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Introduction
To date, imaging neuroscience and electrophysiology have 

provided a solid foundation for functional specialization as a 
principle of brain organization in humans. However, accurately 
modeling functional integration of specialized areas of the 
brain has proven to be a more difficult task [1]. For example, the 
human brain can be viewed as a holistic and dynamic system 
involving functionally specialized areas or regions that are 
related by effective connections during cognitive processing. 
Connectivity models (functional or effective) have become useful 
approximations to holistic and dynamic systems for understanding 
underlying relationships between regions of neural activation. For 
example, functional connectivity models provide relational maps 
based on statistical dependency (correlations) between remote 
neuro physiological events. Effective connectivity models involve 

estimating the influence that one neuronal system exerts over 
another, either at the synaptic or population level [1]. Furthermore, 
effective connectivity is activity-dependent involving interactions 
among regions of the brain. Finally, modeling intrinsic connectivity 
involves capturing dynamic elements of the system reflecting the 
essential nature of the collective system. 

One approach to modeling effective connectivity is based 
on intracranial electrocorticographic (ECoG) time series data. 
In ECoG-based studies, data are acquired from multi-contact 
subdural electrodes implanted during surgical evaluation in 
epilepsy patients.  ECoG provides a higher signal to noise ratio 
and temporal and spatial resolution than EEG due to the fact that 
ECoG signals are not influenced by the low conductivity of the 
skull and the fact that measurements are acquired in the vicinity 
of the underlying brain sources [2]. In clinical practice, ECoG has 
become the “gold standard” for defining epileptogenic zones [3]. 
The locations of ECoG electrodes implantation are determined 
using pre-operative clinical data such as ictal semiology, ictal and 
interictal features on scalp EEG, and structural MRI findings [4]. 
The pattern of the subsequent ECoG recordings is then used for 
further localization of epileptogenic foci. 

In this study, we present an innovative modeling approach for 
the development and estimation of human electrophysiological 
inferential connectivity maps using ECoG data. The aim of the 
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Abstract

Advances in the sophistication of imaging techniques necessitate the development 
of techniques to model the neural and cognitive phenomena they represent. Using 
electrocorticographic (ECoG) data, we propose a data-driven approach using 
ordinary differential equations and Bayesian differential structural equation 
modeling (BdSEM) to model effective connectivity related to sensorimotor 
integration. First, we tested the region-based covariance structure across subjects 
by each experimental condition to evaluate the tenability of pooling subject 
data to perform group level versus single-subject analyses. Second, we applied 
a differential equation approach to model dynamic change originating from 
regional neuronal states across the data acquisition period. Finally, we employed 
an information-theoretic search strategy to identify the optimal connectivity 
model within each experimental condition for a single subject. Results of subject-
specific (intra-individual) relationship maps include effective, contemporaneous 
and delayed effective connections of across different brain regions. 
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method is to obtain accurate representations of underlying 
effective relationships while also considering intrinsic or 
dynamically changing aspects of regional components of brain 
activity. Specifically, we use ordinary differential equations within 
a structural equation modeling framework and a heuristic model 
search strategy to provide insights into electrode-to-electrode 
connectivity using ECoG. Here, our interest is based on modeling 
simultaneous or dynamic change in neural activity so as to 
provide unique insights into the causal nature of the relationships 
between brain regions in specific vocalization and auditory 
processes. Given the high spatial and temporal resolution of ECoG 
data, inferences about underlying neural functions as mapped on 
to brain anatomy allow for exquisite representation of both time 
and space in the human brain [3,5,6].  

The organization of this manuscript is as follows. The first 
section briefly reviews SEM and the advantages of using Bayesian 
SEM in studies such as ours. The second section details the 
application of ordinary differential equations (ODEs) to measure 
simultaneous change in brain activity propagating from the level 
of neural activity upward to the region of interest (ROI) level. 
The third section introduces a model for Bayesian SEM based 
on differential equations (BdSEM) and describes the heuristic 
specification search procedure used to arrive at optimal models 
of effective connectivity. The fourth section outlines a simulation 
study conducted to evaluate the efficacy of the modeling strategy. 

Structural equation modeling: A frequently used technique 
used for modeling population-level relationships among regions 
caused by neural activation in brain regions is structural 
equation modeling (SEM). SEM was first adapted to imaging 
data by McIntosh & Gonzales-Lima [7,8] to examine effective [9] 
relationships between regions of interests (ROIs). To date, SEM of 
neural connectivity has predominantly been applied to functional 
magnetic resonance imaging (fMRI). In part, this trend may 
reflect difficulties in source localization that are inherent in most 
electrophysiological data capture methods. 

Application of SEM involves developing a set of simultaneous 
equations to estimate 

a)	 The regression coefficients between measurements on 
observed variables and associated latent variables (i.e. a 
measurement model) and 

b)	 Relationships among latent variables comprising a 
hypothesized model. SEM is based on the general linear 
and/or generalized nonlinear model and is very useful for 
complex or longitudinal data structures (e.g., multilevel 
random coefficients models, growth curve modeling, and 
differential equation-based manifest or latent change). 
Perhaps SEM is most often associated with confirmatory 
(theory confirming) modeling approaches. However, SEM 
can be used to conduct heuristic search techniques in high 
dimensional data structures to locate an optimal model from 
among a set of competing ones. Heuristic search techniques 
leverage information-theoretic algorithms from the field of 
artificial intelligence (e.g., mathematically-based approaches 
based on lagrangian heuristic/incomplete branch-and-
bound algorithms). Application of SEM involves measuring 
the discrepancy between a parameterized causal structure of 

hypothesized relationships (e.g., between observed or latent 
variables or a combination of both) and estimated parameters 
from data as measured through a series of fit indices [10,11].  
SEM employing Bayesian probability and statistics [12,13] 
has recently emerged and provides increased precision and 
flexibility in modeling scenarios with high dimensional data 
structures, small sample size and non-normally distributed 
variables. 

Statistical inference and bayesian learning: The history 
and development of Bayesian statistical methods are substantial 
and closely related to frequentist statistical methods. In some 
ways, Bayesian statistical thinking can be viewed as an extension 
of the traditional (i.e., frequentist) approach, in that it formalizes 
aspects of the statistical analysis that are left to uninformed 
judgment by researchers in classical statistical analyses [14]. 
Bayesian methods include data analytic techniques that are 
derived from the principles of Bayesian statistical inference. 
Statistical induction involves learning about the characteristics of 
a population from a subset of members of a particular population. 
Numerical values of populations are expressed as parameters 
(θ) while numerical values of the subset of the population are 
expressed as (y). Given the numerical values (y) in the subset 
or sample dataset, uncertainty is reduced about the population 
parameters. Quantifying this shift in uncertainty is the goal 
of Bayesian inference. The parameter space Θ is the set of all 
possible parameter values from which we wish to identify the 
value(s) that best reflect the true population parameters (e.g., 
regression weights in connectivity models). Bayesian learning 
involves a numerical formulation of the joint beliefs about y and 
θ, expressed as probability distributions over y and θ. In short, 
Bayesian learning involves the components listed below.

I.	 Given each value θ∈Θ the prior distribution ( )p θ  describes 
the belief that  ( )θ   represents the true population parameter.

II.	 Given each value θ∈Θ and y Y∈  the sampling model (y| )p θ    
captures the belief that y  will be the outcome of a particular 
study if we knew θ  to be correct or true.

III.	 After y  is acquired, each numerical value of the posterior 
distribution (y| )p θ  describes the belief that θ  is the true 
value having observed dataset y  .

The posterior distribution for model parameters is derived 
using Bayes rule as in Equation 1.

                                       						    
                                                                             (1)

A core component of Bayesian modeling is accurately 
modeling the generating process (e.g., unknown causes modeled 
using a prior distribution) and unknown population parameters 
θ  to observed sensory data values ( y ). Bayesian statistical 
methods are particularly well-suited for developing generative 
or recognition models of complex systems [15-17] because the 
goal in Bayesian learning is to model the generating process that 
produced the observed data values. For example, in generative 
and recognition models, functions are applied thereby allowing a 
mechanism for mapping causes to sensory input. Specifically, the 
goal of generative modeling is to: “learn representations that are 

( | ) ( )( | )
( | ) ( )
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economical to describe but allow the input to be reconstructed 
accurately” [18]. The goal is to make inferences about the causes 
and learn the parameters. Bayesian probability provides a 
natural framework for linking unknown parameters and causes 
to observed data. Finally, in the classical school of probability, 
the sample data values are selected randomly with the statistics 
estimated being fixed point estimates of population parameters. 
Conversely, in the Bayesian school of probability and inference, the 
sample is fixed (i.e. not considered random) with the parameters 
estimated being random (e.g., obtained using Markov chain Monte 
Carlo [MCMC] resampling methods). Because our estimated 
parameters are random variables, we can make probabilistic 
statements about their certainty with a high level of precision.

In the Bayesian modeling approach, we view any unknown 
quantity (e.g., parameter) as random and these quantities 
are assigned a probability distribution (e.g., normal, Poisson, 
multinomial, geometric, etc.) that provides the impetus for 
generating a particular set of data. In this study, our unknown 
population parameters were modeled as being random and then 
assigned to a joint probability distribution. In this way, we were 
able to summarize our current state of knowledge regarding the 
model parameters. The sampling-based approach to Bayesian 
estimation provides a solution for the random parameter vector θ 
by estimating the posterior density or distribution of a parameter. 
This posterior distribution is defined as the product of the 
likelihood function (accumulated over all possible values of θ) 
and the prior density of θ [19]. In our case, a generative model is 
specified in terms of a prior distribution relative to the neuronal 
activity (i.e. the causative mechanism of the observed data).

