXIT) developed in [LC07]. This extension of the usual EXIT charts turns to
be necessary to evaluate the asymptotic threshold of protographs because of their heigh structure:
unlike unstructured LDPC codes, the averaging of the mutual information among the same degree
VNs to CNs is not justified here because they do not "see" a mixture of all CNs extrinsic MI, but
instead, each VN (in the lifted graph) always "sees" a mixture of the same CNs types depending on
the graph connectivity described by H. Moreover, this new approach allows to take into account
some critical node and edge types such as parallel edges, degree-1 VNs and punctured VNs. The
factor graph of the protograph+CPM receiver is depicted in Fig. 3.15. For ease of notations, we use
hereafter the following notations relative the the `th itaration:

• I`E,v(q, r): the extrinsic MI between the code bits associated with the VN r and the LLRs sent
from this VN to the CN q.

• I`E,c(q, r): the extrinsic MI corresponding to the CN q and the LLRs sent from this CN to the
VN r.

• I`APP (r): a posteriori MI of a the VN r
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Figure 3.15: Factor graph of the CPM and protograph based LDPC code receiver.

• I`A,cpm(r) and IE,cpm(r): a priori and extrinsic MI at the input (resp. output) BCJR demodu-
lator relative to the VN r.

From the VN r (resp. the CN q) perspective, I`E,c(q, r) (resp. I`E,v(q, r)) is nothing but the a priori
knowledge got from the CN q (resp. the VN r).

Once the different PEXIT equations have been obtained, we track the evolution of the MI for a
given SNR. The threshold is always defined as the lowest value of Es/N0, that insures the probability
of block error at the VN r fades to zeros (or equivalently IAPP (r) converges to 1 ∀r). This is slightly
different from the unstructured case where only the bit error rate is tracked.

3.3.2 PEXIT analysis of concatenated protographs with CPM

In the following, we study the the PEXIT chart analysis of our concatenated scheme and we propose
our optimization procedure. First we derive all EXIT evolution equations according to the PEXIT
analysis and track the evolution of the MI during iterations. A decoding is said successful if the a
posteriori MI (or error probability) of each VN converges to 1 (respectively to 0).

Optimizing a protograph-based LDPC code for a CPM scheme consists in finding the best pro-
tomatrix H in terms of iterative decoding threshold, given a fixed protograph size and code rate. In
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other words, given the EXIT chart evolution equations, one tries to solve a non-linear integer pro-
gramming problem where the unknown variables are the entries of H. This leads to very prohibitive
computations and is infeasible for relatively large protographs. To alleviate this computational com-
plexity, we will use some heuristics inspired from the unstructured LDPC code optimized profiles
(see chapter 2), in order to design the general structure of the base matrix and thus reduce the
dimensionality of the search space. Once a good protograph is obtained, the lifting is done carefully
with respect to random circulant permutations coupled with the PEG algorithm [HEA01] and the
ACE metric [JK05].

Following the analysis in chapter 2, we will also use partial interleavers between the VNs of the
lifted LDPC code and the CPM. These partial interleavers are not meant to linearise the optimization
equations as for the unstructured LDPC codes, but rather respect the averaging of decoding behaviour
of variable nodes of the same type implicitly induced by the PEXIT analysis. Consequently, we have
one partial interleaver per bundle of VN (instead of per VN degree) as depicted in Fig. 3.15.

The proposed approach is in spirit equivalent to [Liv06] and [NND12] and can be seen as their
generalization:

• The first difference is that we consider here a turbo iterative decoding with any detector.

• At the difference of [NND12], we are interested here in finding the best protograph given a
fixed rate and not the best trade-off between threshold and rate-compatibility. Furthermore, in
our case, the definition of the search space is guided by the results of the unstructured LDPC
codes optimization : i.e. we try to design protograph-based LDPC codes that belong to the
unstructured LDPC family described by the optimized profiles.

3.3.2.1 EXIT Transfer curve of the CPM demodulator

As in section 3.2.2, the EXIT transfer characteristic of CPM detector seen by the VN r is formally
given by:

I`E,cpm(r) = T (I`−1
A,cpm(r), Es/N0) (3.13)
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3.3.2.2 EXIT Transfer Function of the Protograph

If H(q, r) 6= 0, the VN to CN update equation ∀(q, r) ∈ {1, ...,M} � {1, ..., N}, is given by:

I`E,v(q, r) = J

Bvuut∑
s6=q

H(s, r)
[
J−1(I`−1

E,c (s, r)
]2

+ (H(q, r)− 1)
[
J−1(I`−1

E,c (q, r)
]2

+
[
J−1(I`E,cpm(r)

]2C
(3.14)

Otherwise, I`E,v(q, r) = 0.
Always using the reciprocal channel approximation, CN to VN update is given by:

I`E,c(q, r) = 1− J

Bvuut∑
s6=r

H(q, s)
[
J−1(1− I`A,c(q, s)

]2
+ (H(q, r)− 1)

[
J−1(1− I`A,c(q, r)

]2C (3.15)

If H(q, r) = 0, then I`E,c(q, r) = 0.
Seen as an a priori of the SISO CPM component, the MI sent from a VN r to the CPM demod-

ulator is:

I`A,cpm(r) = J

(s∑
s

H(s, r)
[
J−1(I`A,v(s, r))

]2)
(3.16)

Combining Eqs. (3.13),(3.14),(3.15) and (3.16). At the end of each iteration, the a posteriori MI
can be evaluated for r = 1...N by:

I`APP (r) = J

(s∑
s

H(s, r)
[
J−1(I`A,v(s, r))

]2
+
[
J−1(I`E,cpm(r))

]2)
(3.17)

Consequently, one can compute the threshold of a particular protograph by conducting a simple
binary search algorithm.

Note that Eq. (3.16) is different from [VNND12] where the computation of the MI corresponding
to the LLR message sent from the VNs to the CPM is averaged over all VNs, which actually induces
a global interleaver between the CPM and the LDPC code. In our case, and in order to write Eq.
(3.16), we suppose partial interleaver per protograph VN r, ∀r, and not per VN degree as in the
previous section.

3.3.2.3 Optimization

It was shown in [VNND11, VNND12] that the optimized protographs for the AWGN channel (ARJA
codes [DJDT05]) do not necessarily perform well in partial response and inter-symbol interference
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channels. Consequently, new protograph-based LDPC codes should be designed for these contexts
independently.

Authors in [RSU01] mentioned that including a controlled proportion of degree-2 VNs improves
the decoding threshold of based LDPC codes. In order to preserve the minimum distance when
adding degree-2 VNs, Divsalar et al proposed a check splitting procedure [DDJA09]. In [ADY07],
authors show that a careful insertion of degree-1 nodes can improve the iterative decoding threshold
of protograph-based LDPC codes. In the context of protographs, this construction is referred as
precoding: it consists of placing a CN between a degree-1 VN and a higher-degree VNs, which is
then optionally punctured [DDJA09]. Besides that, the introduction of degree-1 variable nodes in
our context is corroborated by the fact that the EXIT curves of CPM schemes always join the point
(1, 1) (see chapter 2 for further details).

In this section, we optimize protographs for CPM with threshold in mind. We are not interested
by the minimun distance for the moment (ARJA family do not perform well with CPM as we are going
to see later). We are rather interested in proposing protograph structures that help controlling to code
design, that can be easily encodable (quasi-cyclic LDPC codes) and highly parallelizable. Guided
by the obtained profiles in our unstructured LDPC code optimization (chapter 2), the protographs
search set can be described by a relatively small base matrix that follows a certain pattern and
contain small proportion of degree-1, some degree-2 and high-degree VNs. Assuming this, combined
with some simple heuristics drawn from our inspection process, we observed that good protographs
can be found with good encoding properties if we consider, for example, base matrices of the form:

H =

BBBBB
x1,1 x1,2 x1,3 x1,4 1 1 0 0
x2,1 x2,2 x2,3 x2,4 0 1 1 0
x3,1 x3,2 x3,3 x3,4 0 0 1 1
x4,1 x4,2 x4,3 x4,4 0 0 0 1

CCCCC (3.18)

where the entries xi,j is a natural number ∀(i, j) ∈ {1, 2, 3, 4}2. For small protographs like Eq. 3.18,
we can enumerate all possible protographs within the search space and choose the one with the lower
threshold. We can also add some heuristics based on the observed optimized unstructured profiles
leading to protographs of the form:

H =

BBBBB
x1,1 x1,2 0 0 1 1 0 0
x2,1 x2,2 0 1 0 1 1 0
x3,1 x3,2 1 0 0 0 1 1
x4,1 x4,2 0 0 0 0 0 1

CCCCC



3.3 - Protograph-based LDPC codes 115

(a) Binary GSMK (b) Quateranary 2RC (c) Octal 2REC

Figure 3.16: Obtained protographs for different CPM systems.

AR3A AR4JA protograph threshold
unstructured LDPC

threshold (Es/N0)∗

binary GMSK -0.45 -0.20 -2.11 -2.7 -2.76
quaternary 2RC 3.36 3.68 1.36 0.7 0.62

Ocatl 3RC 7.29 7.92 3.79 2.256 2.25

Table 3.2: Optimized asymptotic thresholds Es/N0 for protograph and unstructured LDPC codes
with design R = 1/2

However, for larger protograph, we perform a differential evolution optimization [SS05, SP97].

3.3.3 Simulation Results

This section gives simulation results for the binary GMSK, the quaternary 2RC (M=4, gray mapping,
L=2, h=1/4, raised cosine) and the octal 2REC (M=8, gray mapping, L=2, h=1/4, rectangular).
The targeted protograph rate is R = 1/2. Simulations were performed using a maximum of 250 turbo
iterations. In order to limit the size of the protograph ensemble, xq,r in Eq. (3.18) are limited to
{1, 2, 3}, ∀(q, r) ∈ {1, ..., 4}2. Table 3.2 summarizes the achieved thresholds of the protographs de-
picted in Fig. 3.16. Thresholds of rate-1/2 AR3A and AR4JA from [LC07] are shown for comparison.
We can observe that it is possible to operate close to the theoretical CPM threshold (Es/N0)∗, with
an average gain which is 1.5−4 dB better than the AWGN protographs and only a small degradation
in comparison to the designed unstructured LDPC codes.

Figure 3.17 shows the bit error rate (BER), the frame error rate (FER) and the predicted er-
ror probability (PEP) (respectively marked dotted curves, marked dashed curves and marked solid
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curves). The Asymptotic PEP is evaluated as the following [Liv06]: after the `th iteration, the ex-
pected bit error probability associated with a VN r is related to the a posteriori MI IAPP (r) in Eq.
(3.17) as:

Pb(r) = 1
2erfc

(
J−1(IAPP (r))

2
√

2

)
(3.19)

For protograph-based LDPC codes of size 5000 and 4000 information bits, the simulated threshold
matches the theoretical ones. The poor performance of the ARJA and AR4JA corroborates the
observations in [VNND12, VNND11]. For the small size code (1500 information bits), we notice the
apparition of an error floor at FER=10−3 (BER=2.10−6). Closer investigations showed that only
few bits are incorrect. In order to lower this error floor while maintaining a good threshold, one
can simply consider a Bose-Chaudhuri-Hocquenghem (BCH) code [Hoc59, BRC60] as proposed in
[GiAND09] for serially concatenated schemes of the CPM with convolutional codes. On the other
hand, to improve the decoding threshold, one can consider the optimization of bigger protograph
than the one described by Eq. (3.18). Further investigations are required to characterize the weight
enumerator properties of such codes.
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BER our protograph 5000 information bits
FER our protograph 5000 information bits
BER our protograph 4000 information bits
FER our protograph 4000 information bits
BER our protograph 1.500 information bits
FER our protograph 1.500 information bits
BER AR4JA 4000 information bits
FER AR4JA 4000 information bits
BER ARJA 1500 information bits
FER ARJA 1500 information bits
AR4JA threshold
PEP

Figure 3.17: BER and FER of optimized protographs for GMSK.
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3.4 Spatially coupled LDPC codes

3.4.1 System Description

We now consider a concatenated scheme composed of a binary LDPC convolutional code serially
concatenated with a CPM modulator.

A binary LDPC convolutional (LDPC-C) code can be described as the ensemble of codewords
c[0;∞] = {c0, c1, ..., ct, ...}, ct ∈ GF (2), that satisfy the equation c[0;∞]B

T
[0,1] = 0. Given a protograph

base matrixe B, the spatial coupling can then be obtained as the following [MLCJ14]: the graph is
replicated an infinite number of times, then each VNs bundle is connected to its pairing CNs bundle
through a permutation of the corresponding edges bundle only in the forward direction, i.e. from
the protograph at time t to the protographs at time t′ > t. These connections are described by the
components base matrices {Bi}i which must satisfy:

ms∑
i=0
Bi = B

Then, BT
[0,1] has the form:

BT
[0,1] =

666666
BT

0 (0) � � � BT
ms(ms)

. . . . . .
BT

0 (t) � � � BT
ms(t+ms)

. . . . . .

777777

BT
[0,1] is called the syndrome former of the code, {Bi(t)}i the component matrices, ms the

syndrome former memory and vs = (ms + 1) the constraint length. A more detailed definition can
be found in [JFZ99].

B[0,1] can be seen as a protograph (V,C,E) where the set of variable nodes V (of cardinality v)
is connected to the set of check nodes C (of cardinality c) through edges E. In this class of LDPC-C
codes, the design rate of the base matrix can be written as R = 1 − c/v. Figure 3.18 illustrates an
example of a spatially coupled (3, 6)-regular LDPC code with respect to B0 = B1 = B2 = [1 1].
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Figure 3.18: (3, 6) regular LDPC convolutional code withms = 2: firstly, the protograph is replicated,
then it is spatially coupled with respect to B0 = B1 = B2 = [1 1]

The corresponding syndrome former code is given by:

B[0,1] =

666666666666666

1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 � � �
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1

... . . .

777777777777777
In this chapter, we will consider mainly terminated time invariant LDPC convolutional codes

[MLC11]. They can be described by mean of convolutional protograph with the base matrix B[0,L−1]

of size (L+ms)c� Lv. In this case, L is called the termination factor or the coupling length.

BT
[0,L−1] =

666
BT

0 � � � BT
ms

. . . . . .
BT

0 � � � BT
ms

777 (3.20)

The design rate of terminated LDPC-C codes without puncturing becomes:

RL = 1− (L+ms)
L

(1−R) = R− ms

L
(1−R) (3.21)

One should observe that the termination as shown in Eq. (3.20) results in a rate loss by a penalty
of msL (1−R) as depicted by Eq. (3.21). Note that, as L increases, RL increases and approaches the
design rate R, and the singularity in the code profile introduced by the firsts and lasts check nodes
(less connected) becomes minor. At the decoder side, we consider BP decoding algorithm [RU01].
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Figure 3.19: Factor graph of the receiver.

Each codeword c[0;L−1] is interleaved, mapped into M-ary symbols α = {αi}i, where αi ∈
{±1, ...,±(M − 1)}, and encoded by the CPM modulator. The copy-and-permute operation (called
also lifting) of the convolutional protograph is done by replacing each node with a bundle of node of
the same type and replacing each edge with the bundle of a permutation of edges of the same type.
The receiver factor graph is depicted in Fig. 3.19.

3.4.2 Asymptotic Convergence analysis

We consider the notations depicted in the receiver factor graph 3.20. As for protographs, let us
consider hereafter the following notations relative to the `th iteration:

• I`v(q, r): extrinsic mutual information (eMI) between the code bits associated with VN r and
the LLRs sent from this VN to the CN q.

• I`c(q, r): eMI associated with messages sent from CN q to VN r.

• I`app(r): a posteriori MI associated with the VN r.

• I`a,CPM (r): a priori MI associated with messages sent from the VN r to the CPM soft decoder.
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Figure 3.20: Factor graph of the CPM and protograph based LDPC code receiver.

• I`CPM (r): eMI associated with messages sent from CPM soft decoder to the VN r.

• T (., Es/N0): input-output EXIT transfer function of the CPM detector implicitly depending
the noise variance σ2

noise. Analytic expression is not straightforward, but it can be evaluated
with Monte Carlo simulations.

Let us consider a mother protograph B, of size c � v, which generates the terminated LDPC-C
code B[0;L−1] of size Lv � (L + ms)c, noted hereafter BL for ease of notations. The CPM update
equations at iteration ` seen by the variable node r are given by:

I`CPM (r) = T (I`−1
a,CPM (r), Es/N0) (3.22)

I`a,CPM (r) = J

s∑
s

BL(s, r)
�
J−1(I`−1

v (s, r))
�2 (3.23)

When BL(q, r) 6= 0, the VN r to CN q update equation is formally given by:

I`v(q, r) = J

s∑
s

BL(s, r)
�
J−1(I`−1

c (s, r))
�2 − �J−1(I`−1

c (q, r))
�2 +

�
J−1(I`CPM (r))

�2 (3.24)
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otherwise, I`v(q, r) = 0. Similarly, using reciprocal channel approximation, CN q to VN r update
is given by:

I`c(q, r) =1− J

s∑
s

BL(q, s)
�
J−1(1− I`v(q, s))

�2 − �J−1(1− I`v(q, r))
�2 (3.25)

otherwise, I`c(q, r) = 0.
Considering partial interleavers [BPB+14b], at the end of each iteration, the a posteriori MI

evaluated at the VN r is:

I`app(r) =J

s∑
s

BL(s, r)
�
J−1(I`−1

c (s, r))
�2 +

�
J−1(I`CPM (r))

�2 (3.26)

Combining Eqs. (3.26),(3.25),(3.24),(3.22) and (3.23), we can track the evolution of I`app for each
VN through iterations. The threshold is defined as the smallest Eb/N0 such that for all r, I`app(r) = 1
after a certain number of iterations `. This analysis is similar to the analysis of protograph based
codes in section 3.3.

3.4.3 Code design

We are interested here by finite length block codes, i.e. the LDPC-C codes with finite L. We now
try to design efficient LDPC convolutional codes for the CPM detector. We conduct a two step
optimization technique: after finding a good protograph using the method in the section 3.3, we
optimize the coupling to obtain very good thresholds.

3.4.3.1 Classical methods for protograph construction

As for convolutional codes, there are two main methods to terminate LDPC-C codes:
Termination (T): in each input bits sequence, some bits (not necessarily zeros) is appended at

the end to enforce the encoder to terminate to the all-zero state. Without puncturing, these bits
results in a rate loss as showed by the Eq. (3.21). When the LDPC-C code in interpreted from its
base matrix BL, T termination is equivalent to truncating all VNs of B[0,1] after the Lth copy as in
Fig. 3.18, and keeps only the CNs that are connected up to the Lth stage of VNs. Figure 3.21 shows
an example of the corresponding Tanner graph.

Tail-bitting (TB): In order to avoid the rate loss, a tail-biting method has been introduced
[MLC13]. The idea behind tail-bitting is using the last bits of a data block to initialize the encoder
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Figure 3.21: (3, 6) regular LDPC convolutional code withms = 2, L = 5 andB0 = B1 = B2 = [1 1]
with normal termination T

(cyclic encoding property). Consequently, at the end of encoding the data block, the encoder is
forced to end in the same initialized state. The corresponding parity check matrix Btb

L can be
found in [LMFC10]. Because the most right-hand and left-hand CNs are no more ’irregular’, there
is no coupling gain with this familly and the threshold will remain the same as for the underlying
protograph B. However, since the CNs and VNs profiles remain unchanged in comparison to the
mother protograph, TB LDPC-C codes are used generally to obtain some bounds (free distance,
trapping set, ...) of the T termination LDPC-C codes [MLC13]. Figure 3.22 shows an example of
the corresponding Tanner graph.

Figure 3.22: (3, 6) regular LDPC convolutional code with ms = 2, L = 16 and B0 = B1 = B2 =
[1 1] with normal termination TB (the figure was taken from [MLCJ14])

As already pointed out, the iterative decoding threshold improvement gained with LDPC-C codes
in comparison to the unstructured LDPC codes is due the wave e�ect induced by the boundaries check
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nodes (less connected check nodes). This phenomenon is depicted in Fig. 3.23a: the less connected
check nodes generated more reliable LLRs, which, as iterations go along, gradually propagates from
both sides to the internal nodes. For the middle VNs, as far as the wave effect did not affect them
yet, they behave roughly the same way as their counterparts VNs in B. If Eb/N0 is larger than the
threshold ofBL (which is lower than the threshold ofB), the decoding wave is strong enough to make
them converge as depicted in Fig. 3.23b. As mentioned before, the advantage of TB termination is
to insure the same rate as B. However, since the edges CNs are no more irregular, properties of B
are conserved (same rate and threshold) as depicted in Fig. 3.23c.

3.4.3.2 A new method: direct truncation

In this section, we introduce a new protograph based LDPC-C code termination that we believe
is interesting for some concatenated schemes. Similarly to convolutional codes [MW86], one can
suggest to consider a direct truncation (DT) for the LDPC-C code. It is constructed like tailbitting
LDPC-C, but instead of adding msc CNs at the right-hand end to satisfy Lth set of VNs connections,
we remove all unconnected edges. The main advantage is that the rate R does not depend on L, the
threshold is now fixed and independent of L. Consequently, taking small L is satisfactory. Figure
3.24 shows an example of the corresponding Tanner graph.

Figure 3.24: (3, 6) regular LDPC convolutional code withms = 2, L = 5 andB0 = B1 = B2 = [1 1]
with normal termination DT

The parity check matrix is written as:

BDT
L =

666666
B0
... B0

Bms

... . . .
Bms . . . B0

777777 (3.27)

It is obvious that the left-hand nodes configuration did not change, compared to BL, which
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(a) T, R=0.49, Eb/N0=3.1dB, iterations {1, 5, 20, 60,
63}
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(b) T, R=0.49, Eb/N0=1.1dB, iterations {1, 20, 100, 200,
235}
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(c) TB, R=0.5, Eb/N0=2.1dB, iterations {1, 1000}

Figure 3.23: Evolution of I`app per variable nodes of the LDPC-C depicted in Fig. 3.18 concatenated
with GMSK, L = 100. threshold of B is 2.22dB
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means that the convolutional gain induced by these nodes is preserved. On the contrary, among
the most right-hand nodes, a small proportion of poorly connected VNs is introduced while the
previous low connected CNs disappears. The drawback of these VNs is that they will converge
slowly in comparison to their counterparts in BL: in other words, the corresponding bits have less
error protection in comparison to other bits. However, an advantage of this termination is that
since we do not terminate the code anymore, the encoding operation is new simplified. In order to
design good direct truncated spatially coupled protographs, different optimization trials leads to the
following conclusions:

• The syndrome former memory ms should not be very large, it should not exceed 3, otherwise,
the degrees of the most-right VNs of BDT

L in Eq. (3.27) will too low.

• The first component matrix B0 should contain more edges than the others, otherwise, the
threshold of the most-right protograph corresponding to B0 is going to be very high (very low
VN degrees).

• The convolution gain corresponding of the most-left part of BDT
L must be strong enough to

make the most-right VNs converge. To this end, the most-left CNs ofBDT
L should not be highly

connected. A trade-off is to be made between this criterion and the previous rule

• All-zero columns in B0 are to be avoided. All-zero rows are allowed.

• The CNs of the protograph corresponding to B0 should be as much as possible connected to
high degree VNs of the previous sections

• Two degree-1 variable nodes should not be connected to the same CN especially in the proto-
graph corresponding to B0

Besides that, one would say that having at least one degree − 1 VNs among the last v VNs
may affect the convergence. Actually, by choosing a good coupling component matrices, not only
the proportion of these tedious VNs vanishes with increasing L, but also their effect is surprisingly
alleviated by both the coupling gain and the fact that, unlike other modulations, usual CPM schemes
have EXIT curves that converge to the point (1, 1) [BPB+14a].