Modeling long time series relative to small sample size: 
Developing statistical models for studying populations relevant 
to neuroscience often poses considerable challenges due to 
small sample sizes, the issue of low statistical power, and the 
length of the time series (i.e. number of repeated measurements) 
being quite long (e.g., > 100 time points). One analytic approach 
appropriate for the challenging scenarios previously noted 
are multivariate autoregressive models [20-22,13]. The use of 
Bayesian statistical modeling is more sensitive for hypothesis 
testing and interval estimation than frequentist approaches when 
there are small sample sizes with multivariate structure and a 
long time series [23-25,19]. In the present study, the number of 
time series measurements is large (i.e. > 1000) with the length of 
the time series greater than the sample size (N=1). Although our 
data acquisition involved multiple trials for each electrode within 
each subject, the average time series (waveform) for each site 
within each subject was used for BdSEM modeling.

Modeling fMRI data involves capturing the degree of 
deoxygenated vascularization relative to baseline for each voxel 
or congregation of voxels corresponding to ROIs across multiple 
trials (i.e. time series) nested within subjects. Each case within 
the time-series data structure for each ROI corresponds to 
the peak, or averaged peak, of hemodynamic activity for that 
trial. Furthermore, after slice timing correction, the resulting 
data structures for each ROI are obtained contemporaneously 
for any given trial. When extended to multivariate regression 
or multivariate autoregressive models (or SEMs), mapping 
hypothesized effective connectivity relationships (including those 

with theoretical support) becomes fallacious given that inferences 
of causal influence of one region on another requires temporal 
precedence. For example, the empirical conditions for inferring a 
causal relationship between two variables include (a) X is related 
to Y, (b) X temporally precedes Y, and (c) the relationship between 
X and Y is not mediated by a third variable - Z [15,26].  Although 
more complicated, the same rules apply when modeling the 
relationships in a system of simultaneous equations (e.g., more 
than two variables). 

Kim et al. [27] developed a Unified SEM technique of fMRI 
time-series using data on visual attention using multivariate 
auto regression to model both contemporaneous and temporal 
(longitudinal) relationships simultaneously. However, the 
effective relationships determined from delayed representations 
and real-time representations of data were separated by a single 
trial with a time resolution of 3 seconds. Moreover, inferences 
of interregional causal relationships between multiple regions’ 
underlying electrophysiology were made from vascular data 
that was obtained 3 seconds prior. Also, Unified SEM requires 
relationships between parameters to be specified a priori. Gates 
et al. [28] improved upon this technique, by developing an 
Extended Unified SEM technique integrating an automatic search 
procedure based on Lagrangian multiplier tests, or modification 
indices. In this paper, we improve on these procedures by the 
estimation of electrophysiological connectivity maps to obtain 
more accurate representations of effective relationships by 
leveraging the high temporal and spatial resolution of (ECoG), a 
form of electrophysiological data collected from electrodes placed 
directly on the brain cortical surface during neurosurgery [2,3,5,6].  
ECoG remedies issues of localization frequently encountered in 
EEG while retaining the advantage of high temporal resolution 
(0.5 – 1.0ms) and spatial resolution (diameter 2.0-3.0mm). The 
improved temporal resolution relative to fMRI makes ECoG 
ideal for reducing bias to very small or optimal levels specific 
to inferences based on underlying neurophysiology. Leveraging 
the high quality of ECoG data, we present a novel method for 
modeling dynamic data structures of ROIs to be input in a data-
driven method of modeling the relationships between regions of 
the cortical voice network.  

Differential structural equation modeling: Modeling 
dynamic intraindividual change using differential equations based 
on long time series is a rapidly evolving technique. Functional data 
analysis (FDA) [29] provides an approach for fitting differential 
equations directly from acquired measurements in studies of 
human growth and EEG. Using differential equations within SEM 
provides an approach for applying the FDA approach to model the 
effective connectivity expressed as dynamic coupling between 
the neuronal states of various brain systems when exposed to 
experimental conditions. Typically, in neuroimaging studies, 
experimental conditions are modeled as inputs via boxcar or stick 
functions. Here we approximate the (reciprocal) relationships 
among brain region activity using a bilinear approximation. 

Ordinary differential equations (ODEs): Using ODEs to model 
neuronal activity provides a way to express the rate of change of 
the states as a parameterized function of the states and inputs. In 
Equation 2,  ( )tu  represents a particular experimental stimulus 
as an input.  Here we use ODEs to model instantaneous changes 
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in neuronal activity in two steps.  First, we employ neuronal 
state equations thereby linking the derivatives of neuronal 
states 1( ) ( ( ), , ( )) 'dt x t x t=x   of d brain regions to themselves 
under the influence of an experimental condition [2]. The ODE-
based dynamic model assumes a Markov property whereby 
instantaneous changes of the system depend only on system 
states and experimental inputs at the same moment in time. 
Importantly, the Markov property is tenable for the brain system 
performing simple auditory and vocalization experimental tasks 
as in our study. The ODE-based state equation detailing the 
dynamic changes of neural states is provided in Equation 2.

                                                                          (2)

Where F1 is a set of nonlinear basis functions capturing 
neuronal influences that specific brain regions (t)x  and 
experimental stimuli ( )tu  exert on other specific regions. The 
vector 

1
θ  contains the unknown parameters in the system. In 

Equation 2, (t)x  is a continuous function reflecting an average of 
the neuronal activity in a specific region. Equation 3 conveys the 
observation-level (output) equation that enables a description 
of how the underlying neuronal activity causes changes in the 
observed data vector y  in each ROI.

                                                                         (3)

Where 2F  is an unknown function, 2θ  are parameters 
to be estimated, and x(t)  are error terms. Equations 2 and 3 
are requisite to modeling any dynamic system (i.e. they link 
underlying or hidden states to observable outputs, [30]). 
Particularly relevant to our study is that the causal relationships 
between the outputs and the inputs conform to a Volterra series, 
which expresses the outputs as a generalized convolution of the 
input – without reference to the hidden states x(t)  [1]. In short, 
the Volterra series is a functional Taylor expansion of the outputs 
with respect to the inputs.

Next, in Equation 4 we are able to include a bilinear 
approximation to F1 by combining elements in Equations 2 and 
3. In Equation 4, causal influences among regions are possible to 
elucidate since bidirectional estimates of parameters are included 
in the 1 2

Ai i
 
and 1 2

Ai i  portion of the equation. These bidirectional 
influences include the dynamic effect of the time series. The 
parameters in the B  matrix enable the estimation of stimulus-
dependent effective connectivity between component regions. 
Parameters are allowed to vary over the time course of the data 
capture (ECoG signal) in order to ensure accurate approximation 
to F1. 

                                                                                       (4)

Here A = 1 2 dxdAi i( )  with 1 2
Ai i

 
denotes the effect of 

component 2i  on component 1i  exerted at the current state; jB =  
j,i i dxd1 2

B , j=1,…,J,( )  couples the jth stimulus with the neuronal states 
and nonzero 

1 2j,i iB  implies that the effect exerted by component  

2i  on component  1i  depends on stimulus j; ij dxJC=C ( )  with ijC  
indicated the effect of stimulus j on component i; and 1,…, dD D=D ( )'  
with iD  representing the intercept for component i [2].

To estimate parameters at the ROI (observation) level, we use 
Equation 5.

(t)= (t)+ (t)y x e  (5)

Where (t)e  is a d-dimensional vector of measurement errors 
with mean error of zeros.  Further, we assume that the distribution 
of errors is normally distributed with mean zero and variance 

2
iσ . Finally, to estimate the differential equations, we use basis 

function expansion as described in Ramsay & Silverman [31]. 
The basis function expansion approach is appropriate due to the 
temporally dense observations of brain regions and the average of 
a large number of neuron activities in the region of interest. The 
basis function approach allows for closed form solutions based on 
a large number of neural activity and the associated derivatives of 
the regional activity. Estimating parameters in the bilinear model 
is straightforward and reduces to solving d linear regression 
equations.

Analytic strategy: Here we use a three-step approach to achieve 
an optimal model of effective connectivity.  First, we fit differential 
equations to ECoG signal data to capture instantaneous change 
of neuronal activity within each region of interest based on data 
acquired via target subdural electrode sites. Second, we developed 
a BdSEM to model effective connectivity of the brain system 
using derivatives and observational data of each ROI. Third, we 
use a Bayesian information-theoretic algorithm to identify the 
optimal network model (i.e. the model with the highest posterior 
probability of being optimal). Our approach is flexible in that one 
can (a) use the entire ECoG electrode array to model signals from 
a large amount of regional activity (e.g., 48 to 96 electrodes within 
a specific area of the brain) propagating from dense neuronal 
activity, or (b) use one ECoG electrode (single channel) within 
the array to model a targeted brain region. The first example 
above begins by modeling the neuronal dynamics and is similar to 
Dynamic Causal Modeling (DCM, Friston et al. [32]) because the 
brain is viewed as a continuous-time dynamic system of neuronal 
activity where signals propagate upward to an observational or 
population level. DCM incorporates two equations: a bilinear 
equation capturing neuronal activity in a bidirectional, nonlinear 
fashion, and an observation-level equation enabling effective 
connectivity modeling. The approach presented here is viewed as 
a special case of a DCM. 

Methods
Customized high-density electrode arrays were implanted on 

the pial surface of exposed cortex for all subjects. Electrode arrays 
consisted of 96 platinum-iridium disc electrodes embedded 
within a silicon sheet with 5.0 mm center-to-center spacing 
and 3.0 mm contact diameter (Ad-Tech, Racine, WI). Since grid 
placements were tailored to clinical considerations for each 
subject, exact placements differed. However, analyzed ROIs , 
namely, inferior frontal gyrus (IFG), premotor cortex (PreM), 
primary motor cortex (M1) and 2 regions from superior temporal 

2 2( ( ), , ( ))(t)=F t txy eθ

1

d t t u t t t
d t =

= + ⋅ + +∑
J

j
j

x( ) Ax( ) ( ) B x( ) Cu( ) D
( )

( ) ( ) ( )( )11
, ,

dx t
F X t u t

dt
θ=
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gyrus (STG), -posterior STG (PostSTG) and middle STG (MidSTG) 
were significantly covered for each subject. Moreover, our task 
was a sustained vocalization task (e.g., produce and sustain the 
vowel /a/) during recording of cortical signals (see Experimental 
Design section) and these regions are well known to be associated 
with sensory motor control of vocalization.

Subjects: Four male patients ages 31 to 47, mean (41 years) 
undergoing neurosurgical treatment for medically intractable 
epilepsy served as subjects for this study. Written consent was 
obtained from all subjects and all research protocols were 
approved by University of Iowa Human Subjects Review Board. 
Experiments were conducted in an electromagnetically-shielded 
private suite in the University of Iowa General Clinical Research 
Unit. 

All subjects underwent comprehensive pre-surgical 
neurological examination, brain imaging, neuropsychological 
evaluation and audiometric testing to confirm normal hearing, 
speech, and language function. No anatomical lesions were 
detected for cortical regions of interest. Subjects underwent 
preoperative sodium amobarbital (Wada) testing revealing 
left hemispheric language dominance in 3 subjects (including 
s186) and bilateral dominance in one subject number. Detailed 
description of our electrode arrays and localization of recording 
sites can be found in previous studies from our lab [5,6]. 

Experimental design: Subjects underwent 2 blocks of 
vocalization and playback tasks. The vocalization task required 
subjects to produce and maintain vocalization of the vowel 
/a/ for 2 seconds at a natural conversational pitch and volume 
(approximately 70-75 dB). The vocalization task was repeated 
30-50 trials with 1-2second breaks between the self-paced trials. 
Voice sound was captured by a microphone (Beta 87C, Shure, 
Niles, IL) located near the subject’s mouth, amplified (10 dB gain; 
Ultralite MK3, MOTU, Cambridge, MA), and passed through a 
harmonizer (Eclipse, Eventide, Little Ferry, NJ). Auditory feedback 
stimuli were delivered bilaterally through insert earphones (ER-
4, Etymotic, Elk Grove Village, IL) placed in custom fitted, vented 
ear molds for each subject. A 10 dB feedback amplification gain 
was inserted between the voice sound and its auditory feedback 
to partially mask the potentially confounding effects of bone-
conduction. During the playback task, subjects were instructed 
to listen to the recorded sound signal of their same self-
produced vocalizations. The gain of the signal during playback 
condition was adjusted at a nearly equal level to voice feedback 
during vocalization block. The total duration of each block was 
approximately 5–8 minutes. Subjects were given short breaks (2 
minutes) between successive blocks.

Data processing: Data acquired from electrode arrays 
consisting of 96 platinum-iridium disc electrodes embedded 
within a silicon sheet with 5.0 mm center-to-center spacing 
and 3.0 mm contact diameter yielded the data structure from 
underlying neural populations. At the observation level, a single 
central electrode was selected to represent the activation for 
each of the 5 ROIs (a) IFG, (b) PreM, (c) M1, (d) PostSTG, and 
(e) MidSTG based on gross anatomical surface landmarks for 
each subject. Electrophysiological signals for 2-second intervals 

were averaged across trials. We used short intervals to maintain 
an efficient bilinear approximation of nonlinear connectivity 
relationships among components. For both playback and 
vocalization conditions, a 500-millisecond interval (obtained 
at 0.5ms temporal resolution) was isolated starting from onset 
of vocalization/playback. This short interval was necessary as 
the subjects were subsequently presented with altered auditory 
feedback for other study purposes.  

Assessing inter individual versus intra individual 
dynamics: Developing models of effective connectivity often 
proceeds with the goal of creating a model that accurately 
captures brain dynamics for a group of subjects. Standard 
statistical analyses (e.g., regression, ANOVA, SEM and other 
general linear modeling techniques) that yield inferences within 
a randomly-selected population of subjects are considered to be 
homogeneous in all aspects specific to the research endeavor. In 
this scenario, model parameters are derived based on pooling 
covariance matrices across subjects. Based on the homogeneity 
of subjects assumption, population-based inferences are made 
based on individual differences between subjects (whether the 
study design is cross-sectional or time-series based). At the heart 
of this approach is the study of individual differences rather than 
within-person (a.k.a. intra individual change). When the goal is 
to model a continuous-time complex neural system that changes 
dynamically, applying standard statistical techniques used for 
studying individual differences may be unjustified [33]. Testing 
this assumption involves the statistical property of ergodicity 
[34,35]. In the present study, we evaluated the ergodic property 
by testing the homogeneity of the variance-covariance matrices 
(assembled from the time-series vector and their derivatives 
for each subject) prior to pooling matrices across subjects and 
proceeding with a group-level, traditional analytic technique. 
Specifically, we were interested in (a) measuring the degree to 
which neural changes in brain activity of a subject with intractable 
epilepsy occurs between temporal states of the ECoG signals and 
(b) if subjects’ data structures were homogeneous enough to 
develop a single connectivity model by study condition. To this 
end, developing a single model of effective connectivity for the 
four subjects in this study may or may not accurately represent 
the intra individual brain dynamics of each subject. Based on the 
results of our test, the individual subjects’ covariance matrices 
were not homogeneous (statistically different at p < .001 for each 
pair wise comparison corrected for Type 1 error); therefore we 
proceeded by using right (non-language dominant) hemisphere 
data for subject 186 under both experimental conditions (i.e. 
speaking and playback).

Exploratory model development: To construct a model 
of effective connectivity that provided optimal fit, exploratory 
BdSEM using ROIs and every possible path was performed. 
Contemporaneous relationships were extracted based on 
the direct connections between both real-time to real-time 
and delayed to delayed relationships between two ROIs. The 
continuous signal acquired from ECoG was discretized into 1110 
observations. Intrinsic relationships were interpreted as a path 
from the delayed representation (derivative) of a region to its 
real-time representation. Lastly, longitudinal relationships were 
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derived from the delayed (derivative) representation of one 
region bearing a relationship to the real-time representation of 
another. Model fit was iteratively improved through the use of a 
heuristic search strategy [36,37]. Our use of heuristics was guided 
by the neuroscience experience of the team, mathematical logic 
and computational skills. We employed a mathematically-based 
approach based on lagrangian heuristic/incomplete branch-and-
bound algorithms. Decision rules for optimal model selection 
was based on Burnham & Anderson [38] guidelines for BCC 
interpretation as the BCC0 between 0-2 (no credible evidence that 
the model should be ruled out as being the Kullback-Leibler (K-L; 
[39]) best model for the population of possible samples).

Our exploratory model fitting protocol followed guidelines 
established from research in the information-theoretic and 
Bayesian modeling fields [40,38]. Specifically, we employed the 
Kullback-Leibler distance measure [39] as incorporated into the 
information theoretic measure the Browne-Cudeck Criterion 
(BCC, [41]), to identify the model with the highest probability 
of being the correct model. The BCC was developed specifically 
for covariance structure modeling and imposes a greater penalty 
for model complexity than does the Akaike Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC). The BCC is 
defined as:
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Where, Ĉ  is the minimum value of the discrepancy function, 
q  is the number of parameters in the model, p  is the number 
of sample moments in all groups combined, ( )gN  equals the total 
sample size (N) times the ratio of the sample size in a group 

( )gN  to the total sample size (N), ( )gp  is the number of variables 
in an observed group, ( )gN , and G  is the number of groups in 
the model. Of particular relevance, the exploratory strategy 
we employed provides a mechanism for the prevention of over 
fitting (a particular challenge in selecting an optimal model from 
a very large number of competing models). Ensuring that model 
over fitting in heuristic specification search procedures does not 
occur in high-dimensional data structures [37,42] is a challenging 
but not insurmountable. Exploratory modeling began with a null 
model with only the derivative for a specific ROI regressed on 
the respective ROI. Under this specification, the starting model 
representation is that each region has no significant correlation 
with the activity of any other region. Iterative model refinement 
evolved through evaluating model improvement in the likelihood 
ratio 2χ  test, root mean square error of approximation (RMSEA; 
[43]) and Browne-Cudeck Criterion (BCC, [41]) with successive 
path additions.

Bayesian SEM model development and refinement: After 
identification of optimal models for each study condition, BdSEM 
proceeded by modeling the population parameters using semi-
conjugate priors for θ ~ multivariate normal (~N 0, 4), Σ ~ inverse-
Wishart ( 1

0S− , 1
0S− ; [44-47,42 ]). The selection of priors was based 

on (a) a review of the distributional properties of the acquired 

ECoG time series, and (b) recommendations for using informative 
priors for complex models with small samples Gelman [46] 
and Asparouhov & Múthen [48]. One-thousand MCMC burn-in 
iterations were used to establish convergence criteria for the joint 
posterior distribution of the model parameters and the criterion 
for acceptable posterior distribution summary estimates of 
parameters was set at 1.001 [42]. Bayesian estimation proceeded 
using the SEM facility in Mplus, version 7.3 [49]. Convergence was 
achieved at S=20,000 post burn-in iterations after which posterior 
distributions were evaluated using time series, auto correlation 
plots, and the posterior predictive p-values to judge the behavior 
of the MCMC convergence [44]. Time series and auto correlation 
plots revealed acceptable MCMC performance in all four subjects 
in left and right hemisphere models. Posterior predictive p values 
were acceptable for subject 186; p = .53 (vocalization condition) 
and .47 (auditory condition).