For small protogaphs B and small syndrome former memory ms, the optimization of the coupling
can be done by performing an exhaustive search. For larger search space, a genetic algorithm, guided
with the aforementioned guidelines, can be applied [GH88].
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3.4.4 Simulation results

As an example, we consider the following codes:

• C(1): (3, 6)− regular protograph

• C(2): optimized protograph in Fig. 3.16a

• C(1)
1,T : coupling of C(1) with ms=1

B
(1)
0 = [1 2] and B(1)

1 = [2 1]

• C(1)
1,DT : direct truncation of C(1)

1,T

• C(1)
2,T : coupling of C(1) with ms=2

B
(2)
0 = B

(2)
1 = B

(2)
2 = [1 1]

• C(1)
2,DT : direct truncation of C(1)

2,T

• C(2)
1,T : coupling of C(2) with ms=1 and:

B0 =

66666
1 1 0 0 1 1 0 0
0 1 0 0 0 0 1 0
1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0

77777 , B1 =

66666
0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0
1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1

77777

• C(2)
2,T : coupling of C(2) with ms=2 and:

B0 =

66666
0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

77777 , B1 =

66666
1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

77777

B2 =

66666
0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0
2 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0

77777
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Figure 3.25: Thresholds comparison for different codes when GMSK

Figure 3.25 depicts the decoding thresholds for the above codes with GMSK modulation as a
function of L. We observe that with increasing L, the design rate RL for C(1)

1,T , C
(1)
2,T , C

(2)
1,T and C(2)

2,T

converges to R. Notice that the coupling has significantly improved the thresholds of C(1) and C(2).
Concerning our termination method, the spatial coupling of the (3, 6) − regular code with respect
to {B(2)

i }, i.e. C
(1)
2,DT , drastically decreases the threshold. On the contrary, the direct truncation of

the spatial coupling following {B(1)
i }, i.e. C

(1)
1,DT , the DT method allows us to obtain directly a code

with rate R. These advantages come with a very small degradation of the threshold. If one want to
design convolutional protograph that behave very good with both T and DT terminations, C(1)

1,DT is
a very good candidate.

The VNs convergence for C(1)
1,DT and C(1)

2,DT are visualized in Fig. 3.26 at Es/N0 = 1.5dB. Seen for
the first time, notice that the wave effect travels only from the left side to the right side, because of
the less connected CNs present at the first rows. Recall that the C(1) threshold is only Eb/N0 = 2.2dB
(> 1.5dB), consequently, the middle VNs, which behave as the VNs of C(1), do not converge through
iterations and wait for the wave gain. For C(1)

1,DT (resp. C(1)
2,DT ), on the most right hand VNs, we

recognize, as expected, a small degradation because of the less connected VNs (corresponding to the
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last columns of the parity check matrix) whose connections are fully determined only by B(1)
0 (resp.

B
(2)
0 ), ∀L. At the contrary of C(1)

1,DT , the wave effect in C
(1)
2,DT is not strong enough to make the

last two degree− 1 deficient VNs converge. A the other hand, even if the coupling of C(1) (through
{B(1)

i }) leads to a slightly worse performance than the coupling of C(2) (through {B(2)
i }) for the

classical termination (T) (0.2dB), it is best suited to our no-rateloss termination (DT) C(3) (which
shows a degradation of the threshold of only 0.25dB).

For the protographs designed for the GMSK, the two proposed couplings, C(2)
1,T and C(2)

2,T , show
a gain of 0.2dB and 0.3dB respectively over C(2) (if we neglect the small rate loss at high values of
L). Because C(2) is optimized for the GMSK, it already presents a good threshold and the spatially
coupling operation did not show a large gain as when coupling spatially C(1). Furthermore, at high
rates and at equal syndrome former memory ms, the proposed LDPC-C codes corresponding to both
C(1) and C(2) offer approximately the same performance, however, C(2)

1,T shows the best trade-off
between the rate penalty (at most, when L is small, the gap to 1/2 is only of 0.18) and the threshold
(varies between 0.55dB and 0.68dB) for the whole range of values of L. Small values of L, i.e. that
lead to convolutional protographs with small size, are particularly interesting for finite length design.
From this perspective, the performance of the proposed codes is depicted in Fig. 3.27: threshold is
plotted as a function of the total number of VNs for different rate families. When we impose relatively
strict constraints on the rate loss, the code which exhibits the best trade-off between threshold and
protograph size, when the rateloss is of about 0.007, is C(1)

2,T . On the other hand, when we tolerate a
rateloss of 0.083, it is clear that C(2)

1,T outperforms all other proposed codes.

For quaternary CPM, Tab. 3.3 summarizes some results. For ease of presentation, we compare the
codes with coupling factor L = 50 when concatenated with the CPM modulator QCPM (quaternary,
Gray mapping, LCPM = 2, Raised cosine pulse and h = 1/4). Concerning the optimized protograph
codes, C(2) still have a very good performance [BPB+14b]. The performance one can achieve when
optimizing rate-1/2 unstructured LDPC codes for this CPM is 0.7dB [BPB+14b], here we almost
achieved this limit with C

(2)
1,T . As for the binary case, similar observations can be made, however,

the direct truncation C(1)
1,DT clearly leads here to better performance in comparison to the classical

termination C(1)
1,T , since both have the same threshold (1.13dB) while the former has a a bigger rate.

Figure 3.28 gives some simulation results for C(2) and C(2)
1,T when concatenated with the GMSK.

Simulations were performed using 250 turbo iterations and a lifting factor of 1000. For the spatially
coupled code, we take L = 50.
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Figure 3.26: Evolution of I`app per VNs of C(1)
1,DT and C(1)

2,DT , with L = 50, concatenated with GMSK
at 1.5dB
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Figure 3.27: Comparison of the threshold as a function of the number of VNs for different rates

C(1) C(2) C
(1)
1,T C

(1)
1,DT C

(1)
2,T C

(1)
2,DT C

(2)
1,T C

(2)
2,T

Threshold 2.84 1.38 1.13 1.13 0.82 3.15 0.97 0.93
Rate 0.5 0.5 0.495 0.5 0.49 0.5 0.49 0.48

Table 3.3: Comparison of the performance of some codes when concatenated with QCPM
3.5 Conclusion

We introduced a general framework for the asymptotic analysis and design of systematic GIRA codes
serial concatenated with CPM. Among all families, it appears from the obtained results that IRA
and LDGM codes present the best trade-off threshold performance. Future works will investigate the
finite length performance.

Then, we introduced a method to design protograph-based LDPC codes for CPM systems. The
discussed method can support any CPM scheme as well as any trellis-based detector. We provided
some optimized protograph codes that can achieve good performances. In was shown that classical
protographs designed for the AWGN cannot be good candidates for serial concatenations with the
CPM. Careful design enable the use of efficient protographsbut at the price of a relatively high error
floor.

To overcame this problem, spatially coupled LDPC codes were explored since this family can
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Figure 3.28: Bit error rate for GMSK with different codes

achieve universally good performance over a wide class of channels. We investigated the performance
and the convergence behaviour of the (3, 6) spatially coupled LDPC code when concatenated with
the CPM. Moreover, we showed that coupling thz optimized protographs improves their threshold
and helps designing very good small protographs.

Finally, we described an unusual termination without rate loss that still has a good threshold.
Nonetheless, the gain of our termination should come with a degradation of the growth rate. Further
research can be done to improve the minimum distance but we point out that, in the framework of
spatially coupled LDPC codes, this is the first time to our knowledge that the possibility of using
only one wave effect is investigated. Besides the rate, another advantage of this termination is that
it leads to easy encodable codes in comparison to the classical one.
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Résumé

Dans ce chapitre, nous nous concentrons sur certains aspects des récepteurs CPM et le design de codes
LDPC pour les récepteurs CPM à faible complexité. Une des deux décompositions les plus utilisées
a été introduite par Pierre-André Laurent [Lau86] en 1986. Cette décomposition rend les techniques
de synchronisation plus efficace et permet la conception de récepteurs à faible complexité. Le récep-
teur maximum de vraisemblance basés sur l’algorithme de Viterbi a été introduit par Kaleh dans
[Kal89]. Malheureusement, aucun récepteur maximum a posteriori (MAP) exacte n’a été proposé
dans la littérature: les récepteurs proposés ne prennent pas en compte "l’interférence inter-symbole"
inhérente à la décomposition de Laurent et souffrent de la non-blancheur des statistiques de bruit
après filtrage. Cette approximation est d’autant plus pénalisante pour le décodage itératif, la détec-
tion non-cohérente, l’égalisation ou les applications multi-porteuses. Dans ce chapitre, après avoir
discuté les récepteurs existants, nous dérivons un nouveau récepteur MAP qui résout le problème
de l’ISI sans introduire des traitements supplémentaires, de type filtres de blanchiment. D’autre
part, sur la base de l’autre décomposition CPM [Rim88], nous explicitons le lien entre les deux
représentations et nous proposons une méthode analytique pour calculer le nouveau banc de filtre de
réception. En appliquant la méthode d’optimisation du chapitre 2, nous optimisons des codes LDPC
pour les récepteurs à faible complexité basé sur la décomposition de Laurent et montrons que les
codes optimisés restent très efficaces pour le récepteur à faible complexité pour peu qu’on considère
suffisamment de composantes. Enfin, nous comparons la performance du récepteur MAP proposé
avec le récepteur classique en termes d’EXIT Chart et de taux d’erreur pour la CPM non codée et
codée.
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4.1 Introduction

After the invention of turbo codes [BG96], coded CPM benefited greatly from iterative decoding.
Actually, it was shown in [Rim88] that a CPM signal can be decomposed into the serial concatenation
of a continuous phase encoder (CPE) with a memoryless modulator (MM), this allows to consider
trellis based receivers that can be efficiently used for turbo detection schemes [MA01, GiAND09].
Independently, [Lau86] derived another decomposition of the binary CPM rewriting a particular
signal as the sum of some amplitude modulated signals. The major advantage of this representation
is that almost all of the signal energy is concentrated within the first few components only, even for
high levels of modulations. This allows us to implement low complexity receivers. The extension of
the Laurent’s decomposition in the M-ary case is described in [MM95]. In this chapter, we give more
emphasize on the binary case.

In [Kal89, MFG97, CB05, CR97], the authors developed the underlying trellis of the Laurent’s
decomposition and derived the Maximum Likelihood (ML) and the Maximum a posteriroi (MAP)
receivers [BCJR74]. However, in their derivations, they neglect the non-whiteness of the filtered noise
by the Laurent’s components (the matched filters have a support which is longer than the symbol
period) in comparison to the noise of the channel. In order to implement the exact receiver for the
MAP detector, one should introduce a whitening filter. This filter becomes even more important when
we consider non-coherent detections [LTHS03], equalization [TS05] or multicarrier signals [MH]. In
this chapter, we first revisit the derivation of the ML receiver and propose a new derivation which is
more intuitive, and useful especially in order to express the exact MAP receiver without introducing
any whitening filter but simply by considering a new filter bank. We will also show a method to
calculate the new filter bank and the relationship between this representation and the Rimoldi’s
decomposition.

4.2 Continuous phase modulator

Let us consider a sequence of N information symbols α = {αi} ∈ {±1, . . . ,±(M − 1)}N . The
transmitted CPM signal is written :

s(t) =
s

2Es
T

cos (2πf0t+ �(t,α))
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= <

6ej�(t,α)| {z }
sb(t)

ej2πf0t

7 (4.1)

where:

�(t,α) = πh
N−1∑
i=0

αiq(t− iT )

q(t) =


R t

0 g(τ)dτ, t ≤ L

1/2, t > L

where Es is the symbol energy, T the symbol period, f0 the carrier frequency, �0 the initial phase,
�(t,α) the information phase, g(t) the pulse response and h = k/p the modulation index where
(k ^ p = 1), L the CPM memory and <(.) the real part operator. When L = 1 (and L ≥ 2), we
say that the CPM signal is of full response (respectively partial response). In the following we will
review the Rimoldi’s and Laurent’s decompositions and introduce the main notations, please refer to
the chapter 1 for more details.

4.2.1 Rimoldi's receiver

Let us consider Ui = (αi+(M−1))/2 ∈ {0, 1, . . .M−1}. The CPE trellis is defined by the state vector
σRn =

[
Un−1, . . . Un−L+1, Vn =

[Pn−L
i=0 Ui

]
mod p

]
. The CPM signal sb(t,α) is sent over a memoryless

additive white Gaussian noise channel (AWGN) with double-sided power spectral density N0/2. The
complex envelope of the received signal can be expressed as:

y(t) =
s

2Es
T

exp (jψ(t,α)) + n(t), t > 0 (4.2)

where ψ(t,α) is the tilted phase of the signal [Rim88]. The MM filters output {si(t)} are sampled
once each nT , which allows to compute the projection of the received signal Eq. (4.2) over the
receiver signal space. Using any orthonormal basis, this is proportional to [MA01]:

yn = [yi(n)]1�i�pML =
[∫ (n+1)T

nT
r(l)s∗i (l)dl

]
1�i�pML

By considering any orthonormal basis of this signal space [MA01], the probability p(yn/Xn) is
proportional to exp{2<(yni )/N0}. We will use this quantity as a branch metric for the CPE trellis
when performing the BCJR algorithm. The receiver architecture is depicted in Fig. 4.1.
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Figure 4.1: Rimoldi’s decomposition-based receivers

4.2.2 Laurent-based receiver

The Laurent’s representation [Lau86] allows us to rewrite the complex envelope in Eq. (4.1) as the
sum of K = 2L−1 amplitude modulated signals with the pseudo-symbols ak,n = exp(jπhAk,n) such
that:

sb(t) =
q

2Es/T
N−1∑
n=0

K−1∑
k=0

ak,nCk(t− nT ) (4.3)

Ck(t) = s0(t)
L−1∏
j=1

sj+L�k,j (t), 0 < k ≤ K − 1

ak,n = ejπhAk,n

Ak,n =
n∑
i=0

αi −
L−1∑
j=1

αn−jβk,j (4.4)

sj(t) = sin(ψ(t+ jT ))
sin(πh)

ψ(t) =


2πhq(t), 0 ≤ t ≤ LT

πh− 2πhq(t− LT ), LT ≤ t ≤ 2LT

0, elsewhere

where βk,j refer to the jth bit in the binary representation of the index k. The components {Ck(t}k
have different duration lengths as following [Lau86]:
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Component Duration

C0(t) (L+ 1)T
C1(t) (L− 1)T
C2(t), C3(t) (L− 2)T
C4(t), C5(t), C6(t), C7(t) (L− 3)T

...
CK/2(t), . . . , CK−1(t) LT

Table 4.1: Durations of the Laurent’s components

Let us define Lk as the length of Ck(t) in terms of the symbol periods T (i.e. Ck(t) = 0,∀t > LkT ).

4.3 Maximum Likelihood receiver for Laurent's decomposition

Here we will revisit the ML decoder for the Laurent’s decomposition discussed in the chapter 1.

4.3.1 Notations and preliminaries

Consider the received signal:

r(t) = s(t) + n(t)

where n(t) is a double a memoryless additive white Gaussian noise with double-sided power spectral
density N0/2.

Let us denote by .∗ and <(.) the conjugate and the real part operators respectively. Be E =
{ei(t)}i,0�t�T any orthonormal basis of the receiver signal space and h., .i the inner product between
two functions f and g of this space as:

hf, gi =
∫
f(t)g∗(t)dt

Since the memory of the CPM L is finite, the dimension of the receiver signal space, denoted jEj, is
also finite.

Let us consider an arbitrary signal x(t). Consider the following notations:

x(t)ja�t�b =

 x(t) if a ≤ t ≤ b

0 otherwise
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xi(n) = hx(t), e∗i (t− nT )i =
∫ (n+1)T

nT
x(t)e∗i (t− nT )dt (4.5)

xi = (xi(n))n
x = (xi)i

For ease of notations, when a function, a vector or a scalar x depends of the binary sequence ᾱ =
(ᾱ1, . . . , ᾱN−1} ∈ {±1}N , it is denoted as x̄.

The projection of the received signal r(t) on ei(t) at t = nT , ∀i, gives:

ri(n) = hr(t), ei(t− nT )i

= hs(t), ei(t− nT )i+ hn(t), ei(t− nT )i

= si(n) + ni(n)

The ML receiver finds the estimated bits α̂ such that the distance between the corresponding
statistic s̄ and the received signal statistic r is minimized; i.e.:

α̂ = arg max
�α

p(rjᾱ)

One can proof that {ni(n)}n and {ri(n)}n, are uncorrelated, consequently, the probability of the
observed data r under the sequence ᾱ can be expressed as:

p(rjᾱ) / exp
(
−1
N0

∑
k

∑
i

jri(k)− s̄i(k)j2
)

where s̄i(k) depends implicitly on ᾱ. Then, as seen on the chapter 1:

p(rjᾱ) = exp
(
−1
N0

∑
k

∑
i

hr(t)− s̄(t), ei(t− kT )i2
)

= exp
(
−1
N0

∫ NT

0
r(t)r∗(t)dt

)
| {z }

common to all paths

� exp
(−1
N0

∫ +1

0
s̄(t)s̄∗(t)dt

)
| {z }

constant

� exp
(

2
N0

∫ NT

0
<(r(t)s̄∗(t))dt

)

/ exp
(

2
N0
<
(∫ NT

0
r(t)s̄∗(t)dt

))
(4.6)

4.3.2 Kaleh's ML receiver

[Kal89] showed that one can form the signal in Eq. (4.3) from a particular trellis. Actually, at each
nT , one can compute all the pseudo-symbols ak,n knowing only the input symbol αn and the current
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Figure 4.2: Kaleh’s ML receiver

phase state σLn = [a0,n−L, αn−L+1, . . . , αn−1], according to the following recursion:

Ak,n = A0,n−L + αn +
L−1∑
i=1

αn−i.(1− βk,i) (4.7)

Starting from Eq. (4.6) and by substituting Eq. (4.3), the new metric corresponding to the sequence
(or the path) ᾱ, denoted hereafter �(ᾱ), is written as seen on the chapter 1:

�(ᾱ) = <
[∫ NT

0
r(t)s̄∗i (t)dt

]

=
N−1∑
n=0
<
[∫ NT

0
r(t)

K−1∑
k=0

ā∗k,nC
∗
k(t− nT )dt

]

=
N−1∑
n=0
<
[
K−1∑
k=0

ā∗k,n

∫ (L+1)T

0
r(t+ nT )Ck(t)dt

]
(4.8)

This can be implemented efficiently by means of the Viterbi algorithm [Vit67]. In each trellis
section n, we sample the output of the matched filters {Ck(−t)} at nT , compute the transition
symbols {āk,n}k according to Eq. (4.4) and evaluate <

(PK−1
k=0 ā∗k,n

R (L+1)T
0 r(t+ nT )Ck(t)dt

)
. The

corresponding receiver structure is given by Fig. 4.2.
Interpretation: By permuting the sum and the integral in Eq. (4.8) we can write:

�(ᾱ) =
N−1∑
n=0
<
[
K−1∑
k=0

ā∗k,n

∫ (L+1)T

0
r(t+ nT )Ck(t)dt

]

=
N−1∑
n=0
<
[∫ (L+1)T

0
r(t+ nT )

K−1∑
k=0

ā∗k,nCk(t)dt
]

=
N−1∑
n=0
<

∫ (L+1)T

0
r(t+ nT )

(
K−1∑
k=0

āk,nCk(t)
)∗

dt

 (4.9)
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Consequently, it might seem that at each section n, the current metric is about computing the correla-
tion between the waveformPK−1

k=0 āk,nCk(t)j0�t�(L+1)T and the received noisy signal r(t)jnT�t�(n+L+1)T .
At the first sight, in the section n, one can wonder why we are not taking into account the contribu-
tion of the previous pseudo-symbols {āk,m}m<n since the first K/2 Laurent’s components {Ck(t)}k
have support greater than T . Actually, this "symbol interference" was already computed but in the
metrics of the L previous sections. Hence, since this is the ML decoder, and the decision is made
over the whole sequence, Eq. (4.8) turns out to be optimal. This can be illustrated as following:

�(ᾱ) =
N−1∑
n=0
<

∫ (L+1)T

0
r(t+ nT )

(
K−1∑
k=0

āk,nCk(t)
)∗

dt


=

N−1∑
n=0
<

∫ T

0
r(t+ nT )

(
K−1∑
k=0

āk,nCk(t)
)∗

dt+
∫ (L+1)T

T
r(t+ nT )

(
K−1∑
k=0

āk,nCk(t)
)∗

dt



=
N−1∑
n=0
<

66666
∫ T

0
r(t+ nT )

(
K−1∑
k=0

āk,nCk(t)
)∗

dt+
i=L∑
i=1

∫ (i+1)T

iT
r(t+ nT )

BBBBB
K−1∑
k=0

āk,nCk(t)| {z }
A(t)jiT≤t≤(i+1)T

CCCCC
∗

dt

77777
A(t)jiT�t�(i+1)T represents the symbol interference terms that occur at the sections {n + i}i=1...L

due to the pseudo-symbols {ak,n}0�k�K−1 of the section n. This interference is taken into account
a priori in the section n but, from a theoretic point of view, it is formally considered at the sections
{n + i}i=1...L through the summation of the ML estimator PN−1

n=0 . In the context of a sequence
decision-based estimator, this receiver is exact, however, this metric is no long valid for symbol-based
decision receiver as we are going to expose later.

4.3.3 A new derivation for an ML receiver

Starting from Eq. (4.6) and by splitting the integral, we get:

�(ᾱ) = <
[∫ NT

0
r(t)s̄∗i (t)dt

]

= <
[
N−1∑
n=0

∫ (n+1)T

nT
r(t)s̄∗i (t)dt

]

=
N−1∑
n=0
<
[∫ (n+1)T

nT
r(t)s̄∗i (t)dt

]
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=
N−1∑
n=0
<
[∫ (n+1)T

nT
r(t)

(
N−1∑
`=0

K−1∑
k=0

ā∗k,`C
∗
k(t− `T )

)
dt

]

=
N−1∑
n=0
<
[∫ (n+1)T

nT
r(t)

(
K−1∑
k=0

ā∗k,nCk(t− nT ) +
N−1∑
`=1

K−1∑
k=0

ā∗k,n−`Ck(t− (n− `)T )
)
dt

]

In the second summation, since ` > 1, only the components of support greater than T are non null,
i.e. the first K/2 components only (see Table 4.1). Which gives:

�(ᾱ) =
N−1∑
n=0
<

∫ (n+1)T

nT
r(t)

K−1∑
k=0

āk,nCk(t− nT ) +
N−1∑
`=1

K/2−1∑
k=0

āk,n−`Ck(t− (n− `)T )

∗ dt


=
N−1∑
n=0
<

∫ (n+1)T

nT
r(t)

K−1∑
k=0

āk,nCk(t− nT ) +
K/2−1∑
k=0

N−1∑
`=1

āk,n−`Ck(t− (n− `)T )

∗ dt


=
N−1∑
n=0
<

66666
∫ (n+1)T

nT
r(t)

BBBBB
K−1∑
k=0

āk,nCk(t− nT )| {z }
B(t)jnT≤t≤(n+1)T

+
K/2−1∑
k=0

Lk−1∑
`=1

āk,n−`Ck(t− (n− `)T )| {z }
C(t)jnT≤t≤(n+1)T

CCCCC
∗

dt

77777 (4.10)

The term B(t)jnT�t�(n+1)T represents the part of the signal s̄(t)jnT�t�(n+1)T that is generated
by the symbols corresponding to the current transition, i.e. {ak,n}0�k�K−1, whereas the quan-
tity C(t)jnT�t�(n+1)T represents the part of that signal which is generated by the memory symbols
{ak,n−`}0�k�K/2−1

1�`�Lk
. Let us define:

Φ̄(t− nT )j0�t�T = B(t)jnT�t�(n+1)T + C(t)jnT�t�(n+1)T (4.11)

Then we can rewrite:

�(ᾱ) =
N−1∑
n=0
<
[∫ (n+1)T

nT
r(t)Φ̄∗(t− nT )dt

]

=
N−1∑
n=0
<

∫ (n+1)T

nT

jEj−1∑
k=0

rk(n)ek(t− nT )

jEj−1∑
q=0

Φ̄q(0)eq(t− nT )

∗ dt
 (see Eq. (4.5))

=
N−1∑
n=0
<
[∑
k

rk(n)
∑
q

Φ̄∗q(0)
∫ (n+1)T

nT
ek(t− nT )e∗q(t− nT )dt

]
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Figure 4.3: A new ML receiver architecture. The family {ei(t)}i can be any orthonormal basis of the
receiver signal space.