For the final model in our heuristic search, the BCC0 was 
observed as 1.22 (vocalization condition) and 2.0 (listening 
condition). Additionally, we used (a) an RMSEA of <.05, (b) 
comparative fit index (CFI) of >.95, and (c) the Bayesian 
information criteria (BIC) being the smallest among competing 
models as decision criteria. Figure 1 illustrates selected path 
loadings for the final right hemisphere vocalization and listening 
condition models for subject 186. Complete presentation of path 
loadings are provided in Tables 1&2.

Simulation study: In the next phase of our study, Markov chain 
Monte Carlo (MCMC, [50]) methods were used to examine the 
sampling distribution of the parameter estimates and their 
error structure for subject 186 under both study conditions. We 
conducted a simulation by evaluating the impact of sample size 
(N=1, 2, 3 and 5) on parameter estimation bias in vocalization 
and listening conditions. A byproduct of our simulation included 
a power analysis providing estimates for each regression path at 
each sample size condition. The Monte Carlo simulation facility in 
Mplus version 7.3 [49] was used to conduct the simulation study. 
The results of our simulation are presented next.

For the N=1 condition, 95% coverage was attained 21% of 
the time. Power analysis revealed that 32% of the parameter 
estimates were below a power of .85. For the N=2 condition, 95% 
coverage was attained 28% of the time. Power analysis revealed 
that 28% of the parameter estimates were below a power of 
.85.  For the N=3 condition, 95% coverage was attained 27% of 
the time. Power analysis revealed that 38% of the parameter 
estimates were below a power of .85.  For the N=5 condition, 95% 
coverage was attained 21% of the time. Power analysis revealed 
that 77% of the parameter estimates were below a power of 85 
Tables 3&4. 

In summary, the results of the simulation study revealed that 
at small sample sizes, group-level effective connectivity analyses 
are like to yield estimates with low statistical power, parameter 
estimates with bias greater than 5% at least 50% of the time. The 
95% coverage was low ranging from 21% to 28%. The problems of 
low power and excessive parameter bias resolved upon reaching 
a sample size of N = 200,000. At this point, statistical power for 
all parameter estimates was greater than .95 and bias was below 
5%. This pattern of findings concurs with the fully Bayesian 
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model which also included 200,000 replications. Based on the 
results of our simulation, a fully Bayesian approach to modeling 
single subject-specific effective connectivity using ECoG data is 
recommended since (a) the Bayesian probability is not based on 
classical frequency school of probability with random sampling 
of experimental units (i.e. subjects), and (b) the approach directly 

incorporates a Markov chain Monte Carlo (MCMC) simulation 
component in estimating the random parameters comprising a 
model. Using the Bayesian approach, prior information can be 
included in the parameter estimation process and Gibbs sampling 
within the MCMC framework can be leveraged to ensure accurate 
final model parameters.

Table 1: Bayesian SEM Estimates Playback-Listen Condition – Right Hemisphere (Subject 186).

Regression Paths Standardized 
Estimate

Unstandardized 
Estimate S.E. SD p Relationship 

Type

MidSTG <- IFG -0.28 -0.1 0.01 0.001 0.01 C

PostSTG <- IFG 0.07 0.03 0.001 0.013 0.01 C

dM1 <- IFG 0.21 0 0 0 *** D

dPostSTG <- IFG 0.26 0 0 0 *** D

M1 <- IFG 0.59 0.03 0.001 0.015 0.02 C

dMidSTG <- IFG 0.06 0 0 0 0.09 D

PreM <- IFG -0.01 -0.01 0.001 0.011 0.39 C

dPreM <- IFG 0.49 0.01 0 0 *** D

dIFG <- IFG 0 0 0 0.001 0.94 I

dMidSTG <- dIFG -0.2 -0.05 0.011 0.015 *** C

dPreM <- dIFG -0.14 -0.04 0.009 0.165 *** C

dPostSTG <- dMidSTG 0.48 0.72 0.002 0.024 *** C

dPreM <- dMidSTG -0.32 -0.14 0.003 0.04 *** C

dM1 <- dMidSTG 0.41 0.77 0 0.001 *** C

dM1 <- dPostSTG -0.47 -0.6 0.002 0.037 *** C

dM1 <- dPreM 0.22 0.43 0 0.002 *** C

dPreM <- dPostSTG -0.07 -0.04 0.003 0.042 0.01 C

dM1 <- dIFG -0.08 -0.04 0.001 0.015 *** C

PreM <- dMidSTG -0.32 -12.25 0.068 1.045 *** D

PostSTG <- MidSTG 0.61 0.93 0.002 0.034 *** C

dPostSTG <- PreM 0.1 0 0 0.001 *** D

M1 <- PostSTG -0.63 -0.71 0.003 0.033 *** C

PostSTG <- dMidSTG -0.05 -4.66 0.081 1.24 *** D

M1 <- dIFG -0.1 -1.53 0.023 0.357 *** D

M1 <- dPostSTG -0.01 -0.43 0.082 1.02 0.66 D

MidSTG <- dIFG -0.04 -0.41 0.015 0.301 0.18 D

M1 <- dMidSTG 0.18 10.85 0.102 1.484 *** D

PreM <- MidSTG 0.55 0.16 0.003 0.038 *** C

M1 <- dPreM 0.15 9.43 0.125 1.661 *** D

PostSTG <- dIFG -0.16 -2.61 0.023 0.311 *** D

dPreM <- MidSTG 0.61 0.02 0 0.001 *** D
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dPostSTG <- dIFG 0.32 0.12 0.01 0.117 *** C

PreM <- dIFG -0.26 -2.43 0.021 0.297 *** D

dPreM <- PostSTG -0.2 0 0 0.001 *** D

dM1 <- PreM -0.05 0 0 0.002 0.1 D

M1 <- PreM 0.5 0.73 0.003 0.035 *** C

M1 <- MidSTG 0.55 0.92 0.004 0.055 *** C

dM1 <- MidSTG 0.05 0 0 0.002 0.21 D

dM1 <- PostSTG -0.1 0 0 0.001 0.01 D

PreM <- PostSTG -0.2 0.12 0.001 0.026 *** C

dPostSTG <- PostSTG 0.08 0 0 0.001 0 I

dMidSTG <- MidSTG 0.01 0 0 0.001 0.76 I

dM1 <- M1 -0.15 -0.01 0 0.001 *** I

dPreM <- PreM -0.11 0 0 0.001 *** I

dIFG <- dM1 -0.01 -0.02 0.006 0.09 0.81 C

dPostSTG <- dPreM 0.03 0.05 0.003 0.042 0.28 C

dMidSTG <- dPostSTG 0 0.01 0.002 0.024 0.84 C

dIFG <- dMidSTG -0.01 -0.04 0.011 0.151 0.78 C

dMidSTG <- dPreM 0 0 0.003 0.04 0.98 C

dlFG <- dPreM 0 0 0.009 0.165 0.98 C

dPostSTG <- dM1 0.03 0 0.004 0.155 0.95 C

dMidSTG <- dM1 0.01 0 0 0.03 0.96 C

dPreM <- dM1 0.43 0.1 0.005 0.046 *** C

dIFG <- dPostSTG 0 0 0.01 0.117 0.99 C

Note: *** denotes significant at p<.001. C =contemporaneous; D = delayed; I = intrinsic. Note. Path coefficients are mean standardized regression weights 
(point estimates) based on marginal posterior distribution resulting from Bayesian analysis with MCMC resampling. Parameter estimates (regression 
weights) are modeled as random parameters. SD = posterior standard deviation of the distribution. S.E. = posterior standard error of the distribution. 
95% Bayesian credible interval runs from the 2.5 percentile to the 97.5 percentile. Credible intervals do not depend on a normal (Gaussian) distribution 
to establish confidence limits. PPP = .36, DIC = 134.09

Table 2: Bayesian SEM Estimates Vocalization Condition – Right Hemisphere (Subject 186).

Regression Paths Standardized 
Estimate

Unstandardized 
Estimate S.E. SD p Relationship 

Type

dIFG <- IFG 0.17 0.01 0 0.002 *** I

MidSTG <- IFG -0.37 -0.69 0.003 0.054 *** C

PostSTG <- IFG -0.35 -0.63 0.003 0.046 *** D

dM1 <- IFG 0.57 0.02 0 0.001 *** D

dPostSTG <- IFG -0.5 -0.02 0 0.002 *** D

M1 <- IFG -0.4 -0.47 0.002 0.039 *** D

dMidSTG <- IFG 0.01 0 0 0.002 0.76 D

PreM <- IFG 0.06 0.05 0.002 0.029 0.06 C

dPreM <- IFG -0.35 -0.01 0 0.001 *** D

dMidSTG <- dIFG -0.05 -0.04 0 0.001 0.1 C

dPreM <- dIFG 0.28 0.2 0.051 0.653 *** C

dPostSTG <- dMidSTG -0.03 -0.04 0.015 0.013 *** C
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dPreM <- dMidSTG -0.04 -0.04 0.004 0.064 0.1 C

dM1 <- dMidSTG 0 0 0.001 0.031 0.99 C

dM1 <- dPostSTG -0.08 -0.05 0 0.001 0.01 C

dM1 <- dPreM 0.33 0.28 0 0.001 *** C

dPreM <- dPostSTG 0.35 0.29 0 0.001 *** C

dM1 <- dIFG -0.46 -0.28 0.027 0.59 *** C

dMidSTG <- MidSTG -0.08 0 0 0.001 0.02 I

dPostSTG <- PostSTG -0.39 -0.01 0 0.001 *** I

dPreM <- PreM -0.04 0 0 0.001 0.14 I

dM1 <- M1 0.04 0 0 0.001 0.23 I

PreM <- dMidSTG -0.67 -17.27 0.278 2.052 *** D

PostSTG <- MidSTG 0.49 0.47 0.001 0.024 *** C

dPostSTG <- PreM 0.62 0.03 0.001 0.004 *** D

M1 <- PostSTG -0.57 -0.37 0.001 0.027 *** C

PostSTG <- dMidSTG -0.15 -7.52 0.108 1.794 *** D

M1 <- IFG -0.17 -4.07 0.002 0.039 *** C

M1 <- dPostSTG -0.1 -2.72 0.049 0.859 0 D

MidSTG <- IFG -0.19 -7.05 0.003 0.054 *** C

M1 <- dMidSTG 0 -0.12 0.059 0.948 0.91 D

PreM <- MidSTG 0.28 0.14 0.001 0.014 *** C

M1 <- dPreM 0.09 3.08 0.067 1.136 0.01 D

PostSTG <- dIFG 0.1 3.43 0 0.002 *** D

dPreM <- MidSTG 0.48 0.01 0 0.001 *** D

dPostSTG <- dIFG 0.16 0.14 0.003 0.041 *** C

PreM <- dIFG -0.08 -1.47 0.051 0.653 0.01 D

dPreM <- PostSTG -0.62 -0.01 0 0.001 *** D

dM1 <- PreM -0.31 -0.01 0 0.001 *** D

M1 <- PreM 0.36 0.47 0.002 0.04 *** C

M1 <- MidSTG -0.21 -0.13 0.001 0.023 *** C

dM1 <- MidSTG -0.01 0 0 0.001 0.74 D

dM1 <- PostSTG 0.4 0.01 0 0.001 *** D

dIFG <- dMidSTG -0.05 -0.07 0 0.002 0.18 D

dMidSTG <- dPostSTG 0.56 0.45 0.015 0.103 *** C

dPostSTG <- dPreM 0.04 0.05 0.003 0.053 0.25 C

dPreM <- dM1 0 0 0.001 0.031 1 C

dIFG <- dM1 0 -0.01 0.004 0.064 0.88 C

dMidSTG <- dPreM 0.01 0.01 0.004 0.064 0.81 C

dPostSTG <- dM1 0 -0.01 0.004 0.054 0.83 C

dMidSTG <- dM1 0 0 0.007 0.068 0.87 C

dIFG <- dPreM 0.03 0.03 0.005 0.074 0.57 C

Note: *** denotes significant at p<.001. C =contemporaneous; D = delayed; I = intrinsic. Note. Path coefficients are mean standardized regression weights 
(point estimates) based on marginal posterior distribution resulting from Bayesian analysis with MCMC resampling. Parameter estimates (regression 
weights) are modeled as random parameters. SD = posterior standard deviation of the distribution. S.E. = posterior standard error of the distribution. 
95% Bayesian credible interval runs from the 2.5 percentile to the 97.5 percentile. Credible intervals do not depend on a normal (Gaussian) distribution 
to establish confidence limits. PPP = .42, DIC = 131.05.
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Table 3: Monte Carlo Simulation – Vocalization Condition (N=1 and N=2).

N = 1 N = 2

Path Popula-
tion Average %Bias 95% 

Coverage Power Population Average %Bias 95% Co-
verage Power

IFG on

dM1 61.43 43.05 -0.29 0.65 0.96 61.43 45.729 -0.256 0.676 0.999

dIFG 26.72 26.14 -0.022 0.91 0.99 26.715 26.704 0 0.933 1

MidSTG -1.99 -1.71 -0.141 0.63 0.98 -1.99 -1.71 -0.141 0.63 0.98

dMidSTG -2.04 -1.241 -0.392 0.77 0.15 -2.04 -0.783 -0.616 0.7 0.238

MidSTG on

IFG -1.99 -1.71 -0.141 0.63 0.98 -1.99 -1.726 -0.133 0.66 1

PostSTG on

IFG 0.735 -0.416 -1.566 0.65 0.85 0.735 -0.422 -1.574 0.683 0.976

MidSTG 0.55 0.51 -0.073 0.82 1 0.546 0.518 -0.051 0.744 1

dMidSTG -7.79 -9.96 0.279 0.84 0.99 -7.79 -9.924 0.274 0.736 1

dIFG 7.85 10.93 0.392 0.67 0.99 7.847 10.751 0.37 0.677 1

dM1 on

IFG 0.004 0.007 0.75 0.69 0.33 0.004 0.007 0.625 0.68 0.332

dMidSTG 0.006 0.033 4.5 0.864 0.152 0 0 0 1 0

dPostSTG 0.089 0.098 0.101 0.93 0.43 0.089 0.098 0.101 0.93 0.43

dPreM 0.28 0.28 0 0.99 0.99 0.28 0.28 0 1 0

dIFG 0.083 0.078 -0.06 0.9 0.65 0.28 0.28 0 1 0

M1 0.008 0.006 -0.25 0.656 0.247 0.008 0.006 -0.25 0.678 0.498

PreM -0.054 -0.038 -0.296 0.63 0.99 -0.054 -0.0405 -0.25 0.668 1

MidSTG 0.019 0.014 -0.279 0.63 0.915 0.019 0.014 -0.279 0.669 0.998

PostSTG 0.019 0.014 -0.289 0.64 0.935 0.019 0.014 -0.247 0.675 0.996

dPostSTG on

IFG -0.025 -0.0254 0.016 0.94 1 -0.025 -0.025 0 0.938 1

dMidSTG -0.037 -0.037 0 1 0 -0.037 -0.037 0 1 0

PostSTG -0.008 -0.009 0.125 0.84 1 -0.008 -0.009 0.125 0.791 1

PreM 0.028 0.029 0.032 0.92 0.99 0.028 0.029 0.032 0.893 1

dIFG 0.083 0.078 -0.06 0.9 0.65 0.083 0.074 -0.114 0.861 0.859

dPreM 0.098 0.152 0.551 0.67 0.69 0.098 0.152 0.551 0.671 0.86

dM1 0.089 0.089 0 0.93 0.43 0.089 0.089 0.002 0.951 0.636

M1 on

IFG -0.576 -0.57 -0.01 0.95 1 -0.576 -0.57 -0.01 0.937 1

PostSTG -0.415 -0.422 0.017 0.917 1 -0.415 -0.4214 0.015 0.906 1

dPostSTG -2.929 -2.925 -0.001 0.945 0.89 -2.929 -2.914 -0.005 0.945 0.998

dMidSTG 0.207 0.23 0.111 0.946 0.06 0.207 0.189 -0.086 0.945 0.061

dPreM 0.543 0.575 0.059 0.955 0.085 0.543 0.529 -0.027 0.953 0.116

PreM 0.437 0.459 0.05 0.848 1 0.437 0.458 0.048 0.78 1

MidSTG -0.051 -0.059 0.157 0.896 0.567 -0.051 -0.0577 0.131 0.863 0.721
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dMidSTG on

IFG -0.006 -0.005 -0.167 0.943 0.641 -0.006 -0.005 -0.167 0.949 0.901

dIFG -0.035 -0.035 0 0.99 1 -0.035 -0.035 0 0.99 1

MidSTG 0.003 0.002 -0.333 0.641 0.388 0.003 0.002 -0.333 0.669 0.67

dPostSTG 0.431 0.466 0.081 0.855 0.997 0.431 0.43 -0.002 0.829 1

dPreM -0.01 -0.032 2.2 0.918 0.083 -0.01 -0.022 1.2 0.925 0.099

dM1 0.006 0.033 4.5 0.864 0.152 0.006 0.022 2.667 0.828 0.199

PreM on

IFG 0.267 0.17 -0.363 0.666 0.633 0.267 0.185 -0.306 0.681 0.708

dMidSTG -20.397 -19.428 -0.048 0.632 1 -20.397 -18.969 -0.07 0.669 1

MidSTG -0.013 0.033 -3.538 0.633 0.35 -0.013 0.027 -3.077 0.67 0.331

dIFG -4.215 -4.018 -0.047 0.856 0.997 -4.215 -3.986 -0.054 0.791 1

dPreM on

IFG -0.018 -0.023 0.278 0.659 1 -0.018 -0.0237 0.317 0.681 0.708

dIFG -0.035 -0.035 0 1 0 -0.19 -0.19 0 1 0

dMidSTG -0.04 -0.04 0 1 0 -0.04 -0.04 0 1 0

dPostSTG 0.29 0.29 0 1 0 0.29 0.29 0 1 0

PreM 0 0.002 0 0.637 0.363 0 0.002 0 0.676 0.324

MidSTG 0.009 0.017 0.922 0.658 1 0.009 0.011 0.189 0.674 1

PostSTG -0.013 -0.0173 0.331 0.658 1 -0.013 -0.0173 0.331 0.681 1

dM1 0.28 0.28 0 0.99 0.99 0.28 0.28 0 1 0

dIFG on

dM1 0.567 0.612 0.079 0.939 0.896 0.567 0.609 0.074 0.946 0.995

dPreM 0.43 1.23 1.86 0.654 0.997 0.43 1.222 1.842 0.68 1

Note 1: Results based on 200000 MCMC samples for 1110 discrete time points. Chi-Sq = 24.87 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Note 2:  Results based on 200000 MCMC samples using 2220 discrete time points. Chi-Sq = 17.12 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Table 4: Monte Carlo Simulation – Vocalization Condition (N=1 and N=2).