=
N−1∑
n=0
<
[∑
k

rk(n)Φ̄∗k(0)
]

({ei(t)}i is an orthonormal basis) (4.12)

Once we determine {Φ̄∗k(0)}k, the new ML receiver can be implemented efficiently by means of the
Viterbi algorithm working on the same trellis previously defined but with the branch metric in Eq.
(4.12). The corresponding receiver architecture is plotted in Fig. 4.3.

Computation of {Φ∗k(0)}k:
In this section, we will see how we can form the statistic {Φ∗k(0)}k from the current state σLn =
[a0,n−L, αn−L+1, . . . , αn−1] and the input symbol αn.

The expression of B(t)jnT�t�(n+1)T takes into account only the contribution of the current pseudo-
symbols {Ak,n}k. These can be deduced from the current state σLn and the input symbol αn according
to:

Ak,n =
n∑
j=0

αj −
L−1∑
j=1

αn−jβk,j (see Eq. (4.4))

=
n−L∑
j=0

αj +
n−1∑

j=n−L+1
αj + αn −

L−1∑
j=1

αn−jβk,j

= A0,n−L +
L−1∑
j=1

αn−j + αn −
L−1∑
j=1

αn−jβk,j

= A0,n−L + αn +
L−1∑
j=1

αn−j(1− βk,j)

= A0,n−L + αn +
L−1∑
j=1

αn−jβK−1−k,j (4.13)
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the last step comes from the observation that the inverse of the jth bit in the binary expression of
k, where k ∈ [0, . . . ,K − 1 = 2L−1 − 1], is equal to the jth bit in the binary expression of K − 1− k.
This can be proved as following:

k =
L−1∑
j=1

2i−1βk,j

= −
L−1∑
j=1

2i−1(1− βk,j) +
L−1∑
j=1

2i−1

= −
L−1∑
j=1

2i−1(1− βk,j) +K − 1

K − 1− k =
L−1∑
j=1

2i−1 (1− βk,j)| {z }
,�K−1−k,j

On the other hand, the term C(t)jnT�t�(n+1)T represents the contribution of the past pseudo-
symbols {Ak,m−`}0�k�K/2−1

1�`�Lk
. As with Eq. (4.4), we can retrieve the past pseudo-symbols only from

the current state σLn . Let us define:

αnn−L+1 = [αn, αn−1, . . . , αn−L+1]

�K−1−k =

BBBBBB
βK−1−k,1

βK−1−k,2
...

βK−1−k,L−1

CCCCCC
[(L−1)�1]

J =

BBBBBBBBBB

0 . . . . . . . . . 0

1 . . . ...

0 . . . . . . ...
... . . . . . . . . . ...
0 . . . 0 1 0

CCCCCCCCCC
[L�L]

Therefore, inspired from Eq. (4.13), the past pseudo-symbols Ak,n−` can be simply calculated with
the following recursion:

Ak,n−` = A0,n−L +αnn−L+1J
`

 1
�K−1−k

 , 1 ≤ ` ≤ L
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Considering that J0 is the identity matrix, this expression can be merged with Eq. (4.13) to form
our new recursion formula:

Ak,n−` = A0,n−L +αnn−L+1J
`

 1
�K−1−k

 , 0 ≤ k ≤ K − 1, 0 ≤ ` ≤ Lk − 1 (4.14)

Example: for L = 4 (in this case K = 8), we have:

αnn−3 =

BBBBB
αn

αn−1

αn−2

αn−3

CCCCC

T

B8−1−1 = B6 =

BBB
0
1
1

CCC

J =

BBBBB
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

CCCCC
N.B.: For ` ≥ Lk, we cannot compute the corresponding Ak,n−` since we do not have access to

{αn−m}jm�L in the state definition σLn . However, we do not need this pseudo-symbol since it does
not generate any interference at nT (its component has only length Lk).

Finally, the statistic {Φ∗k(0)}k corresponding to the transition (σLn , αn) is nothing but:

Φk(0) =
*
K−1∑
k′=0

ak′,nCk′(t)| {z }
B(t)

+
K/2−1∑
k′=0

Lk−1∑
`=1

ak′,n−`Ck′(t+ `T )| {z }
C(t)

, ek(t)
+
, 0 ≤ k ≤ jEj − 1 (4.15)

This whole computations do not involve additional complexity when performing the Viterbi al-
gorithm since, when implementing a particular CPM receiver, the transition ’labels’ {Φ∗k(0)}k are
computed only once and are hard coded in the trellis structure.

This new derivation of the ML receiver is equivalent to the previous one in Section 4.3.2, with the
difference that the branch metric computed at the instant nT corresponds now only to the observed
signal at time nT (including the interference of the past symbols). The main advantage is that we
can derive easily the symbol-based decision receivers without introducing a whitening filter as we are
going to see later.
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4.3.4 Relation with Rimoldi's memoryless modulator

The expression in Eq. (4.10) can be interpreted as evaluating the correlation between the portion
of the signal r(t)j[nT,(n+1)T ] and the length-T function Φ̄(t− nT )j[nT,(n+1)T ], the generated waveform
corresponding to the considered transition (σLn , ᾱn). This is equivalent to filtering the received
signal by the filter bank formed by the matched filters of all Φ̄(t) and sampling the output each
nT . Generally, In order to derive an analytical expression of the filter bank {Φ(t)}, one can use the
Rimoldi’s decomposition. In fact, starting from a CPE state σRn and the input symbol Un, the output
symbol Xn is mapped into the pulse Ω(t) of the memoryless modulator as [Rim88]:

Xn = [Un, σRn ] = [Un, Un−1 . . . , Un−L+1, Vn]

Ω(t) = exp (jψ(τ,Xn))

ψ(τ,Xn) =
[
2πhVn + 4πh

L−1∑
k=0

Un−kq(τ + kT ) +W (τ)
]

W (τ) = πh(M − 1)τ/T − 2πh(M − 1)
L−1∑
i=0

q(τ + iT ) + (L− 1)(M − 1)πh

Recall that the Rimoldi’s representation is given in term of the tilted phase. We can recover the
CPM signal with the non-shifted phase by simply multiplying {Ω(t)} in any trellis section, say the
section at nT , by:

exp(j2π(f1 − f0)t) where f1 = f0 −
(M − 1)h

2T

i.e.:

exp(j2π(f1 − f0)t) = exp
(
−jπ (M − 1)h

T
t

)
= exp

(
−jπ (M − 1)h

T
τ

)
exp (−jπ(M − 1)hn) (t = τ + nT ) (4.16)

In the following instant, i.e. n+ 1:
• if k (the numerator of h) is even, (and then p is odd since k and p are relatively prime), the

right exponential factor in Eq. (4.16) becomes:

exp (−jπh(M − 1)(n+ 1)) = exp (−jπh(M − 1)n) exp (−jπh(M − 1))

= exp (−jπh(M − 1)n) exp (−jπh(M − 1) + jπhp) (since πhp � 0[2π])

= exp (−jπh(M − 1)n) exp (jπ(p−M + 1)h) (4.17)
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It is clear that p−M + 1 is even (difference of two odd numbers), i.e.:

∃β ∈ N/p−M + 1 = 2β

consequently, when we multiply Eq. (4.17) by Ω(t), we obtain in the argument (for ease of notation,
we did not mention the term πh(M − 1)n):

ψ(τ,Xn) + π(p−M + 1)h = 2πhVn + 4πh
L−1∑
k=0

Un−kq(τ + kT ) +W (τ) + 2πhβ

= 2πh(Vn + β) + 4πh
L−1∑
k=0

Un−kq(τ + kT ) +W (τ)

= ψ̄(τ,X ′n) (where X ′n = [Un, . . . , Un−L+1, Vn + β])

Note that ψ(τ,X ′n) has already been computed at the section nT .
As a result, we can find the filters of the filter bank {Φ(t)} by operating according to one section

n, ∀n ≥ 0 only. Figure 4.4 depicts the different filters obtained for a CPM with L = 2, rectangular
pulse and h = 2/3 at any section nT . Observe that our Laurent’s receiver filter bank holds less filter
than the Rimoldi’s one.
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1
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Figure 4.4: Rimoldi’s MM and our Laurent’s exact filter bank for the CPM with M = 2, L = 2,
rectangular pulse and h = 2/3

• In contrast, if k is odd, we get:

exp (−jπh(M − 1)(n+ 1)) = exp (−jπh(M − 1)n) exp (−jπh(M − 1))

= exp (−jπh(M − 1)n) exp (−jπh(M − 1) + j2πhp) (2πhp = 0[2π])
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= exp (−jπh(M − 1)n) exp (jπ2(p−M + 1)h) exp (jπh(M − 1))

Now 2(p−M + 1) is even. Following the same steps as for the previous case, one can easily show
that the filter bank at n + 1 is new and can be computed by multiplying the filters in the previous
filter bank, i.e. at nT , by exp (jπh(M − 1)).

In general, and in the same manner, we show that the filter bank at n + `,∀` ∈ N is exactly
the same as the one at n + (` modulo 2). As a result, to find all the receiver filters, we begin by
computing all the {Φ(t)} corresponding to the section n,∀n ≥ 0, then, we multiply the obtained filter
bank by exp (jπh), which is equivalent to recomputing all the {Φ(t)} at the section (n+ 1)T . Figure
4.5 depicts the different filters obtained for the CPM with L = 2, rectangular pulse and h = 3/4 in
two consecutive trellis sections. Observe that our Laurent’s receiver filter bank contains less filter
than the Rimoldi’s one (12 and 16 respectively).

To summarize, the filter bank {Φ(t)} of our Laurent-based receiver is obtained from Rimoldi’s
MM filter bank by, ∀t ∈ [0, T ]:

{Φ(t)} =



n
Ω(t) exp

(
−jπ (M−1)h

T t
)o

, if k in h is even�
Ω(t) exp

(
−jπ (M − 1)h

T
t

)�
| {z }

filter bank at even instants

[
�

Ω(t) exp
(
−jπ (M − 1)h

T
t

)
exp (jπh(M − 1))

�
| {z }

filter bank at odd instants

, otherwise

(4.18)

4.4 Maximum a posteriori symbol receiver

4.4.1 Discussions

In the context of the CPM, only few works have been conducted to derive a MAP symbol detector.
[MFG97] proposed a method to perform MAP symbol detection on Kaleh’s trellis by the mean of
asymmetrical backward/forward recursions. Only slight degradation in performance is observed when
using only the proposed forward recursion.

However, the proposed algorithm is not exact since it uses some approximations for the proposed
recursions and neglects the noise correlation at the output of the receiver filter bank {Ck(t)}k as
suggested by the transition metric [MFG97, Eq. (47)]. This is due to the fact that some of these
filters have support greater than T . Figure 4.6 shows the power spectrum densities of the white noise
n(t) filtered by the components {Ck} and sampled each nT .
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Figure 4.5: Rimoldi’s MM and our Laurent’s exact filter bank for the CPM with M = 2, L = 2,
rectangular pulse and h = 3/4

In [CB05], authors proposed a MAP symbol derivation based on the Ungerboeck model [Ung82]
for a CPM receiver. It is shown that the joint a posteriori probabilities (APP) can be obtained by
using a factor graph (FG) and a sum product algorithm (SPA) framework [KFL01]. This method
can be summarized as the following:
Consider an arbitrarily multivariate function I(i1, . . . , in) that can be factorized as a product of other
multivariate functions Jj as following:

I(i1, . . . , in) =
∏
j

Jj(iQj ), iQj ⊂ {i1, . . . , in}
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Figure 4.6: Normalized power spectrum densities of a white noise samples filtered by Laurent’s
Components of a binary (L = 3, h = 2/3, RC) CPM
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This factorization can be modeled by a factor graph where each variable ik (and each function Jj) is
represented by a variable node (respectively by a factor node). An edge exists between the variable
node ik and the factor node Jj if ik ∈ iQj . By performing the SPA algorithm on the described
factor graph, one can approximate the marginal of the global function ~I(ik) with respect to all other
variables ij , j = 1, . . . n, as following [WS01]:

~I(ik) =
∑
ij ,j 6=k

I(i1, . . . , in)

The final result will depend on how many SPA update iterations are performed and in which schedul-
ing they are performed. However, if the graph is finite and has no cycles, then it can be shown that
there exists scheduling that computes the exact value ~I(ik) [WS01].

In [CB05], it is stated that although the proposed receiver has a forward/backward structure,
it is different from the BCJR [BCJR74] algorithm (in the context of the Forney model, i.e. using
a whitening filter), because the local functions are not necessarily probability mass functions and
the algorithm cannot be derived using probabilistic arguments. However, it is mentioned that the
performance of the two algorithms should be the same. In the context of the optimal CPM receiver,
neither the branch metric nor the scheduling are explicitly given. In the case of the reduced complexity
detection, the given branch metric [CB05, Eq. (21)] uses the fact that the first Laurent’s components
concentrate most of the signal power (see section Section 4.5). Besides that, authors made an implicit
approximation in order to derive the metric in [CB05, Eq. (20)]. It seems that they reused the same
branch metric of the ML sequence receiver in [CR97]. In the scope of sequence detector, we have
shown in Section 4.3 that this criterion is exact. However, if we want to implement this strategy
for the symbol-based MAP detector, p(αnjr) is different from [CR97, Eq. (19)] since the inter-
symbol interference (ISI) is not taken into account and the noise samples {ni(n)}n,∀i ∈ J0,K/2K are
correlated.

Inspired from our ML receiver, we will expose in the following a new and exact MAP symbol
detector based on the BCJR algorithm by changing simply the receiver filter bank and without
introducing any whitening filter.
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4.4.2 Exact MAP receiver derivation

4.4.2.1 Notations and preliminaries

In this section, for ease of notation, σLn is simply denoted σn. Define the log-likelihood ratio (LLR)
of the symbol bit αn = ±1 as:

LLR(αn) = ln
(
p(αn = +1jr
p(αn = −1jr

)
= ln

(P
(s,s′)∈S+ p(σn−1 = s, σn = s′, rP
(s,s′)∈S− p(σn−1 = s, σn = s′, r

)

where S+ and S− are the set of state tuples (s, s′) such that:

S+ = {(s, s′)�(σn−1 = s) 7! σn = s′jαn = +1}

S− = {(s, s′)�(σn−1 = s) 7! σn = s′jαn = −1}

Denoting rlk = [ri(j)]i,k�j�l, p(σn−1 = s, σn = s′, r) can be factorized as:

p(σn−1 = s, σn = s′, r) = p(σn−1 = s, σn = s′, rn−1
0 , rn, r

N
n+1)

= p(rNn+1jσn = s′)| {z }
Bn

p(αn)p(rnjσn−1 = s, σn = s′)| {z }
Gn

p(σn−1 = s, rn−1
0 )| {z }

An

Please refer to the chapter 1 for more details.

4.4.2.2 Exact MAP-symbol detector

It is known that An and Bn can be computed by means of a forward and a backward recursions
[BCJR74] using Gn. p(αn) is the a priori probability of the bit αn. Using the introduced orthonormal
basis, the transition metric is given by:

p(rnjσn−1 = s, σn = s′) / exp
(
−1
N0

∑
i

jri(n)− Φi(0)j2
)

/ exp
(

2
N0
<
(∑

i

ri(n)Φi(0)∗
))

(4.19)

{Φi(0)}i is here the signal statistic relative to the transition (σn−1 = s, σn = s′) that takes into
account the current pseudo-symbols {ak,n}k and the ISI symbols {ak,n−`}` and that is shown to be
a sufficient statistic for [nT, (n + 1)T ] interval. The corresponding duration-T time waveforms Φ(t)
are given by Eqs. (4.11) and (4.18) as defined in Eq. (4.15)
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CPM 1st component 2nd component Others

(a) 99.6% 0.37% 2.6 10−4%
(b) 93% 6.25% 0.23%

Table 4.2: Energy distribution in Laurent’s components

4.5 Complexity reduction

Thanks to the Laurent’s decomposition, low complexity receivers can be easily and efficiently derived
by truncating the second summation in Eq. (4.3), which approximates the CPM signal with only
K ′ < K components. Usually taking K = M − 1 is a very good approximation since the first
components convey the most significant part of the signal energy [MM95]. Table 4.2 illustrates
the energy distribution over the Laurent’s components for (a) the CPM used in the GSM (L = 3,
BT = 0.3, Gaussian pulse) and (b) the MSK of memory L = 3(rectangular pulse).

Kaleh’s state vector is define as σLn = [a0,n−L, αn−L+1, . . . , αn−1]. If we truncate the CPM rep-
resentation to the first component C0(t) only, we still need the whole information in σLn to compute
a0,n (see Eq. (4.7)). However, redefining the state vector as σL′n = [a0,n−1, αn−L+1, . . . , αn−1] and
using Eq. (4.4) to compute a0,n, allows us to reduce the number of the trellis states from p2L−1 to p
states only. Similar result can be drawn for M-ary CPM signals. The recursion Eq. 4.14 becomes:

Ak,n−` = A0,n−L +αnn−L+1J
`

 1
�K−1−k

 , 0 ≤ k ≤ K − 1, 0 ≤ ` ≤ Lk − 1

= A0,n−1 −
L−1∑
j=1

αn−j +αnn−L+1J
`

 1
�K−1−k



= A0,n−1 −αnn−L+1

666666
0
1
...
1

777777+αnn−L+1J
`

 1
�K−1−k



= A0,n−1 +αnn−L+1

BBBBBBJ
`

 1
�K−1−k

−
666666

0
1
...
1

777777

CCCCCC
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Scheme σL
′

n #states Current symbols ISI symbols

(1) [a0,n−1] p a0,n a0,n−1

(2) [a0,n−1, αn−1] 2p a0,n, a1,n a0,n−1, a0,n−2

(3) [a0,n−1, αn−1, αn−2] 4p a0,n, a1,n, a2,n, a3,n a0,n−1, a0,n−2, a0,n−3

a1,n−1
...

(L) [a0,n−1, αn−1, . . . , αn−L+1] 2L−1p all {ak,n}0�k�K−1 all {ak,n−`}0�k�K/2−1
1�`�Lk−1

Table 4.3: State vector and different availlable pseudo-symbols of our Laurent’s receiver when differ-
ent trellis reduction factors are considered

= A0,n−1 +αnn−L+1

J `
 1
�K−1−k

−
 0
�K

 (4.20)

In our receiver model, approximating the signal with only C0(t) leads to filtering the signal with
C0(t)j0�t�T modulated by a0,n (the term B(t) in Eq. (4.10)) and C0(t + T )j0�t�T modulated by
a0,n−1 (the ISI term C(t) in Eq. (4.10)). If we want to take into account additional components and
ISI terms, we should extend our state vector by one or more symbols {αn−`}`. Table 4.3 summarizes
the trade-off between the trellis reduction factor and the accuracy of the recomputed current and ISI
terms.

The current and the ISI pseudo-symbols that are accessible from a reduce state trellis depends on
the number of the symbols on the trellis state definition, the component index k and the past trellis
section `. They can be characterized by the second term in Eq. 4.20: the pseudo-symbol Ak,n−` is
recoverable from the transition (σL′n , αn) if the indices of the non-zero elements in the column vector:

J `

 1
�K−1−k

−
 0
�K

 (4.21)

correspond to entries in αnn−L+1 that belong to the set {σL′n , αn}. Or alternatively, the pseudo-symbol
Ak,n−` is recoverable if the information bit αn−g+1 belongs to {σL′n , αn} where g is the greatest index
of the non-zero elements in Eq. (4.21).
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4.6 Asymptotic analysis for iterative and non-iterative receivers:
impact of the new MAP receiver

4.6.1 General behavior

To have insights on the performance improvement of the proposed new receiver, one can conduct an
asymptotic analysis using the Extrinsic information transfer (EXIT) chart analysis [Hag04]. Based on
this analysis, one can approximate the maximum achievable rate R∗ for an outer serially concatenated
code by the area under the EXIT curves [Hag04] associated with the iterative MAP decoder performed
on the two CPM receivers (the classical and the one introduced in this paper). In this section, Ia
and Ie denote respectively the a priori and extrinsic mutual information of the soft CPM decoder.

4.6.2 Scheme 1: GMSK pulse, h = 1/3, L = 3, BT = 0.3

Figure 4.7a depicts the maximum achievable rate R∗ of both receivers for the this CPM scheme for
an iterative detector. Figure 4.7b shows the curve corresponding to R∗ in a non-iterative decoder:
i.e. the ordinate of the point corresponding to the a priori mutual information equal to zero of the
corresponding EXIT function. In the iterative decoding scheme, the receiver introduced in this paper
allows a noticeable gain over the classical one. For instance, for a rate-1/2 outer code, we observe a
gain of almost 1.74 dB, and this is reached by changing only the receiver filter bank.

Concerning the uncoded CPM, Fig. 4.8 depicts the performance comparison between the two
receivers. One can see that the performance is almost the same in both receivers except in low SNRs.
We observe that for a BER of 10−1, a gain of 1dB is observed explaining that an itrative receiver
can benifit from the new receiver.

4.6.3 Scheme 2: Rectangular pulse, h = 3/4, L = 3

We know that the Rimoldi’s receiver introduced in Section 4.2.1 and its decoder [MA01] are exact
and optimal by construction. As a result, even if the Laurent’s and Rimoldi’s receivers are different,
a good criterion to evaluate the performance of the two Laurent’s receivers is to compare they
performance to the Rimoldi’s one.

Unlike the previous CPM, a great improvement is made in this uncoded CPM scheme as suggested
by the different curve values at Ia = 0 in Fig. 4.9; same conclusion can be made for the coded iterative
scheme as showed by the big difference between the curves of the two Laurent’s receivers at higher Ia.
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Figure 4.7: An EXIT curve and comparison of R∗ of the coded GMSK h = 1/3, L = 3, BT = 0.3

In comparison to the Rimoldi’s receiver, which is optimal, we observe that the new Laurent-based
receiver has the same performance in terms of the EXIT chart curves. Finally, Fig. 4.10 depicts
the performance comparison between the three receivers: one can see that the performance of our
Laurent’s receiver is the same as the Rimoldi’s one, and that both of them outperform the classical
Laurent’s receiver. This can be explained by the EXIT charts of the detectors as depicted in Fig.
4.9: for the non concatenated scheme, we are interested only by the points corresponding to a null
a priori mutual information. The difference between the two curves is noticeable at low signal to
noise ratios (SNR). However, because the bit error rate of the two decoders is quite high, it is hard
to distinguish between the bit error rate (BER) curves of the two detectors. For middle SNRs, the
different between the EXIT curves is noticeable, which leads to quite big gap in terms if the BER.
And finally, for high SNRs, since the points at the origin of both detector EXIT curves get very close
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Figure 4.8: Comparison of the BER performance of the two receivers for uncoded GMSK with
h = 1/3, L = 3 and BT = 0.3
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Figure 4.9: Comparison of the EXIT chart curves of the Rimoldi’s, classical Laurent’s and the new
Laurent’s receivers. The considered CPM scheme is: (M = 2, h = 3/4, L = 3, rectangular pulse)

(actually they both converge to the point (0, 1)), the difference between the two detectors in terms
of BER becomes very small.
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Figure 4.10: Comparison of the BER performance of the two receivers for uncoded CPM with
h = 3/4, L = 3 and a rectangular pulse

4.6.4 Code design

We can optimize Low Density Parity Check (LDPC) codes for the two receivers. For this design, we
consider the receiver factor graph depicted in Fig. 4.11. {πi}i are partial interleavers and dv (or dc)
the variable node (respectively check node) maximum degree (please refer to the chapter 2 for more
details).