N = 3 N = 5

Path Population Average %Bias 95% 
Coverage Power Population Average %Bias 95% 

Coverage Power

dM1 61.43 45.285 -0.263 0.673 1 61.429 47.049 -0.234 0.708 1

dIFG 26.715 26.734 0.001 0.943 1 26.715 26.785 0.003 0.943 1

MidSTG 0 0 0 1 0 -1.99 0 -1 1 0

dMidSTG -2.04 -0.702 -0.656 0.677 0.323 -2.04 -0.785 -0.615 0.709 0.462

MidSTG 
on

IFG -1.99 -1.7115 -0.14 0.657 0.999 -1.99 -1.729 -0.131 0.704 1

PostSTG 
on

IFG -0.735 -0.4095 -0.443 0.676 0.997 -0.735 -0.446 -0.393 0.701 0.999

MidSTG 0.546 0.519 -0.05 0.723 1 0.546 0.521 -0.046 0.713 1

dMidSTG -7.79 -10.024 0.287 0.682 1 -7.79 -9.811 0.259 0.705 1
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dIFG 7.847 10.794 0.376 0.66 1 7.847 10.418 0.328 0.694 1

dM1 on

IFG 0.004 0.006 0.6 0.675 0.368 0.004 0.006 0.525 0.7 0.398

dMidSTG 0 0 0 1 0 0 0 0 1 0

dPostSTG 0.089 0.098 0.101 0.93 0.43 0.089 0.098 0.101 0.93 0.43

dPreM 0.28 0.28 0 1 0 0.28 0.28 0 1 0

dIFG 0.28 0.28 0 1 0 -0.28 -0.28 0 1 0

M1 0.008 0.006 -0.25 0.658 0.682 0.008 0.006 -0.25 0.703 0.899

PreM -0.054 -0.0401 -0.257 0.667 1 -0.054 -0.0417 -0.228 0.702 1

MidSTG 0.019 0.014 -0.253 0.67 1 0.019 0.015 -0.226 0.698 1

PostSTG 0.019 0.014 -0.253 0.661 1 0.019 0.015 -0.221 0.7 1

dPostSTG 
on

IFG -0.025 -0.025 0 0.931 1 -0.025 -0.0249 -0.004 0.954 1

dMidSTG -0.037 -0.037 0 1 0 -0.037 -0.037 0 1 0

PostSTG -0.008 -0.009 0.125 0.71 1 -0.008 -0.0084 0.05 0.729 1

PreM 0.028 0.028 -0.004 0.876 1 0.028 0.028 -0.014 0.854 1

dIFG 0.083 0.073 -0.117 0.825 0.943 0.083 0.074 -0.106 0.782 0.993

dPreM 0.098 0.155 0.579 0.667 0.955 0.098 0.15 0.533 0.709 0.999

dM1 0.089 0.091 0.019 0.947 0.779 0.089 0.09 0.016 0.938 0.921

M1 on

IFG -0.576 -0.5707 -0.009 0.93 1 -0.576 -0.5715 -0.008 0.918 1

PostSTG -0.415 -0.4219 0.017 0.863 1 -0.415 -0.4208 0.014 0.854 1

dPostSTG -2.929 -2.955 0.009 0.936 0.998 -2.929 -2.912 -0.006 0.943 1

dMidSTG 0.207 0.21 0.013 0.95 0.063 0.207 0.195 -0.059 0.937 0.081

dPreM 0.543 0.546 0.006 0.949 0.166 0.543 0.55 0.013 0.934 0.234

PreM 0.437 0.459 0.051 0.719 1 0.437 0.455 0.041 0.709 1

MidSTG -0.051 -0.0582 0.141 0.817 0.835 -0.051 -0.0574 0.125 0.765 0.943

dMidSTG 
on

IFG -0.006 -0.0056 -0.067 0.948 1 -0.006 -0.0058 -0.033 0.946 1

dIFG -0.035 -0.035 0 1 0 -0.035 -0.035 0 1 0

MidSTG 0.003 0.002 -0.367 0.67 0.845 0.003 0.002 -0.333 0.7 0.939

dPostSTG 0.431 0.426 -0.011 0.76 1 0.431 0.432 0.002 0.747 1

dPreM -0.01 -0.0293 1.93 0.9 0.139 -0.01 -0.0226 1.26 0.859 0.189

dM1 0.006 0.026 3.3 0.787 0.243 0.006 0.022 2.667 0.743 0.279

PreM on

IFG 0.267 0.184 -0.31 0.676 0.717 0.267 0.194 -0.272 0.705 0.747

dMidSTG -20.397 -18.8361 -0.077 0.661 1 -20.397 -18.856 -0.076 0.707 1

MidSTG -0.013 0.029 -3.238 0.66 0.333 -0.013 0.024 -2.877 0.698 0.336

dIFG -4.215 -3.9623 -0.06 0.722 1 -4.215 -3.959 -0.061 0.714 1
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dPreM on

IFG -0.018 -0.0239 0.328 0.656 1 -0.018 -0.0233 0.294 0.698 0.708

dIFG -0.19 -0.19 0 1 0 -0.19 -0.19 0 1 0

dMidSTG -0.04 -0.04 0 1 0 -0.04 -0.04 0 1 0

dPostSTG 0.29 0.29 0 1 0 0.29 0.29 0 1 0

PreM 0 0.002 0 0.67 0.333 0 0.002 0 0.698 0.302

MidSTG 0.009 0.011 0.2 0.68 1 0.009 0.011 0.178 0.713 1

PostSTG -0.013 -0.0174 0.338 0.673 1 -0.013 -0.0169 0.3 0.71 1

dM1 0.28 0.28 0 1 0 0.28 0.28 0 1 0

dIFG on

dM1 0.567 0.61 0.076 0.929 0.999 0.567 0.603 0.063 0.898 1

dPreM 0.43 1.259 1.928 0.678 1 0.43 1.173 1.728 0.705 1

Note 1: Results based on 1000 MCMC samples for 3330 discrete time points. Chi-Sq = 24.87 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Note 2: Results based on 5550 MCMC samples using 1110 discrete time points. Chi-Sq = 34.19 (4); RMSEA = .022; SRMR = 0.007/SD = 0.007.

Results 
Emergent patterns in connectivity – right  hemisphere: A 
primary goal of the method illustrated here was to present a 
methodological approach for identifying emergent patterns (i.e. 
strength and connectivity) in effective network connectivity using 
ECoG data under two study conditions. Our analytic strategy 
provides a way to capture intrinsic, delayed and contemporaneous 
relations in a single, unified model. A secondary goal included 
evaluating the tenability of pooling covariance matrices across 
subjects to conduct group-level analyses of ECoG data to model 
effective connectivity. Pooling subject covariance matrices was 
determined as untenable and we proceeded by modeling intra 
individual dynamics of each subject. Examination of Figure 1 
reveals unique paths and associated strengths by playback-listen 
and vocalization conditions. For example, the final models by 
study condition were not conclusively the same, the sign and 
standardized path loadings were inconsistent or reversed in 
sign or both. The exception to this pattern of findings is in the 
case of some cross-covariances (i.e. lagged relationships with an 
ROI on itself or a lagged relationship with another ROI’s lagged 
relationship). However, the observed pattern(s) of lagged effects 
was expected and provides no further insight relative to the goals 
of our study.

Discussion 
Modeling complex relationships of neural systems based on 

functional and effective connectivity poses unique challenges 
to neuroscientists. In this paper we presented an approach to 
modeling effective and intrinsic relationships between ROIs 
simultaneously within a functional network. A primary goal of our 
work included systematically addressing issues specific to effective 
and intrinsic connectivity in a way that yielded an accurate map 
of vocal sensorimotor integration within and between ROIs. This 
is particularly important in dealing with electrophysiological data 
from neurosurgical patients because of the exquisite anatomical 
localization and temporal resolution. 

The modeling approach presented here is aimed toward 
increasing an understanding of the causal relationships observed 
among electrodes during different conditions that implicate 
various stages of sensorimotor vocal control. Our approach is 
geared to the development of network models that can explain 
the neural control of human vocalization.  Specifically, our work 
is focused on understanding feed forward (FF) and feedback (FB) 
control mechanisms using a paradigm by which we alter auditory 
feedback to subjects in real time while they are vocalizing. Such 
data inform specific processes such as self-voice identification 
and FB based error detection. 

Our work proceeded by first demonstrating an approach 
for estimating delayed data structures relative to each ROI 
using differential equations. Second, real-time and delayed 
representations were input for each region into a baseline or null 
model that assumed no relationships. Next, an heuristic iterative 
search algorithm was used to iteratively specify directional paths 
between regions. Our method was demonstrated on 5 regions 
of the voice network using ECoG data. The approach presented 
here offers a systematic and comprehensive way to model 
effective and intrinsic relationships and appears to work well for 
electrocorticography (ECoG), a form of electrophysiological data 
collected from electrodes placed on the surface of patents’ cortex 
during neurosurgery. 