Using the same method introduced in the chapter 2, Table 4.4 summarizes the degree profiles of
the optimized LDPC codes and their corresponding asymptotic threshold. λi (and ρj) is the fraction
of edges connected to a degree-i bit node (respectively degree-j constraint node).

4.6.5 Simulation results

This section provides simulation results for coded CPM schemes. Table 4.4 summarizes the optimized
rate-1/2 and rate-1/3 LDPC codes. The considered LDPC codes have 12000 and 6000 information
bits respectively. A maximum number of 200 turbo iterations is considered. Figures 4.12 and 4.13
depict the Bit Error Rate (BER) for the considered schemes. As expected, our receiver outperforms
the classical one.



4.6 - Asymptotic analysis for iterative and non-iterative receivers: impact of the new MAP receiver159

R = 1/3 R = 1/2 R = 3/4
classical ours classical ours classical ours

R∗ = R at Es/N0 = -3.49 -5 -0.5 -2.24 3.6 1.7
Optimized threshold at -3.3 -4.93 -0.47 -1.87 3.6 1.7

λ1 0.087 0.05 0.11 0.12 0.03 0.16
λ2 0.55 0.46 0.48 0.59 0.4 0.37
λ4 - - 0.12 - - -
λ6 0.133 - - - - 0.13
λ7 0.12 - - - 0.15 0.06
λ8 - 0.18 - - - -
λ9 - 0.06 - 0.009 - -
λ10 - - 0.29 0.28 - -
λ20 - - - - 0.42 0.28
λ39 - 0.12 - - - -
λ40 0.11 0.13 - - - -

ρ2 0.24 - - - - -
ρ3 0.76 0.29 - - - -
ρ4 - 0.71 0.2 0.4 - -
ρ5 - - 0.8 0.6 - -
ρ9 - - - - - 0.81
ρ10 - - - - - 0.19
ρ13 - - - - 0.77 -
ρ14 - - - - 0.23 -

Table 4.4: Different optimized degree profiles for the GMSK with h = 1/3, L = 3 and BT = 0.3 and
the corresponding thresholds for the classical and the proposed receivers
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Figure 4.11: Receiver structure for the unstructured LDPC codes
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Figure 4.12: BER of the two receivers with a rate-1/2 optimized LDPC code

4.7 Code design and complexity reduction

As seen in the section 4.5, low complexity receivers can be easily designed, with a negligible perfor-
mance degradation, using only the most significant components, remaining ones can be neglected or
treated as interference. Surprisingly, no works have been conducted to study the joint optimization
of an LDPC code concatenated with such optimal or low complexity CPM detector. In this section,
we will show that performance of the optimized LDPC codes for full complexity receivers remain
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Figure 4.13: BER of the two receivers with a rate-1/3 optimized LDPC code

optimal for low complexity receivers as long as a proper set of the Laurent’s components is selected.
For the code design, we apply to same method and notations introduced in chapter 2. Fig 4.14

depicts the EXIT curves and the achievable rates R∗ of the 3GMSK (M = 2, L = 3, BT = 0.3, h =
1/2, Gaussian pulse) and the 3MSK (M = 2, L = 3, h = 1/2, rectangular pulse) CPMs at different
SNRs.

For the 3MSK, since C1(t) is not negligible compared to C0(t) (see Fig 4.14a), considering only
the first order approximate modifies considerably the EXIT charts, as depicted in Fig. 4.14e, and
thus produces a rate loss, for example when R∗ = 1/2, the loss is of almost 0.5dB as depicted in
Fig. 4.14c. In this case, a second order approximate is necessary. Whereas for the 3GMSK, the
first component C0(t) holds enough energy to remain a good approximation of the optimal detector
EXIT as illustrated in Fig. 4.14f. The idea behind considering enough pulses according to the EXIT
curves is that, as long as they have the same EXIT curves, the same optimized LDPC code can be
used with either optimal or reduced complexity CPM receiver.

4.7.1 Simulation results

This section gives simulation results of some optimized rate-1/2 LDPC codes for the 3GMSK and
the 3MSK. Simulations were performed using 16000 information bits and 250 turbo iterations. Table
4.5 summarizes the optimized degree distribution profiles of the LDPC codes.

Figure 4.15 depicts the 3MSK and the 3GMSK bit error rate (BER) and frame error rate (FER)
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Figure 4.14: Laurent’s components, R∗ and EXIT curves for 3GMSK and 3MSK
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MSK 3MSK 3GMSK
(Es/N0)∗ -2.5 -2.4 -2.5

(Es/N0)opt -2.4 -2.3 -2.5

λ1 0.1294 0.1475 0.1273
λ2 0.5148 0.545 0.5201
λ5 0.0679 0.0223 0.0577
λ10 0.2879 0.2852 0.2949

ρ4 0.25 0.5 0.3
ρ5 0.75 0.5 0.7

Table 4.5: Optimized LDPC codes for design rate R = 0.5

results. As expected, the simulated thresholds agree with the theoretical ones. By considering enough
components, it is clear that the optimal-receiver optimized LDPC codes provide very satisfactory
results when used with the low complexity receivers.

(a) 3MSK (b) 3GMSK

Figure 4.15: BER and FER for optimized concatenated LDPC code with 3MSK and 3GMSK
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4.8 Conclusion

In this chapter, we designed an optimal and exact receiver based on the Laurent’s decomposition. This
receiver allows to take into account the inter-component interference, and to design receiver filters
whose support is equal to the symbol period. Besides that, we derived two methods to compute
the proposed filter bank. The first one is based on the Laurent’s decomposition itself, and the
second is computed from the Rimoldi’s decomposition. The simulated results shows that our receiver
outperforms the classical one by changing only the filter bank and avoiding the theoretical need for
noise whitening as considered in the classical receiver. Finally we proposed a method to design LDPC
codes for full complexity Laurent’s new receiver that remain optimal for the low complexity one.
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Résumé

Dans ce chapitre, nous appliquons notre méthode de design dans le contexte qui est derrière la motiva-
tion de cette thèse: communication pour les drones sur des liens satellites. Ce type de communication
est modélisé par le canal satellite aéronautique [B+63, B+73, SLPF+08, ser09]. En outre, nous éval-
uons la performance des CPM codées lorsque nous considérons une égalisation par minimisation de
l’erreur quadratique moyenne (MMSE) dans le cas d’un canal séléctif en fréquence générique. Le but
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de ce chapitre est de montrer la faisabilité d’une simple égalisation dans le cadre du canal aéronau-
tique. Les schémas proposés ne sont pas la solution ultime, mais une approche directe parmis les
techniques d’égalisation. Divers résultats de simulation sont fournis. Des résultats qui montrent que
l’égalisation peut être très efficace dans ces canaux pour la CPM et que les schémas concaténés LDPC
proposés sont très compétitifs par rapport à certains systèmes proposés, comme celui du DVB-S2
[ETS05].
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In this chapter, we compare the performance of our coded-CPM design with the DVB-RCS2
standard [BCDB+13] in both the AWGN and the aeronautical channel. Moreover, we evaluate
the performance of the coded CPM when we consider a simple frequency domain minimum mean
square error (FDE MMSE) equalization for both the general frequency selective and the aeronautical
channels.

5.1 Main CPM notations

Consider a sequence of N information symbols α = {±1,±3, . . . ,±(M − 1)}N . Recall that the
transmitted CPM signal can be written as:

s(t,α) =
s

2Es
T

cos (2πf0t+ �(t,α) + �0)

= <[sb(t,α)ej2πf0t] (5.1)

with

�(t,α) = πh
N−1∑
i=0

αiq(t− iT ), q(t) =


R t

0 g(τ)dτ
1
2 , t ≥ L

f0 is the carrier frequency, �0 the initial phase shift, �(t,α) the information carrying phase, g(t) the
frequency pulse, h = k/p the modulation index, L the memory and <(.) the real part. sb(t,α) is the
complex envelope of the CPM signal and is given by:

sb(t,α) =
s

2Es
T
ej(�(t,α)+�0)

We clearly see here that the signal is a non-linear function of the transmitted symbols. Without loss
of generality, we consider �0 = 0.

5.2 Performance comparison in the Aeronautical channel

5.2.1 The aeronautical channel model

As depicted by Fig. 5.1, the aeronautical channel is characterized by the direct path or the line of
sight (LOS) which is often present. Depending on the location and the geometry of the environment,
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Figure 5.1: Aeronautical channel

multiple attenuated ground reflections reach the UAV antenna. Moreover, local reflections may also
take place depending on the fuselage and the wings surface.

The aeronautical channel modelling started with the papers of Bello et al [B+63, B+73]. Later
on, the German Aerospace Center (DLR) consolidated the established theoretical models by series
of measurement campaigns [NHP+87, HNP+86]. Finally, the measurements organized in [SLPF+08]
completed the channel modelling by characterizing the local scatters occurring on the aircraft fuselage
and wings surface. The final obtained model was finally adopted by the ITU recommendations [ser09].

In this thesis, we assume that the frame duration is smaller than the channel coherence time. In
this case, the different channel parameters are considered constant during the whole frame transmis-
sion, but still random form one frame to the other. The statistical aeronautical channel considered
in this thesis is characterized by a two-taps model:

• The first component is composed of the LOS path. This latter is divided into two different
paths: the direct LOS (DLOS) path and the local scatters (SC).

• The second component is composed of the delayed and the attenuated ground reflections (GR)

• Without loss of generality, in order to insure that the direct LOS signal has power equal to 1,
we normalize all the paths by the attenuation factor of the DLOS path.

• The local scatters and the ground reflections are modulated by two different complex colored
Gaussian processes, hSC and hGR respectively. The absolute value of these Gaussians gives a
Rayleigh amplitude fading.
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The diagram in Fig. 5.2 summarizes the different parameters of our considered aeronautical
channel model (refer to Fig. 5.1 for the main physical quantities):

• The power of the total LOS path (DLOS+SC) is attenuated by a factor αLOS

• The power of the DLOS and the SC signals are attenuated by k1 and k2 respectively according
to the power ratio kLOS as the following:kLOS = k1

k2

k1 + k2 = 1

• The ground reflections corresponds to the sent signal delayed by τGR and attenuated by αGR
according to the power ration C

M as following:


C
M = �LOS

�GR

αLOS + αGR = 1

τGR = 2H sin "
c

• The local scatters and the ground reflections are modulated by two different complex colored
Gaussian processes, hSC and hGR respectively. hSC and hGR are generated following:

hSC = exp
(
−8π2α2

λ2

[
(vx sin "+ vz cos ")2 + (vy sin ")2

]
t2
)

hGR = exp
(
−8π2α2

λ2

[
(vx sin � + vz cos �)2 + (vy sin �)2

]
t2
)

• Doppler shifts are applied to the LOS path, fLOS , and ground reflections, fGR, such as:

fLOS = vx cos(") + vz sin(")
λ

fGR = vx cos(�) + vz sin(�)
λ

v = (vx, vy, vz) is the speed vector of the aircraft in the Cartesian plan, λ the wavelength, c the speed
of light and α the standard deviation of the ground reflection surface.
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Figure 5.2: Considered aeronautical channel
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5.2.2 Performance of linear modulations and the CPM

For a transmitted frame during a stationary period, the equivalent complex baseband channel impulse
response can be written as:

hc(t) = h1�(t) + h2�(t− τGR) (5.2)

where h1 and h2 depends on the previous channel parameters: C/M , KLOS , fLOS , fGR, . . .

5.2.2.1 Linear modulation

The base-band emitted signal in a linear modulation can be expressed as the following:

s(t) =
∑
k

akhe(t− kT )

where ak are the information symbols, T the symbol period and he(t) real shaping filter.
The filter he(t) is chosen such as, after filtering with the receiver matched filter hr(t) = he(−t),

the Nyquist criterion is verified for the global filter g(t) = hr � he(t). The continuous model of the
received signal in a frequency selective channel with impulse response hc (see Eq. (5.2)) is given as:

y(t) =
∑
k

akh(t− kT ) + b(t)

where:

h(t) = hc � g(t) = h1g(t) + h2g(t− τGR)

and b(t) is a white Gaussian noise with double-sided power spectral density N0/2. The sampled
model is then obtained as the following:

y[n] =
∑
k

a[k]h[n− k] + b[n] (5.3)

where h[n] = h[nT ] (b[n]) is the equivalent discrete channel impulse response (of the noise respec-
tively). Equation (5.3) is the classical model for the discrete frequency selective channel [PS07].

In the case of linear modulations (with or without memory), the linearity induced by the contin-
uous channel allows to consider a simple interference linear model at the receiver. Consequently, at
the decoder, classical equalization techniques can be applied to deal with the interference.
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5.2.2.2 CPM in frequency selective channels

For the CPM, we obtain the noised signal at the receiver side as:

y(t) = hc � sb(t) + b(t)

= h1sb(t) + h2sb(t− τGR) + b(t)

= h1

s
2Es
T

exp (j�(t,α)) + h2

s
2Es
T

exp (j�(t− τGR,α)) + b(t)

Observe that we do not have the linear transformation as with the linear modulations, hence,
the equivalent discrete channel cannot be easily derived as in the previous case. The non-linearity
between the channel terms (h1 and h2) and the information symbols α does not make the equalization
operation as straightforward as with the linear modulations.

At the receiver side, the SISO CPM decoder is based on the Rimoldi’s decomposition [Rim88].
When the transmitted signal sb(t,α) is corrupted with an AWGN channel having a double-sided
power spectral density N0/2, we can consider the metric:

yn =
[
yni =

∫ (n+1)T

nT
y(l)s∗i (l)dl

]
1�i�pML

(5.4)

where {si(t)}i are the set of filters that form the Rimoldi’s memomryless modulator. {yn}n is
a sufficient statistic to estimate the information symbols [MA01] using the BCJR algorith on the
Rimoldi’s CPE.

In the context of the aeronautical channel, if no equalization is considered at the receiver, we
apply the branch metric given by Eq. (5.4) to the signal:

y′(t) = 1
h1
y(t)

= sb(t) + h2
h1
sb(t− τGR) + 1

h1
b(t)| {z }

b′(t)

While processing the BCJR algorithm [MA00], one should take into account that the new noise
b′(t) has a different power which can be easily computed as a function of the transmitted signal power,
h1, h2 and N0. We obtain then a modified Gaussian-like receiver that can be easily integrated in the
Gaussian model. However, its performance will be limited by the residual interference h2/h1sb(t −
τGR) in b′(t). The consequence of this inter-symbol interference (ISI) is the apparition of an error
floor.
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Figure 5.3: Comparison of linear modulations and MSK in the AWGN channel

5.2.3 Simulation results

We give here some comparison results between the CPM and the linear modulations in the case of
the AWGN and the aeronautical channel. For this purpose, we consider the simple binary phase
shift keying (BPSK) modulation, the differential BPSK (DPBSK), the binary frequency shift keying
(FSK), the binary continuous phase shift keying (CPFSK) and the MSK (these modulation schemes
are introduced in chapter 1). Over the AWGN channel, the MSK and the DBPSK exhibit similar
performance as depicted in Fig. 5.3

The goal of this part is to validate the implementation of the aeronautical channel. Therefore,
we consider different aeronautical channel with various C/M and KLOS values. The results of the
modified Gaussian-like receiver are shown in Fig. 5.4.

Observe that when the channel interference power increases, both of the MSK and DBPSK show
an error floor due to the interference terms in b′(t). Secondly, we notice that in the aeronautical
channel, the MSK is more sensitive to the ISI than the DPBSK. Finally, in the aeronautical channel
configuration that almost gives an AWGN channel, the MSK and the DBPSK performance are similar
and we retrieve the results in Fig. 5.3.
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Figure 5.4: Comparison of linear modulations and MSK in the aeronautical channel

5.3 DVB-RCS2 analysis and code design

5.3.1 DVB-RCS waveform

In DVB-RCS2, some specific schemes target the coded CPM[V1.13]. The adopted waveform is a
mixture of the REC and the RC type (please refer to the chapter 1). This mixture is parametrized
by a mixing factor 0 ≤ αRC ≤ 1, such that the phase shaping function is given by:

g(t) = αRCgRC(t) + (1− αRC) gREC(t)

where:

gRC(t) =


1

4T
�
1− cos

(
πt
T

)�
, if 0 ≤ t ≤ 2T

0, otherwise

gREC(t) =


1

4T , if 0 ≤ t ≤ 2T

0, otherwise

An example of the RCS2 phase response function taken from the DVB-RCS2 standard is given
in Fig. 5.5.
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Figure 5.5: Phase response function of the DVB-RCS waveform with αRC = 0.75

In the DVB-RCS2, the modulation index h = k/p is taken as 1 ≤ k ≤ p ≤ 7. Since a quaternary
modulation (M = 4) was chosen, different mappings are possible when forming the symbols. The
Gray mapping is in general considered, except from the case when h = 1/3 where, instead, the natural
mapping is preferred. This is mainly due to the fact that the natural mapping for these parameters
has better performance than the Gray one: this can be seen when drawing the EXIT curves where
the natural mapping, at the contrary of the Gray one, reaches the the point (1, 1). In DVB-RCS2,
termination symbols might be appended to the information symbols in order to terminate the CPE
trellis (As discussed in the chapter 1).

5.3.2 DVB-RCS2 concatenated scheme

The DVB-RCS2 concatenated scheme is depicted in Fig. 5.6. Two rate-1/2 convolutional codes are
considered:

• The first one has constraint length=3 and an octal representation [5, 7]

• The second one has constraint length=4 and an octal representation [15, 17]

By considering puncturing, different rates can be generated from this two mother codes [V1.13, Table
7-14].
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Figure 5.6: Concatenated scheme of the DVB-RCS2 [V1.13]

Figure 5.7: Our LDPC-coded DVB-RCS2 concatenated scheme

5.3.3 LDPC coded-RCS2 schemes

As an application of our work, we consider the same scheme as in Fig. 5.6, but with an LDPC code
as an outer code, or more specifically, a protograph-based LDPC code. We apply the optimization
method introduced in chapter 3. Figure 5.7 represents the Tanner graph of our LDPC-coded DVB-
RCS2 concatenated scheme. Note that the interleaver in Fig. 5.6 is replaced by a set of partial
interleavers. The choice of an LDPC outer code has also been motivated by some possible compliance
with the future terrestrial standards such as the one proposed for STANAG 4660.

The optimization method proposed in the chapter 3 allows to optimize the code parameters (the
connectivity of the graph associated with the code) as a function of the EXIT chart of the chosen
waveform. This optimization is based on the asymptotic analysis of the iterative decoding threshold.
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Figure 5.8: EXIT chart of for the CPM (M = 4, L = 2, h = 1/3, αRC = 0.75, natural mapping) at
different signal to noise ratios: Es/N0 = −1 . . . 9 dB with steps of 0.2dB

5.4 Performance comparison of coding schemes

5.4.1 CPM parameters

As an example and without loss of generality, we consider the quaternary CPM with parameters
h = 1/3, αRC = 0.75 and natural mapping. The value of αRC is an example of the considered
shaping parameter in the DVB-RCS2 described in [BCDB+13]. Figure 5.8 depicts the EXIT chart of
the Rimoldi-based MAP symbol (BCJR) decoder of the considered CPM schemes. The area under
the curve allows to have an approximation of the maximum achievable rate of the LDPC outer code
(see chapter 2 for more details).

5.4.2 Asymptotic analysis of the DVB-RCS2 convolutional code

We consider the serial concatenation of the [5, 7] convolutional code (CC) with the CPM. We can
interpret the convergence threshold of the system as the lowest SNR such as the EXIT characteristics
of the two SISO components (the convolutional code and the CPM) do not intersect [tB01a]. Figure
5.9 plots the two codes EXIT curves at Es/N0 = 1.37dB. As seen earlier in this thesis, the area
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Figure 5.9: EXIT analysis of the the considered CPM concatenated and the (3, [5,7]) convolutional
code.

between the two curves corresponds to a spectral efficiency loss of the concatenated scheme. Same
analysis can be done for the [15, 17] convolutional code.

5.4.3 Asymptotic analysis of the LDPC coded DVB-RCS2

Different types of LDPC code optimizations have been introduced in this thesis. When we consider
unstructured LDPC codes with a maximum variable node degree dv,max = 10, the method described
in chapter 2 gives an LDPC code that operates at Es/N0 = 0.33dB, i.e. at 0.21dB from the capacity
(Es/N0)∗. The obtained variable nodes and check nodes profiles are:

λ(x) = 0.177 + 0.576x+ 0.247x9 ρ(x) = 0.9x2 + 0.1x3

If we restrict to dv,max = 7, we obtain:

λ(x) = 0.2006 + 0.6116x+ 0.1878x6 ρ(x) = 0.2x2 + 0.8x3

The obtained threshold is Es/N0 = 0.45dB (0.33dB from the capacity and 0.93dB better than the
considered convolutional code).
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Figure 5.10: Comparison of the convergence threshold of the DVB-RCS2 CPM coded with an opti-
mized LDPC code and with convolutional code

However, for encoding complexity and decoding implementation reasons, we prefer to find solu-
tions within the protograph-based LDPC codes family. The exhaustive search in the chapter 3 gives
the following optimized protograph for the considered CPM:

H =

BBBBB
2 2 0 0 1 1 0 0
1 3 0 1 0 1 1 0
1 0 1 0 0 0 1 1
0 2 0 0 0 0 0 1

CCCCC

The decoding threshold of this code is Es/N0 = 0.875dB, i.e. at 0.75dB from the capacity and
0.5dB better than the considered convolutional code. For comparison, the CPM EXIT curve at the
decoding threshold of the LDPC code is depicted in Fig. 5.10. As a reference, the EXIT curve
of the convolutional code is also inserted. It is clear that the convolution code cannot operate at
Es/N0 = 0.875dB (the EXIT curves of the CPM and the convolutional code SISO modules intersect).
We finally compare the performance of the two schemes at a information frame size of N = 2048 bits.
The obtained results in Fig. 5.11 shows the same predicted performance in the asymptotic analysis.
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5.5 Equalization methods for CPM

The goal in this section is to show the feasibility of a simple equalization in the aeronautical channel.
The proposed schemes are not the ultimate solutions but easy approaches within the equalization
techniques. The goal is to show that the equalization can be very effective in the case of the aero-
nautical channel.

5.5.1 State of the art

The early studies on the CPM equalization over frequency selective channels have considered time-
domain equalization. Firstly, the optimal receiver was defined on the joint trellis of the CPM and
the memory channel, i.e. on the Cartesian product of the two trellises. As a consequence, the
number of the waveforms in the filter bank increases because we have to consider all possible period-
T waveforms of the receiver signal space. This increase is exponential in terms of the modulation
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order, the channel memory and the number of paths [YS97]. Few initiatives tried to perform the
equalization using non-linear receivers combined with ML receivers [CS94]. However, theses solutions
are limited to low modulation orders.

After the emergence of frequency-domain solutions with techniques like the orthogonal frequency
division multiplexing (OFDM), some solutions were proposed for CPM signals [TS05, PV06]. These
techniques are based on the insertion of a cyclic prefix (CP) and induce block transmissions. As
we are going to see later, this insertion is slightly complex in comparison to the linear modulations
because we have to insure the continuity of the phase for within each block and between consecutive
blocks. In most of the cases, the equalization is performed independently of the detection: the goal
is to cancel the interference induce by the channel in the received signals before being processed by
the detector. These equalized signals constitute a sufficient statistics for either the Rimoldi-based
or the Laurent-based receiver. In [TS05], a first receiver architecture was proposed derived for both
decompositions. The presented solution was not derived with soft decoding in mind. We will imple-
ment this architecture to prove its feasibility in our context. It is composed of an orthogonal filter
bank adapted to the CPM decomposition followed by another filter bank based on the FFT/IFFT
operations and a frequency-domain equalization stage. In the case of the Laurent decomposition,
one should consider whitening filters, which increases the complexity of the receiver. Still, we can
counterbalance this complexity by considering low complexity CPM receivers.

5.5.2 Making of the CPM signals circular

5.5.2.1 Cyclic pre�x

In order to make the CPM signal circular, we divide the information block into two sub-blocks a
and b. We suppose that the CPE is initialized before coding the information block. After being
encoded, each sub-block should initialize the CPM by appending a termination sequence (~a and ~b
respectively). As a result, after copying the cyclic prefix b + ~b, the CPM phase is kept continuous
between both blocks and sub-blocks. Note that, at the contrary of linear modulations, the CP is
inserted before the modulation. Figure 5.12 resumes the CP insertion technique.

5.5.2.2 Unique word

With this approach, first, we terminate the information bits with a termination sequence to initialize
the CPE. Then, we append a known sequence referred as unique word (UW). This technique helps
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Figure 5.13: UW for CPM [Par10]

to estimate the channel. In order to easily insure the continuity of the phase between consecutive
blocks, the CPE should be in its zero state after encoding the UW. Otherwise, more caution should
be taken in the sense that the following block should be encoded starting from the last CPE state.
Figure 5.13 resumes the UW technique.

5.5.3 Frequency domain equalization

5.5.3.1 Stüber’s method [TS05]

Consider a sequence of N information symbols α = {αi}i ∈ {±1, . . . ,±(M − 1)}N . We consider
the CPM notations described in Eq. (5.1). In this section, we are interested in the Rimoldi’s
decomposition. The receiver signal space is generated by pML pulses. Starting from the definition of
the CPE trellis, we notice that, in fact, at most ML only different pulses are linearly independent (as
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discussed in chapter 1). Let us denote J ≤ML the dimension of the receiver signal space. Using the
Gram-Schmidt orthonormalisation, we can define an orthonormal function basis {fp(t)}p [TS05]. In
the following, we denote by sn,p the projection of the CPM signal portion sn(t) = sb(τ+nT ), τ ∈ [0, T [
on fp(t), i.e.:

sn,p = hsn(t), fp(t)i =
∫ (n+1)T

nT
sb(t)f∗p (t− nT )dt

In a frequency selective channel, the received signal is given by:

y(t) =
MD−1∑
l=0

hlsb(t− lT ) + w(t)

where MD is the maximum channel delay, hl the attenuation induced by the lth tap and w(t) a white
noise. In this model, we consider different paths whose corresponding delays are multiple of the
symbol period T [TS05]. In practice, we approximate the actual tap’s delay to the nearest multiple
of the symbol period. This is a weakness of the this simple model.

The projection of the received signal y(t) at nT on fp(t),∀p ∈ {0, 1, . . . , J − 1} gives:

yn,p =
MD−1∑
l=0

hlsn−l,p, wn,p (5.5)

where:

wn,p =
∫ (n+1)T

nT
w(t)f∗p (t− nT )dt

Equation (5.5) can be rewritten under the form of a discrete circular convolution ~ of the signal
and the channel impulse response:

yn = hn ~ sn +wn

where yn, sn and wn are vectors of size J containing the elements rn,p, sn,p and wn,p respectively
(p ∈ {0, 1, . . . , J − 1}).

We assume that the signal phase of the information block starts at 0 (initialization of the CPE).
In this example and without loss of generality, we will use the cyclic prefix technique. In order to
equalize the received signal in the frequency domain, we append a cyclic prefix of size G symbols.
Moreover, in order to insure the phase continuity, we insert termination sequences at different places
of the frame as depicted in Fig. 5.14.
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Figure 5.14: CP for the CPM with the size of the different parts
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Now, applying the discrete Fourier transform, we obtain in the pth branch corresponding to the
outputs of the filter fp(t):

Yk,p = HkSk,p +Wk,p

Afterwards, in each branch, we obtain a simple frequency-domain equalization. The frequency
response of the MMSE (minimum mean square error) equalizer ~Hk is given by:

~Hk = H∗k

jHkj2 +
[
Es
N0

]−1

The equalized frequency-domain signal Yk,p is then:

~Yk,p = ~HkYk,p

Finally, we go back to the time domain by an inverse discrete Fourier transform. We obtain then
an equalized version of the received signal and a sufficient statistic at the input of the CPM decoder.
Figure 5.15 describes the considered receiver.

y(t)
BCJR

J-1

Figure 5.15: Stüber receiver structure

Remark: similar results can be obtained when using UW instead of CP.
The initial Stüber’s scheme does not point out that the MMSE estimator is biased, and this bias

should be taken into account especially for operation in the low SNR region. This can be proven as:
the received signal after the IFFT is given by (the subscript p is omitted for simplification), follows:

~s[n] = ~h~ s[n]| {z }
signal+ISI

+ ~h~ b[n]| {z }
filtered noise

= ~su[n]| {z }
signal of interest

+ ~sISI [n]| {z }
ISI signal

+~b[n]
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where:

~su[n] = ~h[0]s[n]

By taking into account this bias in the receiver, we can, by considering a Gaussian channel
approximation, use the classical AWGN detector (see chapter 1). The new noise variance σ2

~b of ~b[n]
is given by:

σ2
~b =

(
σ2

~b
N

)2 N−1∑
k=0
j ~Hkj2

5.5.3.2 Simulation results

Figure 5.16 shows the implementation of the Stüber solution with the CP and with the UW over an
arbitrarily aeronautical channel for the uncoded DVB-RCS2 CPM scheme.
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equalization, CP, FFT size=1e3

Figure 5.16: BER and FER of the uncoded DVB-RCS2 CPM scheme in the aeronautical channel.
The frames have k=1000 bits
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Figure 5.17 depicts the performance of the equalization for the coded DVB-RCS2 scheme ([5, 7]
convolutional code + CPM) over a frequency selective channel. The considered channel in defined
as:

• Taps delay profile (in terms of symbol period delays): [0 1 2 8 12 25]

• Taps power profile: [0.189 0.379 0.255 0.09 0.055 0.032]

As we can see, the equalization plays a very important role.

2 4 6 8 10
10−3

10−2

10−1

100

Es/N0

M=4, L=2, RCS2, h=1/3, alpha=0.75, natural mapping

FER no equalization
BER no equalization
FER equalization, UW, FFT=256
BER equalization, UW, FFT=256

Figure 5.17: BER and FER of the coded DVB-RCS2 CPM scheme with CC in the frequency selective
channel. The frames have k=2048 bits

Figures 5.18 and 5.19 depicts the performance of the equalized coded DVB-RCS2 scheme with a
convolutional code and with an LDPC code respectively over the aeronautical channel. We see that
in both of the cases, the equalization is essential. In the AWGN channel, for the same code length,
the LDPC performs better than the convolutional code by 0.5dB at BER=10−3. Our LDPC code
is also more robust in the aeronautical channel: at BER=2.10−3 for example, our optimized LDPC
code is 0.4dB better that the considered convolutional code.
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Figure 5.18: BER and FER of the coded DVB-RCS2 CPM scheme with CC in the aeronautical and
AWGN channel. The frames have k=2048 bits
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Figure 5.19: BER and FER of the coded DVB-RCS2 CPM scheme with our LDPC code in the
aeronautical and AWGN channel. The frames have k=2048 bits
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Conclusions et perspectives

Conclusions

Dans cette thèse, nous nous sommes intéressés aux défis liés à la demande croissante des allocations
de fréquences pour les applications de drones civils. En effet, grâce à leurs très bonnes propriétés, les
modulations à phase continues ont été prescrites par l’UIT et les recommandations de l’ICAO pour
les futurs standards des communications des drones par satellite et la diffusion de vidéo numérique
DVB-RCS2, et par l’OTAN pour le STANAG 4606. Cette classe de modulations forme un excellent
candidat pour ce contexte, non seulement pour son enveloppe constante et sa très bonne occupation
spectrale, mais aussi pour sa structure facilement adaptable pour les schémas concaténés en série.
L’objectif de cette thèse a été d’étudier les récepteurs de CPM et d’optimiser d’autres codes basés
sur des graphes creux. Pour les applications ciblées, nous nous sommes intéressés à des paquets
relativement grands et nous avons ciblés de bonnes performances à des taux d’erreur paquet à 10−3.

Les premiers codes qui ont été explorés dans la littérature pour les CPM sont les codes blocs
courts convolutifs binaires et non binaires. Les codes LDPC, eux, ont été rejetés parce que il a été
stipulé que la concaténation série avec des codes LDPC implique un système doublement itérative
difficile à analyser et donc à optimiser. Par conséquent, aucune étude réelle complète n’a été menée
dans ce sens, sinon dans quelque cas où les approches proposées manquent de généralité.

Le premier chapitre 1 a introduit la modulation à phase continue et a revu les majeures décom-
positions et les principales architectures des récepteurs. Ensuite, nous avons introduit les principaux
codes basés sur des graphes creux qui ont été explorés tout au long de cette thèse.

Dans le deuxième chapitre 2, nous avons analysé et optimisé les performances asymptotiques de
la concaténation en série de la CPM avec des codes LDPC non structurés. La méthode présentée
est basée sur une approche d’ajustement de courbe EXIT Chart et peut être généralisée à n’importe
quel autre détecteur. Grâce au fait que la courbe EXIT de la CPM atteint le point (1, 1), nous avons
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autorisé des noeuds de variables de degré 1 afin d’améliorer le seuil de décodage. Cette proportion
est toutefois soumise à une condition de stabilité que nous avons dérivée à partir d’une analyse EXIT
Chart. Dans le cas général, i.e. avec tout autre détecteur, notre condition de stabilité contraint
les proportions de degrés- 1 et 2. Les résultats de simulation montre que nous sommes capable de
concevoir des codes qui opèrent à des seuils très proches du seul minimal théorique.

Dans le troisième chapitre 3, nous avons étudié le décodage itératif avec des codes plus pratiques
dans le sens où ils sont facilement encodables, ont une représentation plus compacte ou peuvent
être implémentés dans des architectures parallélisables. Dans un premier temps, nous avons proposé
une méthode d’optimisation des codes GIRA. Nous avons choisi d’utiliser des codes systématiques
afin d’éviter une complexité d’optimisation supplémentaire liée aux noeuds de dopage. Pour ce,
nous avons considéré un scheduling de décodage particulier qui a permis de concevoir des codes
qui fonctionnent à seulement 0.2 − 0.5dB des codes LDPC non structurées. Deuxièmement, nous
avons étudié les codes protographes. En définissant convenablement une procédure d’optimisation,
nous avons conçu des codes qui fonctionnent à 0.5dB des codes LDPC non structurées. Enfin, pour
obtenir de bons protographes dans les deux régions de plancher d’erreur et waterfall, nous nous
sommes penchés sur les codes LDPC spatialement couplés basés sur des protographes. Nous avons
comparé les performances du couplage de protographes et du couplage des protograhes optimisés
pour la CPM. Puis nous avons proposé une nouvelle méthode de terminaison qui donne de très bons
seuils sans aucune perte de rendement en limitant le gain de convolution à une seul vague.

Dans le chapitre 4, nous avons étudié certains aspects de réception de la CPM et optimisé des codes
LDPC pour les récepteurs à faible complexité basés sur la décomposition de Laurent. Contrairement
aux détections CPM existantes du MAP, nous avons calculé un nouveau récepteur qui prend en
compte les termes de l’ISI induits par la représentation de Laurent. Les résultats des simulations
montrent que ce nouveau récepteur surpasse le classique aussi bien dans le cas des CPM codées que
non codées. Finalement, nous avons démontrer que les codes LDPC optimisés pour les récepteurs
optimaux restent très bons pour les récepteurs à faible complexité tant qu’un nombre suffisent de
composantes est pris en compte.

Dans le dernier chapitre 5, nous avons présenté des résultats de simulation dans le cadre de
certaines applications. Tout d’abord, nous avons comparé nos résultats avec le standard DVB-RCS2.
Ensuite, nous avons étudié le comportement des schémas CPM codées et non codées dans le contexte
du canal aéronautique. Enfin, nous avons prouvé qu’une procédure simple d’égalisation de type
MMSE conduit à de très bons résultats avec une CPM sur un canal ISI général et sur les canaux
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aéronautiques.

Perspectives

Beaucoup de perspectives peuvent être proposées pour des travaux futurs. Certaines d’entre elles
ont été entamées au cours de cette thèse et ont montré des résultats prometteurs.

1 Turbo-égalisation

Les nouveaux schémas de décodage itératifs des CPM sur des canaux sélectifs en temps/fréquence
comme le canal aéronautique peuvent prévoir une turbo-égalisation de type SISO MMSE. L’une des
premières études ont été menées par [Ozg08] où l’auteur a proposé une égalisation et un décodage
combinés pour les CPM binaires et a analysé les aspects liés à la complexité de calcul. Dans cette
étude, une parfaite connaissance du canal a été supposée. Les travaux futurs peuvent étendre les
résultats à des configurations non binaire de la CMP et explorer des algorithmes adaptatifs de
turbo-égalisation sans estimation de canal [Sch04, RBL05]. D’autre part, de nouveaux algorithmes
d’égalisation pourraient être proposés pour le récepteur Laurent MAP exact.

2 Synchronisation en temps et en fréquence et la détection non cohérente

Dans nos travaux, nous avons supposé une parfaite synchronisation en fréquence/temps et nous avons
négligé l’effet Doppler. Afin de finaliser l’analyse de notre système, nous devons étudier la capacité
de synchronisation et d’égalisation de la CPM sur les canaux à évanouissement avec l’effet Doppler,
une configuration que l’on rencontre dans le canal aéronautique. D’autre part, suivant des travaux
dans [VCT10] sur la détection non-cohérente, étendre les résultats à des schémas génériques de CPM
et à la turbo détection non cohérente peut être envisagé. Ces recherches aideront à concevoir des
systèmes de CPM robustes pour des applications qui opèrent dans de très mauvaises conditions de
vol comme les véhicules de lancement spatial.

3 Antennes mutiples

Nous pouvons envisager l’extension de nos résultats de l’égalisation MMSE simple du chapitre 5 à des
configurations simple input multiple outputs (SIMO) et étudier leur faisabilité dans le contexte de la
CPM. En supposant que les réalisations du canal aéronautiques sont indépendantes par antenne, nous
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pouvons lancer deux processus d’égalisation disjoints. Par conséquent, à la sortie des égaliseurs, nous
bénéficierons d’une diversité spatiale qui peut être facilement prise en compte dans les métriques de
branche du récepteur SISO CPM. Une analyse plus poussée peut également envisager un récepteur
conjoint égalisation/décodage. Ces résultats peuvent être comparés aux travaux dans [HK98, WZ07]
qui ont exploré les systèmes à entrées multiples-sorties multiples (MIMO) pour la CPM.

4 L'optimisation du mapping

Les modulations codées à bits entrelacés (BICM) [iFMC08] est une approche puissante qui tire profit
des différents niveaux de protection de bits dans les modulations d’ordres élevés pour améliorer le
seuil de décodage. L’optimisation de la BICM dans les schémas concaténés a été bien étudiée dans la
littérature et plusieurs considérations ont été proposées pour améliorer le seuil comme l’optimisation
de la configuration d’allocation de bits ou précodage [PS06, SB04, tB01b]. Les CPM M-aires présen-
tent également différents niveaux de protections des différents canaux de bits comme illustré par Fig.
5.21
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Figure 5.20: EXIT chart des différents canaux bits pour la CPM (M = 4, L = 2, h = 1/3, mapping
naturel ) à Es/N0 = −0.5dB

En s’inspirant de la méthode dans [HGiAB+14] et dans le contexte de la CPM, nous pouvons
optimiser le mapping afin d’améliorer les seuils des codes optimisés ou de compenser la dégradation
de seuil lorsque nous considérons la terminaison par troncature directe des codes LDPC couplés.
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Des travaux préliminaires dans le cadre des modulations linéaires ont été menés en annexe D et
promettent des résultats encourageants pour le CPM.

5 LDPC non binaires et adaptation de rendement

Dans cette thèse, nous avons exploré différents codes LDPC binaires. Cependant les codes LDPC non
binaires peuvent également être envisagés. Ces codes montrent d’excellents résultats dans diverses
applications après l’introduction d’un décodeur à faible complexité efficace dans le milieu de l’année
2000 [DF07]. En s’inspirant de l’étude [XA06], des aspects similaires peuvent être imaginés pour les
codes LDPC non binaires concaténés avec des CPM M-aires. En outre, dans [LZM15], les auteurs ont
étudié la complexité des algorithmes de décodage pour les codes LDPC non binaires concaténés avec
les CPM. Plusieurs techniques peuvent être envisagées: la représentation de Rimoldi, la décomposi-
tion de Mengali [MM95], les récepteurs à faible complexité, les EXIT Charts non binaires [SMB01]
. . . . Enfin, l’adaptabilité du rendement n’a pas été considérée pour concevoir les familles de codes à
rendement adaptable comme dans [NND12] pour le cas du canal AWGN binaire.

6 Analyse à taille �nie

Les énumerateurs de poids entrées/sorties sont un outil utile pour déterminer la performance des
codes à longueur finie dans les schémas concaténés [RL09]. En utilisant la borne de l’union du taux
d’erreurs binaires, on peut analyser la performance des schémas concaténés en série dans la région
du plancher d’erreur.

6.1 Énumérateurs de la CPM

Comme la CPM peut être assimilée à un code non linéaire, la définition des événements d’erreurs est
différente de codes convolutifs, puisque nous ne pouvons pas supposer le mot de code zéro. Pour cela,
nous considérons la représentation de l’arbre de la différence de phase[AAS86]. Dans les configurations
générales de la CPM, le spectre poids entrée/sorties est pas simple car les coefficients de pondération
de sortie sont plus ou moins continue. Une extension de la méthode dans [AAS86, MA01] pour
la taille finie des CPM reste un problème ouvert. Dans [MA01, GiAND09], les différents auteurs
ont étudié la borne de l’union liée aux schémas CPM+codes convolutifs. Afin d’alléger les calculs,
les auteurs ont considérés de grands entrelaceurs. Il est intéressant d’appliquer leur méthode à des
shémas LDPC+CPM.
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6.2 Les énumérateurs de poids pour les protographes

Pour les systèmes de codage avancés, il est généralement très complexe de calculer ls énumérateurs
de poids en raison de la haute complexité combinatoire des calculs. Pour cela, on peut calculer les
énumérateurs de poids asymptotiques (AWE), i.e. quand la longueur du mot de code tend vers
l’infini. Les AWE nous permettent de calculer la distance minimale d’un code spécifique: les bons
ensembles de codes sont ceux qui présentent une distance minimale qui croît linéairement avec la
longueur du code. Inspiré des schémas concaténés [BDMP98], la dérivation des énumérateurs de poids
des codes LDPC basés sur des protographes est bien expliquée dans [DJM98, FMT05]. Cependant,
les simulations deviennent rapidement irréalisables lorsque l’on traite des grands mots de code. Le
goulot d’étranglement dans ces calculs est l’évaluation des énumérateurs de poids des noeuds de
variables, en particulier pour les codes à rendement élevé (noeuds de parité fortement connectés) ou
pour les noeuds de parité généralisés. Afin d’alléger les calculs, [ASDR11] a proposé une conjecture
fondée sur une approche types de branches.

Dans l’annexe C, nous passons en revue les principales méthodes pour calculer les énumérateurs
de poids des codes propographes. Ensuite nous fournissons une preuve de la conjecture d’Abu
Surra. D’autre part, nous introduisons une nouvelle méthode qui calcule de manière plus efficaces
les énumérateurs de poids des noeuds de parité. Basée sur une relaxation continue du problème
d’optimisation, cette méthode donne des résultats très précis et réduit considérablement la complexité
même pour de très grandes longueurs de code ou de noeuds de parité de grand degré. Cette approche
peut être appliquée notamment afin d’alléger les calculs pour les codes à haut rendement, les codes
protographes généralisés ou les codes protographes spatialement couplés. Les résultats de cette
annexe sont aussi utiles pour le dénombrement d’autres objets comme les ensembles de piégeage, les
ensembles d’arrêt et les pseudo mots de code. Finalement, le calcul des énumérateurs asymptotiques
pour les espaces euclidiens n’a pas encore été considéré et serait utile pour les schémas de modulation
linéaire et non linéaire.

Pour les énumérateur de poids à taille finis ou pour les énumérateurs des codes LDPC non binaires,
la méthode mentionnée ci-dessus n’est pas adaptée et engendre des calculs de très haute complexité.
Dans ce cas, l’approche proposée dans [GDF15] serait plus adaptée.
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Conclusions

In this thesis, we were interested in the challenges related to the increasing demand of the frequency
allocations for the civil UAVs applications. Indeed, thanks to their very good properties, continuous
phase modulations were prescribed by the ITU and the ICAO recommendations for future UAV to
satellite communications, digital video broadcasting DVB-RCS2 and by the NATO for STANAG
4606. This class of modulations is an excellent candidate for this context not only for its constant
envelope and very good spectral occupancy, but also for its structure easily adaptable for serially
concatenated schemes. The objective of this thesis was to study the CPM receivers and to design
LDPC and other sparse graph-based codes for CPM as close as possible to the channel capacity. For
the targeted applications, we are interested in relatively large frames and good performance at frame
error rates of 10−3.

The first investigated channel codes for CPM in the literature were based on the binary and
non-binary short block convolutional codes. However, LDPC codes were dismissed because it has
been widely argued that serial concatenation with LDPC codes implies a doubly iterative system
which is difficult to analyse and thus to optimize. Consequently, no real complete studies have been
conducted in that direction, and in most of the cases, the proposed approaches lack generality.

The first chapter 1 introduced continuous phase modulation and reviewed its main decomposi-
tions and receiver architectures. Then, we introduced the main sparse graph codes that have been
investigate throughout the dissertation.

The second chapter 2 analysed and optimized the asymptotic performance for the serial concate-
nation of the CPM with unstructured LDPC codes. The presented framework is based on an EXIT
curve fitting approach and can be generalized to any other detector. Thanks to the fact that the
EXIT chart of the CPM reaches the point (1, 1), we allowed some degree-1 variable nodes to improve
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the decoding threshold. This proportion is subject to a stability condition that we derived from an
EXIT chart point of view. In the general case, i.e. with any other detector, our stability condition
constraints the proportions of degree-1 and degree-2 variable nodes in order to insure successful de-
coding. Simulation results where we were able to design LDPC codes very close to the capacity are
also given.

In the third chapter 3, we studied the iterative decoding with more practical sparse graph based
codes in the sense that they are easily encodable, have compact representations and can be imple-
mented in parallel architectures. Firstly, we provide an optimization method to design GIRA codes.
Since we proposed to use of systematic codes in order to avoid a supplementary optimization complex-
ity of the doping check nodes, we considered an uncommon iterative decoding that allows to design
codes that operate between 0.2 − 0.5dB from the unstructured LDPC codes. Secondly, we studied
protograph codes. By suitably defining an optimization procedure we were able to design codes that
operate at 0.5dB from the unstructured LDPC codes. Finally, to obtain good protographs in both the
error floor and water fall regions, we focused on protograph based spatially coupled LDPC codes. We
compared the performance of coupling simple protograph and coupling CPM optimized protograhs.
Moreover, we proposed a new termination method that gives very good thresholds without any rate
loss by restricting the convolution gain to one wave only.