While this is not an applications paper, it is useful to determine 
the nature of the relations among the ROIs modeled here. In 
this work we used data for which subjects vocalized an “ah” at 
a comfortable loudness and pitch feel or listened to their own 
vocalizations (passive listening). Based on our previous work with 
fMRI, ERP and ECoG we selected regions that are implicated in 
sensory control of the human voice. What is novel about the use of 
ECoG data is that we were able to divide STG into multiple regions 
in order to determine functional connectivity associated with the 
percolation of this region, a task that is highly challenging with 
fMRI or scalp based ERP data. Since we know that the STG plays a 
central role in the sensory motor control of the voice, this region 
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likely serves as the hub for modulation of other brain regions 
[51,52]. Given this, by understanding how different regions within 
the area relate to one another and to the rest of the brain will shed 
light on this complex process. That the middle and posterior STG 
show differential connectivity patterns allows for the generation 
of neural control hypotheses that can drive our future work in a 
large group of subjects and help provide mechanistic information 
about vocalization in healthy and disease.  For example, we know 

that patients with Parkinson’s disease have hypophonia in which 
they vocalize with very low loudness levels. Importantly, we 
know that they under scale motor output such that they report 
that they are speaking at normal or greater than normal loudness 
levels. These patients have abnormal responses to altered 
auditory feedback and this may be associated with abnormal STG 
function within the broader network of brain regions controlling 
vocalization. 

Figure 1: Listen and Vocalization Conditions – Right Hemisphere (Subject 186).

dPostSTG
dMidSTG

dPreM

dM1

dIFG

Note. dIFG = inferior temporal gyrus, dPreM = premotor cortex, dM1 = primary 
motor cortex, dPostSTG = posterior temporal gyrus, dMidSTG = anterior 
temporal gyrus. Coefficients are standardized weights/estimates. d indicates 
derivative. For clarity, only inner paths representing instantaneous change 
between ROIs are illustrated. For complete results see Table X.

Subject 186: Right Hemisphere Playback-Listen Condition

Search Posterior Probability = .47; χ2 = 7.52(2), p = 0.02; RMSEA = .03 (0.01-0.09); CFI = .99; BIC = 378.93
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Subject 186: Right Hemisphere Vocalization Condition

Search Posterior Probability = .53; χ2 = 3.2(2), p = 0.20; RMSEA = .02 (0.00-0.06); CFI = 1.0; BIC = 374.84
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In our fMRI and evoked response potential (ERP) studies 
we have shown key connectivity differences associated with 
alterations in auditory feedback during vocalization.  Our dynamic 
causal modeling of ERP signals has shown important coupling 
properties associated with bilateral STG, inferior frontal and 
pre-motor cortices. We have extended this observations to study 
musicians with absolute pitch, those with relative pitch and non-
musicians showing that connectivity variations in these regions 
differentiated the three subject groups. While these findings 
are important, the ability to use ECoG data and capitalize on its 
temporal and spatial resolution will allow for far greater insight 
into the role of different regions of STG in vocal control. 

Limitations: The method introduced here includes a novel 
and powerful approach to modeling ECoG data. However, we 
acknowledge several limitations that warrant investigation in 
future studies. First, in the present study the selection of electrodes 
was anatomically driven. In a future study we plan to investigate 
the utility of our modeling approach using a physiological 
response-based electrode location strategy. Second, a larger 
sample of subjects will allow us to conduct a more comprehensive 
evaluation of our modeling framework in measuring neuronal 
dynamics focusing on intra-individual (single-subject) versus 
inter individual (group-level). Third, in a related manner, using 
a larger sample of subjects exhibiting language dominant versus 
non-dominant network differences, we will be able to evaluate 
the utility of our modeling approach in accurately capturing brain 
dynamics.  

References
1.	 Friston KJ, 2007 Functional Integration Ch36 in K Friston, Ashburner 

SJ, Kiebel TE, Nichols WD, Penny (Eds.). Statistical Parametric 
Mapping: The Analysis of Functional Brain Images. UK: Academic 
Press, London, UK.

2.	 Zhang T, Wu J, Li F, Caffo B, Boatman RD (2015) A dynamic directional 
model for effective brain connectivity using electrocorticographic 
(ECoG) time series. Journal of the American Statistical Association 
110(509): 93-106.

3.	 Freestone DR, Karoly PJ, Dragan N, Aram P, Cook MJ, et al. (2014) 
Estimation of effective connectivity via data-driven neural modeling. 
Frontiers in Neuroscience 8: 383.

4.	 Bénar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, et al. 
(2006) EEG-fMRI of epileptic spikes: Concordance with EEG source 
localization and intracranial EEG. NeuroImage 30(4): 1161-1170.

5.	 Greenlee JDW, Jackson AW, Chen F, Larson CR, Oya H, et al. (2011) 
Human Auditory Cortical Activation during Self-Vocalization. PLoS 
One 6(3): e14744.

6.	 Greenlee JDW, Behroozmand R, Larson CR, Jackson AW, Chen F, et 
al. (2013) Sensory-Motor Interactions for Vocal Pitch Monitoring in 
Non-Primary Human Auditory Cortex. PLoS One 8(4): e60783.

7.	 McIntosh AR, Gonzales Lima F (1994) Structural Equation Modeling 
and its Application to Network Analysis in Functional Brain Imaging. 
Human Brain Mapping 2(1-2): 2-22.

8.	 Price LR (2013) Analysis of Imaging Data. Chapter 9.In: TD Little 
(Ed). Oxford Handbook of Quantitative Methods (Vol .2) Oxford 
University Press, UK, pp: 175-197.

9.	 Friston KJ (1994) Functional and Effective Connectivity in 
Neuroimaging: A Synthesis. Human Brain Mapping 2: 56-78.

10.	 Jöreskog K, Sörbom D (1979) Advances in Factor Analysis and 
Structural Equation Models. Abt Books, Massachusetts, USA.

11.	 Bentler IM, Weeks DG (1980) Linear Structural Equations with 
Latent Variables. Psychometrika 45(3): 289-308.

12.	 Lee, SY (2007) Structural Equation Modeling: A Bayesian Approach. 
NY: Wiley Series in Probability & Statistics New York, USA.

13.	 Price LR (2012) Small sample properties of Bayesian multivariate 
autoregressive time series models. Structural Equation Modeling 
19(1): 51-64.

14.	 Price LR, Peter TF, Roger JI, Angela RL (2009) Modeling dynamic 
functional neuroimaging data using structural equation modeling. 
Structural Equation Modeling 16(1): 147-162.

15.	 Pearl J (2000) Causality: Models, reasoning and inference. NY: 
Cambridge University Press, New York, USA.

16.	 Dayan P, Abbott LF (2001) Theoretical neuroscience. Computational 
and mathematical modeling of neural systems. MIT Press 36: 3.

17.	 Dayan P, Hinton GE, Neal NM, Zemel RS (1995) The Helmholtz 
machine. Neural Computation 7(5): 889-904.

18.	 Lee SY, Song XY (2004) Evaluation of Bayesian and maximum 
likelihood approaches in analyzing structural equation models with 
small sample sizes. Multivariate Behavioral Research 39(4): 653-
686.

19.	 Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: 
Forecasting and control (4th edn) 784.

20.	 Lütkepohl H (2006) New introduction to multiple time series 
analysis. NY: Springer, New York, USA.

21.	 West M, Harrison, J (1997) Bayesian forecasting and dynamic 
control. (2nd ed.), NY: Springer-Verlag, New York, USA.

22.	 Soares TM, Gonclaves FB, Gamerman D (2009) An integrated 
Bayesian model for DIF analysis. Journal of Educational and 
Behavioral Statistics 34(3): 348-377.

23.	 Dunson DB (2000) Bayesian latent variable models for clustered 
mixed outcomes. Journal of the Royal Statistical Society Series B 
62(2): 355-366.

24.	 Scheines R, Hoijtink H, Boomsma A (1999) Bayesian estimation and 
testing of structural equation models. Psychometrika 64(1): 37-52.

25.	 Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple 
regression/correlation analysis for the behavioral sciences. Journal 
of Educational and Behavioral Statistics 30(2): 227-229.

26.	 Kim J, Zhu W, Chang L, Bentler PM, Ernst T ( 2007) Unified Structural 
Equation Modeling Approach for the Analysis of Multisubject, 
Multivariate Functional MRI data. Human Brain Mapping 28(2): 85-
93.

27.	 Gates KM,	  Molenaar PC, Hillary FG, Slobounov S (2011) 
Extended unified SEM approach for modeling event-related fMRI 
data. Neuroimage 54(2): 1151-1158.

28.	 Ramsey JO, Hooker G, Campbell D, Cao J (2007) Parameter estimation 
for differential equations: a generalized smoothing approach. 
Journal of the Royal Statistical Society Series B 69(5): 741-796.