In the chapter 4, we studied some receiver aspects of the CPM and designed LDPC codes for low
complexity receiver based on Laurent’s decomposition. Unlike the existing CPM MAP detections, we
derived a new receiver that takes into account the ISI terms induced by the Laurent’s representation.
The simulation results show that this new receiver outperforms the classical one by up to 2dB for both
coded and uncoded CPM schemes. Finally, we demonstrate that the performance of the optimized
LDPC codes for full complexity receivers remain very good for the low complexity implementation
as long as enough components are taken into account.

The last chapter 5 gave simulation results in the context of some applications. Firstly, we com-
pared our design results to the DVB-RCS2 standard. Then, we investigated the behaviour of the
coded and uncoded CPM systems in the context of aeronautical channel. Finally, we proved that a
simple equalization procedure of type MMSE leads to very good results with CPM over a general ISI
and over the aeronautical channels.
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Perspectives

Many perspectives can be suggested for future works as enumerated in the following non exhaustive
propositions. Some of them have been initiated during this thesis and have shown promising results.

1 Turbo equalization

Novel iterative CPM decoding schemes over frequency/time fading channels as the aeronautical chan-
nel can include turbo equalizations of type SISO MMSE equalization. One of the first studies were
conducted by [Ozg08] where the author proposed a combined equalization and decoding for binary
CPMs and analysed related computational complexity aspects assuming perfect channel state infor-
mation knowledge. Future works can extend the results to non binary CPM configurations and inves-
tigate adaptive turbo equalization algorithms without channel estimation functions [Sch04, RBL05].
Moreover, new equalization algorithms could be proposed for the new Laurent-based receiver.

2 Frequency/time synchronization and non-coherent detection

In our works, we assumed perfect frequency/time synchronizations and neglect the Doppler effect. In
order to finalize the analysis of our system, we need to investigate the synchronization and mitigation
capacity of the CPM over time and frequency fading channels with Doppler effect, a configuration
that is encountered in the aeronautical channel. On the other hand, following the works in [VCT10]
on non-coherent detection, extending the results to general CPM schemes and to non-coherent turbo
detection can be envisaged. These research will help design robust CPM schemes for applications
that can run across very bad flight conditions such as space launching vehicles.

3 Multiple antennas

We can consider the extension of our results of the simple MMSE equalization in chapter 5 to
simple input multiple output (SIMO) schemes and their feasibility in the context of the CPM. By
assuming that the aeronautical channel realizations are independent per antennas, we can run two
disjoint equalization processes at the receiver side. As a result, at the output of the equalizers, we
benefit from a spatial diversity that can be easily combined in the branch metrics of the SISO CPM
receiver. Further analysis can consider also a joint equalization/decoding receiver. These results can
be compared to the [HK98, WZ07] who investigate multiple input multiple output (MIMO) systems
for the CPM.
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4 Mapping optimization

Bit-interleaved coded modulation (BICM) technique [iFMC08] is a powerful approach that takes
advantage of the different protection levels of bit channels in high modulation orders to improve the
decoding threshold. The optimization of BICM in concatenated schemes has been well studied in
the literature and several considerations have been proposed to improve the threshold such as the
bit allocation mapping optimization or the precoding [PS06, SB04, tB01b].

M-ary CPM schemes also exhibits different bit protection levels of the different bit channels as
depicted by Fig. 5.21
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0.4

0.6
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I e

First bit channel EXIT

Second bit channel EXIT
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Figure 5.21: EXIT chart of different bit channels for the CPM scheme (M = 4, L = 2, h = 1/3,
natural mapping) at Es/N0 = −0.5dB

Inspired by the method in [HGiAB+14] and in the context of the CPM, we can optimize the
mapping in order to improve the design codes thresholds or in order to compensate the threshold
degradation when we consider the direct truncation termination for spatially coupled LDPC codes.
Preliminary works in the context of linear modulations were investigated in appendix D and promise
encouraging results for the CPM.

5 Non-binary LDPC codes and rate compatible schemes

In this thesis, we analysed different binary LDPC codes. However non binary LDPC codes can also
be of interest. These codes shows excellent results in various applications after the introduction
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of an efficient low complexity decoder in the middle of 2000 [DF07]. Inspired by the study in
[XA06], similar aspects can be investigate for non binary LDPC codes concatenated with M-ary
CPM schemes. Moreover, in [LZM15], authors studied low complexity decoding algorithm for non
binary LDPC codes and CPM concatenations. One can go further by designing non binary LDPC
codes for CPM schemes. Several techniques can be considered: Rimoldi’s representations, Mengali’s
decomposition [MM95], low complexity receivers, non binary EXIT charts [SMB01] . . .Moreover, rate
compatibility was not considered to design families of rate compatible protograph codes as conducted
in [NND12] for the binary input AWGN channel , and thus could be considered in the context of the
CPM.

6 Finite length analysis

Codeword input output weight enumerators are a useful tool to determine the finite length perfor-
mance of concatenated schemes [RL09]. Using the union bound on the bit error probability, one can
analyse the performance of serially concatenated schemes in the error floor region.

6.1 CPM enumerator

Because the CPM can be assimilated to an non-linear code, the definition of error events is different
from convolutional codes since we cannot assume all-zero information word. Instead, we consider the
difference phase tree representation [AAS86]. In general CPM configurations, the input output weight
spectrum is not straightforward because the output weights are more or less continuous. Extending
the method in [AAS86, MA01] to finite length CPM enumerators remains an open problem. In
[MA01, GiAND09], authors studied the union bound for CPM+convolutional codes. In order to
alleviate the computations, authors considered large interleaver lengths. It is interesting to apply
their method to LDPC+CPM coded schemes.

6.2 Protograph-based LDPC enumerators

For advanced coding schemes, it generally impractical to compute weight enumerators due to the
high combinatorial and computation complexity. Instead, one can compute asymptotic weight enu-
merators (AWE), i.e. when codeword length tends to infinity. The AWE allows us to compute the
minimum distance of a specific code: good code ensembles are those which have a minimum dis-
tance that grows linearly with the code length. Inspired from concatenated schemes [BDMP98], the
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derivation of the ensemble weight enumerators for protograph-based LDPC codes are well explained
[DJM98, FMT05]. However, the simulations become quickly unfeasible when dealing with large code
lengths. The bottleneck is the evaluation of the check node enumerators, especially for high rate
codes (highly connected check nodes) and for generalized check nodes. In order to alleviate the
computations, [ASDR11] proposed a conjecture based on an edge types approach.

In Appendix C, we review the main methods for the propograph code ensemble weight enumer-
ators. We then provide a proof of the Abu Surra’s conjecture. Additionally, we introduce a new
method that computes more efficiently the enumerator of the check nodes. Based on a continuous
relaxation optimization, this method gives very accurate results and reduces greatly the complexity
even for very large code lengths or large degree check nodes. This approach can be applied par-
ticularly to lighten the computations for high rate codes, generalized protograph LDPC codes or
protograph-based spatially coupled LDPC codes. The results of this appendix are also useful for
the enumeration of other non-codeword objects such as trapping sets, stopping sets and pseudocode-
words. Moreover, extension of the asymptotic weight enumerators for euclidean spaces has never
been considered and could be useful for linear and non-linear high order modulation-based schemes.

For finite input output weight enumerators or for non binary protograph-based LDPC codes,
the method mentioned here is inadapted and engender high complexity computations. Instead, the
method proposed in [GDF15] must be investigated.
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Appendix A

A detailed proof of the Laurent's
decomposition

In this appendix, we provide a detailed demonstration of the Laurent’s decomposition in [Lau86].
Let us consider a CPM phase function '(t) defined as:

'(t) =

0 t ≤ 0

hπ t ≥ LT
(A.1)

Consider the complex notation of a CPM signal:

s(t) = exp j
[
�0 +

+1∑
−1

an.' (t− nT )
]
, where an = ±1 (A.2)

For simplicity reasons, let us use the following notations, where T is the bit duration duration:

M = 2L−1

� = hπ

C = cos(�)

S = sin(�)

J = exp j�

t = NT + τ, with 0 ≤ τ < T

(A.3)

A baseband CPM signal is written as (see chapter 1 for more details):

s(t) = exp j
[
�0 +

+1∑
−1

an.'(t− nT ))
]

= exp j

�0 +
N−L∑
−1

an.'(t− nT ) +
+1∑

N−L+1
.'(t− nT )
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= exp j [�0]� exp j
[
N−L∑
−1

an.'(t− nT )
]
� exp j

 +1∑
N−L+1

an.'(t− nT )


(A) (B)

Without loss of generality, we can consider �0 = 0. The time instant of (A) is:

n ≤ N − L) t− nT ≥ t− (N − L)T

) t− nT ≥ NT + τ −NT + LT, ∀τ ∈ J0, T J

) t− nT ≥ LT + τ

) t− nT ≥ LT

Then, using Eq. (A.1), we get:

(A) = exp j
[
N−L∑
−1

an�

]
= (exp j�)

PN−L
−∞ an = J

PN−L
−∞ an

For term (B), since we are at instant t = NT + τ , all symbols ak when k > N are equal to 0.
Then:

(B) = exp j

 +1∑
N−L+1

an.'(t− nT )


= exp j

 N∑
N−L+1

an.'(t− nT )


= exp j

 0∑
−L+1

aN+n.'(t− (N + n)T )


= exp j

[
L−1∑

0
aN−n.'(t− (N − n)T )

]

Finally, we can rewrite expression (A.2) to find expression in [Lau86, Eq. (4)] as:

s(t) = exp j�0 � J
PN−L
−∞ an �

L−1∏
i=0

exp j [aN−i.'(t− (N − i)T )] (A.4)
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[Lau86] shows that it is possible to see the complex exponential in (A.4) as sum of two terms
where the second one is data independent. In the following, we provide a detailed derivation of such
expression. For simplification reasons, we take '(t− nT ) = '.

• If an = +1, we have

ejan' = ej'

= ej' � ej� − e−j�

ej� − e−j�

= ej'ej� − ej'e−j�

ej� − e−j�

= ej'ej� − e−j'ej� + e−j'ej� − ej'e−j�

ej� − e−j�

= ej�
(
ej' − e−j'

)
+ ej(�−') − e−j(�−')

ej� − e−j�

= ej� � sin'
sin� + sin (�− ')

sin�

• Otherwise if an = −1, we have:

ejan' = e−j'

= e−j' � ej� − e−j�

ej� − e−j�

= e−j'ej� − e−j'e−j�

ej� − e−j�

= e−j'ej� − ej'e−j� + ej'e−j� − e−j'e−j�

ej� − e−j�

= ej(�−') − e−j(�−') + e−j�
(
ej' − e−j'

)
ej� − e−j�

= sin (�− ')
sin� + e−j� � sin'

sin�

In both cases, we deduce that

ejan'(t−nT ) = sin (�− '(t− nT ))
sin� + e−j�

sin'
sin�

Using notations in (A.3), we finally get the equality in [Lau86, Eq. (5)]:

ejan'(t−nT ) = sin (�− '(t− nT ))
sin� + Jan

sin ('(t− nT ))
sin� (A.5)
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At this stage, we define a generalized phase pulse function ψ(t) as:

ψ(t) =

'(t) t < LT

�− '(t− LT ) LT ≤ t
(A.6)

This definition allows us to introduce the following sequence, which plays an important role in
the Laurent’s decomposition:

Sn(t) = sin (ψ(t+ nT ))
S

= S0(t+ nT ) (A.7)

From Eqs. (A.4) and (A.5), we conclude:

S(t) = J
PN−L
−∞ an �

L−1∏
i=0

exp j [aNi .'(t− (N − i)T )]

= J
PN−L
−∞ an �

L−1∏
i=0

�sin [�− '(t− (N − i)T )]
S

+ JaN−i
sin ['(t− (N − i)T )]

S

�

One can easily show that:

∀i ∈ J0, L− 1K, t− (N − i)T < LT

∀i ∈ J0, L− 1K, t− (N − i− L)T ≥ LT

This leads to the simplified expression:

S(t) = J
PN−L
−∞ an

L−1∏
i=0

[Si+L−N (t) + JaN−iSi−N (t)] (A.8)

Since the sum indexes considered in this equation vary as :

(i+ L−N) ∈ JL−N, 2L−N − 1K

(i−N) ∈ J−N,L−N − 1K

we conclude that:

{Si}i∈JL−N,2L−N−1K \ {Sn}i∈J−N,L−N−1K = ;

Consequently, the product in (A.8) can be written as a sum of 2L different terms, where each of them
is a product of L functions of the set {Si}i∈J−N,2L−N−1K
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In the following example, we identify these terms. Let us consider the case where N = 0 and
L = 4. Then we have:

S(t) = (S4 + Ja0S0)(S5 + Ja1S1)(S6 + Ja2S2)(S7 + Ja3S3)

After expanding this product, S(t) contains 16 different terms. Those that contain S0(t) are:

F1(t) = S0.S1.S6.S7 F2(t) = S0.S1.S2.S7 F3(t) = S0.S2.S5.S7 F4(t) = S0.S1.S3.S6

F5(t) = S0.S3.S5.S6 F6(t) = S0.S2.S3.S5 F7(t) = S0.S5.S6.S7 F8(t) = S0.S1.S2.S3

From these 8 functions and their time-translated versions, we can derive all the 16 terms taking
place in S(t) as:

S(t) = F1(t) + F2(t) + F3(t) + F4(t) + F4(t+ T ) + F5(t) + F5(t+ T ) + F6(t) + F6(t+ T )

+ F6(t+ 2T ) + F7(t) + F8(t) + F8(t+ T ) + F8(t+ 2T ) + F8(t+ 3T ) + F8(t+ 4T )

Generalizing to any value of N and L, one can always construct such 2L−1 functions, noted
{Ck}k∈J0,2L−1−1K, which generate, by time translations of aT/a ∈ N, all the 2L terms of S(t).

Compute the module of Ck

Let us now consider the new expression of S(t):

S(t) =
L−1∏
i=0

Si+L−N + Si−N

=(SL−N + S−N )(SL−N+1 + S−N+1)...(SL−N+i + Si−N )(SL−N+i+1 + S−N+i+1)...

(S2L−N−1 + S−N+L−1)

i.e.:

S(t−NT ) = (SL + S0)(SL+1 + S1)...(SL+i + Si)(SL+i+1 + Si+1)...(S2L−1 + SL−1)

By definition, Ck are terms of S(t) where S0(t) appears. It is clear from by expanding the above
factorization that there are exactly 2L−1. They are found when expending the product:

S0 � (SL+1 + S1)� (SL+2 + S2)� ...� (SL+i + Si)� ...� (S2L−1 + SL−1)
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Each Ck can then be redefined by the fact that it is S0 times the sum of the elements of a pair chosen
in {(SL+i, Si)}i∈J1,L−1K.

On the other hand, let us introduce the notation:

{SL+i, Si}i∈J1,L−1K = {Si+L�i,k/αi,k ∈ {0, 1}}

This leads to the new expression of Ck:

Ck(t) = S0 �
L−1∏
i=1

Si+L�i,k where αk = (α1,k, α2,k, ..., αL−1,k) ∈ {0, 1}L−1

Therefore, each Ck can be characterized by a unique vector αk. Since there are 2L−1 of them,
all values of αk can be exhaustively enumerated by taking the binary representation on L− 1 bits of
the integers {0, 1, . . . , 2L−1 − 1}.

Finally, [Lau86, Eq. (10)] is obtained by reordering the Ck’s as following:

Ck(t) = S0(t−NT )�
L−1∏
i=1

Si+L�i,k(t−NT ), k =
L−1∑
i=1

2i−1αi,k (A.9)

Compute the duration of Ck

According to Eq. (A.5):

t > 2LT, S0(t) = 0

When applied to Ck, this leads to:

t+ [i+ Lαk,i]T ≥ 2LT ) t ≥ [(2− αk,i)L− i]T

Consequently, Ck(t) is different from the null function if t ≤ [(2− αk,i)L− i]T . From Eq. (A.9),
we conclude:

0 ≤ t ≤ T � min
i∈J1,L−1K

[(2− αi,k)L− i]

which gives the duration of Ck
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Compute the module of Ck(t)

The pseudo symbol corresponding to Ck(t) is given by Eq. (A.8) and (A.9):

N−L∑
−1

an + aN +
L−1∑

1
(1− αk,i)aN−i

By introducing the following recursion, one can derive the phase of Ck:

Ak,N =
N−L∑
−1

an + aN +
L−1∑

1
(1− αk,i)aN−i

=
N−L∑
−1

an +
N∑

N−L+1
an −

N∑
N−L+1

an + aN +
L−1∑

1
(1− αk,i)aN−i

=
N∑
−1

an −
0∑

−L+1
aN+n + aN +

L−1∑
1

(1− αk,i)aN−i

=
N∑
−1

an −
L−1∑

1
aN−n +

L−1∑
1

(1− αk,i)aN−i

=
N∑
−1

an −
L−1∑

1
αk,i.aN−i

= A0,N −
L−1∑

1
αk,i.aN−i

Finally, we form the Laurent’s decomposition of a CPM signal as:

S(t) =
+1∑
−1

M−1∑
k=0

JAk,N .Ck(t−NT ) (A.10)

By abuse of notations, Ck here refer to the module of Ck.
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Appendix B

Proof of the stability condition

EXIT chart recursions are given by:

I`v−c =
dv∑
i=1

λiJ

[√
(i− 1)

[
J−1

(
I`−1
c−v

)]2
+
[
J−1

(
I`cpm−v

)]2]

I`cpm−v = T�
(
J
(√

iJ−1
(
I`−1
c−v

)))
I`−1
c−v =

dc∑
j=2

ρjI
`−1
c−v (j)

I`−1
c−v (j) = 1− J

(√
i− 1J−1

(
1− I`−1

v−c

))
Notations:

x` = I`v−c

J(x) := J(x2/2)

f
(
x`−1

)
= I`−1

c−v = 1−
dc∑
j=2

ρjJ
(
(j − 1) J−1

(
1− x`−1

))
(B.1)

Then:

x` =
dv∑
i=1

λiJ
[
(i− 1) J−1 � f

(
x`−1

)
+ J−1 � T� � J

(
iJ−1 � f

(
x`−1

))]
Define the recursion function:

x` = 	
(
x`−1

)
=

dv∑
i=1

λiJ
[
(i− 1) J−1 � f

(
x`−1

)
+ J−1 � T� � J

(
iJ−1 � f

(
x`−1

))]
(B.2)

Introduce the notations:

� = J−1 � f � = J−1 � T� � J (B.3)
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where f(.) is defined in Eq. (B.1).
We get:

	 (x) =
dv∑
i=1

λiJ [(i− 1)� (x) + � (i� (x))] (B.4)

Suppose T� is differentiable arround 1− (slope of the tangent at 1− is finite). We have:

d	
dx

(x) =

 dv∑
i=1

λiJ [(i− 1)� (x) + � (i� (x))]

′

=
dv∑
i=1

λi [(i− 1)� (x) + � (i� (x))]′ J ′ [(i− 1)� (x) + � (i� (x))]

=
∑
i

λi
�
(i− 1)�′(x) + i�′(x)�′(i�(x))

�
J ′ [(i− 1)�(x) + �(i�(x))] (B.5)

First we have:

�′(x) =
(
J−1 � f

)′
(x)

= f ′(x)
(
J−1

)′
� f(x)

= f ′(x) 1
J ′ � J−1 � f(x)

= f ′(x) 1
J ′ � J−1 � f

(x)

= f ′(x) 1
J ′ (�(x)) (B.6)

Let us find f ′. From Eq. (B.1) we obtain:

f ′(x) =

1−
∑
j

ρjJ
(
(j − 1)J−1(1− x)

)′

= −
∑
j

ρj(j − 1)
(
J−1(1− x)

)′
J ′
(
(j − 1)J−1(1− x)

)
= −

∑
j

ρj(j − 1) −1
J ′ � J−1(1− x)J

′
(
(j − 1)J−1(1− x)

)
=
∑
j

ρj(j − 1) 1
J ′ � J−1(1− x)J

′
(
(j − 1)J−1(1− x)

)
(B.7)

Finally, �′ is equal to:

�′(x) =
(
J−1 � T� � J

)′
(x)
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= J ′(x)�
(
J−1 � T�

)′
� J(x)

= J ′(x)� T ′� � J(x)�
(
J−1

)′
� T� � J(x)

= J ′(x)� T ′� � J(x)� 1
J ′ � J−1 � T� � J(x)

= J ′(x)� T ′�(J(x))� 1
J ′(�(x)) (B.8)

From Eqs. (B.5), (B.6), (B.8) and (B.7)

d	
dx

(x) =
∑
i

λi
�
(i− 1)�′(x) + i�′(x)�′(i�(x))

�
J ′ [(i− 1)�(x) + �(i�(x))]

=
∑
i

λi
�
(i− 1) + i�′(i�(x))

�
�′(x)J ′ [(i− 1)�(x) + �(i�(x))]

=
∑
i

λi

�
(i− 1) + iJ ′(i�(x))� T ′�(J(i�(x)))� 1

J ′(�(i�(x)))

�
� f ′(x) 1

J ′ (�(x))
� J ′ [(i− 1)�(x) + �(i�(x))]

=
∑
i

λi

�
(i− 1) + iT ′�(J(i�(x)))� J ′(i�(x))

J ′(�(i�(x)))

�
�
∑
j

ρj(j − 1) 1
J ′ � J−1(1− x)J

′
(
(j − 1)J−1(1− x)

) 1
J ′ (�(x))

� J ′ [(i− 1)�(x) + �(i�(x))]

=
∑
i

λi

�
(i− 1) + iT ′�(J(i�(x)))� J ′(i�(x))

J ′(�(i�(x)))

�
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x))

�
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

= λ1T
′
�(J(�(x)))� J ′(�(x))

J ′(�(�(x)))
J ′ [�(�(x))]
J ′ (�(x))

∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

+
∑
i�2

λi

�
(i− 1) + iT ′�(J(i�(x)))� J ′(i�(x))

J ′(�(i�(x)))

�
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x))

�
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

= λ1T
′
�(J(�(x)))

∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))
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+
∑
i�2

λi

�
(i− 1) + iT ′�(J(i�(x)))� J ′(i�(x))

J ′(�(i�(x)))

�
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x))

�
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x))

= λ1T
′
�(J(�(x)))

∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x)) (B.9)

+
∑
i�2

(i− 1)λi
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x)) �
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x)) (B.10)

+
∑
i�2

iλiT
′
�(J(i�(x)))� J ′(i�(x))

J ′(�(i�(x))) �
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x))

�
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x)) (B.11)

Useful limits

• From the definition of the function J(.) [tB01d], we have:

J(0) = 0 , J−1(0) = 0 , lim
x!+1

J(x) = 1 and lim
x!1−

J−1(x) = +1 (B.12)

• Using the continuity of J−1(.) and f(.), Eq. (B.3) gives:

lim
x!1−

�(x) = lim
x!1−

J−1 � f(x)

= lim
x!1−

J−1

1−
dc∑
j=2

ρjJ
(
(j − 1) J−1 (1− x)

) = +1 (B.13)

• From different observations, let us assume that the derivative of the EXIT transfer function of
the detector T� is defined at 1, i.e.:

T ′�(1) ∈ R (B.14)

• In [RU08], for small x, the Taylor expansion of J around 0 is given by:

J(x) = x

4 −
x2

16 + x3

48 +O(x4)

which leads to:

J ′(0) = 1
4 (B.15)
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• Using the result in [RU08] for very large x:

J(x) = 1−
√
π

ln(2)e
−x4

(
m−

−1
2 − 8 + π2

4 x
−3
2 +O(x

−5
2 )
)

By deriving this Taylor expansion and taking the first order only, we get:

J ′(x) �
+1

√
π

4 ln(2)
e−

x
4

√
x

(B.16)

Limit of the term in Eq. (B.9)

• From Eq. (B.15), and since J ′(.) is not null around 0, when x! 1, we have:

lim
x!1−

J ′
(
(j − 1)J−1(1− x)

)
J ′(J−1(1− x)) = J ′(0)

J ′(0) = 1 ∀j ∈ N n {0, 1} (B.17)

• We then have from Eqs. (B.17) and (B.14):

lim
x!1−

λ1T
′
�(J(�(x)))

∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x)) = λ1T

′
�(1)

∑
j

ρj(j − 1) (B.18)

Limit of the term in Eq. (B.10)

• From Eq. (B.16), and since J ′(.) is not null at high values, we can write:

J ′ [(i− 1)�(x) + �(i�(x))]
J ′ (�(x)) � e−

(i−1)�(x)+�(i�(x))
4p

(i− 1)�(x) + �(i�(x))

p
�(x)

e−
�(x)

4

�
s

�(x)
(i− 1)�(x) + �(i�(x)) exp−(i− 1)�(x) + �(i�(x))− �(x)

4

�
s

�(x)
(i− 1)�(x) + �(i�(x)) exp−(i− 2)�(x) + �(i�(x))

4 (B.19)

• if i = 2, then Eq. (B.19) becomes:

J ′ [(i− 1)�(x) + �(i�(x))]
J ′ (�(x)) �

s
�(x)

�(x) + �(2�(x)) exp−�(2�(x))
4

If limx!1− T�(x) < 1:

lim
x!1−

s
�(x)

�(x) + �(i�(x)) exp−�(2�(x))
4 = exp−J

−1(T�(1))
4
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Else if limx!1− T�(x) = 1: Since �(.) and �(.) are positive functions, we can write:

0 ≤
s

�(x)
�(x) + �(i�(x)) exp−�(2�(x))

4 ≤ exp−�(2�(x))
4

Using the Sandwich theorem [Wei05], we conclude:

lim
x!1−

s
�(x)

�(x) + �(i�(x)) exp−�(2�(x))
4 = 0

To summarize:

lim
x!1−

s
�(x)

�(x) + �(i�(x)) exp−�(2�(x))
4 = �(T�(1)) (B.20)

where �(x) is defined as:

�(x) =

0, if x = 1

exp
(
−J−1(x)

4

)
, otherwise

• Else if i > 2, in order to compute the limit of the left function in Eq. (B.19), we can simplify
the right expression, using the fact that �(.) is not null at high values:

J ′ [(i− 1)�(x) + �(i�(x))]
J ′ (�(x)) �

vuut 1
(i− 1) + i�(i�(x))

i�(x)

exp

−(i− 2) + i�(i�(x))
i�(x)

4 �(x)

 (B.21)

Since, by the definition of �(.), �(.), Eq. (B.3), and the positivity of J(.) [tB01d]:

�(i�(x))
i�(x) = J−1 � T� � J(i�(x))

iJ−1 � f(x) ≥ 0

then

0 ≤
vuut 1

(i− 1) + i�(i�(x))
i�(x)

exp

−(i− 2) + i�(i�(x))
i�(x)

4 �(x)

 ≤ s 1
i− 1 exp

(
− i− 2

4 �(x)
)

(B.22)

From Eq. (B.13), we deduce that:

lim
x!1−

s
1

i− 1 exp
(
− i− 2

4 �(x)
)

= 0, ∀i ∈ N n {0, 1}
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Using the sandwich theorem in Eq. (B.22), we find out:

lim
x!1−

vuut 1
(i− 1) + i�(i�(x))

i�(x)

exp

−(i− 2) + i�(i�(x))
i�(x)

4 �(x)

 = 0

We conclude, from the equivalence in Eq. (B.21), that:

lim
x!1−

J ′ [(i− 1)�(x) + �(i�(x))]
J ′ (�(x)) = 0 (B.23)

• Finally, from Eqs. (B.17) and (B.23):

lim
x!1−

∑
i�2

(i− 1)λi
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x)) �
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x)) =

λ2�(T�(1))
∑
j

ρj(j − 1) (B.24)

Limit of the term in Eq. (B.11)

• Let us compute limx!1−
J ′(i�(x))

J ′(�(i�(x))) �
J ′[(i−1)�(x)+�(i�(x))]

J ′(�(x))

• Because J ′(.), �(.) and �(.) are not null for large x and using Eq. (B.16), we get then:

J ′(i�(x))
J ′(�(i�(x))) �

e−
i�(x)

4p
i�(x)

p
�(i�(x))
e−

�(i�(x))
4

�
s
�(i�(x))
i�(x) exp− i�(x)− �(i�(x))

4 (B.25)

• By Multiplying Eq. (B.25) and (B.19) to form the term in Eq. (B.11), we get:

J ′(i�(x))
J ′(�(i�(x)))

J ′ [(i− 1)�(x) + �(i�(x))]
J ′ (�(x)) �

s
�(i�(x))
i�(x) exp− i�(x)− �(i�(x))

4

�
s

�(x)
(i− 1)�(x) + �(i�(x)) exp−(i− 2)�(x) + �(i�(x))

4

�
s

�(i�(x))
(i− 1)i�(x) + i�(i�(x)) exp−(2i− 2)�(x)

4

�
s

�(i�(x))
(i− 1)i�(x) + i�(i�(x)) exp−(i− 1)

2i i�(x)
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Since (i− 1)i�(x) ≥ 0, We have:

0 ≤
s

�(i�(x))
(i− 1)i�(x) + i�(i�(x)) exp−(i− 1)

2i i�(x) ≤
√

1
i

exp−(i− 1)
2i i�(x) ≤ exp−(i− 1)

2i i�(x)

Finally, using Sandwich theorem, we compute:

lim
x!1−

J ′(i�(x))
J ′(�(i�(x)))

J ′ [(i− 1)�(x) + �(i�(x))]
J ′ (�(x)) = 0 (B.26)

• Finally, from Eqs. (B.14), (B.17) and (B.26), the limit in Eq. (B.11) is:

lim
x!1−

∑
i�2

iλiT
′
�(J(i�(x))) J ′(i�(x))

J ′(�(i�(x)))
J ′ [(i− 1)�(x) + �(i�(x))]

J ′ (�(x))
∑
j

ρj(j − 1)J
′ ((j − 1)J−1(1− x)

)
J ′(J−1(1− x)) = 0

(B.27)

Conclusion

From Eqs. (B.18), (B.24) and (B.27), we conclude that:

d	
dx

(1) = lim
x!1−

d	
dx

(x) =
�
λ1T

′
�(1) + λ2�(T�(1))

�∑
j

ρj(j − 1) (B.28)

Attractive point

The recursion Eq. (B.2) is continuously differentiable in any neighborhood of 1−, that attraction at
the point 1 is guaranteed if jd	

dx (1)j < 1, i.e. from Eq. (B.28):

Theorem 2 (Stability condition).

λ1T
′
�(1) + λ2�(T�(1)) < 1P

j ρj(j − 1) (B.29)

where:

�(x) =

0, if x = 1

exp
(
−J−1(x)

4

)
, otherwise



Appendix C

Ensemble weight enumerators for
protographs: a proof of Abu Surra's
conjecture and a continuous relaxation
for a faster enumeration

C.1 Protograph ensemble weight enumerators

C.1.1 Notations

A protograph [Tho03] is a relatively small bipartite graph described by the tuple (V,C,E). The set
of variable nodes V (of cardinality nv) is connected to the set of check nodes C (of cardinality nc)
through edges in E (the set of edges with cardinality jEj). The protograph is usually described by
its protomatrix B where B(j, i) ≥ 0 is the number of connections between the variable node (VN)
vi and the check node (CN) cj .

Let qvi (qcj ) be the degree of the VN vi (resp. CN cj). The corresponding protograph based
LDPC code is constructed by "copy-and-permute" operations [Tho03]: it consists of making a certain
number of copies of the protograph, say N times, and merging them by permuting the endpoints of
each edge copies. Fig. C.1 depicts the ’vectorized’ protograph code associated with the following
base matrix:

B =

2 1
1 1


Let Ωt (reps. Ωp) denote the set of transmitted (resp. punctured) VNs of cardinality nt (resp.

np). The set operator j.j returns the number of elements of an ensemble, the matrix operator .T

denotes the transposition and the vector function k.k1 (resp. k.k2) is the L1 (resp. L2) norm.

221
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Figure C.1: The ’vectorized’ protograph ldpc code generated by "copy-and-permute" operations.
Each interleaver πij1�i�5 permutes the bundle of the N replicas of each edge.

Figure C.2: Main notations considered for VNs and CNs

The overall input weight vector is denoted by d = [di]i: i.e., to each VN vi, we associate its input
weight di (0 ≤ di ≤ N) and output weight vector wi = [wi,1, . . . , wi,qvi ]

T . For CNs, we denote by
wj = [wj,1, . . . , wj,qcj ]

T the input weight vector of a CN cj ,and a fictitious edge output with weight 0.
Observe that wj is directly deduced from d and the graph connectivity, i.e. wi,k = wj,l if B(l, k) 6= 0.
Also, note that each component of the vector wj is equal to a component di of the vector d if vi is a
neighbor of cj for some i.

Eq. (C.2) summarizes the main notations. In the following, for ease of notations, we omit the
subscripts i and j as long as it is clear from the context that we refer to an arbitrary VN or CN.

C.1.2 Weight enumerators

To derive the expression of the ensemble weight enumerator of protograph-based LDPC codes, we
consider that the size-N interleavers {πe}1�e�jEj are uniform. Hence, based on the result for serially
concatenated codes [BDMP98], the average weight enumerator can be obtained when we reinterpret
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the protograph LDPC code as a serial concatenation of VNs constituent codes and CNs constituent
codes. It is shown in [ASDR11] that the average number of codewords of weight-vector d = [di]i is
written as:

A(d) =
Qnc
j=1A

cj (wj)Qnv
i=1

(N
di

)qvi−1 (C.1)

where Acj (wj) denotes the input weight-vector-wj enumerator for the cj constituent CN code. Writ-
ing Eq. (C.1) in the log-domain gives:

logA(d) =
nc∑
j=1

logAcj (wj)−
nv∑
i=1

(qvi − 1) log
(
N

di

)
(C.2)

For sufficiently large N , using Stirling’s approximation (N ! � (N/e)N ) and denoting �i = di/N ,
we get:

log
(
N

di

)
� N.H(�i) (C.3)

where H(.) is the binary entropy function.
In order to derive the expression of acj (wj), [Div06] derived the explicit expression of acj (wj)

when qcj = 3. For higher degree CNs, one can perform a check splitting operation to write acj (wj)
as the maximization over qcj −3 variables of the sum of qcj −2 degree-3 constituent CNs code weight
enumerators [Div06, Eq. 14]. For highly connected CNs or for generalized CNs, this method intro-
duces many dummy VNs and the maximization becomes complex. Therefore,[ASDR11] proposed a
more efficient method for generalized CNs.

Consider a degree-qc constituent CN code c. We want to computeAc(w) wherew = {w1, ..., wqc}T .
We have:

Ac(w) =
∑
{C }

C(N ; C ) (C.4)

where {C } is the family of sets C , each contains N valid codewords of the CN constituent code c,
such that the ith component, ∀i ∈ J1, qcK, of all these codewords constitute a partition of the input
weight wi. C(N ; C ) is the number of distinct permutations of the elements in C .

Let M c be the qc �K matrix formed by the codewords of the CN c, denoted {C1, . . . , CK}, as
its columns (K = 2qc−1). Eq. (C.4) can be rewritten as:

Ac(w) =
∑
{n}

C(N ;n) (C.5)
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where {n} = {(n1, . . . , nK)}T is the set of solutions of w = M c.n such that ni ≥ 0 andPK
i=1 ni = N .

C(N ;n) is the multinomial coefficient [AS09].
Rewriting Ac(w) in the logarithm domain gives:

log (Ac(w)) = log

∑
{n}

C(N ;n)


= max
{n}

∗
(

logC(N ;n)
)

(C.6)

where the pairwise max ∗ operator is defined as max ∗(x, y) = max(x, y) + log (1 + e−jx−yj).
As the number of combinations C(N ;n) can be very large, Eq. (C.6) can be approximated by:

log (Ac(w)) = max
{n}

(
logC(N ;n)

)
(C.7)

inducing an error of at most maxx,y log (1 + e−jx−yj) = log 2.

Lemma 1. For su�ciently large N :

logC(N ;n) � N.H(n1
N
, . . . ,

nK
N

)

where H(.) is the multivariate entropy function.

Inserting Eq. (1) in Eq. (C.7) gives:

log (Ac(w)) = N max
{n}

(
H(n1

N
, . . . ,

nK
N

)
)

Thus, the generic enumerator of the constituent CN code c with the N -normalized input weight
vector � = w

N can be written as

ac (�) = lim sup
N!1

log (Ac(w))
N

� max
{p}

(
H(p1, . . . , pK)

)
(C.8)

under the constraints kpk1 = 1 and � = M c.p, where p = {pi}i and pi = ni
N .

C.2 A proof of Abu Surra's conjecture

The average number of the protograph’s codewords of weight d is given by

Ad =
∑

{di/vi∈
t}

∑
{dk/vk∈
p}

A(d)
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where Pdi/vi∈
t di = d. Let n be the number of transmitted VNs in the code (i.e. nt.N). The
n-normalized logarithmic asymptotic weight enumerator can be then written as [ASDR11]:

r

(
d

n

)
= 1
nt

~r(�)

where � = d/N and

~r(�) = lim sup
N!+1

Ad
N

= max
�t:vt∈
t

max
�p:vp∈
p


nc∑
j=1

acj(�j)−
nv∑
i=1

(qvi − 1)H(�i)

9=; (C.9)

The computation complexity of ~r(�) is limited by the complexity of spanning all partitions of size
nt of the weight d, combined with all possible input weights of the punctured VNs. To alleviate this
difficulty, [ASDR11] proposed the following steps: the protograph’s VNs are partitioned into subsets
according to their types. Two VNs are of the same type when their neighborhoods are identical,
in other words, if one switches the input weights between the VNs of the same type, the resulting
input weight vector forms a valid codeword and no difference is noticed from all CNs point of view.
By labeling each edge of the protograph by its adjacent VN type, each CN’s adjacent edge can be
labeled with its weight and its type. The subset-weight vector (SWV) of a CN codeword is defined
as the vector whose entries are the weights of bit subsets of the CN codeword.

[ASDR11] conjectured that "in the maximization of Eq. (C.8), the optimal point occurs when
codewords of equal SWV have the same proportion of occurence". This is equivalent to say that the
maximum is reached when edges that belongs to the same type carry the same weight. In general, this
is not always possible since the total weight carried by the edges of the same type is not necessarily
a multiple of the number of edges of this type. In the following we will prove the generalized form of
this conjecture:

Theorem 3. The maximization of Eq. (C.8) occurs when the weights number of occurrences
{pi}i of the check node codewords, that belongs to the same VNs type composition are as uniform
as possible.

C.2.1 Proof when CN has 3 edges of the same type

Without loss of generality, let us consider a degree-qc CN where 3 edges, α < β <  are of the
same type. The corresponding N -normalized input weight vector is � = (�1 . . . �� . . . �� . . . � . . . �qc)T

such that ��, �� and � are not all equal.
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A triplet (f1, f2, f3), of total weight s = Nf1 + Nf2 + Nf3 is called as as-uniform-as-possible
(AUAP) if a permutation of (Nf1, Nf2, Nf3) has the form:


(k, k, k) if s = 3k

(k, k, k + 1) if s = 3k + 1

(k + 1, k + 1, k) if s = 3k + 2

(C.10)

N.B.: In the asymptotic case, i.e. as N goes to infinity, the weights will be equal (dealing with
normalized weights k/N asymptotically equals (k + 1)/N , when N goes to infinity), as-uniform-as-
possible could then be substituted simply with uniform.

Since M c is not necessarily unimodular [HP94], M c.p = � does exist only for some �.

De�nition 1. � is called admissible if M c.p = � admits a solution .

Theorem 4. If � is admissible, then the related AUAP version �∗ is also admissible

Proof
By circular permutation of the weights ��, �� and � , we form the following vectors:

�T1 = (�1 . . . �� . . . �� . . . � . . . �qc)

�T2 = (�1 . . . � . . . �� . . . �� . . . �qc)

�T3 = (�1 . . . �� . . . � . . . �� . . . �qc)

Because of the symmetry of VNs of the same type, it is clear that �T1 , �T2 and �T3 are also valid CN
input weight-vector (see introduction of Eq. (C)). Let p1,p2 and p3 be solutions of the equality
contraint of Eq. (C.8) such that :

M c.p1 = �1 (C.11)

M c.p2 = �2 (C.12)

M c.p3 = �3 (C.13)

kp1k1 = kp2k1 = kp3k1 = 1
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Let us find three variables a, b and c such that a�1 + b�2 + c�3 is AUAP wih respect to ��, �� and
� . To this end, we have to solve the system:BBB

�� � ��

�� �� �

� �� ��

CCC
| {z }

∆

BBB
a

b

c

CCC =

BBB
f1

f2

f3

CCC (C.14)

Lemma 2. � is invertible ∀(��, ��, �)

Proof
The determinant of ∆ is:

j∆j = 1
2 (�� + �� + �)

(
(�� − ��)2 + (�� − �)2 + (�� − �)2

)
6= 0 (��, �� and � are not all null by definition)

�
The determinant of Eq. (C.14) is not null, it exists then a unique solution (a, b, c).

Lemma 3. (a, b, c) ∈ [0, 1]3 and a+ b+ c = 1

Proof • By summing the three equations of the system Eq. (C.14), we obtain:

(�� + �� + �)(a+ b+ c) = f1 + f2 + f3

Since f1 + f2 + f3 = �� + �� + � 6= 0, then a+ b+ c = 1.
• Since j∆j > 0, by Cramer’s rule we have a = j∆aj/j∆j, where ∆a is formed by replacing the

first column of ∆ by (f1, f2, f3)T . By studying the sign of j∆aj in the cases depicted in Eq. (C.10),
one can show that a > 0. Similar result can be shown for b and c.

So far, we have shown that a, b and c are positive and a+b+c = 1, which lead to (a, b, c) ∈ [0, 1]3.
�

Summing Eqs. (C.11),(C.12) and (C.13) weighted by (a, b, c) gives:

M c.(ap1 + bp2 + cp3) = a�1 + b�2 + c�3
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=
(
�1 . . . f1 . . . f2 . . . f3 . . . �qc

)T
(C.15)

, �∗

From Eq. (3), we get p∗ , ap1 + bp2 + cp3 ∈ [0, 1]K and by construction:

∑
i:vi∈
t

�∗(i) =
∑

i:vi∈
t
�1(i) =

∑
i:vi∈
t

�2(i) =
∑

i:vi∈
t
�3(i) = �

i.e �∗ is within the same search space in Eq. (C.9) as �1, �2 and �3. �

Theorem 5. H(p1) = H(p2) = H(p3) and H(p∗) ≥ H(p1)

Proof RecallM c = (C1, . . . CK) where {Ci}i are all CN codewords. Let Lj be the jth row of the
qc rows of M c. Substituting the rows of Eq. (C.12) gives:

M c.p2 = �2 )

BBBBBBBBBBBBBBBBBBBBBB

L1
...
L�
...
L�
...
L
...
Lqc

CCCCCCCCCCCCCCCCCCCCCC

.p2 =

BBBBBBBBBBBBBBBBBBBBBB

�1
...
�
...
��
...
��
...
�qc

CCCCCCCCCCCCCCCCCCCCCC

)

BBBBBBBBBBBBBBBBBBBBBB

L1
...
L�
...
L
...
L�
...
Lqc

CCCCCCCCCCCCCCCCCCCCCC

.p2 =

BBBBBBBBBBBBBBBBBBBBBB

�1
...
��
...
��
...
�
...
�qc

CCCCCCCCCCCCCCCCCCCCCC

(C.16)
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Concerning single parity check codes, notice that the necessary and sufficient condition of any
CN codeword Ci is that it must have an even number of ′1′s. Permuting the rows of M c clearly
preserves the number of ′1′s in each column (for general parity check nodes, particular attention must
be given to the form of the matrix M c and to the potential edges of the same type). Hence, the
most left hand matrix in Eq. (C.16) is just a column-wise permuted version of M c. It exists then a
permutation matrix �2 such that:(

L1 . . . L� . . . L . . . L� . . . Lqc

)T
= M c.�2

Consequently, Eq. (C.16) becomes:

M c.�2.p2 = �1

By definition of p1 and the symmetry of the entropy function:

H(p1) ≥ H(�2p2) = H(p2)

Similarly, we can show that H(p2) ≥ H(p1). This leads to H(p1) = H(p2). Same conclusion can
be drawn for p3. Consequently:

H(p1) = H(p2) = H(p3)

Using Eq. (3) and the concavity of H, Jensen’s inequality gives:

H(p∗) = H(ap1 + bp2 + cp3)

≥ aH(p1) + bH(p2) + cH(p3)

≥ (a+ b+ c)H(p1)

≥ H(p1)

�
To summarize, for a fixed �, from an admissible input-weight vector �, we built an admissible

input-weigth vector �∗ which is AUAP such that ac(�∗) ≥ ac(�). Therefore, solutions of the maxi-
mization in Eq. (C.9) belongs to the set of AUAP � weight-vectors. Eq. (3) and the conjecture in
[ASDR11] are hence proved. Q.E.D.

N.B.:A similar proof, with great simplifications, can be made for CN with only 2 edges of the
same type.
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C.2.2 CN has more than three edges of the same type

As in the previous section, let us consider the normalized CN input-weight vector � = (�i)Ti . In
this case, the corresponding vector �∗ = (�1, ...�n) is said to be AUAP when the weights of all the
edges that belong to the same type, i.e. a subset of {�i}i, are as uniformly distributed as possible.

Consider first the particular case when the CN has 4 edges of the same type. ∆ in Eq. (C.14) is
a size-4 right-hand circulant matrix. Consider its associated polynomial [Dav79]:

f(x) = �� + ��x+ �x
2 + ��x

3

It follows that the 4 eigenvalues of ∆ are given by [Dav79]:

λ1 = f(1), λ2 = f(z), λ3 = f(z2), λ4 = f(z3)

where z = exp(2πi
4 ) is the 4-th root of unity and i the imaginary unit. We have:

λ2 = f(z) = (�� − �) + i(�� − ��)

If �� = � and �� = ��, then λ2 = 0, therefore, ∆ is not invertible. Consequently the previous
proof cannot be applied. A strategy to generalize our approach when more than 3 edges of the same
type exist is as follows:

1. Pick the first leftmost edge, say edge i, whose weight �i is different from its AUAP value �i.

2. Select two adequate edges j and k within the same type such that: �i + �j + �k ≥ �i.

3. Give to �i its final value �i by putting f1 = �i.

4. Form the new vector �, where �i = �i, and its corresponding p.

5. Go back to step 1 if � 6= �∗.

At the end, we obtain the configuration �∗ and its corresponding p∗ that maximizes H.

C.3 E�cient computation of r̃(δ) through countinuous relaxation

In order to solve Eq. (C.8), [AS09] enumerates all the solutions of the equality M c.p = � where
N.pi ∈ N. Even if some reduction of the search space can be made (cf. [AS09, Appendix A]), Eq.
(3) does not simplify necessarily the computation of Eq. (C.8) for protographs where not much VNs
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can be gathered as belonging to the same type. If besides that, we have a generalized or a highly
connected CN, the computation of Eq. (C.8) becomes very complex. Moreover, for convolutional
LDPC codes [MLCJ14], this simplification cannot be applied since the VNs belongs to different time
instants [MLC13].
C.3.1 Continuous relaxation

The constituent CN c weight vector enumerator in Eq. (C.8) is computed by solving the following
optimization:

maximize
x

H(x)

subject to: M c.x = �

K∑
i=0

xi = 1

xi ∈ {
k

N
/k ∈ J0, NK}, ∀i ∈ J1,KK

By putting together the equality constraints, which defines M ′c.x = b, and noting L = { kN /k ∈
J0, NK}, we get the following discrete optimization programming:

maximize
x

H(x)

subject to: M ′c.x = b (C.17)

x ∈ LK

Eq. (C.17) is a concave but nonlinear discrete optimization with equality constraints. To our
knowledge, no method is given to solve efficiently this kind of problems. Consequently, we have to
enumerate all possible solutions in the search space, which grows in exponential time with the CN
degree qc and polynomial time with the lifting factor N .