29.	 Fleiss M, Lamnabhi M, Lamnabhi-Lagarrigue, F (1983) An algebraic 

http://dx.doi.org/10.15406/bbij.2016.04.00102
http://www.ncbi.nlm.nih.gov/pubmed/25983358
http://www.ncbi.nlm.nih.gov/pubmed/25983358
http://www.ncbi.nlm.nih.gov/pubmed/25983358
http://www.ncbi.nlm.nih.gov/pubmed/25983358
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246673/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246673/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246673/
http://www.ncbi.nlm.nih.gov/pubmed/16413798
http://www.ncbi.nlm.nih.gov/pubmed/16413798
http://www.ncbi.nlm.nih.gov/pubmed/16413798
http://www.ncbi.nlm.nih.gov/pubmed/21390228
http://www.ncbi.nlm.nih.gov/pubmed/21390228
http://www.ncbi.nlm.nih.gov/pubmed/21390228
http://www.ncbi.nlm.nih.gov/pubmed/23577157/
http://www.ncbi.nlm.nih.gov/pubmed/23577157/
http://www.ncbi.nlm.nih.gov/pubmed/23577157/
http://onlinelibrary.wiley.com/doi/10.1002/hbm.460020104/abstract
http://onlinelibrary.wiley.com/doi/10.1002/hbm.460020104/abstract
http://onlinelibrary.wiley.com/doi/10.1002/hbm.460020104/abstract
http://link.springer.com/article/10.1007/BF02293905
http://link.springer.com/article/10.1007/BF02293905
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470024232.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470024232.html
http://www.tandfonline.com/doi/abs/10.1080/10705511.2012.634712
http://www.tandfonline.com/doi/abs/10.1080/10705511.2012.634712
http://www.tandfonline.com/doi/abs/10.1080/10705511.2012.634712
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874985/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874985/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874985/
http://bayes.cs.ucla.edu/BOOK-2K/neuberg-review.pdf
http://bayes.cs.ucla.edu/BOOK-2K/neuberg-review.pdf
http://www.rmki.kfki.hu/~banmi/elte/Dayanabbott.pdf
http://www.rmki.kfki.hu/~banmi/elte/Dayanabbott.pdf
http://www.ncbi.nlm.nih.gov/pubmed/7584891
http://www.ncbi.nlm.nih.gov/pubmed/7584891
http://www.ncbi.nlm.nih.gov/pubmed/26745462
http://www.ncbi.nlm.nih.gov/pubmed/26745462
http://www.ncbi.nlm.nih.gov/pubmed/26745462
http://www.ncbi.nlm.nih.gov/pubmed/26745462
http://www.springer.com/in/book/9783540401728
http://www.springer.com/in/book/9783540401728
http://www.springer.com/us/book/9780387947259
http://www.springer.com/us/book/9780387947259
http://link.springer.com/article/10.1007/BF02294318
http://link.springer.com/article/10.1007/BF02294318
http://www.ncbi.nlm.nih.gov/pubmed/16718669
http://www.ncbi.nlm.nih.gov/pubmed/16718669
http://www.ncbi.nlm.nih.gov/pubmed/16718669
http://www.ncbi.nlm.nih.gov/pubmed/16718669
http://www.ncbi.nlm.nih.gov/pubmed/20804852
http://www.ncbi.nlm.nih.gov/pubmed/20804852
http://www.ncbi.nlm.nih.gov/pubmed/20804852
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.00610.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.00610.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.00610.x/abstract
http://ieeexplore.ieee.org/document/1085397/


Dynamic Connectivity Mapping of Electrocorticographic Data using Bayesian 
Differential Structural Equation Modeling

16/16
Copyright:

©2016 Price et al.

Citation: Price LR, Vargas RV, Behroosmand R, Parkinson AL, Larson CR, et al. (2016) Dynamic Connectivity Mapping of Electrocorticographic Data 
using Bayesian Differential Structural Equation Modeling. Biom Biostat Int J 4(4): 00102. DOI: 10.15406/bbij.2016.04.00102

approach to nonlinear functional expansions. IEEE Trans Circuits 
Syst 30(8): 554-579.

30.	 Ramsay JO, Silverman BW (2005) Applied functional data analysis. 
Springer Series in Statistics, New York, USA.

31.	 Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. 
NeuroImage 19(4): 1273-1302.

32.	 Molenaar PCM, Sinclair KO, Rovine MJ, Ram N, Corneal SE (2009) 
Analyzing developmental processes on an individual level using 
nonstationary time series modeling. Developmental Psychology 
45(1): 260-271.

33.	 Nesselroade JR, Molenaar PCM (1999) Pooling Lagged Covariance 
Structures Based on Short, Multivariate Time Series for Dynamic 
Factor Analysis. Chapter 9 In: Hoyle (Ed). Statistical Strategies for 
Small Sample Research. Thousand Oaks, CA: Sage Publications, 
Newbury Park, California. pp. 223-251.

34.	 An HZ, Chen SG (1997) A note on the ergodicity of non-linear 
autoregressive models. Statistics & Probability Letters 34(4): 365-
372.

35.	 Salhi S (2009) Heuristic Search Methods. In GA Marcoulides (Ed). 
Modern Methods for Business Research, Quantitative Methods 
Series. Lawrence Erlbaum Associates, New Jersey, USA. pp. 147-176.

36.	 Hastie T, Tibshirani R, Freidman (2009) The elements of statistical 
learning: Data mining, inference and prediction( 2nd edn). Springer 
Series in Statistics. Springer Nature, New York, USA. pp. 1-745. 

37.	 Burnham KP, Anderson DR (2002) Model selection and multimodal 
inference: A practical information-theoretic approach (2nd edn) 
Statistical Theory and Methods. Springer Nature, New York, USA. pp. 
1-485.

38.	 Kullback S, Leibler RA (1951) On information and sufficiency. Annals 
of Mathematical Statistics 22(1): 79-86.

39.	 Raftery AE (1993) Bayesian model selection in structural equation 
models. In Testing Structural Equation Models, KA Bollen JS Long 
(Ed) CA: Sage Publications, Newbury Park, California. pp. 163-180.

40.	 Browne MW, Cudeck R (1989) Single-sample cross-validation 
indices for covariance structures. Multivariate Behavioral Research 
24(4): 445-455.

41.	 Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data 
analysis (2nd ed.) Boca Raton FL: Chapman & Hall, USA.

42.	 Steiger JH (1990) Structural model evaluation and modification: An 
interval estimation approach. Multivariate Behav Res 25(2): 173-
180.

43.	 Hoff, PD (2009) A first course in Bayesian statistical methods. New 
York, NY: Springer, USA.

44.	 Sevinç V, Ergün G (2009) Usage of different prior distributions 
in Bayesian vector autoregressive models. Hacettepe Journal of 
Mathematics and Statistics 38(1): 85-93.

45.	 Gelman A, Jakulin A, Pittau MG, Su YS (2008) A weakly informative 
default prior distribution for logistic and other regression models. 
The Annals of Applied Statistics 2(4): 1360-1383.

46.	 Anderson TW (2003) An introduction to multivariate statistical 
analysis (3rd edn) Wiley, New York, USA.

47.	 http://www.statmodel.com.

48.	 Muthén BO,  Muthén L (2012) Mplus computer program version 7.3. 
Mplus, Los Angeles, California. pp. 1-711.

49.	 Brooks S, Gelman A, Jones G, Meng X (2011) Handbook of Markov 
Chain Monte Carlo. Chapman & Hall/CRC. Taylor & Francis, Boca 
Raton, Florida. pp. 1-575.

50.	 Cudeck R, Kleve KJ, Henly S.J (1993) A Simple Gauss-Newton 
Procedure for Covariance Structure Analysis with High-Level 
Computer Languages. Psychometrika 58(2): 211-232.

51.	 Laird AR, Robbins JM, Li K, Price LR, Cykowski MD, et al. (2008) 
Modeling Motor Connectivity using TMS/PET and Structural 
Equation Modeling. Neuroimage 41(2): 424-436.

52.	 Neuropsychologia (2013) 51(8): 1471-1480. 

http://dx.doi.org/10.15406/bbij.2016.04.00102
http://ieeexplore.ieee.org/document/1085397/
http://ieeexplore.ieee.org/document/1085397/
http://www.ncbi.nlm.nih.gov/pubmed/12948688
http://www.ncbi.nlm.nih.gov/pubmed/12948688
http://www.ncbi.nlm.nih.gov/pubmed/19210007
http://www.ncbi.nlm.nih.gov/pubmed/19210007
http://www.ncbi.nlm.nih.gov/pubmed/19210007
http://www.ncbi.nlm.nih.gov/pubmed/19210007
http://www.sciencedirect.com/science/article/pii/S0167715296002040
http://www.sciencedirect.com/science/article/pii/S0167715296002040
http://www.sciencedirect.com/science/article/pii/S0167715296002040
https://projecteuclid.org/euclid.aoms/1177729694
https://projecteuclid.org/euclid.aoms/1177729694
http://www.tandfonline.com/doi/abs/10.1207/s15327906mbr2404_4
http://www.tandfonline.com/doi/abs/10.1207/s15327906mbr2404_4
http://www.tandfonline.com/doi/abs/10.1207/s15327906mbr2404_4
https://www.crcpress.com/Bayesian-Data-Analysis-Second-Edition/Gelman-Carlin-Stern-Rubin/p/book/9781584883883
https://www.crcpress.com/Bayesian-Data-Analysis-Second-Edition/Gelman-Carlin-Stern-Rubin/p/book/9781584883883
http://www.ncbi.nlm.nih.gov/pubmed/26794479
http://www.ncbi.nlm.nih.gov/pubmed/26794479
http://www.ncbi.nlm.nih.gov/pubmed/26794479
http://www.springer.com/us/book/9780387922997
http://www.springer.com/us/book/9780387922997
http://www.hjms.hacettepe.edu.tr/uploads/d2a1496c-71c4-4254-8e68-b4803af35308.pdf
http://www.hjms.hacettepe.edu.tr/uploads/d2a1496c-71c4-4254-8e68-b4803af35308.pdf
http://www.hjms.hacettepe.edu.tr/uploads/d2a1496c-71c4-4254-8e68-b4803af35308.pdf
http://www.stat.columbia.edu/~gelman/research/published/priors11.pdf
http://www.stat.columbia.edu/~gelman/research/published/priors11.pdf
http://www.stat.columbia.edu/~gelman/research/published/priors11.pdf
http://www.statmodel.com
http://link.springer.com/article/10.1007/BF02294574
http://link.springer.com/article/10.1007/BF02294574
http://link.springer.com/article/10.1007/BF02294574
http://www.ncbi.nlm.nih.gov/pubmed/18387823
http://www.ncbi.nlm.nih.gov/pubmed/18387823
http://www.ncbi.nlm.nih.gov/pubmed/18387823

	Title
	Abstract
	Abbreviations
	Introduction
	Methods
	Results
	Discussion
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4