By relaxing Eq. (C.17), let us consider the following concave nonlinear continuous programming:

maximize
x

H(y)

subject to: M ′c.y = b (C.18)

y ∈ [0, 1]K

Eq. (C.18) can be solved easily and efficiently with different well-known optimization methods
[Ber99], even for large values of K. Moreover, the solution, when it exists, is optimal.
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Theorem 6. Given a solution of Eq. (C.18), one can construct a solution in LK of Eq. (C.17)
given any arbitrary small penalty " on the maximum value of H(x) and the constraint equality
in Eq. (C.17).

Proof It is easy to show that LK is dense in [0, 1]K , in other words, for any element y in [0, 1]K ,
we can form a sequence with elements xN in LK such that xN

k.k2−!
N!1

y. As an example, one can

take xN = ( bNyicN )1�i�K .
Let yopt = (yopti )1�i�K be the solution of Eq. (C.18) and xoptN the sequence of elements in LK

that tends to yopt. Using the formal definition of the limit and the continuity of the entropy function
H, we have, ∀" ≥ 0:

∃N1 ∈ N,∀N ≥ N1, kxoptN − y
optk2 ≤ "

∃N2 ∈ N,∀N ≥ N2, jH(xoptN )−H(yopt)j ≤ "

∃N3 ∈ N,∀N ≥ N3, kM ′c.xoptN − bk2 ≤ "

Taking N0 = max (N1, N2, N3), we get:

∀" ≥ 0,∃N0 ∈N,∀N ≥ N0,
kxoptN − yoptk2 ≤ "

jH(xoptN )−H(yopt)j ≤ "

kM ′c.xoptN − bk2 ≤ "

Consequently, xoptN ∈ LK is a solution to the optimization in Eq. (C.17) that satisfies both the
maximization of H and the equality constraints for an arbitrarily small correction term " as N !1.

�

C.3.2 On numerical implementations

To solve Eq. (C.18), we can apply different iterative optimization methods such as internal point
(IP) or sequential quadratic programming (SQP) [Ber99]. For this king of algorithms, we need to
provide an initial guess, denoted y0, that satisfies the constraints (here M ′c.y = b), and is within
the feasible region (here, [0, 1]K).



C.4 - Numerical results 233

First, let us put aside the feasible region and try to find at least one solution in the following
affine space:

M ′c.y = b

One can compute the Moore−Penrose pseudoinverse [Pen55] (not necessarily unique) ofM ′c, denoted
M ′c+. Hence, y0 = M ′c+b.

In Eq. (C.17), since M ′c is not necessarily unimodular [Sch98], M ′c.x = b does not have a
solution ∀b, i.e. for any value of the CN input-weight vector w. When it is not possible, it means
that C is an empty set and no codeword of the protograph with such Hamming weight exists.

When the system is solvable, Moore−Penrose pseudoinverse does not provide necessarily a so-
lution that remains within the domain of the multivariate entropy function H, (some entries of y0

may be < 0 or > 1). We can solve this problem by considering an adequate analytic continuation
of H. Since H is concave, it has one global maximum, then substituting in Eq. (C.18) H(.) with
any analytic continuation H∗(.) which does not induce local maxima in the regions ] −1, 0] and
[1, +1[ is transparent for the optimization routines.

C.4 Numerical results

Fig. C.3 gives the asymptotic codeword weight enumerator for different regular LDPC codes and
their corresponding dmin. The numerical results are obtained using N = 105.

C.5 Open problem

Eq. (3) proves that in order to maximize Pnc
j=1 a

c
j(�j), the VNs of the same type should have

weights as uniformly as possible. However, at the contrary of what was assumed in [ASDR11], this
configuration does not necessarily maximize r(�), since the second right hand term in Eq. (C.9),Pnv
i=1 (qvi − 1)H(�i), is also positive and is not minimized by the the above configuration of input

weights.
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Figure C.3: Asymptotic weight enumerators for different protograph codes
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Appendix: Proof of Eq. (1)

[ASDR11] proved Eq. (1) using the method of types [CT12, Thm. 12.1.3]. An alternative proof is
as follows: For sufficiently large N and even if some particular ni are not large we have:

C(N ;n) = C(N ;n1, . . . , nK)

= N !
n1!n2! . . . nK !

�

(
N
e

)N(n1
e

)n1 . . .
(nK
e

)nK (Striling: n! � (ne )n )

=

(
N
e

)n1
. . .
(
N
e

)nK(n1
e

)n1 . . .
(nK
e

)nK (PK
i=1 ni = N)

=
K∏
i=1

(
N

ni

)ni

= exp
(

K∑
i=1

ni log
(
N

ni

))

= exp
(
N.H(n1

N
, . . . ,

nK
N

)
)

Appendix: Proof of Eq. (3)

j∆j =

���������
�� � ��

�� �� �

� �� ��

���������
= �3

� + �3
� + �3

 − 3�����
= (�� + �� + �)

(
�2
� + �2

� + �2


−���� − ��� − ���)

= 1
2 (�� + �� + �)

(
(�� − ��)2 + (�� − �)2

+ (�� − �)2
)

6= 0 (��, �� and � are not all null by definition)
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Appendix: Proof of Eq. (C.15)

M c.(ap1 + bp2 + cp3) = a�1 + b�2 + c�3

=

BBBBBBBBBBBBBBBBBBBBBB

(a+ b+ c)�1
...

a�� + b� + c��
...

a�� + b�� + c�
...

a� + b�� + c��
...

(a+ b+ c)�qc

CCCCCCCCCCCCCCCCCCCCCC
=
(
�1 . . . f1 . . . f2 . . . f3 . . . �qc

)T
, �∗



Appendix D

Protograph-based LDPC convolutional
codes for BICM

D.1 Introduction

Bit-interleaved coded modulation (BICM) technique [iFMC08] is a powerful approach that takes
advantage of the different protection levels of bit channels in high modulation orders to improve
the decoding threshold. The optimization of BICM in concatenated schemes has been well studied
in the literature and several considerations have been proposed to improve the threshold such as
the bit allocation mapping optimization or the precoding [PS06, SB04, tB01b]. For instance for
Gray mapping, [JJZ10] proposed a variable degree matched mapping to improve the threshold of
accumulate repeat jagged accumulate (ARJA) codes [DJDT05]. For other mappings, BICM with
iterative decoding (BICM-ID) such in [tBKA04].

In this section, we focus on protograph LDPC-C codes [MLCJ14]. For these codes, some studies
have been made to analyse their convergence is BICM-ID schemes. In [YEKLK13], authors studied
the performance of LDPC-C codes with different modulations. [SB13] analyzed the performance of
terminated LDPC-C codes combined with 16-QAM with Gray, set partitioning [Ung82] and M16a

[SGHB03] mappings. In [HAB+13], it is shown that, thanks to their bit mapping design, the threshold
of the terminated LDPC-C code can be improved and that the ’wave effect’ can be retrieved for tail-
biting LDPC-C codes. In general, this optimization is complex especially for LDPC-C codes with
relatively large coupling lengths [HBA+14]. Concerning precoding, no work have been done to our
knowledge in order to analyze the performance of LDPC-C codes with precoded modulations.

In concatenation schemes, several considerations can be taken into account to improve the thresh-
olds of BICM in iterative decoding (BICM-ID). First we find the modulator mapping. In [SB13],
authors analyzed the performance of terminated LDPC-C codes combined with 16-QAM with Gray,

237
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set partitioning [Ung82] and M16a [SGHB03] mappings. An other technique is bit mapping optimiza-
tion. The main challenge is to find good assignments of different bit channels to variable nodes in
order to achieve better threshold. Authors in [HAB+13] have shown that, thanks to their bit mapping
design, the threshold of the terminated LDPC convolutional (LDPC-C) code can be improved and
that the ’wave effect’ can be retrieved for tail-biting LDPC-C codes. In general, this optimization is
complex especially for LDPC-C codes with relatively large coupling lengths [HBA+14]. Finally, code
doping [PS06, SB04, tB01b] can be considered: it consists in introducing an additional rate-1 con-
volutional recursive code before the mapper. To our knowledge, no work have been done to analyze
the performance of percoding with LDPC-C codes.

In this section, we analyse the performance of LDPC-C codes in BICM and BICM-ID systems
when bit mapping or precoding are used. Also, we introduce a simple procedure to design bit
mapping for LDPC-C codes based on their underlying protograph code. By taking advantage from
the fact that accumulate repeat jagged accumulate (ARJA) codes behave very good in additive white
Gaussian noised (AWGN) channels [DJDT05], and the optimal variable degree matched mapping of
ARJA codes proposed in [JJZ10], we construct a bit mapping for spatially coupled ARJA codes that
operates at only 0.1dB from the capacity. Also, we introduce a new termination method for LDPC-
C codes without rate loss and that leads to better performance than the underlying LDPC code.
Finally, we show that we can meliorate the performance of this new terminated LDPC-C codes by
considering precoding. With this new consideration, we are able to design protograph-based LDPC
codes described by small protographs, whose threshold does not depend on the coupling factor and
that benefit from the convolutional gain.

D.2 Spatially coupled BICM

D.2.1 System model

Recall from chapiter 3 that a protograph-based LDPC-C code can be obtained by replicating the
graphB L times, then each VNs bundle is connected to its pairing CNs bundle through a permutation
of the corresponding edges bundle only in the forward direction, i.e. from the protograph at time t
to the protographs at time t′ > t. The manner of connecting these different graphs is driven by the
components base matrices {Bi}i. Note that Pi=ms

i=0 Bi = B and that the design rate can be written
as R = 1− c/v.

In our study, we will consider as a reference only terminated time-invariant subfamily of LDPC
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Figure D.1: Transmitter

convolutional codes [MLC11]. The corresponding base matrix of size (L + ms)c � Lv is denoted by
B[0,L−1] where L is called the coupling length or the termination factor.

BT
[0,L−1] =

666
BT

0 � � � BT
ms

. . . . . .
BT

0 � � � BT
ms

777 (D.1)

For ease of notation, B[0,L−1] is simply written BL.
Let us consider a serial concatenation of a binary LDPC convolutional code and a mapper as

depicted in Fig. D.1. Recall that the design rate of terminated LDPC-C codes without puncturing
is given by:

RL = R− ms

L
(1−R) (D.2)

Note that with increasing L, the rate loss penalty, msL (1−R), vanishes to 0 and the design rate RL
tends to the effective code rate R.

Without loss of generality, we will consider the quadrature amplitude modulation (QAM). The
coded bits c in Fig. D.1 are interleaved, into α, grouped by tuples of m consecutive bits, αk =
{αk,q = αm(k−1)+q}1�q�m, and mapped to QAM symbols sk. Each symbol sk = �(αk) is picked
from a constellation of M -ary complex symbols � = {a1, . . . , aM} (M = 2m). Different mappings
were proposed in the literature for BICM systems (Gray, Set partitioning (SP) [Ung82], Modified SP
(MSP) [CR01], M16r [SGHB03], Maximum squared Euclidean weight (MSEW) [TS02], ...).

Symbol energy is defined as E[jaij2]. The transmitted signal s is sent over a memoryless AWGN
channel having a double-sided power spectral density σ2

noise = N0/2.
D.2.2 BICM receiver

At the receiver, several strategies can be considered. The classical tandem decoding consists in
the serial soft decoding of both the modulator and the LDPC code. The receiver structure is depicted
in Fig. D.2 At the decoder side, the soft demapper processes the channel observations y = {yk}k
and the apriori log-likelihood ratio (LLRs) values of the bits α, LMa = {LMa (k)}k, to calculate the
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Figure D.2: Factor graph of the receiver

aposteriori LMapp = {LMapp(k)}k and extrinsic LMe = {LMe (k)}k LLRs. We introduce the following
notations for different LLRs:

LMa (k) = {LMa (k, q) = LMa (αm(k−1)+q)}1�q�m
LMapp(k) = {LMapp(k, q) = LMapp(αm(k−1)+q)}1�q�m
LMe (k) = {LMe (k, q) = LMe (αm(k−1)+q)}1�q�m

The demapper computes the aposteriori and the extrinsic LLRs of the qth bit of the kth symbol
as following:

LMapp(k, q) = ln
∑

α̂k∈�q+1

(α̂k)− ln
∑

α̂k∈�q−1

(α̂k)

(α̂k) = exp
(
−jyk − �(α̂k)j2

2σ2 + α̂k
T .LMa (k)

2

)
LMe (k, q) = LMapp(k, q)− LMa (k, q) (D.3)
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where �q�1 = {α̂k/αm(k−1)+q = ±1}
For LDPC decoder, we consider the belief propagation (BP) decoding algorithm [RU01].

D.3 Convergence Analysis

In this section, we study the convergence of different protograph-based LDPC-C codes over the
AWGN channel using EXIT chart analysis. We consider the following scheduling: the `th iteration
consists in one soft demapping step given by Eq. (D.3), followed by one BP iteration for the LDPC-C
code. We further assume partial interleavers between the soft demapper module and each VN bundle
[BPB+14b, BPB+14a]. Let us consider hereafter the following notations relative to the `th iteration:
• I`v(q, r): extrinsic mutual information (eMI) between the code bits associated with VN r and

the LLRs sent from this VN to the CN q.

• I`c(q, r): eMI associated with messages sent from CN q to VN r.

• I`app(r): a posteriori MI associated with the VN r.

• I`a,M (r): a priori MI associated with messages sent from the VN r to the soft demapper.

• I`M (r): eMI associated with messages sent from soft demapper to the VN r.

• TM (.): input-output EXIT transfer function of the detector. It is inherently a function of the
noise variance σ2

noise. Analytic expression is not always available, alternatively, we compute it
by Monte Carlo simulations.

Let B be the original protograh, of size c� v, that gives the terminated LDPC-C code BL of size
Lv � (L+ms)c. As discussed in chapter 3, the decoding update equations are given by:

I`M (r) = TM (I`−1
a,M (r)) (D.4)

where

I`a,M (r) = J

s∑
s

BL(s, r)
�
J−1(I`−1

v (s, r))
�2 (D.5)

If BL(q, r) 6= 0:

I`v(q, r) = J

s∑
s

BL(s, r)
�
J−1(I`−1

c (s, r))
�2−
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�
J−1(I`−1

c (q, r))
�2 +

�
J−1(I`M (r))

�2) (D.6)

otherwise, I`v(q, r) = 0.
Similarly, using reciprocal channel approximation, if BL(q, r) 6= 0:

I`c(q, r) =1− J

s∑
s

BL(q, s)
�
J−1(1− I`v(q, s))

�2−
�
J−1(1− I`v(q, r))

�2) (D.7)

otherwise, I`c(q, r) = 0.
At the end of each iteration, thanks to the partial interleavers [BPB+14c], we are allowed to

write:

I`app(r) =J

s∑
s

BL(s, r)
�
J−1(I`−1

c (s, r))
�2+

�
J−1(I`M (r))

�2) (D.8)

Combining Eqs. (D.8),(D.7),(D.6),(D.4) and (D.5), we can evaluate the convergence of the re-
ceiver by tracking I`app for each VN through iterations. The threshold is then defined as the smallest
Eb/N0 such that ∀r : I`app(r) = 1.

D.4 BICM design rules

ARJA codes [DJDT05] are good codes both in terms of threshold and minimum distance growth
rate for AWGN channels. Their base matrix is given by:

BARJA =

BBB
1 2 0 0 0
0 3 1 1 1
0 1 2 1 2

CCC
where the second VN is punctured.

When used with 16-QAM with Gray mapping, the EXIT chart analysis gives a threshold of
Eb/N0 = 3dB. In comparison, the (3, 6)-regular protograph code threshold is 3.59dB.
D.4.1 Bit mapping optimization

For BICM modulation with high modulation order, each bit channel has generally unequal error
protection. One way to improve the decoding threshold in concatenated schemes is to assign different
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bit channels to different VNs. [JJZ10] pointed out a mapping that allows a threshold of Eb/N0 =
2.85dB, i.e. a gain of about 0.25dB. In the next sections, we will see how one can improve these
results.

For this scheme, Gray mapping without iterative decoding between the demapper and the decoder
is assumed. The other approach, referred to as BICM-ID, consists in applying iterative soft decoding
between the soft demapper and the LDPC code. Note that BICM-ID is not usefull when Gray
mapping is considered. For other mapping, BICM-ID allows to achieve better thresholds.
D.4.2 Spatial coupling: terminated truncation

In this section, we will investigate the convergence of some examples of LDPC-C serially concate-
nated with the 16-QAM modulator using MSEW and Gray mappings. The proposed LDPC-C codes
were chosen for simplicity to illustrate the convergence behavior of the proposed methods.

Tail-bitting (TB) method [MLC13] has been introduced to avoid the rate loss. The parity check
matrix tail-biting protograph-based LDPC-C codesBtb

L can be found in [LMFC10]. Because the most
right-hand and left-hand CNs are no more ’irregular’, there is no coupling gain and the threshold will
remain the same as B. Generally, TB LDPC-C codes are used to obtain some bounds (free distance,
trapping set, ...) of the T termination LDPC-C codes [MLC13].
D.4.2.1 Spatially coupled ARJA with Gray mapping

Consider the spatially coupled ARJA code with constraint length �s = 2 that is described by the
two component matrices:

B0 =

BBB
1 2 0 0 0
0 1 1 1 0
0 0 1 0 2

CCC ,B1 =

BBB
0 0 0 0 0
0 2 0 0 1
0 1 1 1 0

CCC
Note that in this scheme, there is no need to iterate between the demapper and the decoder since

the EXIT chart of the demapper is flat. In this scheduling, a threshold of Eb/N0 = 2.57dB was found
for L = 100 (rate R = 0.495). The decoding threshold of the 16-QAM over AWGN channel is at
Eb/N0 = 2.286dB [VNND11, YEKLK13].
D.4.2.2 (3, 6)-regular protograph and MSEW mapping

Here we will consider a BICM-ID decoding with one BP data pass check pass in each iteration.
Moreover, we will consider the (3, 6)-regular protograph spatial coupling given by B0 = B1 = B2 =
[1 1]. We observe a threshold at Eb/N0 = 2.97dB when L = 100 (rate R = 0.495).
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Figure D.3: VNs’ MI evolution through iterations for convolutional ARJA with Gray at Eb/N0 =
3.1dB and L = 40

Figure D.3 depicts the evolution the MI of different VNs through iterations for the schemes.
D.4.3 Combining spatial coupling with bit mapping

As discussed before, [DJDT05] shows that the ARJA code has a very good threshold over AWGN
channel, with 16-QAM and Gray mapping, it allows a threshold of Eb/N0 = 3dB. Authors in [JJZ10]
reduced this threshold to Eb/N0 = 2.85dB by optimizing the bit mapping. For the spatially coupled
version of ARJA, instead of optimizing the bit mapping for the spatially coupled code as in [HBA+15,
HAB+13], we will re-use the optimal mapping of the underlying protograph: i.e., the VNs within
each bundle are connected to the same bit channel as their corresponding VN in BARJA. Taking
advantage of the performance of the ARJA code, the coupling gain and the mapping optimization
of the underlying protograph, the threshold is considerably improved: now Eb/N0 = 2.39dB when
L = 100 (i.e. a rate of 0.495).
D.4.4 Spatial coupling: direct truncation

Recall form chapter 3 the corresponding parity check matrix for the direct truncated LDPC-C
code BDT

L has the form:
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BDT
L =

666666
B0
... B0

Bms

... . . .
Bms . . . B0

777777 (D.9)

As discussed in chapter 3, the main advantage here is that, since the rate R does not depend
on L, the threshold is now fixed and independent of L. Consequently, taking small L is satisfactory
and the code ensemble BDT

L becomes particularly interesting for finite length design. Furthermore,
another advantage is the conservation of the design rate RDT = R with an only a relatively small loss
in the threshold depending on the chosen coupling. This loss can be explained as following: as the
most left protograph of BDT

L configuration is similar to BL, the convolutional gain induced by these
nodes remains intact, which leads to a better threshold than B. However, since the most right VNs
are less connected in comparison to their counterparts in BL, they will deteriorate the threshold.
Figure D.4 depicts the convergence of different VNs through iterations. As expected, the extrinsic
MI of the last VNs is slightly worse than the other VNs and, through iterations, we observe only
the convolution gain induced by the most left CNs. This single wave propagates over all VNs and is
sufficient to decode perfectly all the bit nodes.
D.4.4.1 (3, 6) direct truncation protograph and MSEW mapping

Concatenation with 16−QAM gives a threshold of Eb/N0 = 4.92dB. Even if it is better than the
(3, 6)-regular LDPC code (threshold at Eb/N0 = 5.21dB), it remains very far from the threshold of
the classical termination (threshold at Eb/N0 = 2.72dB).
D.4.4.2 Direct truncation with precoded mapper

For BICM modulations with high modulation order, beside bit channels mapping, a second way
to improve the decoding threshold is to use precoding or doping [PS06, SB04, tB01b]. By adding a
recursive inner rate-1 convolutinal code, the modulated bits are no more independent. Figure D.5
depicts the new transmitter and receiver when an accumulator is used as a precoder. When P = 1,
all bits are precoded before being mapped. When P is greater than the message length, we retrieve
the previous receiver in Fig. D.1. In the in-between values, only 1 bit among P is precoded.

Figure D.6 shows the EXIT curves of the precoded MSEW mapping. One has to be careful when
computing different MI and different LLRs (see [PS06] for more details).
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Figure D.4: VNs’ MI evolution through iterations for DT (3, 6)-regular LDPC code with MSEW
mapping at Eb/N0 = 5.18dB and L = 50

Figure D.5: Modified transmitter when precoding is used

When doped, all EXIT curves, ∀P , now join the point (1, 1). Figure D.6 also illustrates that,
at a fixed Eb/N0, the bigger P is, the less the extrinsic MI will decrease at low a priori MI and
the more abrupt the convergence to the point (1, 1) will be at high a priori MI. From different
experiments, it has been noticed that when concatenated with LDPC-C codes, in order to improve
the threshold, a trade-off must be made between the extrinsic MI loss at lower a priori MI and
extrinsic MI convergence ’smoothness’ to the point (1, 1). Furthermore, for the different spatially
coupled LDPC codes with classical termination no real threshold improvement have been noticed
compared to no doped mapping, however, a gain of 2.17dB has been observed for the (3, 6) DT
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Figure D.6: MSEW demapper EXIT charts at Es/N0 = 2dB with precoding

protograph code, the new threshold is at Eb/N0 = 2.95dB.
Figure D.7 summarizes the thresholds of different configurations studied so far. Coupled ARJA

with optimized mapping for the underlying protograph for Gray outperforms all other codes and is at
0.1dB from the capacity. (3, 6) with MSEW mapping does not perform very well, but when used with
direct truncation and doping with (P=300), a gain of 2.17dB is observed. This code outperforms the
optimized ARJA code with Gray [JJZ10] and has an exact rate of 0.5 with L = 5 only.

D.5 Conclusion

In this appendix, we investigated to performance of spatially coupled LDPC codes in BICM
schemes and we showed, thanks to the spatial coupling and to bit mapping, we were able to design
codes that operate at only 0.1dB from the capacity. Finally we introduced a new termination method
that leads, when combined with precoding, to competitive trade-offs between rate loss and threshold
with their terminated LDPC-C counterparts.
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